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ABSTRACT 
We discuss the organization of frontal matrices in multifrontal methods for the solution of large sparse 
sets of unsymmetric linear equations. In the multifrontal method, work on a frontal matrix can be 
suspended, the frontal matrix can be stored for later reuse, and a new frontal matrix can be generated. 
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assembled (summed) when creating a new frontal matrix. Although this means that arbitrary sparsity 
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and pivot rows and columns are removed. Data movement is simpler, but higher fill-in can result if 
the matrix cannot be permuted into a variable-band form with small profile. We consider a combined 
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data movement of previous multifrontal approaches. We discuss this technique in the context of a code 
designed for the solution of sparse systems with unsymmetric pattern. 
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1 Introduction 

We consider the direct solution of sets of linear equations Ax = b, where the coefficient matrix 
A is sparse, unsymmetric, and has a general nonzero pattern. A permutation of the matrix A 
is factorized into its LU factors, PAQ = LU, where P and Q are permutation matrices chosen 
to  preserve sparsity and maintain numerical accuracy. Many recent algorithms and software for 
the direct solution of sparse systems are based on a multifrontal approach (Amestoy and Duff 
1989, Davis and Duff 1997, Duff and Reid 1983, Liu 1992). In this paper, we will examine a new 
frontal matrix strategy to be used within a multifrontal approach. We use the term “unifrontal” 
for what is usually called the “frontal” method so that the term “frontal” can be used generically 
for both unifrontal and multifrontal methods. 

Unifrontal and multifrontal methods compute the LU factors of A by using data structures 
that permit regular access of memory and the use of dense matrix kernels (such as the BLAS) 
in their innermost loops. On supercomputers and high-performance workstations, this can lead 
to a significant increase in performance over methods that have irregular memory access and 
that do not use dense matrix kernels. 

We discuss unifrontal methods in Section 2. We summarize the multifrontal method in 
Section 3,  and in particular our earlier work on an unsymmetric-pattern multifrontal method. 
We refer to  this prior method as UMFPACK V1.1 (Davis 1995, Davis and Duff 1991, Davis and Duff 
1997). The combination of unifrontal and multifrontal methods is discussed in Section 4. The 
combined algorithm is based on UMFPACK V1.1 and the new frontal matrix strategy discussed 
here. This combined algorithm is available in Release 12 of the Harwell Subroutine Library 
(HSL 1996) as the package MA38. In the remainder of this paper, we refer to  the combined 
unifrontal/multifrontal algorithm as MA38. We describe our sparse matrix test set., and how we 
selected it ,  in Section 5. In Section 6, we consider the influence of a key parameter that is present 
in both the UMFPACK Vl.1 and the MA38 versions of our unsymmetric-pattern multifrontal 
method. The performance of MA38 is discussed in Section 7 ,  before a few concluding remarks 
and information on the availability of our codes are given in Section 8. 

2 Unifrontal methods 

In a unifrontal scheme (Duff 1984a, Irons 1970, Zitney, Mallya, Davis and Stadtherr 1996, 
Zitney and Stadtherr 1993), the factorization proceeds as a sequence of partial factorizations 
and eliminations on dense submatrices, called frontal matrices. Although unifrontal methods 
were originally designed for the solution of finite-element problems (Irons 1970), they can be 
used on assembled systems (Duff 1984a) and it is this version that we study in this paper. For 
assembled systems, the frontal matrices can be written as 

( 5:: 5 : : ) .  
where all rows are fully summed (that is, there are no further contributions to come to  the rows 
in (2.1)) and the first block column is fully summed. This means that pivots can be chosen from 
anywhere in the first block column and, within these columns, numerical pivoting with arbitrary 
row interchanges can be accommodated since all rows in the frontal matrix are fully summed. 
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Figure 2.1: Frontal method example 

We assume, without loss of generality, that the pivots that have been chosen are in the square 
matrix F11 of (2.1). F11 is factorized, the Gaussian elimination multipliers overwrite F21 and 
the Schur complement 

F22 - F21F;;1F12, (2.2) 

is formed using dense matrix kernels. The submatrix consisting of the rows and columns of the 
frontal matrix from which pivots have not yet been selected is called the contribution block. In 
the case above, this is the same as the Schur complement matrix (2.2). 

At the next stage, further rows from the original matrix are assembled with the Schur 
complement to form another frontal matrix. The frontal matrix is extended in size, if necessary, 
to accommodate the incoming rows. The overhead is low (compared to a multifrontal method) 
since each row is assembled only once and there is never any assembly of two (or more) frontal 
matrices. The entire sequence of frontal matrices is held in the same working array. Data 
movement is limited to assembling rows of the original matrix into the frontal matrix, and 
storing rows and columns as they become pivotal. There is never any need to move or assemble 
the Schur complement into another working array. One important advantage of the method is 
that only this single working array need reside in memory. Rows of A can be read sequentially 
from disk into the frontal matrix. Entries in L and U can be written sequentially to  disk in the 
order they are computed. A detailed description of frontal methods for assembled problems is 
given by Zitney (1992). 

