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Abstract 
Current approaches to  the detection of  climate change and attribution of an 

anthropogenic influence on climate involve quantifying the level of  agreement 
between one or more model-predicted patterns of anthropogenically-forced change 
and observed changes in the recent climate record. Analyses of uncertainty rely 
on simulated climate variability from a control run of a climate model. If the 
model gives an inaccurate representation of climate variability in the real world, all 
estimates of  uncertainty, including statements of  confidence in claims of  attribution, 
are compromised. Any numerical representation of  the climate system is likely to 
display too little variance on small spatial scales so there will always be aspects 
of  model variability which are unrealistic, leading to  a risk of spurious detection 
results. The risk is particularly severe i f  the detection strategy involves optimisation 
of signal-to-noise because unrealistic aspects of model variability may automatically 
be given high weight through the optimisation procedure. The solution is to  confine 
attention to  aspects of  the model and of  the real climate system in which the 
model simulation of internal climate variability is adequate - or, more accurately, 
cannot be shown to be inadequate. We propose a simple consistency check based 
on standard linear regression which can be applied to both the space-time and 
frequency-domain approaches to optimal detection and demonstrate the application 
of  this check to the problem of detection and attribution of anthropogenic signals 
in the radiosonde-based record of recent trends in atmospheric vertical temperature 
structure. We also suggest results should be reported in terms of  return-times in 
place of the usual confidence intervals, return-times being more transparent and 
less dependent on the distribution of climate noise. 

1 
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1 Introduction 
A common overall approach has emerged to the detection of anthropogenic climate 
change. A detection statistic is defined and evaluated in an observational dataset. This 
might be a global mean quantity (e.g. Stoufler et al., 1994); a model vs. observation 
pattern correlation (Mitchell et al., 1995a; Tett et al., 1996); the observed trend in pattern 
correlation (Santer et al., 1996); or some form of “optimised fingerprint” (Hasselmann, 
1979; Hannoschock & Fbankignoul, 1985, Bell, 1986; Hasselmann, 1993, Santer et al., 
1994a; North et al., 1995, Hegerl et al., 1996; Stevens & North, 1997). The same detection 
statistic is then evaluated treating sections of a control run of a climate model (in which 
there is no secular change in forcing) as “pseudo-observations” to provide an estimate of 
the distribution of that statistic under the null-hypothesis of no anthropogenic change. 
If the observed value of the chosen statistic lies in the uppermost 100Pth percentile of the 
distribution estimated from the control, then detection is claimed with a l O O P %  risk of a 
type-1 error (so P = probability of a false positive). Clearly, this approach to quantifying 
uncertainty, or the risk of error, in claims of detection and attribution requires complete 
confidence in the realism of the model simulation of internal climate variability. 

Hasselmann, 1997, distinguishes between “detection” of anthropogenic climate change 
(ruling out, at a certain confidence level, the possibility that an observed change is due 
to internal variability alone) and “attribution” (demonstrating that the observed change 
is consistent with the predictions of a climate model subjected to a particular forcing 
scenario and inconsistent with all physically plausible alternative causal explanations). 
Formal attribution is clearly a much more demanding objective than detection. Indeed, as 
Hasselmann, 1997, observes, it is a logical impossibility unless we use physical arguments 
to confine attention a priori to a relatively small number of alternative explanations. The 
attribution framework proposed by Hasselmann, 1997, and implemented by Hegerl et al., 
1997, also relies heavily on model-simulated climate variability, because “consistent” and 
“inconsistent” are formally defined as “within the bounds of variability as simulated by 
a particular climate model”. 

Following standard practice, we will distinguish between “internal” (unforced) climate 
variability and the climate system’s response to time-varying natural forcings such as 
changes in the solar constant. If the temporal history of these natural forcings is known, 
and the response mechanism can be accurately modelled, these can be treated exactly like 
an anthropogenic forcing (e.g. Hegerl et al., 1997). If the forcing histories are unknown, 
they must be treated as sources of internal variability. 

We have a number of a priori reasons to distrust model simulations of internal 
climate variability. On the simplest level, there are known sources of variability in 
the observational record (the simplest example being observation error) which are not 
represented in current models. Even if these additional sources are included in the 
model, it will always be the case that variability on small spatio-temporal scales is likely 
to be under-represented in any finite representation of a continuous turbulent system. 
Fortunately, we do not require a model simulation of internal variability to be accurate 
in every respect for the model to be used for uncertainty analysis in climate change 
detection and attribution. In principle, only those aspects of model behaviour which are 
relevant to the detection and attribution problem need to be realistic. For example, if 
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our chosen detection statistic is the global mean temperature, then all we require is an 
estimate of the variability of this quantity on the relevant timescales. The problem is 
determining which aspects of model variability are crucial to a particular detection or 
attribution problem and developing quantitative measures of model adequacy. 

Simple checks, such as the comparison of global mean power spectra, can identify 
gross deficiencies in model variability, but the problem of how to remove the (presumed, 
but unknown) anthropogenic signal from the historical record prior to computing a 
power spectrum remains. Proxy and incomplete observations of the pre-industrial 
period (e.g. Brudley & Jones, 1993) can help here, but separating low-frequency climate 
variability from slow changes in the relationship between proxy observations and the 
climatic variables which they are supposed to represent remains a problem. There 
is also the intrinsic difficulty that paleo-climate observations are sparse, so a paleo- 
climate reconstruction of any climate index must be contaminated with the high-spatial- 
wavenumber components of variability which models are known to simulate poorly (Stott 
& Tett, 1997) and which, it is hoped, are irrelevant to climate change detection. This 
may be an issue for recent pioneering studies comparing model-simulated variability with 
the paleo-climate record (e.g. Burnett et al., 1996). 

