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Abstract 

At low Q 2 ,  charm production in deep-inelastic scattering is adequately described by assuming 

generation in electroweak boson-light parton scattering (dominantly boson-gluon fusion) which 
naturally incorporates the correct threshold behaviour. At high Q 2  this description is inadequate, 
since it does not sum logs in Q 2 / m ; ,  and is replaced by the treatment of the charm quark as a light 
parton. We show how the problem of going from one description to  the other can be solved in a 
satisfactory manner to all orders. The key ingredient is the constraint of matching the evolution of 

the physical structure function F2 order by order in aS(Q2) in addition to the matching of the value 
of F2 itself. This leads to  new expressions for the coefficient functions associated with the charm 

parton which are unique in incorporating both the correct threshold and asymptotic behaviours at 

each order in perturbation theory. The use of these improved coefficients lead to a n  improvement 
in global fits and an excellent description of the observed F2,charm. 
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1. Introduction. 

The factorization theory in QCD [l] has existed for many years, and has been one of the 
triumphs of quantum field theory. However, in  its original form it does not take account of a 

number of possible complications, i.e. it exists only for massless particles, and its ordering does not 
take account of possible enhancements at high orders in a, at small z. Until the past few years 
both of these complications were not of any real phenomenological importance. The lowest values 
of z probed were large enough that it was unimportant to consider small z enhancement. Also, 
the up, down and strange quarks were considered light enough to be treated as massless whenever 
one was within the realm of perturbative QCD. Furthermore, there was little data on the charm 
contribution to the structure function and it was generally such a small component of the total 
structure function that it could be treated very approximately. 

Both of the above complications have recently become a great deal more important due to the 
advent of HERA. This now probes structure functions at far lower values of z than any previous 
experiments, as low as 2 N 10-5 [2][3], and the treatment of structure functions shouid really take 
proper account of any small z complications. Also, the small z structure functions now have a 

contribution due to the charm structure function which is far from insignificant, i.e. it can be 
more t h a n  20% of the total structure function and, moreover, in the past couple of years direct 
measurement of the charm structure function has  also become possible [4][5]. This h a s  made it 
essential to treat the contribution to the structure function due to massive quarks in a correct 
manner. 

In this  paper we propose a new method for the treatment of heavy quarks in structure functions. 
We begin by describing the features a correct treatment must exhibit at both high and low Q2,  

and the techniques used in either of these limits. We then give a discussion of the correct way 
to take account of heavy quarks in a well-ordered manner over the full range of Q 2 ,  showing how 
this relates to present treatments, and in particular demonstrating that one may choose to evolve 
the partons according to the massless evolution equations. However, we shall see that the detailed 
construction of the coefficient functions required is extremely difficult if not impossible. Therefore, 
we provide instead a prescription for calculating structure functions including heavy quark effects 
which is somewhat simpler than  the strictly correct treatment, and which is directly analogous to 
the normal manner in which one calculates order by order for massless partons, but which is in 
practice essentially identical to the strictly correct treatment. Finally, we will present the results 
of a comparison of our method to  data: both that for full structure functions and for the charm 
component to the structure functions. These comparisons t u r n  out to be very good. We also 
make predictions for the charm component of the longitudinal structure function. Complications 
due to leading ln(l/z) terms at all orders in Q, are ignored, and while a correct treatment of 
structure functions should of course deal with this  problem, we feel that this would overcomplicate 
our presentation, and besides we wish to compare directly with normal NLO in a, approaches. A 
paper which takes account of both small z complications and massive partons is in preparation. 
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2. Structure Functions W i th  Massive Quarks. 

We consider the case of nf massless quarks and one heavy quark. One of the simplest ways 

to deal with heavy flavour production in deep-inelastic scattering is to treat the mass of the heavy 

quark, M ,  as a hard scale [6]. In this case the nf light quarks are always treated as partons, but all 

other quarks are never treated as partons at any scale: the cross-section for production of heavy 

quarks is expressed entirely in terms of coefficient functions depending on the heavy quark mass 

convoluted with parton distributions which only depend on light partons, i.e. 

where gi(z ,  Q2, M2) is the cross-section for scattering off a particular quark, either heavy or light, 

and a runs over the light partons, i.e. the gluon and the nj  light quarks. This approach is very 

well-defined in theoretical terms, essentially being a simple generalization of the usual factorization 

theorem, with (2.1) being valid to all orders up to the higher twist corrections of O(A2/M2). 
This approach is adopted by a number of groups [7], and is usually known as the fixed flavour 

number scheme (FFNS). It is normally used in the particular renormalization scheme where all 

diagrams with no heavy quark lines are renormalized in the MS scheme, while those with heavy 

quarks are renormalized at zero momentum. This is particularly convenient because the effect of the 

heavy particle decouples from the light sector, in  particular the coupling is the 3 flavour mcoupling 

and the light parton distributions evolve as in the 3 flavour MS scheme. The CEF(z, Q2/p2, Q2/M2) 

have all been calculated to O(a,) [6][8][9] and U(&:) [lO] in this scheme, though analytic expressions 

only exist at O(a,). 
In principle this approach is a very good way to calculate the effects of heavy quarks in structure 

functions. At each order it incorporates the kinematical threshold in the light parton-photon centre 

of mass energy Q2(z-' - 1) 2 4M2 in a smooth manner (which then guarantees the same 

smooth threshold in the invariant mass of the hadronic remnant W2, up to proton mass corrections) 

and the coefficient functions are calculated order by order in  precisely the same manner as the light 

particle coefficient functions (though the actual calculations are rather more difficult). However, it 

does have one major shortcoming. As one calculates to higher orders in Q, one encounters higher 

powers of ln(Q2/M2) and 1n(p2/M2). Letting p2 = Q2,  and thus eliminating all logs in Q2/p2, 

then for Q2 + 00 the coefficients at mth-order in (a6(Q2)/27r)" have the series expansion 

m 

CLF1"(~,Q2/M2) = fn(z) lnn(Q2/M2). 
n=O 

Thus, working order-by-order in a, in  this approach one is 

logs. This is not only a practical concern in  the sense that 

failing to-take account of these large 

these large logs in Q2/M2 at higher 

2 



orders in a, can potentially be phenomenologically important', bu t  is also a theoretical concern 

insofar as at each order in a, the leading power of ln(Q2/M2) is the leading in 0, part of the overall 
coefficient function with this  1n(Q2/M2) behaviour, and is really part of the leading order expression 

for the structure function as a whole. The same reasoning applies for the next-to-leading power 

of ln(Q2/M2) etc.. This is similar in principle to  the problem of increasing powers of ln(l/z) with 

increasing powers of as.  It is more difficult in one sense, in so much that in the expressions for the 

coefficient functions these large logs in (Q2/M2) are hidden within very complicated expressions. 

However, it is far simpler in the particular limit Q2 >> M 2  because we know exactly how t o  sum 

the logarithms in Q 2 ,  i.e. we solve the renormalization group equation for fixed order in a,. 