An example is shown in Figure 2.1, where two pivot steps have already been performed on 
a 5-by-7 frontal matrix (computing the first two rows of U and columns of L,  respectively), the 
columns are in pivotal order. Entries in L and U are shown in lower case. Row -6 has just been 
assembled into the current 4-by-7 frontal matrix (shown as a solid box). Columns 3 and 4 are 
now fully summed and can be eliminated. After this step, rows 7 and 8 must both be assembled 
before columns 5 and 6 can be eliminated (the dashed box, a 4-by-6 frontal matrix containing 
rows 5 through 8 and columns 5, 6 ,  7, 8, 9 ,  and 12). The frontal matrix is, of course, stored 
without the zero columns, columns 6 and 7 in the dashed box. The dotted box shows the state 
of the frontal matrix when the next four pivots can be eliminated. To factorize the 12-by-12 
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sparse matrix in Figure 2.1 ,  a (dense) working array of size 5-by-7 is sufiicient to  hold all frontal 
matrices. 

The unifrontal method works well for matrices with small profile, where the profile of a 
matrix is a measure of how close the nonzero entries are to  the diagonal and is given by the 
expression: 

n 

max(i - j )  + max(i - j ) } ,  5 {ai j #o aji#O 

where it is assumed the diagonal is nonzero so all terms in the summation are non-negative. 
For matrices that are symmetric or nearly so, the unifrontal method is typically preceded by 
an ordering method to reduce the profile such as reverse Cuthill-McKee (RCM) (Chan and 
George 1980, Cuthill and McKee 1969, Liu and Sherman 1976). This is typically faster than 
the sparsity-preserving orderings commonly used by a multifrontal method (such as nested 
dissection (George and Liu 1981) and minimum degree (Amestoy, Davis and Duff 1996, George 
and Liu 1989)). However, for matrices with large profile, the frontal matrix can be large, and 
an unacceptable amount of fill-in can occur. In particular, we lack effective profile reduction 
strategies for matrices whose pattern is very unsymmetric. 

The unifrontal scheme can easily accommodate numerical pivoting. Because all rows in (2.1) 
are fully summed and regular partial pivoting can be performed, it is always possible to  choose 
pivots from all the fully summed columns (unless the matrix is structurally singular). 

3 Multifrontal methods 

In a multifrontal method (Amestoy and Duff 1989, Duff and Reid 1983, Duff and Reid 1984, Liu 
1992) for a matrix with a symmetric sparsity pattern, it is common to use an ordering such 
as minimum degree to  reduce the fill-in. An example of a code that is primarily designed 
for matrices with a symmetric pattern is the Harwell Subroutine Library (HSL) code MA41 
(Amestoy and Duff 1989) that will also solve general unsymmetric systems by holding explicit 
zeros so that the unsymmetric matrix is embedded in one of symmetric structure. Orderings 
like minimum degree tend to  reduce fill-in much more than profile reduction orderings. The 
ordering is combined with a symbolic analysis to generate an assembly tree, where each node 
represents the elimination operations on a frontal matrix and each edge represents an assembly 
operation. When using the tree to drive the numerical factorization, the only requirement is that 
eliminations at any node cannot complete until those at the child nodes have been completed, 
giving added flexibility for issues such as exploitation of parallelism. As in the unifrontal scheme, 
the complete frontal matrix (2.1) cannot normally be factorized but only a few steps of Gaussian 
elimination are possible, after which the Schur complement F22-F21FTtF12 (contribution block) 
needs to be summed (assembled) with other data at the parent node. 

In the unsymmetric-pattern multifrontal method (Davis 1995, Davis and Duff 1991, Davis 
and Duff 1997), the ordering, symbolic analysis, and numerical factorization are performed at 
the same time. The tree is replaced by a directed acyclic graph (dag). A contribution block 
may be assembled into more than one subsequent frontal matrix. For example, consider the LU 

3 



6 7  
4 5 6 7  

1 

2 

3 

4 

7 

Figure 3.2: Assembly dag for the unsymmetric-pattern multifrontal method 

The unsymmetric-pattern multifrontal factorization of this matrix is depicted in Figure 3.2. The 
heavily shaded regions are the rows and columns of the factors, the lightly shaded regions are 
the contribution blocks. The arrows represent the assembly operations from the contribution 
blocks into solid-lined regions of the same shape in the frontal matrices of the parents. Note 
that the contribution that the frontal matrix in the lower left of the figure (with the u11 pivot) 
makes to rows 2 and 3 must be assembled into the frontal matrix at the lower right of Figure 3.3, 
whereas its contribution to row 4 cannot be assembled into the same frontal matrix. 

The first pivot within a frontal matrix (called the “seed” pivot by Davis and Duff (1997)) 
defines its size. This new frontal matrix is held in a larger working array, to allow room for the 
assembly of subsequent pivot rows and columns. The next pivots can reside either in the fully 
summed part, or the non-fully summed part. If a potential pivot lies in the non-fully summed 
part of the frontal matrix then it is necessary to sum its row and column before it can be used 
as a pivot. This is possible as long as its fully summed row and column can be accommodated 
within the larger working array, along with the contribution block and all previous pivot rows 
and columns of the frontal matrix. This is similar to the node amalgamation (Duff and Reid 
1983) used in the symmetric-pattern multifrontal method, except that here we determine the 
amalgamation during numerical factorization, rather than during the symbolic analysis. 

