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Abstract 

We compute the one-loop QCD amplitudes for the decay of an off-shell vector boson 
with vector couplings into a quark-antiquark pair accompanied by two gluons keeping, 
for the first time, all orders in the number of colours. Together with previous work 
this completes the calculation of the necessary one-loop amplitudes needed for the 
calculation of the next-to-leading order O(cyi) corrections to four jet production in 
electron-positron annihilation, the production of a gauge boson accompanied by two 
jets in hadron-hadron collisions and three jet production in deep inelastic scattering. 



Multi-jet events in electron-positron annihilation have long been a source of vital infor- 
mation about the structure of QCD. In 1979, three jet events at DESY gave the first clear 
indications of the existence of the gluon [l], while more recently, the colour factors that 
determine the gauge group of QCD have been determined [2]. While the general features of 
events have been well described by leading order predictions, many quantities are known to 
suffer large radiative corrections. For example, the experimental four jet rate measured as a 
function of the jet resolution parameter ycut, was significantly higher than the leading order 
expectation. This is of particular interest at LEP I1 energies where 4 jet events are the main 
background to W W  events where both W bosons decay hadronically. 

Recently there has been much progress towards a more complete theoretical description 
of four jet events produced in electron-positron annihilation. Dixon and Signer [3] have 
created a general purpose Monte Carlo program to evaluate the next-to-leading order cor- 
rections to a wide variety of four-jet and related observables. Such numerical programs have 
three important ingredients; the one-loop four parton amplitudes, the tree-level five parton 
amplitudes and a method for combining the four and five parton final states together. The 
tree-level amplitudes for e+e- + qijggg and e+e- + qij&&g are well known [4,5, 61 and sev- 
eral general met hods have been developed for numerically isolating the infrared divergences 
[7, 8, 91. However, the one-loop amplitudes are not fully known, and the next-teleading 
order corrections described by the Dixon-Signer program [3] are therefore incomplete. 

The one-loop amplitudes relevant for this process are e+e- + qijgg and e+e- + qijQQ. 
Two groups [ lO ,  111 have computed the amplitudes for the four quark final states keeping 
all orders in the number of colours, and these matrix elements have been implemented in 
the Dixon-Signer Monte Carlo [3]. The situation for the two quark two gluon process is 
less complete and may be illustrated by examining the colour structure of the one-loop 
contribution to the four-jet cross section, 

where N is the number of colours. Bern, Dixon and Kosower [12] have provided compact 
analytic results for the leading colour part of the two quark two gluon process (a(')) which 
should account for approximately 90% of the next-teleading order corrections. Indeed, 
keeping all of the known contributions, Dixon and Signer find that the next-teleading order 
predictions match onto the experimental data much better [3]. However, the subleading 
terms a(b) and a(") are still expected to contribute a further 10% to the 4jet rate. In this 
letter, we compute the one-loop matrix elements for the y* + qijgg process keeping, for the 
first time, all orders in the number of colours. These results can be implemented directly 
into the Dixon-Signer Monte Carlo [3], or can be used as a cross check with the results 
anticipated from the helicity approach [13]. 

As in the calculation of the one-loop four quark matrix elements [lO] and in contrast to 
the helicity method employed by Bern et al. [ll], we compute 'squared' matrix elements, 
i.e. the interference between tree-level and one-loop amplitudes. By doing so, we reduce all 
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tensor integrals down to scalars directly leaving at worst three (tensor) loop momenta in the 
numerator of the box integrals. 

The evaluation of the tensor integrals represents the bulk of the calculation and should be 
treated with some care. The 'squared' tree-level matrix element for a given process contains 
inverse powers of certain invariants, resulting from the propagators present. This singularity 
structure is largely responsible for the infrared behaviour of the matrix elements. Based on 
general arguments, one expects that the one-loop corrections should have the same singu- 
larity structure as tree-level and should not contain more inverse powers of these (or other) 
invariants or additional kinematic singularities resulting from the calculational scheme used. 
However, as well as generating extra inverse powers of the invariants (above and beyond 
the expected tree-level singularities), traditional methods of reducing the tensor integrals to 
combinations of scalar integrals introduce (many) factors of the Gram determinant (A) in 
the denominator. Although the matrix elements themselves are finite as A -+ 0, individual 
terms appear to diverge. These apparent singularities can be avoided by forming suitable 
combinations of the scalar integrals which are finite in the limit of vanishing A as well as in 
the limit where the invariant mass of a pair of particles tends to zero. Motivated by the work 
of Bern et al, [14], we have shown in ref. [15] how these functions are naturally obtained 
by differentiation of the original scalar loop-integral. The advantages of this decomposition 
are then two-fold. First, the expressions for the one-loop matrix elements are significantly 
simplified by grouping integrals together. Second, we can ensure that the one-loop singu- 
larity structure reproduces that at tree level. In other words, the only allowed kinematic 
singularities are those appearing at tree level, multiplied by coefficients that are well be- 
haved in all kinematic limits. This latter point is achieved by using identities amongst the 
set of basic functions and tends not to reduce the size of the answer, although the absence 
of further kinematic singularities ensures that the matrix elements are numerically stable. 
There is a slight price to pay in that, compared to the raw scalar integrals, the the set of 
basic functions is now enlarged and is not linearly independent, resulting in some ambiguity 
in the form of the final result. To generate and simplify our results, we have made repeated 
use of the algebraic manipulation packages FORM and MAPLE. 