Thus ,  in order to  sum these large logs in Q2/M2 it is convenient to  consider the heavy quark 
to  be a parton and for its distribution function to satisfy the renormalization group (DGLAP) 

equations as do the light partons. An extremely simple approach which incorporates this idea is 

the zero-mass variable flavour number scheme (ZM-VFNS). This treats the massive parton as being 

infinitely massive below some threshold in p2, and totally massless above the threshold, i.e. all 

coefficient functions coupling directly to the charm quark turn on at the threshold, the evolution of 

the charm quark begins at this threshold, and the number of flavours in the coefficient functions, 

anomalous dimensions and the running coupling constant increases by one t o  nf + 1 discontinuously 

at the threshold. Despite the simplicity of the approach this procedure must in principle be done 
with care if the  correct results are to  be obtained in the asymptotic limits [ll] (see below for 

details). In particular, the decoupling theorem tells one how the coupling constant must change in 

order to  get the correct results well below threshold. Also, the parton distributions just above the 

chosen threshold must be carefully defined in terms of those below threshold in order to  guarantee 

that the correct result is obtained as Q2 + 00. In practice at low orders the situation is relatively 

simple, e.g., if the threshold is chosen to  be precisely pz = M 2 ,  then at next to  leading order, the 

light parton distributions are continuous across the threshold (in MS scheme) and the evolution of 

the charm parton distribution begins from zero. At higher orders the parton distributions must 

change discontinuously across the threshold and in particular the charm evolution must begin from 

a non-zero value. 

For many years the above approach was that most commonly used in global fits. The CTEQ 
collaboration used the approach at next to  leading order, as explained above [12], while the MRS 

collaboration motivated their choice of threshold by phenomenological considerations rather than 

the strict theoretical ones [13], but in practice this resulted in a very similar choice of threshold (i.e. 

2.7GeV2 for MRS compared to 2.56GeV2 for CTEQ). While the charm contribution to the structure 
functions near the region of threshold was not too important this 

~~ ~~~ 

They are not important for Q2 << M2 because the large logs are 
kinematical threshold. 

simple treatment was perfectly 

killed by factors coming from the 
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adequate. However, it is clear from its construction that it will not suffice as a good description 

of charm production in the region of the charm threshold. In particular charm production has  a 

sharp threshold at a chosen p 2 ,  rather than a smooth threshold in W2. 

Hence, some approach which extrapolates smoothly from the FFNS at low Q2 to the ZM- 

VFNS at high Q2 is required in order to produce a good description of the effect of heavy quarks 

on structure functions over the whole range of Q2.  Let us discuss how this may be achieved. In 

order to do this we first put the ZM-VFNS on a more solid theoretical footing. If we regard the 

quark mass M2 as being a soft scale then the factorization theorem tells us that 

where b runs over the light partons and the massive quark. We are able to remove the large 

logs in Q 2 / M 2  from the coefficient functions, and hence obtain the normal massless coefficient 

functions, and absorb them into the definition of the parton distributions at the expense of having 

potential “higher twist” corrections of O ( M 2 / p 2 ) .  While the parton distributions depend on M2, 
if the operators defining the partons undergo ultraviolet operator regularization in the MS scheme 

then their evolution depends only on the anomalous dimensions obtained from this ultraviolet 

regularization. These are independent of the mass of the heavy parton, and the evolution is as if 

for nf + 1 massless quarks in the MS scheme. Hence we have the formal definition of the ZM-VFNS 

which will become exact for Q2 >> M2. 
However, we have one more degree of freedom in (2.3) than in (2.1), i.e. we have the heavy 

parton distribution to parameterize at some arbitrary starting scale for evolution, and also no 

apparent reference to the mass-scale M 2  in the definition of the parton distributions. This is not 

in fact true since it can be shown that 

where the operator matrix elements Aba(z, p 2 / M 2 )  contain logs in ( p 2 / M 2 ) ,  and are calculable 

order by order in  perturbation theory [14][15]. Hence, the partons in the ZM-VFNS can in fact be 

generated from those in the FFNS at all p2 by using the leading logarithmic expressions for the 

operator matrix elements and the expression (2.4) , rather than using the four-flavour evolution 

equations at all. Indeed, if the starting scale is chosen as fi2 # M 2  then strictly speaking all the 

leading logs in (fi2/M2) should be included in the matching condition which is just as complicated 

as using (2.4) at all scales. However, if the scale at which evolution begins is precisely p2 = M2, 
then the matching condition for the partons in the two schemes is a power series in a, with no 

logs. Therefore, it simplest to use (2.4) only to define the order-by-order parton distributions at 

the starting scale, and then to calculate the parton distributions at other scales by evolving using 
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n f  + 1 massless flavours. This procedure guarantees the correctness of the ZM-VFNS calculation 

in the limit Q2 >> M 2 .  
By comparing the expressions (2.3) and (2.1) at Q 2  >> M2, and using the relationship (2.4), 

one can calculate the FFNS coefficient functions, up to O(M2/Q2) corrections in terms of the 

massless MS coefficient functions for n f  + 1 flavours [14][15], i.e. 

CiF,F(~,Q2/p2,Q2/M2) = C,rd+'(Q2/p2) 8 A b 4 ( p 2 / M 2 )  + O ( M 2 / p 2 ) .  (2-5) 

The detailed expressions of this form can be found in [15], where they are used to calculate the 

Q2 + 00 limit of the heavy quark coefficient functions in terms of the known light quark coefficient 
functions and calculated operator matrix elements. These authors then define FASYMP as the 

structure function obtained from these asymptotic expressions for the coefficient functions and the 
parton distribution in (2.1). They then, through purely phenomenological motivation, define a 

variable flavour number scheme [15][16] by the formal definition 

(2.6) FVFNS - FZM-VFNS - FASYMP FFNS - + F  

This then extrapolates smoothly from one limit to the other, being guaranteed to  reduce to the 

correct limit order by order in cr,(Q2) at high Q 2 ,  though only approximately to FFFNS order by 
order at low Q2. 