The other problem with global mean power spectra is that a deficiency in the model’s 
internal variability may fail to show up in the global mean while having a significant 
impact on the chosen detection statistic (this is necessarily true if a “centred” statistic 
is used, which is defined to be independent of the global mean - Santer et al., 1993). 
Recognising this, Hegerl et al., 1996, use a linear response model to estimate and remove 
the anthropogenic signal from the historical record and then use the residual as an 
estimate of natural variability. While clearly an advance on simple power spectra, this 
approach relies uncomfortably on the adequacy of a very simple linear model for both the 
form and amplitude of the anthropogenic signal. They note that it would tend to give a 
very conservative estimate of uncertainty, because errors in the model compound genuine 
natural variability in the observations. This may be unimportant if all that is being 
tested is the null-hypothesis of zero climate sensitivity (or, more precisely, no response 
to the candidate forcing - the crudest form of “detection”) but when these techniques 
are extended to the attribution problem, or to provide error estimates on forecasts of 
21St century climate change, an excessively conservative estimate of uncertainty is as 
misleading as an excessively optimistic one. 

The crucial question is this: is the model simulation of internal climate variability 
adequate to quantify uncertainty in global change detection? Or to rephrase the question 
in a testable form: do we have reason to distrust the results of this particular application 
of the model? The notion of adequacy for a particular task is crucial. It will always be 
possible to identify deficiencies in some aspect of model climatology or simulated climate 
variability, and therefore misleading to insist that the model be absolutely realistic on all 
spatio-temporal scales before it can be trusted for climate applications. In the following 
section, we attempt to address this question in the context of the “optimal fingerprint” 
approach to climate change detection and attribution. 
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2 Fingerprinting as generalised linear regression 
Although it has appeared in various guises (Hasselmann, 1979; Bell, 1986; Santer et al., 
1994b; North et al., 1995; Thacker, 1996), the basic principle of “optimal” detection 
is the classical technique of generalised linear regression (see Mardia et al., 1979, for a 
helpful introduction). In order to  stress this link, we use the standard notation of the 
linear regression literature. A set of m “guess patterns”, each consisting of a rank-n 
vector representing the pattern of the climate system’s response to a particular external 
forcing scenario, provide the independent variables of the regression model. We denote 
these guess patterns as the columns of the n x m matrix X.  Typical examples include 
the pattern of surface or vertical temperature change which is expected to  result from 
increasing concentrations of greenhouse gases, ant hropogenic sulphate aerosols, declining 
stratospheric ozone, aerosols from volcanic eruptions or some combination of these. The 
individual elements of X correspond to  the local trend at a particular latitude-longitude 
or (in the “vertical detection” problem discussed here) latitude-height location. In 
our discussion here, we shall assume that X is real, although in the frequency-domain 
representation of North et al., 1995, elements may correspond to  complex coefficients 
after the data have been Fourier transformed in time. The same basic principles apply 
in both cases (Hegerl & North, 1997). 

Guess patterns may be defined a priori, or using simple physical arguments based 
on the pattern of the forcing (as in Santer et al., 1996) or by averaging the response 
to that forcing scenario from an ensemble of runs of a climate model (as in Tett et al., 
1996). For consistency with Hasselrnann, 1997, we shall base our optimisation procedure 
on the assumption that the guess patterns may be treated as noise free. With only 
a four-member ensemble in the example in section 5, this is clearly incorrect, so our 
procedure remains sub-optimal in this respect. We do, however, take residual noise in X 
into account in our analysis of uncertainty, as detailed below. 

All current approaches to  optimal detection are based on the assumption that the 
recent climate record may be represented as a linear superposition of these model- 
predicted guess-patterns plus an additive noise term. Thus the detection problem simply 
involves estimating the amplitude of these patterns in a rank-n vector of observations, 
y, or estimating the parameters p in the basic linear model 

y = x p + u  (1) 

where U is the “climate noise” term whose covariance is given by the n x n matrix C N :  

(2) 
C N  E(uu T ) 

Under the assumption that U is multivariate normal (which we will return to below), the 
best (lowest variance) linear unbiased (BLUE) estimator of p in (1) may be found by 
introducing a “pre-whitening” coordinate transformation P such that 

(3) 
T T  E(Puu P ) = PCNPT = I. 

The term pre-whitening refers to  the fact that  the transformed noise, Pu, appears to be 
“white” (uncorrelated and Gaussian distributed) in these transformed coordinates. 
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Equation (3) is satisfied if PTP = C;’, provided this inverse exists. Because Pu is 
indistinguishable from white noise, we may invoke the Gauss-Markov theorem to prove 
that the following estimator for p is BLUE: 

(4) T T  1 T T  a = (X P Px)- x P Py = (XTC;;lX)-1XTC,ly. 

This is simply the ordinary least squares solution applied to the transformed (rotated 
and weighted) variables. The link to standard regression is most transparent in the case 
of a single-pattern with uncorrelated noise (i.e. when X has only a single column and 
C, is diagonal): 

where A: is the expected noise variance in the ith component of y .  
For reference, the vth row of XTC&’ in (4) corresponds to the vth fingerprint f:  in 

equation (30) of Husselrnann, 1997, while the matrix X C, X corresponds to the metric 
D,, in his equation (31) and p corresponds to the detection coefficients, d” in his equation 

T -1 

(33). 
An estimate of the variance of P is given by 

V(P)  = (xTc;’X)-’ 

which, provided U is multivariate normal, can be translated into a confidence ellipsoid. 
That is, the quantity: 

(P - P)TXTC;’X(P - P) - x i ,  (7) 
meaning that the LHS of (7) is distributed like x2 with m degrees of freedom. To bound 
the region corresponding to a given P-value (where P is the probability that the true value 
of p lies outside this region), we find the critical value of x2 for which P(x2 > = P 
and plot the values of p for which the LHS of (7) is equal to this value. Again, in the 
single-pattern, uncorrelated noise, example, equation (6) becomes 

(8) 
1 

- PI2] = - ci $* 
If we wish to compute the joint distribution of a subset of the parameters in the 

multi-pattern case, we simply extract the relevant rows and colums from XTC,’X and 
evaluate (7) with this reduced number of degrees of freedom (see Press et al., 1992 for 
a clear discussion of this point). The confidence intervals thus obtained represent an 
estimate of our uncertainty in the factors by which we have to scale the model response 
to the various forcings to match what is taking place in the real world. 

also provides an estimate of the implied uncertainty 
in any scalar linear diagnostic, 4. With trivial exceptions, 4 can always be represented 
as a projection of the observations onto a vector of weights, or 4 = wTy. If the elements 
of w are all equal to l/n, for example, then 4 is simply the global mean. If w is a unit 
vector, then 4 is the value of the observation-vector at a particular location and so on. 