For the process under consideration, y* -+ qqgg we label the momenta as, 

and systematically eliminate the photon momentum in favour of the four massless parton 
momenta. 

The colour structure of the matrix element at tree-level (n = 0) and one-loop (n = 1) is 
rather simple and we have, 
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where c1, cp are the colours of the quarks and u3, u4 the colours of the gluons. The arguments 
of A; indicate a permutation of the momenta of the external gluons. At lowest order, 

dr)(3,4) = 0, (4) 

while at one-loop we find, 

1 
d1')(3,4) = Nd$)(3,4) - ~ d g ) ( 3 , 4 ) ,  

dp)(3,4) = dc)(3,4) T dc)(4,3). 

The functions At)(i,j) ,  CY = A, B,  C represent the contributions of the three gauge invariant 
sets of Feynman diagrams shown in Figs. 1 ,  2 and 3 respectively. The Dixon-Signer Monte 
Carlo [3] incorporates the leading colour term, d$)(3,4). 

The squared matrix elements are relatively straightforwardly obtained at leading order 
[16]. Some care must be taken to ensure that only physical, transverse degrees of freedom 
are included for the external gluons. We do this by requiring that terms in MfJSu4 that 
vanish when contracted with the physical gluon polarisation vectors €4 or ~ " 4  are removed 
by hand [17]. The sum over the polarisations of all the gauge bosom may then be performed 
in the Feynman gauge, 

@€*Y = - g Y  
spins 

Hence, 

where, 

and, 

&7,4 c lM(O)I2 = -(N2 4 - 1)N 
spins 

7(3 ,4)  = IAf))'(3,4)df))(3,4)1, 
spins 

(7) 

(9) 

7 = 1 (AP)+(3,4) + AYIt(4, 3)) (df))(3,4) + d?)(4,3)) I. (10) 
spins 

The 3-gluon vertex contributions to df))(3,4) and df))(4,3) enter with opposite sign, so 7 
(with no arguments) is the contribution from the pure QED-like diagrams. 

The relevant 'squared' matrix elements are the interference between the tree-level and 
one-loop amplitudes, 
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Figure 1: The classes of Feynman diagrams relevant for the function dy)(3,4). Reading 
clockwise round the diagram and starting from the quark (PI) at the top, we encounter 
gluon (p3) before gluon (p4) and end at antiquark (pz). The solid circle indicates the possible 
positions for attaching the off-shell photon to the quark-antiquark pair. Diagrams (a), taken 
with both permutations of gluons 3 and 4, contribute to the piece LA while the permutation 
shown in (a)+(b) gives $he contribution to LA(3,4). Diagrams with self-energy corrections 
on the external lines are zero in dimensional regularisation and have been omitted. 
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Figure 2: The classes of Feynman diagrams relevant for the function dg)(3,4)  Reading 
clockwise round the diagram and starting from the quark (pl) at the top, we encounter 
gluon (p3) before gluon (p4) and end at antiquark (p2). The solid circle indicates the possible 
positions for attaching the off-shell photon to the quark-antiquark pair. Diagrams (a), taken 
with both permutations of gluons 3 and 4, contribute to the piece LCB while the permutation 
shown in (a)+(b) gives the contribution to LCcg(3,4). 
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Figure 3: The classes of Feynman diagrams relevant for the function A!) when taken with 
both permutations of the gluons. Reading clockwise round the diagram and starting from 
the quark (pl) at the top, we encounter gluon (p3) before gluon (p4) and end at antiquark 
(p2). The solid circle indicates the possible positions for attaching the off-shell photon to 
the quark-antiquark pair. 

with, 
Lc,(3,4) = IAS't(3,4)d(P)(3,4)1, 

spins 

for Q = A, B and the QED-like structures, 

La = 1 (A:lt(3,4) + A :lt(4, 3)) (Af"(3,4) + A(P)(4,3)) I. (13) 
spins 

Hence the 'squared' matrix elements are described by 5 independent La. The Lc,(3,4) are 
symmetric under the exchange pl +) p2 and p3 +) p4 while the La are symmetric under 
either pl H p2 or p3 +) p4. 