3. A Complete Treatment of Charm Mass Corrections. 

Although we agree with (2.5) and hence with the results at high Q2 regarding coefficient 
functions in [14][15], we believe one may be more ambitious. Rather than  simply accepting the 
uncertainty of O ( M 2 / p 2 )  in (2.5) we can be more systematic and demand that there is a scheme 
which uses the definition of the parton distributions in (2.3) and (2.4) but which is correct up to 
O(A2/M2). Inserting (2.4) into (2.3) and subtracting from (2.1) it is clear that the difference is 

where c ~ ( z ,  M 2 / p 2 )  is O ( M 2 / p 2 ) .  Also making use of (2.4) this difference can be written as 

and so c4(M2/p2)  63 ( A b 4 ( M 2 / p 2 ) ) - '  plays the role of the correction to the massless coefficient 
functions which accounts for the O ( M 2 / p 2 )  corrections. Defining a corrected coefficient function 
as 

c ~ ~ ( z , Q ~ / ~ ~ ,  Q ~ / M ~ )  = c,?+' ( Z ,  ~ ~ / p ~ )  + c q ( ~ 2 / p 2 )  8 ( A ~ ~ ( M ~ / $ ) ) - '  
(3.31 

= CiF,F(Q2/p2, Q 2 / M 2 )  8 ( A b 4 ( p 2 / M 2 ) ) - ' ,  
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then we have the factorization theorem 

Thus, (3.4) gives us a method for defining the structure function including a heavy quark up to 

errors of O(A2/M2) but where all partons evolve according to the massless evolution equations. It 

seems sensible that the best way to proceed for the calculation of structure functions in the presence 

of a heavy quark is to use the FFNS up to some scale of O(M2)  and then switch to the scheme 
defined by (3.4) above this scale. (Changes of renormalization scheme across threshold applying 

to situations of this general type were first proposed in [17].) We shall call this a variable flavour 

number scheme (VFNS). Moreover, we believe that it is sensible to choose the renormalization 

and factorization scale p2 = Q2 in  both schemes, for all scales and for both light and heavy 
quark structure functions.2 This very simple choice automatically avoids having different scales 

for different components of the complete structure function, and means that all mass effects are 

contained entirely within the coefficient functions. It also agrees with the normal asymptotic choice 

of p2 = Q2 and removes all problems of logs of Q2/p2  (the solution of the evolution equations 

summing such terms) and p 2 / M 2 ,  and we are left just with the problems of ~ I I ( Q ~ / M ~ ) . ~  This 

choice is expressed explicitly in all our equations from now on. Finally, as already mentioned, if 
we choose the transition scale as precisely p2 Q2 = M 2  then all the logs in Q 2 / M 2  disappear, 

and the matching conditions between the partons in  the two schemes in (2.4) are a simple power 

series in as(M2) .  Thus, performing the matching at M2, and solving order by order in aS(Q2) as 

in  the strictly massless case we are gua.ranteed to sum the logs in  Q2/M2 correctly at zeroth order 
in  M2/Q2. Combining with the mass corrected coefficient functions to the appropriate order, we 

should then get the mass corrected structure functions correctly order by order. Unfortunately, the 

procedure is not quite as simple as this. 

We see that the defining expression for CLF(z, Q2/M2) is in fact of exactly the same form as 

(2.5), except that it is now exact at all Q 2 ,  rather than having corrections of S ( M 2 / Q 2 ) ,  and that 

this time it is the nj + 1 flavour coefficient functions which are the unknowns to be solved in terms of 

the FFNS coefficient functions and the operator matrix elements, rather than the asymptotic form 

of the FFNS coefficient functions. However, this leaves us with an ambiguity. The index a runs over 

the gluon and the light quarks while b also includes the heavy quark. Hence, while the asymptotic 

FFNS coefficient functions in (2 .5 )  were defined uniquely in terms of the light nj + 1 coefficient 

Of course, if we reach sufficiently low Q2 then we must introduce some finite renormalization scale in 
order to have a finite expression for heavy quark photoproduction. Since we only consider Q2 > 1GeV2 we 

do not consider this problem in this paper. 

In the asymptotic expressions for the FFNS coefficient functions in [14], this choice leads to significant 

simplification. 
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functions, solving (3.3) for the CZF(z ,  Q 2 / M 2 )  in terms of the FFNS coefficient functions does not 

lead to a unique solution. 
In order to demonstrate this let us write out our equations for the VFNS in full. For the case 

where the photon couples directly to the heavy quark, H ,  we have two equations: 

and 

where S, NS and PS refer to the flavour singlet, non-singlet and pure-singlet (singlet minus non- 
singlet) respectively. In the case where the photon couples directly to a light quark we have three 
equations. Denoting the massless MS coefficient functions with nf light flavours by C i a ( n j )  and the 
contributions to the light flavour coefficient functions in the FFNS due to heavy quark generation 
by CcF we have 

and 

V F , S  + Ag”q,H ‘8 c q g  - c V F , P S  V F , N S  
V F I P S  + ‘8 qH + A z H  ‘8 Cqq %l + - [ q q , H + n f A & ? H l @ c q q  

These are very similar to the equations (2.31)-(2.35) in [15] and, as in those equations, we have 
implicitly divided all pure singlet quantities coupling to quarks and all singlet quantities coupling to 
gluons by n j .  Also, as in these previous equations, it is implicit that all quantities on the left-hand 
side are expanded in the n j - f l a v o u r  MS coupling constant while those on the right-hand side are 
expanded in terms of the ( n f  + 1)-flavour MS coupling. The relationship between the two couplings 
was calculated in [18] and corrected in [19]. It is 

Q S , , , + ~  (Q2) = ~ s , n ,  (Q2) + Q?,,, (Q2) G T ~  1n(Q2/M2> 

P S  c F F , P S -  A N S  

(3.9) 

1 

where the coefficient of the leading log at each order in a,,,,(Q2) is the same in all schemes, but 
other coefficients depend on details of renormalization, in particular whether the mass M is the 
fixed or running mass. The particular choice above corresponds to a fixed heavy quark mass at 
NLO. 

The difference between our expressions for the coefficient functions and those in [15] is that 
the coefficient functions on the right-hand side are the VFNS coefficient functions. Not only does 
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this mean that the equations are meant to hold including terms of O(M2/Q2), and that we solve 

for the coefficient functions on the right-hand side, but also that there is a difference between 

the coefficient functions which couple to the heavy quark distribution and those coupling to the 

light quark distributions. For example, while CLsNs and C ~ F ~ N S  must be identical in the limit 

Q2 + 00 they certainly do not have to be identical at moderate Q2,  and physical intuition suggests 

they should not be. This means that unlike [15] we do not have five equations for five unknowns, 

but we have five equations for eight unknowns. In order to reduce to the correct ZM-VFNS at 

very high Q2 we must choose definitions for the mass-corrected coefficient functions which reduce 

to the nj + 1 light parton coefficient functions as Q2 -+ 00, but this constraint still leaves a great 

deal of freedom. 

As an example let us consider what is in practice the most important case, the equation for the 

boson-gluon fusion coefficient function for the heavy quark structure function F 2 , H ( 5 ,  Q2), (3.5). 
The expansion of Ccz: begins at C?(a),(Q2)) as does C:z: and ASg,  while A:g,H and C2,HH V F , N S  

begin at zeroth order. Using the known expressions for the operator matrix elements we obtain the 

lowest order equation relating the FFNS coefficient functions and the VFNS coefficient functions 

where P,",(z) is the lowest order splitting function, and c,, is renormalization scheme dependent, 

but crs = 0 in MS scheme. Hence, we have freedom in how we choose our zeroth order heavy 

quark non-singlet coefficient function, and this then determines our first-order mass-corrected 

gluon coefficient function. More generally, we have freedom in how we define each of the three 

coefficient functions coupling to the heavy quark CL2NS,  CL2ps and C:zPs at each order in 

perturbation theory, being constrained only by the requirement that they are of the correct form 

as Q2 + 00. 