This estimate of the variance of 



Allen & Tett, “Checking for model consistency.. . ”: RAL-TR-97040 6 

Neglecting uncertainty in X as before, the variance of q5 attributable to the uncertainty 
in p is: 

V(q5) = W*Xv(p)XTW. (9) 
By assessing the extent to which trends at individual locations or in global-mean 
quantities are consistent with optimal detection results in this way, we can move on 
from the simple yes/no question of whether the observations are globally consistent with 
the predictions of a climate model, to investigate which aspects of the observational 
record disagree most strongly with the model predictions, identifying likely model errors. 

The fact that  we are using a linear model in (1) does not mean that we cannot 
examine problems in which non-linearity is important. For example, suppose a model 
forced with the combined effects of changing sulphate-aerosol and greenhouse-gas levels 
gave a pattern of change which was significantly different to the sum of the patterns 
obtained in runs forced with each of these factors alone (significance might prove very 
difficult to establish without very large ensembles of runs, but suppose the non-linearity is 
strong enough that it is possible). We can then use the difference between the combined 
pattern and the sum of the two individual patterns to define a “fingerprint” of this non- 
linearity. This, too, can then be searched for in the observations to establish whether 
such non-linearity is detectable in the real world. 

The key advantage of this regression-based approach over detection schemes based on 
pattern correlation (e.g. Mztchell et al., 1995a; Santer et al., 1996; Tett et al., 1996) is 
that it provides information on relative pattern amplitudes in model and observations: 
correlations convey no amplitude information. If the guess patterns are based on an 
ensemble-average of model simulations with forcing changes matched to the period of 
the observations, and the model has the timing and amplitude of the response to these 
forcing changes exactly right, then the expected value of the estimated pattern-amplitude 
coefficients, E@) ,  will be approximately unity. As noted above, this expectation is only 
approximate because the assumption that X is noise free is only strictly correct in the 
limit of an infinite ensemble. In general, noise in X will tend to  bias p towards zero 
(Murdia et al., 1979) and increase the true variance in the estimator by a factor of 
approximately 1 + 1 / M ,  where M is the ensemble size. We overcome this second problem 
by simply inflating v(p) by this factor, but the bias in p remains, making the overall 
algorithm slightly over-conservative. The derivation of alternative unbiased estimators 
in the presence of noise in both X and y is straightforward (e.g. Rzpley & Thompson, 
1987), but we will examine these in detail elsewhere. 

3 Est irnat ing the clirnat e noise covariance 
The key difficulty in optimal fingerprinting is that  CN is unknown and is estimated from 
a control integration of the climate model thus: 

ChI = YCYT, 

where the columns of Yc represent a succession of y-like vectors of “pseudo-observations” 
extracted from the control. As far as possible, these pseudo-observations must be 
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calculated in such a way as to mimic the observation vectors, including in particular 
applying the same observation mask to account for the effects of missing data. 

Since y typically represents trends over a 30-50-year period, and control integrations 
are necessarily limited to 1,000-2,000 years duration, the number of independent vectors 
of “pseudo-observations” in a typical control run (the rank of Y) is orders of magnitude 
less than the number of degrees of freedom, n. The estimated covariance matrix obtained 
from the control, & N ,  is therefore non-invertible. 

One solution to this problem is obtained by noting that we do not actually require C,’ 
for p to be BLUE. We only require that the transformation P is such that (3) is satisfied 
and the unit matrix on the RHS of (3) need not be of rank n. If we assume that CN 
provides a reliable estimate of the noise covariance only in the subspace spanned by the K 

highest-variance EOFs of the control (eigenvectors of CN), then a natural transformation 
to use is P = FT where the columns of F are the K highest-variance EOFs of the control 
weighted by their inverse singular values (square root of the corresponding eigenvalues 

This is equivalent to using the Moore-Penrose pseudo-inverse, FFT in place of C i ’ .  
The pseudo-inverse based on the EOFs of the control seems the most natural one to use, 
but others are also possible: for example, Hegerl et al., 1996, use the EOFs of one of their 
forced runs. This seems reasonable when only a single forcing is under consideration, but 
introduces a bias towards one scenario over another when m > 1, which may be an 
important consideration in attribution studies. We are also concerned about the impact 
on algorithm stability of including basis-vectors which are known to be poorly sampled 
in the control integration: all things considered, using the EOFs of the control may 
compromise the power of the detection algorithm, we believe it is the approach least 
likely to give misleading results. 

The problem is that key results depend critically and predictably on the choice of K :  

in general, the estimated uncertainty envelope around p shrinks close to monotonically 
with increasing K ,  so (in a detection problem) the confidence level at which the null- 
hypothesis of zero climate sensitivity can be rejected increases predictably with K even 
when this null-hypothesis is valid. The reason is that increasing K introduces EOFs in 
which the variance in the control is unrealistically low. These will automatically be given 
high weight by the optimisation procedure. 

The most obvious source of this problem, which is also the simplest to deal with, is that 
low-ranked EOFs of the control will generally contain unrealistically low variance due to 
sampling deficiencies: these correspond to state-space directions which were not visited 
during this relatively short control integration. Although FTeNF = I by construction, 
6, # C N  because of the finite length of the control, so equation (3) is only approximately 
satisfied. Worse, because the EOFs of the control have been chosen to maximise variance 
in the particular segment, Yc, the transformation F is biased with respect to that 
particular segment. Applied to another, arbitrarily selected, segment of the control with 
covariance matrix C N ~ ,  the diagonal elements of F T C ~ , F  will, on average, tend to be 
less than unity. This is important because it introduces a bias in the estimate of the 
covariance of ,h (Bell, 1986). Recognising this, Hegerl et al., 1996, stipulate that different 
control runs, possibly from different models, are used for optimisation and hypothesis 

of CN). 
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testing. Thus we replace (6) with the estimate 

8 

where e,, and e~~ are estimated from different control integrations or independent 
segments of the same integration, Ycl and Yc,. Notice that equation (11) collapses to 
equation (6) in the limit of a long control integration, as e~~ + e~~ + C N .  