We use the term normul multifrontal method to denote a multifrontal method where each 
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Figure 4.3: First two frontal matrices for a pentadiagonal matrix 

frontal matrix is first assembled, then all eliminations are performed, and the contribution block 
is held (stacked) for assembly at the parent node. Data movement is required both for stacking 
the contribution block and later assembling it into the parent frontal matrix. Both MA41 and 
UMFPACK V i .  1 are examples of a normal multifrontal method. This terminology is used primarily 
to distinguish this earlier approach from the new multifrontal approach introduced in this paper. 

4 Combining the two methods 

Let us now consider an approach that combines some of the best features of the two methods: 
namely, the lower data movement of unifrontal methods, and the lower fill-in of normal 
multifrontal methods. We give an outline of the approach, followed by some implementation 
details. 

4.1 Outline 

Assume we have chosen a pivot and determined a frontal matrix as in a normal multifrontal 
method. At this stage, a normal multifrontal method will select as many pivots as it can from 
the fully summed part of the frontal matrix, perform the eliminations corresponding to  these 
pivots, store the pivotal rows and columns, and store the contribution block for later assembly 
at the parent node of the assembly tree. 

In UMFPACK V 1 . l ,  a potential pivot can be selected from the non-fully summed part, its row 
and column can be assembled, and be moved to  the fully-summed part. Suppose that the rows 
and columns of such a potential pivot can fit in the working array, but not at the same time 
as the previous pivotal rows and columns of this frontal matrix. UMFPACK V 1 . 1  would stop the 
factorization at this point, store the contribution block for later assembly, and continue with 
a new frontal matrix. In our combined strategy (MA38), we instead perform any arithmetic 
operations corresponding to the earlier pivots, store their rows and columns (removing them 
from the frontal matrix), and then assemble the new pivot row and column into the current 
working array. The contribution block thus need not be stored for later assembly. In this way, 
we avoid some of the data movement and assemblies of the multifrontal method. 

In Figure 4.3, we show the first two frontal matrices for an n-by-n pentadiagonal matrix. 
Suppose UMFPACK V i .  1 uses a 4-by-4 working array to hold each frontal matrix, and that the 
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pivots are on the diagonal in order. The first two pivot rows and columns fit in the first frontal 
matrix; this amalgamation causes a14 and a41 to  be treated as “nonzero” entries in the matrix 
(shown as a zero in the heavily shaded regions). The third pivot row and column do not fit. 
Once the factorization operations have been completed for the first frontal matrix (using a rank- 
2 update to the contribution block, a Level 3 BLAS operation) its 2-by-2 contribution block 
must then be added into the second frontal matrix, in a different working array. A total of 2n 
floating-point values are copied between working arrays, for the n/2 contribution blocks. 

In MA38, the rank-2 update for the first two pivots is applied, and their pivot rows and 
columns are stored and are removed from the frontal matrix (just as in the unifrontal method). 
The 2-by-2 contribution block remains in place, and the third and fourth pivot rows and columns 
can then be assembled into the working array. The working array now holds what UMFPACK V l  . 1 
would have for its second frontal matrix, but no data has been moved for the 2-by-2 contribution 
block from the first frontal matrix. As a result, the entire matrix is factorized in a single 4-by- 
4 working array and the contribution blocks are held within the working array and are never 
stacked, in contrast with the normal multifrontal method discussed in the previous paragraph. 

The combined strategy (MA38) allows the use of a general fill-reducing ordering (as does 
the normal multifrontal method), rather than a profile-reducing ordering. When it encounters 
submatrices with good profile (as in the pentadiagonal case just considered), it takes advantage 
of them with a unifrontal strategy, and thus has less data movement than the normal multifrontal 
method. 

Although the motivation is different, the idea of continuing with a frontal matrix for some 
steps before moving to another frontal matrix is similar to recent work in implementing frontal 
schemes within a domain decomposition environment, for example Duff and Scott (1994), where 
several fronts are used within a unifrontal context. However, in the case of Duff and Scott 
(1994), the ordering is done a priori and no attempt is made to use a minimum degree ordering. 

4.2 Implementation 

We now describe how this new frontal matrix strategy is implemented in MA38, which uses a 
modified version of the minimum degree algorithm, called the approximate minimum degree 
algorithm (Amestoy et al. 1996, Davis and Duff 1997) that uses an upper bound on the degree 
counts. 

MA38 consists of several major steps, each of which comprises several pivot selection and 
elimination operations. To start a major step, MA38 selects a few (by default 4) columns from 
those of minimum upper bound degree (Amestoy et al. 1996, Davis and Duff 1997) and computes 
their patterns, true degrees, and numerical values. A pivot row is selected on the basis of the 
upper bound on the row degree from those rows with nonzero entries in the selected columns. 
The pivot must also satisfy a numerical threshold test (it must be at least as large as U times 
the largest entry in the pivot column, where U is 0.1 by default). Suppose the pivot row and 
column degrees are T and c, respectively. A Ic-by-1 working array is allocated (Ic and 1 are gc 
and gr,  respectively, where by default g = 2). The pivot row and column are fully assembled 
into the working array and define the active frontal matrix. This active frontal matrix is c-by-r 
but is stored in the Ic-by-1 working array. The approximate degree update and assembly phase 
computes the bounds on the degrees of all the rows and columns in this active frontal matrix 
and assembles previous contribution blocks into the active frontal matrix. A row i in a previous 
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contribution block is assembled into the active frontal matrix if  

1.  the row index i is in the nonzero pattern of the current pivot column, and 

2. the column indices of the remaining entries in the row are all present in the nonzero pattern 
of the current pivot row. 