Of course, there cannot truly be an ambiguity in the order-by-order definition of the structure 

functions. In order to illustrate this consider the structure function F2(z,Q2). We also come back 

to the point concerning renormalization scheme dependence. In order to maintain renormalization 

scheme consistency we must be very careful about the way in which we order the expressions. 

Doing this correctly does not remove the ambiguity in our definitions of the coefficient functions, 

but it does render this ambiguity physically meaningless, even order by order. Let us consider 

specifically the heavy quark contribution to the structure function F2(z, Q2) in the general VFNS. 

In fact we will discuss its In Q2-derivative since it is the evolution of F2,H(2, Q2) which is a more 

natural quantity. Taking the In Q2 derivative of F2,H(5, Q2) and keeping all terms up to O(a, (Q2)) 
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multiplying the VFNS parton distributions we obtain 

(3.12) 

Asymptotically the second and third term in this  expression reduce to  the required form for the 

leading order expression in the ZM-VFNS. All other terms fall off to zero in this limit so we are 

guaranteed the correct asymptotic expression using this prescription. However, at low Q 2  the 

exact form of the expression is highly sensitive to  our particular choice of coefficient functions. 

This clearly means that we do not have a truly well-ordered solution and this is because the true 

ordering of the coefficient functions C,”g,(z, Q2/M2) is not as simple as just order by order in 

a,,,,+1(Q2) due to  their dependence on the quark mass. Indeed, their ordering is the crux of the 

problem, and we will explore this below. 

,In order to  examine the true ordering of our expression we will express it in terms of unambigu- 

ously defined quantities, and also in terms of those where the ordering is relatively straightforward. 

Hence we will we will express it in terms of the FFNS parton distributions, the mass-dependent 

coefficient functions C,”g,(z, Q 2 / M 2 ) ,  the operator matrix elements and the coupling ( Q 2 ) .  

The FFNS parton distributions are correctly ordered simply by solving their evolution equations 

to a given order. The operator matrix elements are ordered according to the power of aa,*,+l (Q2) 

minus the power of 1n(Q2/M2), i.e. the leading-order term is of the form 

A : ~ ( z ,  Q 2 / M 2 )  = 6,,6(1 - z )  + 2 ( as’n’+1(Q2))n 2A lnn(Q2/M2)an(a).  (3.13) 
n = l  

The n f  + l-flavour coupling constant is defined in terms of the nf-flavour coupling in an analogous 

manner, i.e. the leading order relation is 

(3.14) 

First using the expression for C ~ ~ ~ ( z ,  Q2/M2)  (3.11), but only keeping the leading order part 
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of the operator matrix element, i.e. leaving out the c,,, and substituting into (3.12) we obtain 

(3.15) 

We can then be more detailed by using the explicit expressions for ( H ( z ,  Q2) + H ( z ,  Q2))o and 

g i f + l  ( z ,  Q2) in terms of the FFNS parton distributions, i.e. 

( ~ ( 2 ,  Q ~ ) + H ( ~ ,  Q ~ ) ) ~  = 2a (Q2) 1n(Q2/M2)PqOg 8 g i '  (Q2) +O((Y;,,~ (Q2) 1n2(Q2/M2)), (3.16) 

and 

gif+'(t ,Q2) = g i f  (z ,Q2)  - a s ' n ~ ~ Q 2 )  ln(Q2/M2)gif (z ,Q2)  + O((Y;, ,~ (Q2) ln2(Q2/M2)), (3.17) 

and also the expression for the nf-flavour' coupling, (3.14). Doing this and remembering that 
V F . N S  1 

d c 2 s H H - '  dln(Q (2i7a'M2) = O ( M 2 / Q 2 )  then we obtain 

Hence, as well as asymptotically reducing to the correct leading order expression, the prescription of 

keeping all terms up to O(a,,,,+1 (Q2)) which multiply the leading order VFNS parton distributions 
h a s  resulted in a unique O ( Q ~ ~ , , ~  (Q2)) expression for the derivative of the heavy quark coefficient 

function which also (and necessarily) has  the correct threshold behaviour. However, it is clear that 

the O(C~:, ,~ (Q2) In Q2/m2) expression, while having the correct asymptotic limit, h a s  behaviour 

for Q2 N M2 which is sensitive to our choice of coefficient functions. In particular, the behaviour 

of these terms will not generally respect the threshold in m2. It is clear that at higher orders 

in  as,nf (Q2) 1n(Q2/M2) while we will obtain the correct asymptotic behaviour, our lowish Q2 

behaviour will be dependent on the choice of coefficient functions. 
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If we were to use the expression for the structure function itself, rather than its derivative, in 

the VFNS by combining the lowest order in Q , , ~ , + ~ ( Q ~ )  coefficient function with the lowest order 

VFNS parton distributions, i.e. 

(3.19) 

then again we would be guaranteed the correct LO expression in the asymptotic limit. However, 

even the leading term in a,,,,(Q2)1n(Qz/M2) (when expressed in terms of the FFNS parton 

distributions and operator matrix elements) is now completely dependent on the choice of coefficient 

function, and there is no requirement to have the correct threshold behaviour at all. 

It should be no surprise that we have this problem. As mentioned earlier in the FFNS the 

coefficient functions to all orders contain renormalization-scheme-independent leading-order con- 

tributions. By working in the VFNS we have managed to extract the asymptotic form of this 

leading order contribution in a relatively simple manner. However, in  order to have the full leading 

order expression for the structure functions in the VFNS in the threshold region, we need to extract 

all the information from the leading order contribution to the FFNS coefficient functions. In prin- 

ciple, the full LO FFNS expression should contain the leading parts of the coefficient functions at 

all orders in  Q ~ , , ,  (Q’), and the LO VFNS should include coefficient functions constructed from the 

full LO FFNS coefficient functions and the full  LO operator matrix elements. Absolutely correct 

matching between the FFNS and the VFNS at Q2 = M 2  leads to the absolutely correct renor- 

malization scheme consistent description of both of these schemes. Thus, in practice the strictly 

correct LO VFNS is no simpler than using the strictly correct LO FFNS coefficient functions. This 

is extremely difficult indeed, and in fact probably impossible, there being no clear unique way in 

which we subtract out the leading order, renormalization scheme invariant part of the O(a:,,, (Q’ ) )  

FFNS coefficient function except in  the asymptotic limit. Indeed, if we were to proceed further 

for our above example of we would find that our definition of the LO contribution at 

O(Q%.,, (Q’ ) )  would rely on being able to extract an unambiguous LO, renormalization scheme 
I ,  

dCFF ,S , ’  

independent part out of 2~’+;ln~~!la’Ma). Though this is simple in the limit Q2 + 00 [14][15], 

there does not seem to be any good prescription for arbitrary Q2.  Therefore it appears as though 

the VFNS is only any advantage at all in  so much that it gives a definition of the charm parton 

distribution. There does not seem to be any tractable way to produce a prescription for calculating 

heavy quark structure functions which both correctly sums the leading logarithms and which has 

absolutely correct, unique threshold behaviour. 
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4. A practical VFNS. 