If the covariance estimate e ~ ,  has v degrees of freedom (for example, if it was 
computed by averaging over v independent realisations of pseudo-observations extracted 
from the control), then equation (7) for the errors in fl is replaced by 

the standard F distribution with m and v degrees of freedom in the numerator and 
denominator respectively. Thus a confidence ellipsoid around our “best-guess” value, P, 
can be found by plotting the locus of points ,L3 for which e2(P) is equal to the corresponding 
critical value of the Fm,, distribution.’ 

The RHS of equation (12) only converges to xk = mF,,, (corresponding to an 
infinitely long control, in which case equations (12) and (7) become equivalent) for 
v > 100. In a 50-year diagnostic, this would require control runs of several thousand 
years, which are not generally available. Much attention has therefore been devoted to 
the estimation of v, the “true” number of degrees of freedom of a relatively short control 
integration - see, for example, Zweirs & von Storch, 1995, and references therein. This is 
important because an over-estimate of v, due to the neglect of serial correlation in Y,, 
can lead to spuriously high estimates of significance. Zweirs & von Storch, 1995, propose 
a correction for v based on the assumption that the temporal evolution of all these scalar 
diagnostics in the control run can be represented by first-order autoregressive processes, 
or “AR(1) noise.” The problem (noted by Zweirs & von Storch, 1995, themselves) is that 
the control model is not in fact a linear stochastic process at all, even though it may be 
indistinguishable from one, so there is no rigorous answer to the question of what is the 
“correct” value of v, and results can depend disconcertingly heavily on the method used 
to estimate it. For example, temporal correlations will generally depend on spatial scale: 
the projection of the control onto a highly structured spatial pattern may be much less 
autocorrelated in time than the projection onto a very smooth, large-scale pattern. In a 
multi-pattern analysis, which autocorrelation coefficient is appropriate? In the analysis 
presented here, we use the largest one, giving the most conservative estimate of v, but 
can see no rigorous justification for this choice. 

A much more transparent approach, which does not rely on any degrees-of-freedom 
estimates at all, is to focus the reporting of results onto return-times rather than 
confidence intervals. We evaluate e2(P) over all vectors of pseudo-observations in Yc, 
(recalling that ,B = E(& = 0 in the control), and simply take the maximum value, 
as indicating a “300-year error” (that is, the maximum Mahalanobis-weighted error in 

‘When only a single guess-pattern is under consideration, m = 1, the Student’s t-distribution may 
be used instead, but this is trivially related to the Fl,,-distribution so we will not discuss it here for the 
sake of brevity. 
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p likely to be observed in a 300-year segment of the control, assuming that is what was 
available for hypothesis-testing). We then plot p for which the LHS of equation (12) 
equals E;=. It may readily be shown that this corresponds approximately to a P-value 
of ln(2)/u, that is, $,= will exceed this critical value of the underlying distribution in 
approximately 50% of cases, irrespective of the shape of that distribution. 

Reporting return-times and approximate P-values based on the estimated degrees-of- 
freedom U has four clear advantages over confidence intervals based on an assumption of 
multivariate normality: 

1. they are conceptually simpler for presentation of results to non-specialists: “the 
control did not move outside this region in 300 years”; 

2. they rely much less on distributional assumptions - we require only that the 
is radially symmetric under the norm defined by v’(p), not that distribution of 

this distribution is Gaussian; 

3. the role of the estimated degrees-of-freedom of YC, is completely transparent; 

4. and most importantly, they explicitly discourage claims of significance which involve 
extrapolation beyond the region explored by the control. 

For example, if U = 15, so ln(2)/u = 0.05, this the smallest P-value which can be 
quantified legitimately. If the observations lie well outside the region defined by e;=, 
then all that can be said is that we have detected a model-data discrepancy at P<o.o~.  
Using an F-test to claim significance at the P0.001 level, for example, implies we can 
extrapolate from observations of the central body of the distribution right out into the 
tails, which is clearly unsafe. 

Whichever approach is adopted to define uncertainty intervals, we still rely on the 
assumption that e~~ and e ~ ,  are individually realistic, or at least that errors in the 
representation of climate variability in the two control runs are unrelated. Even if 
separate models are used, any such independence assumption for different climate models 
is suspect, because these models have so much (often, entire components) in common. 
If, as is likely, both models display too little variance on small spatial scales, both C N ~  
and e ~ ,  will be subject to  a similar bias, compromising analysis of uncertainty. 

Indeed, these biases due to  systematic deficiencies in the simulation of climate 
variability in the control overwhelm, at least in the vertical detection problem, any 
bias due to random sampling in the estimation of CN. In the language of dynamical 
systems, even with these relatively short control integrations, the model attractor is 
already sufficiently well-sampled that the differences between its underlying shape and 
that of the attractor of real climate variability have already become more important than 
differences between the true shape and the sampled shape of the model attractor. 

4 Consistency checks to detect model inadequacy 
Having framed the optimal fingerprinting algorithm as a linear regression problem, a 
variety of simple checks for model adequacy immediately present themselves, drawn from 
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the standard statistical literature. For simplicity, following Husselmunn, 1997, we will 
focus on parametric tests based on the assumption of multivariate normality. To judge 
from the analyses we have performed to date, the assumption of normality is likely to be 
reasonably close to valid for temperature data on large spatio-temporal scales. Assuming 
normality for other data types (such as precipitation) would be more problematic. The 
problem is that formal tests for multivariate normality are not particularly powerful when 
applied to the relatively small sample sizes we encounter here (i.e. they are unlikely to 
identify weak departures from normality), so even if the data depart from normality, it 
would be difficult to identify and characterise the departure. 

Our null-hypothesis, NO, is that the control simulation of climate variability is an 
adequate representation of variability in the real world in the truncated state-space 
which we are using for the analysis - i.e. the subspace defined by the first K EOFs 
of the control run does not include patterns which contain unrealistically low (or high) 
variance in the control simulation of climate variability. Because the effects of errors in 
observations are not represented in the climate model, No also encompasses the statement 
that observational error is negligible in the truncated state-space (on the spatio-temporal 
scales) that is used for detection. A test of NO, therefore, is also a test of the validity of 
this assumption. 