Columns of previous contribution blocks are assembled in an analogous manner. 
The major step then continues with a sequence of minor steps at each of which another 

pivot is sought from within the current frontal matrix. These minor steps are repeated until the 
factorization can no longer continue within the current working array, at which point a new major 
step is started. When a pivot is chosen in a minor step, its rows and columns are fully assembled 
into the working array and redefine the active frontal matrix. If there are new rows or columns 
in the frontal matrix, then the approximate degree update and assembly phase is repeated, as 
described above. Otherwise, the update and assembly phase can be skipped (analogous to mass 
elimination in a minimum degree ordering algorithm (George and Liu 1989)). 

After a pivot is selected (at the start of a major step, or in a minor step) the corresponding 
row and column of U and L are computed, but the updates from this pivot are not necessarily 
performed immediately. For efficient use of the Level 3 BLAS, it is better to  accumulate a few 
updates (typically up to  16, if  possible) and perform them at the same time. 

MA38 and UMFPACK Vl. 1 differ in how the minor step is performed, although both use the 
same amalgamation parameter, g. To find a pivot in this minor step, a single candidate column 
from the non-fully summed block is first selected, choosing one with least value for the upper 
bound of the column degree, and any pending updates are applied to this column. The column 
is assembled into a separate work vector, and a pivot row is selected on the basis of the upper 
bound on the row degrees and a numerical threshold test. Suppose the candidate pivot row and 
column have degrees T' and c', respectively. Three conditions apply (where p is the number of 
pivots currently stored in the active frontal matrix): 

1. If T' > 2 or c' > k ,  then factorization can no longer continue within the active frontal matrix. 
Any pending updates are applied. The LU factors are stored. The active contribution 
block is saved for later assembly into a subsequent frontal matrix. The major step is now 
complete. 

2. If T' 5 2 -p  and c' 5 k -p, then the candidate pivot can fit into the active frontal matrix 
without removing the p pivots already stored there. Set p t p+ 1. Factorization continues 
within the active frontal matrix by starting another minor step. 

3. Otherwise, if 1 - p < T' 1 or k - p < c' 5 k ,  then the candidate pivot can fit, but only if 
some of the previous p pivots are shifted out of the current frontal matrix. Any pending 
updates are applied. The LU factors corresponding to the pivot rows and columns are 
removed from the front and stored. The active contribution block is left in place. Set 
p t 1. Factorization continues within the active frontal matrix by commencing another 
minor step. 

UMFPACK Vi. 1 uses the same strategy as MA38, described above, except for Case 3. In Case 3, 
UMFPACK V1.1 saves the contribution block for later assembly, and terminates the major step. 
We know of no other multifrontal method that allows the factorization to  proceed within the 
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(a) UMFPACK VI.] working array (b) MA38 working array 

Figure 4.4: Data structures for the active frontal matrix 

current frontal matrix, as in Case 3. Case 1 does not occur in unifrontal methods, which are 
given a working array large enough to hold the largest frontal matrix. Cases 2 and 3 do occur 
in unifrontal methods. Taking simultaneous advantage of all three cases can significantly reduce 
the memory requirements, data movement, and assembly operations, while still allowing the use 
of orderings that reduce fill-in. 

Figure 4.4 illustrates how the working array can be organized. The matrices L1, La, U1, 
and U2 in the figure are the columns and rows of the LU factors corresponding to the pivots 
eliminated within this frontal matrix. The matrix D is the contribution block. The arrows 
denote how these matrices grow as new pivots are added. When pivots are removed from the 
working array in Figure 4.4(b), for Case 3 above, the contribution block does not need to be 
moved, thus accommodating the more dynamic situation without further data movement. For 
coding reasons, the working array in MA38 is held in reverse order but the data movement is 
similar to that shown in the figure'. 

5 Test matrices and computing platform 

In the next two sections, we discuss some experiments on the selection of the amalgamation 
parameter for g for MA38 and UMFPACK V l  . 1 and compare the performance of MA38 with other 
sparse matrix codes. In both sections, we use the same set of sparse test matrices. 

The sparse matrix collection at the University of Florida (Davis 1997) contains 264 
unsymmetric sparse matrices in assembled equation form (as opposed to  unassembled finite- 
element form). This set includes the Harwell-Boeing Sparse Matrix Collection (Duff, Grimes 
and Lewis 1989), Saad's collection (Saad 1994), Bai's collection (Bai, Day, Demmel and Dongarra 
1996), and matrices from other sources (Feldmann, Melville and Long 1996, Vavasis 1993, Zitney 
1992, Zitney et al. 1996). 