Bearing in mind the difficulty, or indeed probable impossibility of producing the unambiguous 

well-ordered calculation of structure functions, it is our aim to produce a prescription for calculating 
heavy quark structure functions order by order in  as (Q2)  in  such a way that we obtain relatively 

simple expressions yet maintain as much accuracy as possible over the whole range of Q2.  Let us 

first consider the region of Q2  = M 2  and below. In this case if we work order by order in a , , , , (Q2) 
in the FFNS, i.e. define the nth-order expression for the heavy quark structure function by 

we know that the strictly leading order terms we ignore are really an order of a,,,,(QZ) down 
on those we keep, with no large ln(Q2/M2) enhancement, for these values of Q2.  Adopting this 
procedure, when working to O(ay,,,(Q2)) we have an error of O(a:::(Q2)) compared to the (in 
principle) correct calculation, which is the same size as terms not yet calculated and the same size 
as the renormalization scheme uncertainty. This seems perfectly satisfactory for this region. 

Above Q2 = M2 we want to order our calculation as in. the massless case so that in the asymp 

totic limit of Q2 >> M 2  we will obtain correctly ordered expressions. Therefore, we order the 

calculation by using up to O(a:,,,+, (Q2)) coefficient functions when solving the evolution equa- 
tions using up to O(ay,:i+l (Q2)) anomalous dimensions, as required by renormalization scheme 
consistency. e.g. the leading order expression is 

the next-to-leading order expression is 

etc.. We stress that this is not a choice, but a strict requirement of obtaining ordered asymptotic 

expressions for the structure function itself or its 1n(Q2) derivative. Of course, in this region 
of Q2  we now have the ambiguity in  the definition of the coefficient functions. Thus, since we 
are not performing the strictly correct ordering we have to  make a choice for these coefficient 

functions. We do this by defining them order by order in a , , , ,+l(Q2) using the equations (3.5)- 
(3.9) which guarantee correctness to all orders, and also by using the freedom to choose some 
coefficient functions, i.e. the three coefficient functions coupling to  the heavy quarks, to bring us 

as close to the really correct calculation as possible. 
In perturbation theory it is not really the structure function at a particular value of Q2 for 

which we solve but the evolution at all Q2 in terms of the structure functions at some particular Q 2 .  
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Bearing this in  mind it seems sensible to constrain our coefficient functions by making the slope 

of the structure functions at a given order i i t  cu,(Q2) to be continuous across the transition point. 
In order to examine this constraint, let us again consider the lnQ2-derivative of F2,H(5,Q2). 
Approaching the transition point from below, our prescription gives the lowest order a,,,,  (Q2) 
expression for the ln(Q2)-derivative as 

Just above Q2 = M 2  the ln(Q2)-derivative of the  LO expression in the VFNS is 

+ Q s , n j t l  21r (Q2) C:z:slo(Q2/M2) 8 (p:g 8 st'+'(Q2) + p,", 8 (H(Q2) + R(Q2))o), 
(4.5) 

where at the transition point the coupling at this order is continuous. Also we see that the artificial 
zeroth order term in (4.5) disappears at Q 2  = M 2  (it is actually cancelled in the complete calculation 
as seen in (3.12)-(3.18)), and it is indeed possible to demand the continuity of the derivative 
across $the transition point. Using the constraint and our simple prescription for constructing the 
structure function in the two regions we now have a unique form for the previously ambiguous 

C:sF80(zl Q2/M2). Using the fact that ( H ( z ,  Q2) + H ( z ,  Q2))o = 0 at Q2 = M2, we immediately 
obtain 

at Q2 = M2, and we define C,,,, V F, NS,O ( z ,  Q2/M2) by demanding that it satisfy this relationship at all 

Q2. As well as guaranteeing the continuity of the evolution of the structure function this definition 

we shall see explicitly in  $5). This means that the evolution will clearly reduce to the correct 
asymptotic form of a delta function in the limit Q2 + 00. Above Q2 = M 2  terms are not exactly 
as prescribed by the absolutely correct procedure ex lained in the last section but they do explicitly 

is zero for m2 < 4M2. At leading maintain the correct threshold behavior since 
order we have in principle an error of C3(a,2(Q2)) at the transition point due to the truncation of the 
FFNS expansion at O(ad,,,(Q2)) (where this error falls like ( M 2 / Q 2 )  as we approach the correct 
asymptotic limit) and an error generated by the evolution which is zero at the transition point, and 

grows like as,,,+l(Q2) 1n"(Q2/M2), but falls like ( M 2 / Q 2 )  as we evolve up from this point. These 

errors are quite minimal, always being small compared to the quantity being calculated. From 

d C r 2  ( z  , Q a / M  a )  
also reduces to the correct form for Q2 >> M 2  since in this limit 

' $,,(Qa) -+ P,",(z) (as 

dC;$'(z ,Qa/M') 
8 

that we have also completely defined C2,Hg VF,NS,l  (z,Q2/M2), i.e. in the MS scheme it (3.11) we see 
is 
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though we have not yet made use of this coefficient function. However, we notice that each term 

in this coefficient function separately has the correct threshold behavior in fi2. 
At leading order in this prescription the effect discussed above is the only real complication, 

i.e. the choice for C ~ ~ ~ S p o ( ~ , Q 2 / M 2 )  is the only one to make. Above the transition point the 

evolution equations for the partons are now in terms of nj + 1 massless quarks, and the coupling 
constant becomes the coupling for nj + 1 massless flavours. But all parton distributions and 

all other zeroth order coefficient functions are continuous across the transition. 
Of course, although we have determined the lowest order derivative of the coefficient functions 

on both sides of the boundary we must also discuss the value of the structure function itself at 

Q2 = M 2 .  Using the zeroth order expression (4.6),  the vanishing of the charm quark distribution at 

Q2 = M 2  leads to the charm structure function being zero there. Likewise the fact that at zeroth 

order in the FFNS the coefficient functions for charm production all vanish leads to the zeroth 

order value of F ~ , H ( ~ , M ~ )  being zero also. Thus, the two expressions are consistent. However, 

this is unsatisfactory for two reasons. Firstly, the leading order (order a,(Q2)) derivative of the 

charm structure function is non-zero both above and below Q2 = M2, provided x is low enough 
that we are above the threshold in W2. Hence, starting with a value of F ~ , H ( x , M ~ )  = 0 would 

lead to negative values for this structure function for Q 2  < M 2 .  Also, one would naturally expect 

the LO expression for a quantity to be a reasonable approximation to the quantity itself. The value 
of F2,H(X1 M2) is not zero, and so the zeroth order expression is not a good representation of the 

true value. These problems come about because of a peculiarity of F2(2, Q2) already discussed in 
[20]. In general its value at a given Q; begins at zeroth order in a,(Q;), but the O(a,(Q;)) term 
is also really part of the leading order expression since it is renormalization-scheme independent. 