If we are unable to reject NO, then we have no explicit reason to distrust uncertainty 
estimates based on our analysis. This does not, of course, mean that these uncertainty 
estimates are necessarily correct. It may mean only that the tests we have devised are 
not powerful enough to identify some crucial deficiency in model simulated variability. 
But it is important to recognise that the demonstration of internal consistency is all that 
can ever be expected from a formal attribution study. Proof that the model is “correct”, 
meaning that every alternative has been taken into account and rejected, is a logical 
impossibility. 

We formulate a simple test of this null-hypothesis as follows: if No is true then the 
residuals of regression, - 

s i = y - x p ,  (13) 
should behave like mutually independent, normally distributed random noise in the 
coordinate’system (under the norm) defined by e;’, so 

meaning that the LHS of equation (14) is distributed like the sum of the squares of 
K - m normally-distributed random variables. If an increase in K introduces EOFs of the 
control which contain unrealistically low variance, then the LHS of (14) will move to an 
improbably high percentile of the x:-m distribution, and NO will be rejected, giving us 
some warning that estimates of uncertainty are then likely to be unreliable. 

Considering again the case of a single-pattern with uncorrelated noise, equations (13) 
and (14) become 

Terms in which the control variance is unrealistically low correspond to small values of 
A: which inflate the LHS of (15) into a high percentile of the x2 distribution. 
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In geometric terms, the x2 test involves summing residuals over all state-space 
directions in the subspace defined by EOFs 1 to IE of the control which are orthogonal to 
the hyperplane defined by the guess-patterns, X, where orthogonality is defined in terms 
of the metric given by (i.e. two vectors, a and b are orthogonal if aTcilb = 0). If, 
by increasing IE,  we introduce an EOFs in which control variance is unrealistically low 
then the component of that EOF which lies in the plane defined by X will tend to distort 
uncertainty analysis in the regression but, at the same time, the component orthogonal 
to X will tend to inflate the LHS of (14) faster than we would expect it to rise if the 
control variability is adequate, giving us some warning that uncertainty estimates are 
becoming unreliable. 

We stress that if there is a component of natural variability that is incorrectly 
simulated by the control and is associated with a pattern identical to the predicted 
pattern of anthopogenic change, the x2 test will fail to identify any inconsistency. It 
should be intuitively clear that, with only a single vector of observations, y, an error 
in simulated variability whose properties are statistically identical to the predicted 
anthropogenic change cannot, by definition, be identified through statistical analysis. 
If, on the other hand, a series of detection experiments are performed, for example on 
successive 50-year segments of the observational record as in Hegerl et al., 1996, then 
the x2 test can readily be generalised to check directions lying in the plane defined 
by X, provided that some sort of smoothness assumption could be made concerning 
the temporal evolution of the anthropogenic signal. For the sake of simplicity, we 
postpone discussion of this generalisation to a future publication. In the “vertical 
detection” problem we use as the example here, this option is not available because 
we are investigating 35-year trends in a 35-year dataset, so we only have a single y to 
work with . 

If independent control runs are used for optimisation and testing then, strictly 
speaking, an F-test should be used in place of x2 to take into account the effects of 
uncertainty in the projection of c~~ onto the EOFs of e ~ ~ .  In practice, we have found 
this makes very little difference, because the tests are being used simply to place a crude 
upper limit on the truncation level. 

Aware that truncating at too high a level raises problems in optimal fingerprinting, 
Hegerl et al., 1996, use a simple criterion to determine the truncation level based on the 
correlation between the unrotated guess patterns (columns of X) and rotated fingerprints 
(rows of (XTC;;’X)-’XTCE1). If this correlation drops below some cutoff value, they 
conclude that the optimisation is “introducing noise” and reduce the truncation. In 
advocating something slightly more complicated, we feel obliged to detail what we see as 
the potential problems with the Hegerl et al., 1996, approach while stressing that there 
is no reason why their approach and ours should not give similar results in a particular 
application. The key problem with the Hegerl et al., 1996, correlation criterion is that it is 
insensitive to the global variance in the control. If the model consistently underestimates 
variability on all spatio-temporal scales then the rotation at a given truncation and 
therefore the correlation between guess-pattern and fingerprint is unaffected. Hegerl 

A residual check based on the x2 statistics has been proposed independently by Leroy, 1998 - we 
are grateful to G. Hegerl for drawing our attention to this work. 
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et al., 1996, use other indicators like the power spectra of global mean quantities to 
check that global variance in the control is not inconsistent with the observations, but 
because these indicators are not specific to the truncated state-space used for detection, 
their use might lead to the model being rejected even when model variability is realistic 
in that truncated space. Perhaps worse, a problem in model variablity which did not 
happen to project onto the global mean might pass unnoticed. 

A second problem with the Hegerl et al., 1996, correlation criterion is that it may 
render optimisation useless in precisely the situation where it is most needed. When 
the unrotated guess patterns are completely dominated by regions or spatio-temporal 
scales in which the climate noise is also very high, the correlation criterion may indicate 
truncating at a value of K which excludes all EOFs containing a reasonable level of signal- 
to-noise even when there is a genuinely detectable signal and the control simulation of 
natural variability is perfectly adequate. 

Instead of selecting the truncation level a priori or using some more-or-less arbitrary 
criterion, we evaluate (14) against the standard x2 distribution to establish the maximum 
value of K for which the control still gives a believable estimate of climate noise. Detection 
can then only be claimed if the null-hypothesis of zero climate sensitivity can be rejected 
for values of K smaller than this limit. An example of the application of this test to the 
“vertical detection” problem is given in the following section. 

5 An example: the “vertical detection problem” 

We examine results from the application of the algorithm described above to the 
comparison of the observational record of atmospheric vertical temperature structure over 
the period 1961-1995 with a series of simulations from the HadCM2 (Johns et al., 1997) 
coupled climate model: the example considered by Tett et al., 1996. The observation 
vector, y ,  is based on operationally received radiosonde data expressed as anomalies 
about the 1971-90 period. These were monthly averaged on a 10” longitude by 5” latitude 
grid on standard pressure levels (850, 700, 500, 300, 200, 150, 100 and 5OhPa). Annual 
averages were computed at each latitude/pressure point in which there were more than 
8 months with data. 