The ten matrices that we will use in the next two sections are listed in Table 5.1. The table 
lists the name, order, number of entries, structural symmetry, the discipline from which the 
matrix comes, and additional comments. The structural symmetry is the ratio of the number of 
matched off-diagonal entries to the total number of off-diagonal entries. An entry, a;j ( j  # i ) ,  is 

'A similar data organization is employed by the unifrontal HSL code MA42 (Duff and Scott 1993, Duff and 
Scot t 1996b). 
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Table 5.1: Test matrices. Sources are: [ l ]  Vavasis (1993), [2] Feldman et al. (1996), [3] Duff et 
al. (1989), [4] Zitney et al. (1996), [5] Bai et al. (1996), and [6] Zitney (1992). 

name n 
AV41092 41,092 
TWOTONE 120,750 
PSMIGR-1 3,140 
LHR71C 70,304 
ONETONEl 36,057 
ONETONE2 36,057 
LHR14C 14,270 
RW5151 5,151 
ORANI678 2,529 
RDISTl 4,134 

no. entries 
1,683,902 
1,224,224 

543,162 
1,528,092 

341,088 
227,628 
307,858 
20,199 
90,158 
94.408 

sym. 
0.001 
0.245 
0.479 
0.002 
0.074 
0.113 
0.007 
0.490 
0.071 
0.059 

discipline 
partial diff. eqn. 
circuit simul. 
demography 
chemical eng. 
circuit simul. 
circuit simul. 
chemical eng. 
probability 
economics 
chemical eng. 

comments, and source 
2D, wild coefficients 111 
harmonic balance method [2] 
US county-to-county migration [3] 
light hydrocarbon recovery (corrected) [4] 
harmonic balance method [2] 
harmonic balance method [2] 
light hydrocarbon recovery (corrected) [4] 
random walk Markov chain [5] 
Australia [3] 
reactive distillation I61 

matched if aj;  is also an entry. This means that a symmetric matrix has a structural symmetry 
value of 1.0. This measure is one minus the index of asymmetry, originally defined by Duff 
(1984 b). 

We chose the test matrices using the following strategy. Since we are considering a method 
for unsymmetric-patterned matrices, we selected all nonsingular matrices from our collection 
with structural symmetry less than or equal to 0.5 (89 matrices). We ran all six codes discussed 
in Section 7 for each of the 89 matrices, and selected a matrix for our comparisons in this paper 
if the fastest factorization time of these six codes was greater than 0.5 seconds. This leaves 29 
matrices from which we discarded one matrix too large for most methods on the workstation 
used for these experiments (from the same application as TWOTONE) and eighteen matrices 
from sets already represented (two similar to P S M I G R l ,  and all but two of the LHR series2). 

All experiments reported in this paper are on a SUN UltraSparc Model 170, with 256 Mbytes 
of main memory and a single 167 Mhz processor. Version 4.0 of the SUN Fortran and C compilers 
were used, with identical optimization parameters (SuperLU is written in C, the other codes in 
Fortran 77). The BLAS that we use are from Daydd and Duff (1996). The double precision 
matrix-matrix multiply routine, DGEMM, which most of the methods use, runs at about 80 Mflops 
on this workstation. (Note that the single precision version, SGEMM, runs at about 145 Mflops.) 
The theoretical peak performance is 333 Mflops for both double and single precision. 

6 Amalgamation parameter 

We ran MA38 and UMFPACK Vl.1 on all matrices in Table 5.1, with g ranging from 1.0 to 4.0 
in increments of 0.1. For each matrix, we found the median, with respect to 9 ,  of the MA38 
run times. The MA38 and UMFPACK V1.1 run times for this matrix were divided by this median 

*Due to a modeling error, some of the original LHR matrices (Zitney et al. 1996) were extremely ill-conditioned. 
We used the following procedure to correct the matrices. If A is the original matrix, the corrected matrix is 
A + PTFQT, where P and Q are permutation matrices such that PAQ is in block upper triangular form. The 
matrix F is diagonal, with F;; = 0.001 if [PAQ];i 2 0 and -0.001 otherwise. The corrected matrix has the same 
nonzero pattern as the original matrix. We selected the value 0.001 by trial and error. We used the smallest value 
we found for which Matlab could compute at least 2 digits of accuracy in the solution. 
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Figure 6.5: Normalized run times for ten matrices, as a function of the amalgamation parameter, 
g. The median and quartiles for MA38 are given by the solid lines and the median for UMFPACK 
V i .  1 by the crosses. 

to obtain normalized MA38 and UMFPACK V i .  1 run times. Then, for each value of g,  we found 
the median (and quartiles) of the normalized MA38 and UMFPACK Vl.1  run times for all ten 
matrices. Figure 6.5 shows the median and quartiles for MA38 and the median for UMFPACK V1.1 
of the normalized times for the ten matrices, plotted as a function of g. The MA38 normalized 
factorization times are plotted as solid lines, with the median time data points circled. The 
mean normalized factorization time for UMFPACK V i .  1 is given by x’s. A similar comparison 
of the normalized memory requirements (excluding fragmentation of the work arrays) of both 
methods is shown in Figure 6.6. 

Although the fill-in and operation count (not shown) are typically lowest when the minimum 
amount of memory is allocated for each frontal matrix ( g  = l), the factorization time is often 
high because of the additional data movement required to assemble the contribution blocks and 
the fact that the dense matrix kernels are more efficient for the larger frontal matrices that are 
produced when g > 1. 