In contrast the derivative begins at O(a, (Q2)) , and all corrections are renormalization scheme- 

dependent and genuinely higher order. Thus, as argued in [20], the input should contain both the 

zeroth order term and the O(a,(Q;)) term, but the latter should play no part in the evolution. 

ture function as follows. Below Q2 = M2 we take the LO expression to be 

Adopting this procedure we can now specify our leading order expressions for the charm struc- 

(4.8) 

which is equal to the O(LY,) value at Q2 = M2, and incorporates the LO evolution down from this 

scale (up to small corrections). Above Q2 = M2 the LO expression is 

which (up to the constant term) is of the standard form (4.2), and incorporates the correct LO 
evolution. In practice the constant term becomes almost insignificant as soon as Q2 > 4 M 2 .  Now 

we should consider the NLO expressions. 
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At next to leading order the situation is rather more complicated because more terms come 
into play. We now define FFNS expressions by including terms up to  order Q ~ , ~ , ( Q ~ )  relative to 
the lowest order parton distributions. The NLO VFNS expression is defined as in (4.3) (up to  a 
constant again). At this  order the situation becomes more complicated because the pure singlet 
FFNS coefficient function becomes non-zero as does the contribution due to  coefficient functions 
where the photon couples to a light quark but where heavy quarks are generated. Let us  examine 
the NLO expressions for the derivative of the heavy quark structure function. First consider the 
O(o;,,,(Q2))) expression for the derivative of the heavy quark structure function in the FFNS. 
This is 

where En’ (2 ,  Q2) is the singlet light quark di~tr ibut ion.~ In the VFNS the situation is even more 
complicated. Taking the derivative of the NLO expression, and ignoring those terms already in 
(4.5), we obtain 

We label Pig(z) by the number of flavours because it is the only leading-order splitting function which 
depends on this number. The decrease of this splitting function above a threshold accounts for the fact 

that there is a new parton distribution, and guarantees overall conservation of momentum in the evolution. 
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These expressions are very difficult to  compare in general. However, expressing the four flavour 

quantities in terms of the three flavour quantities the two are identical at NLO in MS scheme at 
Q2 = M 2  (the discontinuities in both the parton distributions and the coupling begin at NNLO). 

Thus, the heavy parton distributions ( H ( z ,  Q2) + H(z,  Q2))0 and (H(z,  Q2) + H(z,  Q2))1 vanish 
at this point, and so do many other terms in (4.11). From the definition of C2 H H ( t ,  Q2) we can 

see that the term depending on gl (z ,Q2)  is the same in both expressions, and using the equation 
(4.7) we can see that = 0 at Q2 = M2. Also in the combination -Pz,f(z) + P'int 8 f 
the flavour dependence cancels between the two terms, so this combination is the same in both 

expressions at Q2  = M2. 

VF,O 

dC:2'(t,Qa) 
ilGga) 

Thus we have a great deal of simplification when comparing the two expressions at Q2  = M2. 
As in the LO case we can equate the terms coupling to the gluon in the two expressions, i.e. 

V F 1  at Q2 = M2, and this serves as a definition of the coefficient function C2,H1H(~,  Q2/M2) at this Q2. 

However, unlike the LO case we cannot define the coefficient function at all Q2  simply by extending 

this expression to  all Q2.  This is because it will not result in the correct asymptotic expression for 

C ~ , H H ( Z ,  Q2/M2), i.e. contains a 1n(Q2/M2) term which must be cancelled. It is 
quite easy to find the generalization of (4.12), however. If one differentiates both sides of (3.5), and 

keeps those terms of O(a;,,, (Q2))) which survive as Q2 + 00 (all terms of the form 
vanish in this limit since the VFNS coefficient functions tend to constants) then one obtains 

VF,1  d C r 2  '(2 ,Q'/M a ) 

d c X a  ( z , Q ' / M ~ )  
s d  in(oa) 

(4.13) 
where the last term comes about from the difference in the derivatives of  the three and four flavour 

couplings. This expression guarantees the correct asymptotic expression for c2,ljH(z, V F 1  Q2/M2), 
while (4.12) guarantees the continuity of the NLO derivative of F2,H(Z,Q2) in the gluon sector, 

and hence the definition of C2 IjH(z, Q2/M2) must satisfy (4.12) at Q2 = M 2  and (4.13) as Q2 + 00. 

In fact, at Q2 = M 2  the two expressions are identical, i.e. 

V F  1 

(4.14) 

and 

= (P,", 8 Pig + qg €9 Pgg o'n'+l - P O  "jt1PqOg) 1n(Q2/M2) + (4.15) 
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and we have the very neat result that (4.13) is. the generalization of (4.12) for all Q2, and 

C2,,,(z,Q2/M2) VF,1 is defined by (4.13). 
VF,1 The above definition of C 2 , H H ( ~ 1  Q2/M2),  when substituted into (3.5), determines the expres- 

sion for C2,H$ (z,  Q2/M2) which will be used at NNLO. However, we have now used up our single 

degree of freedom involved with the heavy quark structure function at NLO. Looking at the terms 

coupling to the singlet quark distribution in the two expressions (4.10) and (4.11) we find that the 

V F 2  

first contains 

(4.16) 

while the second contains 

There is no degree of freedom in either of these kquations, and no reason for them to be equal at 

Q2 = M2, and they are not. Indeed there was no further degree of freedom in the relationships 
(3.5) and (3.6) required of the heavy quark coefficient functions. Up to this order the only one 

available was for Cr$H(z, Q 2 / M 2 ) ,  and this has been determined by imposing the continuity of 

the evolution of the structure function in the gluon sector. Indeed, looking at (3.6) at O(a:(Q2)) 
we see that we have already determined c 2 , H ;  

V F  PS,2  (z,  Q2/M2),  i.e. 

Using the framework we have chosen to define the structure functions this discontinuity in the 

derivative of the heavy quark structure function in the singlet sector is unavoidable. There are 

simply not enough degrees of freedom to avoid it. In practice, since the evolution of the heavy 

quark structure function is driven very largely by the gluon, since this discontinuity begins only at 

NLO, and since (4.16) and (4.17) are not too different at Q2 = M 2  the effect is tiny. Of course, 

any discontinuity is only an artifact of the manner in which we are forced to do our fixed order 

calculations, and would disappear if we were to work all orders. In fact one can show that the 
discontinuity of the derivative in the singlet sector gets formally smaller as one works to higher 

orders. 

So now we have the definition of our NLO expressions for the heavy-quark structure function 

both above and below threshold. In the FFNS the definition is the simple extension of (4.8), being 
just 
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which is equal to the O(a:) (i.e. NLO) value for the structure function at Q2 = M 2  and incorporates 

the NLO (i.e. O ( Q : , ~ ~ ( Q ~ ) )  evolution down from this scale (up to small corrections). The VFNS 
NLO expression is 

(4.20) 

which again, up to the constant term, which is the NLO input (the LO part of the input now being 
included automatically), is of the standard form and incorporates the correct NLO evolution across 
the transition point. 