Working in dimensional regularisation with 4 - 2c spacetime dimensions, it is straight- 
forward to remove the infrared and ultraviolet poles from the La since they are proportional 
to the tree-level amplitudes, 



where we have introduced the notation, 

r2(i - €)r(i + €) 

P,= (Z) r(i - 2 4  

LJ3(3,4) = (-7 - ""34) € 7(3,4)  + EJ3(3,4), ?- 
p12 

p 1 2  3 pi234)  
2 €  + iB, 

+ F) (7 + 7(3,4)  - 7(4,3)) 

(7 + 7(4,3)  - 7(3,4)) + Ec. (18) 

In physical cross sections, this pole structure cancels with the infrared poles from the y* + 
qqgg + g process and those generated by ultraviolet renormalisation. 

In determining the finite pieces, E, we are concerned to ensure that the singularity 
structure matches that of the tree-level functions 7(3,4)  and 7. In terms of the generalised 
Mandels t am invariants, 

sij = (pi + pj)2, sijk = (pi + pj + pk)2, s i j k l  = (pi + p j  + p k  (20) 

7 contains single poles in 513, ~ 2 3 ,  514 and ~ 2 4  while 7(3,4)  has poles in ~ 1 3 ,  ~3~ and 524. In 
addition, both 7 and 7(3., 4) contain double poles in the triple invariants SI34 and s234. Using 
the tensor reduction described in [15], possible singularities due to Gram determinants are 
automatically protected. However, it is possible to generate apparent singularities in double 
or triple invariants such as s12 or 5123. These poles do not correspond to any of the allowed 
infrared singularities and the matrix elements are finite as, for example, s12 + 0 or 5123 + 0. 
In fact, it is straightforward to explicitly remove such poles using identities amongst the 
combinations of scalar integrals. For example, the identity, 

relating the functions for box integral functions with two adjacent masses (defined in Ap- 
pendix B of [15]) is useful to eliminate poles in ~ 1 2 3 .  The finite pieces can be written. 
symbolically as, 

E = P;(s)L;, 
a 

where the coefficients P;(s) are rational polynomials of invariants. The finite functions 
L; are the linear combinations of scalar integrals defined in [15] which are well-behaved 
in all kinematic limits. Any denominators of the corresponding tree-level matrix element 
are allowed in the coefficient P;(s), with any additional fake singularities protected by L;. 
Typically the coefficient of a given function contains O(lO0) terms, comparable with the size 
of the tree-level matrix elements. The number of functions is rather large, of O(lOO), but 
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is a minimal set which protects all the kinematic limits and is therefore numerically stable. 
The analytic expressions for the individual La, and particularly the subleading colour terms 
LB and Ec, are therefore rather lengthy so we have constructed a FORTRAN subroutine to 
evaluate them for a given phase space point. This can be directly implemented in general 
purpose next-to-leading order Monte Carlo programs for the e+e-  + 4 jet, e*p + e* + 3 jet 
and p p  + V + 2 jet processes. 

To summarize, we have performed the first calculation of the one-loop ‘squared’ matrix 
elements for the y* + 4499 process keeping all orders in the number of colours. We have 
grouped the Feynman diagrams according to the colour structure, but unlike the helicity ap- 
proach of [18], have used conventional dimensional regularisation throughout. We have used 
the one-loop reduction method described in [15] to obtain the finite parts of the one-loop 
matrix amplitudes in terms of functions that are well behaved in all kinematic limits. The 
finite one-loop expressions La contain the same singularity structure as the tree level ampli- 
tudes 7 and are numerically stable. Our results are rather lengthy and we have provided a 
FORTRAN implementation of them that can be either used with the existing Dixon-Signer 
program for e+e-  + 4 jets or as a completely independent check of amplitudes obtained 
using the helicity approach [ll, 12, 131. Together with previous work [ l O ,  11, 121 th’ is com- 
pletes the calculation of the necessary one-loop amplitudes for the coupling of an electroweak 
gauge boson to four massless partons with the following exceptions: 

(a) Contributions proportional to the axial coupling. 

(b) Contributions where the electroweak boson couples to a closed fermion loop. 

Both of these contributions are expected to be small because of cancellations between the 
up- and down-type quark contributions. 
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