From the results in Figures 6.5 and 6.6, we examine the effect and sensitivity of execution 
time and memory requirements to changes in the value of g. There are some rapid fluctuations 
in the graphs, particularly for UMFPACK V i .  1. This is caused by changes in pivot order with 
different values of g. A small change in the working array size can affect whether or not a 
candidate pivot is selected in a minor step. If it is not selected, we start a new frontal matrix, 
and a new pivot candidate is found in a major step which considers all columns. This is a 
very different pivot selection strategy from that used in the minor steps. This high sensitivity 
is not so noticeable with MA38 because it can continue for longer with the minor step strategy 
after removing pivot rows and columns from the active frontal matrix. Although the frontal 
matrices become larger with larger values of g, there are fewer of them, and thus the median 
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Figure 6.6: Normalized memory requirements for ten matrices, as a function of the amalgamation 
parameter, g .  The median and quartiles for MA38 are given by the solid lines and the median 
for UMFPACK Vl. 1 by the crosses. 

memory requirements increase only slightly as g increases. For these ten matrices, the median 
factorization time is lowest when g is 2.1 .  From experiments with a wider range of matrices, 
we have found that a default value of g = 2 is a reasonable tradeoff between memory usage and 
factorization time. 

We also notice, from the results in this section, that exploiting a unifrontal strategy within 
a multifrontal code (MA38) can reduce both factorization time and memory requirements. 
Comparing MA38 with its predecessor, UMFPACK Vl.1, Figures 6.5 and 6.6 show a median 
improvement of 18% in the run time and 14% in the memory requirements for these ten matrices. 
Although not shown in the plots, MA38 is almost four times faster than UMFPACK V1.1 for one 
matrix (LHR71C). 

7 Performance 

In this section, we compare the performance of the combined unsymmetric-pattern 
unifrontal/multifrontal code MA38, with the unsymmetric-pattern multifrontal code UMFPACK 
Vl.1 (Davis 1995, Davis and Duff 1991, Davis and Duff 1997), the symmetric-pattern 
multifrontal code MA41 (Amestoy, DaydC and Duff 1989), the unifrontal code MA42, (Duff 
1984a, Duff and Scott 1993, Duff and Scott 1996b), and two sparse matrix factorization codes 
based on partial pivoting MA48, (Duff and Reid 1993, Duff and Reid 19961, and SuperLU Version 
1 .O (Demmel, Eisenstat, Gilbert, Li and Liu 1995, Demmel, Gilbert and Li 1997). 

Each code can factorize general unsymmetric matrices and all use dense matrix kernels 
(Dongarra, Du Croz, Duff and Hammarling 1990) to  some extent. Each code was given 1.8 
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Gbytes of (virtual) memory to factorize the matrices listed in Table 5.1. Each code has a set 
of input parameters that control its behavior. We used the recommended defaults for most of 
these, with a few exceptions that we now indicate. 

The default numerical threshold U varies with each code. For MA41, it is 0.01, and the test 
is by rows, not columns. SuperLU and MA42 select the largest entry in each column (effectively, 
U = 1.0). The rest use U = 0.1. We used the default value in each case. 

Although MA41 has an option for exploiting shared-memory parallelism, we did not use this 
option in the runs for this paper. Using a non-default option, MA41 can preorder a matrix, using a 
maximum transversal algorithm, to ensure the diagonal of the permuted matrix is zero-free. We 
selected this option because it is recommended for matrices with highly unsymmetric nonzero 
patterns. This is followed by a default approximate minimum degree ordering (using the HSL 
code MC47 (Amestoy et al. 1996)) on the nonzero pattern of A + AT. The supernodal partial 
pivoting code SuperLU preorders the columns via its default method, a multiple minimum degree 
ordering (MMD (George and Liu 1989)) on the nonzero pattern of ATA. 

We used a revised version of the unifrontal code MA42 that takes advantage of explicit zeros 
in the frontal matrix. MA42 is able to operate both in-core and out-of-core, using direct access 
files. It was primarily designed for a finite-element entry, but we used a simplified driver (MA43), 
that does not use out-of-core storage and assumes the matrix is held in equation form (although 
one matrix, AV41092, is obtained from finite-element calculations). In columns “mem. used” 
and “min. mem.”, we show the storage required for the factorization if the factors are held 
in-core and an estimate of the memory required for the out-of-core factorization, respectively. 
In one case (TWOTONE), there was insufficient storage to  hold the factors but we compute an 
estimate that we display. 

The results, shown in Tables 7.2 and 7.3, include the following statistics for each code (all 
times are CPU times): 

1. Factorization time, which includes preordering and symbolic factorization, if  any. 

2. Refactorization time, which is the numerical factorization of a matrix whose pivot ordering 
and symbolic factors are known. It excludes preordering and symbolic factorization. 

3. Solve time, excluding iterative refinement. 

4. Solve time, including iterative refinement. MA41, MA38, MA48, and SuperLU all use the 
same method (Arioli, Demmel and Duff 1989). MA42 and UMFPACK Vl.1 do not provide 
this option. 

5 .  Entries in the LU factors, in millions. 

6. Memory used to obtain the timings listed in the tables, in millions of 8-byte double 
precision words. For MA38, UMFPACK Vi. 1, and MA48 this includes fragmentation within 
the work arrays’. Recall that the workstation used for the experiments has 33.6 million 
words of main memory (256 Mbytes), and about 242 million words of virtual address space 
were given to each code (1.8 Gbytes). 