At this order we have to make some decision about how we treat the light quark sector. The 

lowest order contribution the heavy quark makes to a light sector FFNS coefficient function is for 
the nonsinglet coefficient function at O(CZ:, ,~ (Q2)). Thus in the matching conditions between the 
FFNS coefficient functions and those in the VFNS in the light quark sector there are no mass- 
dependent corrections to the VFNS coefficient functions to O(a,,,,+1 (Q2) ) .  Hence, the evolution 

of the light quark coefficient functions above Q2 = M 2  is exactly as in the massless nj + 1 flavour 
case. Nevertheless, we must decide on the form of the structure function at Q2 = M2 and below 
this transition point. For the heavy quark structure function we have been keeping heavy quark 
coefficient functions to one order higher in ad(Q2) in the FFNS than in the VFNS. This has been 
for the reason that the explicit ln(Q2)-dependence in the coefficient functions means that they 
contribute to the ln(Q2)-derivative of the structure function at effectively one higher order in 

a,(Q2) than the VFNS coefficient functions, and also because the lack of the usual zeroth order 
coefficient function makes the O(CZ~,, ,  (Q')) coefficient function the LO one, the O((Y:,~,  (Q2)) 
the NLO one, etc.. For the light structure functions there is a zeroth order coefficient function, 
so the second argument no longer holds. However, the former one still does, i.e. differentiating 

the expression for the li h t  uark structure function below Q2 = M2 and keeping terms of order 

a:,,, (Q2) then dCa,qq dln(Qa) appears in the expression. This contribution accounts for the 
FF, N s $ ( ,  ,;IM' 

effect of the heavy quark to the evolution turning on as Q2 increases. For this reason we continue 

to keep the coefficient functions containing heavy quarks to one higher order than those with only 
light quarks even in the light sector. 

For the heavy quark structure function, because we had terms of higher,order in a, (Q2) below 

Q2 than above it, in order to impose continuity of the structure function at Q2 = M 2  we had to put 
a contribution to the VFNS expression which is constant, and one order in a, higher than the rest 
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of the expression .(we also justified this from renormalization scheme consistency). We now have to 

adopt a similar procedure for the light quark expressions. The NLO expression for the nonsinglet 

structure function for Q2 < M 2  is 

(4.22) 
In principle both sides should also contain a term a ap(Q$) for the genuinely light NLO input, 

where Qi is the scale at which the inputs are chosen. Such a term is always ignored, and would be 

very small. In practice all the O(ap(Q2)) terms in the above expression are extremely small as well. 

The C?(a:(Q2)) evolution derived from the above equations is not precisely continuous at Q2 = M2 
due to terms of inverse powers of Q 2 / M 2  present in dC%:;Nsll dln(Q (zk:l’M1). This discontinuity will 

decrease as we go to higher orders, and these mass-dependent terms get absorbed by higher order 

mass-dependent VFNS coefficient functions. We note that leaving the O(ap,n, (Q2) )  term out of 

of (4.21) would also lead to a discontinuous evolution (actually more so) since the evolution would 

take account of nj massless flavours below threshold but nj + 1 massless flavours above threshold. 

Finally at NLO the light quark pure singlet structure functions have no complications due 

to the heavy quarks at all. The first non-zero FFNS coefficient functions do not appear until  

O(a;,,,(Q2)), and so do not contribute to the evolution until NNLO. So at NLO we just use the 

nj massless flavour expressions below Q2 = M 2  and the nj + 1 massless flavour expressions above 

Q 2  = M 2 .  Continuity of both the structure function and its evolution are automatic. 

One could in principle work to progressively higher orders, but of course in practice the NNLO 

splitting functions and the NNLO FFNS coefficient functions are all unknown at present. Neverthe 

less, we outline the procedure to be adopted at all orders. For the heavy quark structure function 

there is essentially nothing new as we progress to higher orders. At nth nontrivial order we include 

all FFNS coefficient functions up to order Q : , ~ , ( Q ~ ) ,  and all VFNS coefficient functions up to 

order aY,::+,(Q2). In the VFNS expression we always include the O(a:(M2)) term which ensures 

continuity of the structure function. We determine Crz:-’(t, Q2/M2) by demanding continuity 

of the derivative of the structure function at O(a7) in the gluon sector, and this determination 

predetermines C:z:(t, Q2/M2) and C ~ ~ ~ ( t ,  Q2/M2) by using (3.5) and (3.6) to O(a7,,,(Q2)). 
At O(a:,n,+l (Q’)) the coefficient function C2 V F n  Hh(z, Q 2 / M 2 )  becomes the sum of the nonsinglet 
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and pure singlet coefficient functions. Neither the condition (3.5) nor the continuity of the structure 

function and its derivatives determine these two contributions separately, so we are free to separate 

them as we wish, using the condition that each tends to the correct asymptotic limit. It would also 

be desirable to choose each so that they respect the kinematic threshold. 

For the light quark structure function the procedure at higher orders is also straightforward. At 

nth nontrivial order we include all pure light quark contributions to coefficient functions below Q2 = 
M2 up to order all mass dependent F F N S  coefficient functions up to order Q ~ , ~ , ( Q ~ ) ,  

and all VFNS coefficient functions up to order cvy,;i+l(Q2). In the VFNS expression we always 

include the O(a7(M2)) term which ensures continuity of the structure function. Starting with the 
O ( C Y ~ , ~ , + ~  (Q2)) coefficient function we determine C,,,, VF’n-l (z ,  Q2/M2)  by demanding continuity 

of the derivative of the light structure function at O(aY(Q2)) in the gluon sector, analogously 

to the heavy quark sector. With this one degree of freedom eliminated in this way all other 

VFNS coefficient functions are determined uniquely order by order in a, by (3.7)-(3.9), i.e. this 

( z ,  Q 2 / M 2 )  by 
VF,PS,n  determination of C,,,, VFJ”” l ( ~ l  Q 2 / M 2 )  predetermines Cz2n(z, Q 2 / M 2 )  and C2,,, 

using (3.8) and (3.9) to O((wY(Q2)). 
Thus, we have completely defined our prescription for calculating order by order for the struc- 

ture function F2(2,Q2).  We can sum it up in the form of a table. This is shown in table 1. 

This method uniquely determines all VFNS coefficient functions, and while not leading to abso- 

lutely correctly ordered expressions it is a relatively simple prescription for obtaining order by order 

structure functions which are very similar to the strictly correctly ordered ones, which reduce to the 

correctly ordered expressions in the asymptotic limit and which order by order are consistent with 

all physical requirements. All prescriptions which obey (3.5)-(3.9) will be correct when summed to 

all orders, but some ways of choosing the heavy quark coefficient functions will clearly stay closer to 
the correct ordering than others. We believe that our prescription is the best available at present, 

and we see no easy way to improve upon it. 