Following Tett et al., 1996, we compute vertical profiles of the zonal mean differences 
between the period 1961-80 and 1986-95. To minimise the impact of volcanos, data 
for 1963-4 (Mt. Agung) and 1992 (Mt. Pinatubo) are omitted (the eruption of El 
Chichon in 1981 should not affect this particular diagnostic, being outside either period). 
Latitude/pressure points with fewer than 20% (50%) of the years with data in the 1961- 
80 (1986-95) periods are also set to missing. The upper panel in figure 1 shows the 
resulting pattern of vertically resolved temperature changes. 

We also extract precisely the same diagnostic (applying the same missing data mask 
to the zonal mean temperatures) from a series of experiments performed with the 
HadCM2 coupled general circulation model. The resolution of both atmosphere and 
ocean components of the model is 3.75” longitude by 2.5” latitude with 19 vertical levels 
in the atmosphere and 20 in the ocean. This model has been extensively investigated for 
global change detection and prediction purposes (e.g. Mztchell et al., 1995a; Johns et al., 
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1997)) and generates internal variability when integrated in a “control” configuration (no 
change in forcing) which compares reasonably well with that observed in the real world 
(Tett et al., 1997). The lower panel in figure 1 shows two standard deviations of our 
chosen diagnostic estimated from 40 35-year-long segments extracted at 10-year intervals 
from a 426-year control integration and masked using the pattern of missing data in the 
observations: the columns of Ycl (a separate 310-year segment is used to  provide Yc, 
for hypothesis-testing). The trends in the observations are evidently significant relative 
to internal climate variability as simulated by HadCM2. The question we address here 
is whether they can they be attributed to anthropogenic influences. 

We compare these observed zonal mean temperature changes with changes simulated 
in two sets of experiments performed with the HadCM2 climate model. In the first 
ensemble of four integrations (initialised from points in the control integration separated 
by 150 years), denoted G, the model was forced with the effects of observed changes 
in COZ, methane and chlorofluorocarbons (expressed as equivalent-C02) for the period 
1860 to 1996. The upper panel shows the ensemble mean of an identical diagnostic to 
that shown in figure 1 extracted from the model years 1961-95. A second ensemble 
of four integrations, denoted GSO and shown in the lower panel, included a simple 
parameterisation of the effects of sulphate aerosols (Mztchell et al., 1995b) and an estimate 
of the effect of declining stratospheric ozone after 1974 based on extrapolating trends 
observed by the Total Ozone Mapping Spectrometer for the period 1979 to 1989. 

The contribution of changing aerosols to the vertical pattern of temperature change, 
modelled in a third ensemble (GS) in which ozone levels were held constant, is relatively 
minor. For the sake of brevity we do not discuss GS results here, but for the vertical 
detection problem, they are generally similar to results from G. 

In all the results reported here, we use a mass-based weighting on all patterns. This 
has no direct impact on the estimation step once the truncation space has been defined 
(because the climate noise covariance provides its own, physically-based, weighting 
function), but it does impact the EOF-decomposition of Ycl. Using mass weighting 
means that high-ranked EOFs have substantial loading in the troposphere, whereas 
high-ranked EOFs based on a volume weighting, for example, are completely dominated 
by the stratosphere. This turns out to be important because the model simulation of 
stratospheric variability is less realistic than its simulation of tropospheric variability, 
so the use of a volume-based (log-pressure) weighting function leads to the model being 
rejected by our internal consistency checks before we find we can detect anything. 

We begin by testing a simple univariate model: assuming that the observations consist 
only of a scaled version of G (greenhouse gas pattern) with additive climate noise. The 
diamonds in figure 3 show ,&, the estimated amplitude of the G pattern, as a function of 
the rank of the detection space (6 =no. of EOFs retained of the control). Vertical bars 
show the P0.05 (two-tailed) confidence interval based on an assumed Gaussian distribution, 
while the horizontal dashes show the “310-year error” range, f t h e  largest absolute 
estimated pattern-amplitude (6) observed in a 310-year control integration. These 
ranges approximately match, as we would expect if there are 10-15 degrees of freedom 
in Yc, (since there are fewer than 10 non-overlapping 35-year segments in this control 
integration, this indicates a modest increase in degrees of freedom has been gained by 
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Figure 1: Upper panel: Vertical pattern of zonal mean temperature difference between the period 
1961-80 and 1986-95, excluding years contaminated by volcanic eruptions. Note the overall pattern 
of stratospheric cooling and tropospheric warming. Lower panel: Two standard deviations of the same 
diagnostic estimated from 40 35-year-long segments extracted at 10-year intervals from a 426-year control 
integration of the HadCM2 climate model. 

overlapping vectors of pseudo-observations) . 
Figure 3 indicates that 3 c ( p ~  = 0) - the hypothesis that the amplitude of the 

greenhouse gas pattern is zero in the observations - can be consistently rejected at 
P<o.o5 (0.05 being approximately the smallest P-value we can quantify with a control 
integration of this length) except for the lowest truncations, where the detection space is 
clearly inadequate to resolve the signal. For truncations IC 5 13, however, %(,& = 1) - 
that the model-predicted amplitude is correct - can also be rejected at Pco.05. The key 
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Figure 2: Model-predicted changes over the period 1961-95 based on the ensemble mean of four 
integrations of the HadCM2 climate model forced with the effects of changing greenhouse gases (upper 
panel) and including the effects of sulphate aerosols and declining stratospheric ozone (lower panel). 

point to note is that error bars consistently decline as we increase the truncation level, 
including more EOFs of the control in the detection space. Before drawing any further 
conclusions, therefore, we need to establish the maximum truncation at  which the model 
is reliable (or, to be precise, cannot be shown to be unreliable). 

The singular value spectrum of the control gives us little help in choosing an 
appropriate truncation. Were this to consist of a small number of large singular values 
followed by a sharp cutoff, we would truncate after the cutoff. As is generally the case 
in geophysical systems (Allen tY Smith, 1996), no such “noise floor” is evident in the 
singular value spectrum shown in figure 4, so we require other truncation criteria. 
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Figure 3: Estimated amplitude of G (greenhouse gas pattern) versus rank of the detection space (no. 
of EOFs retained of the control). Diamonds: "best guess". Vertical bars: P0.05 confidence interval 
based on an assumed Gaussian distribution. Dashes: "310-year error" - +& observed in a 310- 
year control integration. Note how error-bars decline as we include more EOFs: what is the "correct" 
truncation/error- bar? 
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Figure 4: The spectrum of singular values of the control. There is no sharp break in the spectrum, 
giving no indication of an appropriate truncation. 