- 

~ ~ ~~ 

3MA48 does not compute this statistic. 
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Table 7.2: Results 

factor refac. solve solve, entries mem. min. flop 
time time time w/iter. in LU used mem. count 

(sec) (sec) (sec) (sec) (10') (10') (10') (10') 

1307.9 1618.3 9.88 55.18 39.38 89.58 59.60 57110 
1502.9 1689.0 10.64 - 41.33 102.53 58.49 70290 
- - -  296.6 254.0 1.39 7.72 16.53 22.65 22.65 11380 

4236.3 4232.6 32.74 - 135.35 148.66 10.10 235079 
3335.7 1296.1 5.57 50.73 27.31 - 58.46 59040 
3799.0 2962.8 14.04 136.43 39.95 52.56 52.56 64970 

- -  220.7 171.4 1.46 6.24 9.75 26.46 17.94 6988 
228.5 174.9 1.52 - - 9.59 35.04 19.31 6493 
817.2 741.1 2.85 13.56 26.44 42.97 42.97 38230 

725.0 306.9 1.29 11.70 10.86 - 24.65 14680 
758.0 697.6 8.23 147.22 24.73 37.77 37.77 12420 

219.0 197.5 0.53 3.01 6.37 46.34 22.86 9412 
207.4 195.6 0.71 - - 6.36 26.28 22.02 9428 
- - -  191.7 188.3 0.53 2.14 6.28 20.36 20.36 9214 
256.0 255.0 0.66 - 8.27 17.07 8.75 13856 
206.1 178.7 0.51 5.25 6.44 - 14.01 10580 
938.7 774.5 1.80 20.21 8.71 11.10 11.10 16630 

- 114.5 92.9 1.01 22.25 6.93 11.72 10.87 - 496 
444.3 422.3 1.96 - 8.35 13.26 12.55 732 

1012.8 995.7 3.63 82.27 18.84 23.75 23.75 4683 
340.6 337.4 1.41 - 12.83 16.15 2.97 1202 

- -  
- 333.60 4.64 

- -  

- - -  

Matrix/ 
code 

AV41092 
MA38 
UMFPACK V1.l 
MA41 
MA42 
MA48 
SuperLU 
TWOTONE 
MA38 
UMFPACK V1.l 
MA41 
MA42 
MA48 
SuperLU 
PSMIGR-1 
MA38 
UMFPACK V1.l 
MA41 
MA42 
MA48 
SuperLU 
LHR7lC 
MA38 
UMFPACK V1.l 
MA41 
MA42 
MA48 
SuperLU 
ONETONEl 
MA36 
UMFPACK V1.l 
MA41 
MA42 
MA48 
SuperLU 

492.3 286.5 1.11 30.51 6.51 - 16.54 695 
479.3 451.4 2.26 64.79 7.15 11.57 11.57 - 487 

- 60.8 57.3 0.54 2.16 4.69 15.92 7.92 2148 
- 5.05 17.34 9.19 2855 

194.7 189.1 0.82 3.88 9.50 12.97 12.97 8169 
164.9 164.2 1.64 - 16.58 18.52 1.49 6012 
323.4 109.7 0.56 4.87 5.11 - 11.29 4564 
109.3 97.9 1.16 9.49 4.68 7.10 7.10 2540 

73.7 69.2 0.58 - 
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Table 7.3: Results, continued 

Matrix/ 
code 

ONETONE2 
MA38 
UMPPACK V1.l 
MA4 1 
MA42 
MA48 
SuperLU 
LHR14C 
MA38 
UMFPACK V1.l 
MA4 1 
MA42 
MA48 
SuperLU 
RW5151 
MA38 
UMFPACK V1.l 
MA41 
MA42 
MA48 
SuperLU 
0 RANI6 78 
MA38 
UMFPACK V1.l 
MA41 
MA42 
MA48 
SuperLU 
RDISTl 
MA38 
UMFPACK Vl.l 
MA41 
MA42 
MA48 
SuperLU 

factor refac. solve solve, entries mem. min. flop 
time time time w/iter. in LU used mem. count 

(sec) (sec) (sec) (sec) ( 1 0 ~ )  ( 1 0 ~ )  ( 1 0 ~ )  ( 1 0 ~ )  

- 10.7 5.0 0.29 1.25 1.27 4.09 2.54 159 

19.1 14.9 0.29 1.61 2.68 3.90 3.90 601 
12.6 6.8 0.22 - 1.46 4.82 3.33 217 

35.2 34.8 0.64 - 7.10 8.04 684 
36.6 8.0 0.21 2.02 1.26 - 3.36 223 
9.2 6.6 0.44 3.77 1.31 2.70 2.70 132 

8.9 4 . 8 0 . 1 7  1.19 1 . 2 3 2 . 2 1 2 . 0 1  - 64 
11.4 5.7 0.20 - 1.62 3.40 2.70 122 
28.9 27.1 0.32 1.58 3.14 4.54 4.54 518 
19.2 18.6 0.28 - 2.57 3.43 0.81 235 
21.1 4.7 0.17 1.81 1.22 - 3.15 95 