The solid line in figure 5 shows the evolution of P(x2) (probability of obtaining a 
value of x2 greater than or equal to that observed if the noise model is adequate) as 
a function of truncation. P(x2) ttl 0.5 for truncations lower than 12 EOFs, indicating 
the amplitude of model-simulated variability is approximately correct, and i t  diminishes 
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rapidly towards zero between 12 and 14 EOFs, indicating 12 is the maximum reliable 
truncation-level. To demonstrate what happens with an inadequate noise model, the 
dashed line shows the same diagnostic in a case where temperature anomalies in the 
control run have been divides by a factor of fi (halving the variance). Discrepancies 
of this order between model and observed internal variability have often been noted in 
the literature (Kzm et al., 1996). The x2 test indicates that uncertainty estimates are 
unreliable for truncations as low as 7. For very small truncations, K =4-6, the test is 
simply not powerful enough to identify this model-data discrepancy. 

- - -  ‘ - -  
\ - -  I 0.0 I I * I  I c . ~ I  4 

\ 
F _  I S I I .  

0 5 I0 15 20 
No. of EOF patterns retained in the truncation 

Figure 5: Solid line: evolution of P(x2) (probability of obtaining a value of x2 2 that observed if the 
noise model is adequate) with truncation. P(x2) + 0 between 12 and 14 EOFs, indicating model is 
inadequate for truncations greater than these. For lower truncations, model-simulated variability appears 
to be approximately correct: P(x2) N 0.5. Dashed line: evolution of P(x2) when control variance is 
artificially reduced by a factor of 2. 

We conclude that, over truncations at which the model can be relied upon, the G 
pattern significantly overestimates the response in the real world - that is, 3c(& = 1) 
is rejected. A univariate model based on the GSO pattern appears to do rather better, 
shown in figure 6. Again, 12 is the maximum allowable truncation, at which point 
X(,&SO = 0) can be rejected, while %!((peso = 1) cannot. It would, however, be incorrect 
to conclude from this improvement that the combined influence of sulphates and ozone 
is detectable in the observations - it might be the case that the model sensitivity to 
greenhouse gas increase is too strong and the sulphates and ozone forcing is simply 
compensating for this error. To establish whether both effects are detectable, we need to 
investigate a bivariate detection model. 

The bivariate model is that the observations consist of a linear superposition of the 
G and GSO patterns with an additive noise term. We apply the optimal fingerprinting 
algorithm (4) to estimate pattern-amplitudes and associated uncertainty ranges with G 
and GSO patterns providing the columns of X. Best-guess pattern amplitudes, p, and 
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Figure 6: Estimated amplitude of GSO (greenhouse gases, aerosols and ozone pattern) versus rank of 
the detection space. Note how, unlike in the case of the G pattern, ‘ f l (P~s0 = 1) cannot be rejected at 
12-EOF truncation. 

the associated 310-year return envelope (somewhere between the P0.1 and P0.05 confidence 
interval, depending on the unknown true degrees of freedom of the control) are shown in 
figure 7, with G pattern-amplitude on the horizontal axis, GSO on the vertical. Because 
the effects of greenhouse gases are present in both runs, patterns are highly correlated, 
so the ellipse is far from circular. The point [0,1], corresponding to exact agreement with 
the GSO prediction, lies within the confidence bound. The point [1,0], exact agreement 
with G, is excluded. The best-fit is obtained at the point [0.4,0.3], indicating the model 
overpredicts the response to greenhouse gases by N 30%, and overpredicts the combined 
response to sulphates and ozone by a factor of three. This is consistent with the results 
of Tett et al., 1996, who found that a 50% reduction in the amplitude of the model- 
predicted response to ozone depletion improved the fit to observations. Both errors in 
the response and the crudeness of the parameterization used for ozone trends are likely 
to be responsible. The hypothesis of a zero or negative (meaning the model predicts 
the wrong sign) response to greenhouse gases can be excluded at  the P0.1-0.05 confidence 
level on the basis of these data, but if we assume no prior knowledge of the amplitude 
of the greenhouse gas response, the observations do not exclude the possibility a zero 
response to sulphates and ozone. We stress that this does not mean that the response 
to sulphates and ozone is zero, simply that the pattern of response predicted by the 
HadCM2 model (which could be incorrect) is not detectable using this algorithm in this 
particular diagnostic. 

The origin of the 310-year return envelope is illustrated in figure 8, which shows the 
joint distribution of G and GSO pattern amplitudes, with S/N optimisation, computed 
from the columns of Yc,. The ellipse, by construction, passes through the largest 
Mahalanobis-weighted excursion from the origin. For comparison, the dashed and dotted 
lines show the P0.1 and P0.05 confidence intervals respectively computed using equation 
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2 patterns: G 8 GSO, SM optimised, mass weight: 12 EOFs 
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Figure 7: Best-fit amplitudes a and associated uncertainty ranges for the model-predicted patterns of 
change due to greenhouse gases alone (horizontal axis) and the combined effects of greenhouse gases, 
sulphates and ozone (vertical axis). Estimates based on K = 12 highest-ranked EOFs of the control. 

(12) with U N 15, the estimated degrees of freedom taking into account lag-1 auto- 
correlation in the control. As we would expect for this U, the 310-year return envelope 
lies between the two, closest to the contour. As discussed above, we conclude it 
would be unwise to attempt to quantify absolute (unsigned) P-values much less than 0.1 
on the basis of this length of control. This is certainly intuitively plausible: the control 
segment used is approximately 10 times as long as the observational record, so P0.l is a 
natural lower limit on claims which can be made without extrapolation. 