2.4 1.4 0.06 0.14 0.41 1.24 0.65 47 

2.2 2.1 0.07 0.15 0.67 0.89 0.89 91 

- 1.8 1.6 0.10 0.73 0.39 0.65 0.65 - 33 

- 1.2 0.4 0.02 0.21 0.11 0.74 0.46 - 4 
- 1.2 0.4 0.02 - - -  0.11 0.67 0.48 - 4 

12.0 6.7 0.35 3.81 1.37 2.26 2.26 83 

3.1 2.2 0.06 - 0.48 1.39 0.89 69 

- 1.6 1.6 0.07 - 0.79 0.89 0.08 63 
6.5 2.5 0.05 0.71 0.47 - 1.04 126 

5.3 3.6 0.04 0.21 0.36 2.79 2.79 70 
8.6 8.5 0.08 - 1.00 2.78 1.82 267 
1.1 0.20.02 0.20 0.13 - - 0.39 10 

39,7 1.6 0.16 1.70 0.80 1.00 1.00 31 

1.6 0.8 0.04 0.24 0.44 0.97 0.74 22 

2.3 2.2 0.08 - 1.02 1.22 0.20 90 

2.0 1.1 0.06 - 0.54 1.39 0.97 31 
- 0.7 0.4 0.03 0.20 0.28 0.49 0.49 - 10 

7.4 1.3 0.06 0.53 0.41 - 1.04 25 
1.6 0.8 0.08 0.94 0.39 0.60 0.60 17 
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7.  Minimum memory requirements, in millions of words. For the unifrontal code HA42, this 
is the in-core memory required for out-of-core factorization (it also includes the memory 
required to hold the matrix A). For MA38, UMFPACK V i .  1 ,  and MA48, this is the minimum 
amount required to guarantee a successful factorization, and is the statistic used in 
Figure 6.6. This excludes fragmentation in the work arrays, which is removed via garbage 
collection whenever necessary. The partial pivoting code Supe rLU  and the sequential option 
of the symmetric-pattern multifrontal code MA41 do not have fragmentation in their work 
arrays, and thus do not require garbage collection. For these two methods the minimum 
required memory and actual memory used axe the same, although we needed to  add another 
counter to  the HSL version of MA41 to  compute this statistic. 

8. Floating-point operation count in the factorization phase, in millions. The values given 
are obtained from the codes. Operations for the assembly phase are not included. 

Results within 10% of the best for each statistic and matrix are underlined. We compared the 
solutions obtained from each code, and found that all codes that provide iterative refinement 
compute the solutions with comparable accuracy, in terms of the scaled residual and the relative 
error. When iterative refinement is not in use, MA38 and UMFPACK V i .  1 produce relative errors 
with a loss of about two digits of accuracy for six of the matrices when compared with the other 
methods, and the same accuracy for the other four. 

Over all the codes, MA38 has the fastest factorization time for four out of the ten matrices, 
and is within 10% of the fastest time for two more matrices. Except for one matrix (AV41092) 
it never takes more than about twice the time of the fastest code. It also has the fastest 
refactorization time for five matrices and is within 10% of the fastest time for one more matrix. 
The solve phase of MA38 is the fastest for four matrices and within 10% of the fastest for two 
more. Although the time for MA38 solution with iterative refinement seems to  rank even better, 
both the MA48 and SuperLU iterative refinement times include also the calculation of the matrix 
condition number and an estimate of the forward error. Typically this requires twice as much 
time as only computing the backward error (as in the iterative refinement runs for MA38 and 
MA41). The memory requirements of MA38 are rarely the lowest but are usually comparable to 
the other in-core codes for most matrices. The floating-point operation count for MA38 is often 
much less than its predecessor, UMFPACK V l  . 1. 

8 Summary 

We have demonstrated how the advantages of the unifrontal and multifrontal approaches can be 
combined. The resulting algorithm (MA38) performs well for unsymmetric matrices from a wide 
range of disciplines, and is an improvement over the previous unsymmetric-pattern multifrontal 
code (UMFPACK V1.1 ) .  Other differences between UMFPACK V 1 . 1  and MA38 include an option of 
overwriting the matrix A with its LU factors, printing of input and output parameters, iterative 
refinement with sparse backward error analysis (Arioli et al. 1989), avoidance'of an extra copy 
of the numerical values of A when iterative refinement is not in use, more use of Level 3 BLAS 
within the numerical refactorization routine, and a simpler calling interface. These features 
improve the robustness of the code and result in a modest decrease in memory use. 

Since the codes being compared all offer quite different capabilities and are designed for 
different environments and different classes of matrices, the results should not be interpreted as 
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a direct comparison between them. For example, MA38 is designed for structurally unsymmetric 
matrices. A code like MA41 would normally be expected to  perform much better on matrices that 
are symmetrically structured or nearly so, We also note that our current discussion compares 
performance on only one machine and, as in shown in Duff and Scott (1996a), comparative 
behavior can be strongly influenced by the computing platform being used. However, what we 
would like to highlight is the improvement that our new technique used in MA38 brings to  the 
unsymmetric-pattern multifrontal method and that MA38 is at least comparable in performance 
with other sparse matrix codes on our unsymmetric test set. 

The combined unifrontal/multifrontal method is available as the Fortran 77 codes, UMFPACK 
Version 2.2  in Netlib (Dongarra and Grosse 1987)4, and MA38 in Release 12 of the Harwell 
Subroutine Library (HSL 1996).5 
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