Figures 7 and 8 show results for K = 12, confining the detection space to the 12 
highest-ranked EOFs of the control. As argued above, we expect results to be critically 
dependent on the choice of K .  This is indeed the case. Figure 9 shows the corresponding 
result with K = 4: in this case the truncation is too severe and the signals cannot be 
represented at all, resulting in large confidence intervals and complete loss of significance. 
Figure 10 shows the result of truncating at K = 16: the confidence region is now much 
smaller, and we appear to be able to reject the hypothesis of zero response to sulphates 
and ozone. The evolution of P(x2) with truncation in the bivariate model is, however, 
very similar to its evolution in the univariate model, shown in figure 5, indicating that 
12 is the maximum reliable truncation, so results at K = 16 are meaningless. 

Qualitatively different results emerge from the adoption of different truncations, 
graphically illustrating the need for objective criteria to determine the appropriate 
truncation level. Results from the x2 diagnostic are very similar to the univariate case 
shown in figure 5. P-values for the x2 statistics remain around the 50th percentile until 
K = 12-13, at which point they collapse towards zero. This is clearly the maximum 
truncation at which we should trust our analysis model. 

The benefits of optimisation are illustrated in figure 11, which shows results from 
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Figure 8: The joint distribution of G and GSO pattern amplitudes, with S/N optimisation, in segments 
of a 310-year control integration. Solid ellipse shows largest noise-weighted excursion from the origin, 
dotted/dashed lines show Po.o~/Po.J confidence intervals based on an assumed Gaussian distribution. 

2 patterns: G 8 GSO. S/N optimised, mass weight: 4 EOFs 

\ o13e:k 

Figure 9: Best-fit 
space is unable to represent the signal, leading to  very large uncertainties. 

and associated uncertainty ranges with very low truncation: K. = 4. The detection 

precisely the same bivariate detection model based on a 12-EOF detection space but 
without weighting by the inverse noise variance (i.e. giving equal weight to errors in all 
12 EOFs, corresponding to an ordinary least squares estimate). The best-guess pattern- 
amplitude is very similar to the optimised case, as would be expected because the ordinary 
least squares estimator is unbiased, but the uncertainty envelope is much larger. 

Figure 12 illustrates how we can translate optimal detection results into estimates 
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Figure 10: Best-fit 6 and associated uncertainty ranges with excessively high truncation: K. = 16. 
Inclusion of high-ranked EOFs containing unrealistically low variance leads to misleadingly small 
estimated uncertainties. 

2 patterns: G 8 GSO. Not optimised. mass weight: 12 EOFs 
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Figure 11: An example of the benefits of optimisation: best-guess pattern amplitudes in the bivariate 
detection model with 12 EOF truncation but without S/N optimisation. 

of physically-interpretable climate parameters. The sum of the G and GSO pattern- 
amplitudes from the bivariate model gives an estimate of the scaling required on the total 
greenhouse response required to match observations, taking into account our uncertainty 
in the amplitude of the response to sulphates and ozone. At 12 EOF truncation, this 
scaling factor lies in the range 0.4-1. On these decadal timescales, HadCM2 behaves as 
if it has a sensitivity of ~ 2 . 8 K  (Houghton et al., 1996) implying an “observed” sensitivity 
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range of l.l-2.8K, assuming the surface temperature response scales with that of the free 
troposphere. Considerable care must be taken in interpreting these numbers, because 
when this model is subjected to a much longer doubled-CO2 integration, the sensitivity 
appears to rise to -3.2K (Senior, pew. comm.) indicating the difficulty of interpreting 
diagnostics relating to different timescales in terms of a single summary statistic. Results 
quoted here, being based on an analysis of a 35-year record, clearly pertain directly only 
to what can be said about climate parameters and associated uncertainties on similar 
timescales. 

2 patterns: G & GSO, S/N optimised, mass weight 

Figure 12: Translating optimal detection results into estimates of climate parameters: the sum of G 
and GSO pattern amplitudes gives an estimate of the scaling required on the total greenhouse response 
to match observations. 

Given the estimate p and its associated uncertainty v(p),  and bearing in mind these 
caveats, we can reconstruct the best-guess trend a each latitude/pressure point and the 
corresponding P0.05 confidence interval using equation (9). Maximum and minimum 
reconstructed trends, taking into account internal variability illustrated in figure 1, are 
shown in figure 13. Note that these are not themselves realisable patterns because 
uncertainties are correlated between locations (that is, a high positive trend in one region 
may be associated with a high negative trend in another and so forth). These maxima 
and minima provide, however, an indication of where the model-predicted trends may be 
consistent with the observations when subject to an appropriate scaling, and allow us to 
identify regions in which observations (figure 1) and model are clearly inconsistent. The 
x2 test described above, being based on a global summary statistic, might well fail to 
identify local model-data discrepancies. For example, the observed cooling at -50hPa in 
the extratropical stratosphere is considerably larger than the maximum model-predicted 
cooling, indicating an unambiguous model deficiency (it seems implausible that this 
error could be attributed to problems with the prescribed forcing). Over most of the 
troposphere, however, the observations lie within the range of possible model-predicted 
trends. 
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Figure 13: Maximum and minimum (Po.0s one-tailed limits) local trends indicated by the detection 
model. Locations where the observations (figure 1 ,  top panel) lie outside this range indicate systematic 
model deficiencies. 

6 Summary 
Formulating the optimal fingerprinting algorithm as a linear regression problem suggests 
some simple consistency checks for detection model adequacy whose primary purpose 
is to  ensure that uncertainty estimates based on model-simulated variability are not 
completely inaccurate. We have presented a simple check (the X2-test on residuals) 
which should detect gross model inadequacies and demonstrated its application to 
the “vertical detection problem”, examining recent trends in atmospheric vertical 
temperature structure. We have also suggested that uncertainties should be presented 
in terms of return-times rather than confidence intervals based on an assumption of 
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multivariate normality. Conventional confidence intervals require an estimate of the 
degrees of freedom of the control, which is invariably uncertain, and may involve 
extrapolation from the body of the “climate noise” distribution into the distribution’s 
tails. Without a priori reason to believe that climate noise is exactly Gaussian (and 
with good reason to believe it is not), such extrapolation is clearly unsafe. Finally, we 
illustrate how results from optimal detection may be used to obtain observationally-based 
estimates of climate parameters and identify systematic model deficiencies. 
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