We will demonstrate the results using our prescription in the next section, and see that indeed 

they do seem to work very well. However, first let us mention another currently available VFNS, the 

ACOT scheme [21][22][23]. Although there is currently no all-orders [24], or even NLO definition 

(for developments see [25], of the ACOT VFNS (which we will denote by ACOT) in print we 

believe that the definition of the coefficient functions in this scheme must be equivalent to that in 
(3.4), i.e. the VFNS coefficient functions are related to those in the F F N S  by the equations (3.5)- 

(3.9). Indeed, at what  they call LO, the ACOT coefficient functions satisfy (3.11). However, they 

determine the expression for C ~ ~ ~ s ’ o  from the tree-level diagram for a massive quark scattering 

from a boson, and for a photon this gives 

C ‘ ~ ~ ” s l o ( ~ ,  Q2/M2)  = zS(?o - z )  ( 1 + - 4$2)1 s o =  (I+$)-’, (4.23) 
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where the modified argument of the delta-function follows from demanding the on-shell condition 

for the massive quark, and the remaining factor follows from the parton model for the longitudinal 

structure function, FL = 4M2/Q2, which is added to the transverse component to give 3’2. Inserting 
into (3.11) for arbitrary p then gives the expression for c2 ,Hi  V F  S,1 (z,Q2/p2,Q2/M2). Presumably 

the ACOT scheme works at higher orders in a similar manner, with the higher order heavy quark 

coefficient functions being calculated explicitly (but needing explicit subtraction of divergences in 

(Q2/M2) beyond leading order). However, we note that ACOT do not usually use the scale choice 

p2 = Q2 as we do. More common is p2 = M 2  + 0.5Q2(1 - M2/Q2)2 [23], which grows more slowly 

than our choice from the same value at Q2 = M 2  and is p2 = 0.5Q2 asymptotically. 
ACOT claim a smooth transition from the FFNS at low Q2 order by order. Their “LO” 

expression for the structure function is 

where from (3.11) and (4.23), 

There are a number of odd features associated with these expressions. Firstly, the “correct” 

threshold behaviour comes about only from a conspiracy of cancellation. Neither term in (4.24) 

respects the physical threshold individually and c ~ z ~ ’ l ( z l  Q2/p2, Q2/M2) has a part with a thresh- 

old itn p2 and a part going like (4.23). In fact, since the first term in (4.24) grows more quickly 

than the subtraction term in the second term in (4.24), there will be nonzero (albeit. very small) 

heavy quark structure function for W2 < 4M2. Once all the necessary cancellation has taken place, 
the result is very good. This can be seen in fig. 8 of [23], and also in fig. 1 which is calculated using 

the ACOT “LO” prescription, our choice of renormalization scale, and the parton distributions 
obtained from our best fit (see later for details). There is a smoother transition in fig. 8 of [23] 

than in fig. 1 because their complicated choice of scale leads to p2 departing slowly from M2 and 

staying well below Q 2  and hence to the growth of the charm parton distribution being effectively 

much slower than for the simple Q2 = p2 choice. The effect of the choice of renormalization scale 

on the speed of departure of the ACOT result from the LO FFNS result can be seen nicely in fig. 
1 of [26]. 

However, even though the cancellation of terms works well, (4.24) is at odds with the usual 

way of defining a LO expression, which usually only involves zeroth coefficient functions convoluted 

with the parton distributions obtained from the one-loop evolution equations. It is clearly of 

mixed order, and indeed, part of the expression is in fact renormalization scheme dependent, which 
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is certainly not correct for a LO expression. If we go to  Q2 >> M2, (4.25) does not reduce to any 

fixed order expression in the ZM-VFNS. The first term in (4.25), represented by the dotted line in 

fig. 1 ,  becomes the LO expression in the ZM-VFNS, but the second belongs to  the NLO expression. 

One can see in fig. 1 that the total LO ACOT result is significantly different from the asymptotic 

ZM-VFNS result even at Q2 = 1000GeV2. Similarly the derivative of (4.24) leads to  terms both of 

C?(Q,, , ,+~)  and O ( Q ~ , , , + ~ ) ,  and will have a renormalization scheme dependent part. This mixing 

of orders is not acceptable. 

Alternatively, with the choice of C ~ ~ ~ s ’ o ( z l  Q 2 / M 2 )  made, the usual way of ordering the ex- 

pansion for a structure function leads to  serious problems. Using what one would normally consider 
the LO expression, F,O,,(z, Q2) = C H H  A VF,NS,O (Q2/M2) 8 (H(p2)  +H(p2)) ,  has  only a sharp threshold 

in Q 2  and the rate of growth of F2,H(z,Q2) would be very discontinuous at Q2 = M 2  and a great 

deal too fast just above this. This can easily be seen on fig. 1 where this contribution is represented 

by the dotted line and labelled “charm quark”. It deviates very quickly from both the continuation 

of the FFNS expression and from the total expression. Using the NLO expression ordered in the 

usual manner5 the effect would be lessened, but would still be significant. The subtraction piece in 
C F F , S , l  ( z ,  Q 2 / p 2 ,  Q 2 / M 2 )  would largely cancel the quick growth generated by the LO evolution of 

the charm parton distribution, but the NLO evolution would still be uncancelled. This effect can 

be seen in fig. 9 in [23] where NLO parton distributions are combined with what is called the LO 
coefficient functions and in fig. 2, where we do the same thing using our parton distributions and 

p2 = Q2.  Here the subtraction term only partially cancels the charm quark contribution and the 

total quickly departs from the continuation of the FFNS structure function, and the effect increases 

at smaller z. The all-orders definition of the coefficient functions in (3.5)-(3.9), if indeed it is the 

all orders definition in the ACOT scheme, guarantees that the correct low Q2 behaviour will be 

restored when working to all orders, but in this scheme this behaviour will come about only due 

to  the mixing of  effects at different orders. At low orders the discrepancy is still large. We note 

that the MRRS scheme [28], which incorporates mass effects into the evolution, but h a s  a similar 

definition of coefficient functions to  ACOT (though with the usual ordering), suffers badly from 

this problem outlined above. At the transition point where the heavy quark starts contributing to 

the heavy quark coefficient function directly there is a very distinct kink, and the total rises very 

quickly above the continuation of the FFNS expression, as seen in figs. 6 and 7 of their paper. 

We do not believe that the method used by ACOT (or MRRS) is a satisfactory way in which to  

define the coefficient functions in a VFNS, and we certainly do not believe that it is unique. It is a 

choice, as our prescription is a choice, and as we have discussed in $3, we do not believe that any are 

strictly “correct”. However, using the ACOT choice the calculation of the heavy quark coefficient 

functions proceeds as though the heavy quark parton distribution is due to intrinsic presence of 

2,Hg 

It is an expression of this general form that is used in the recent global fits to data [27]. 
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the heavy quark rather than it being generated from (at least mainly) the gluon. In particular 

the heavy quark coefficient function contains no reference to the kinematic threshold in p2. This 

necessitates a mixing of orders to get satisfactory results. We believe it is far more useful to choose 

the heavy quark coefficient functions so that they reflect the physics and all automatically contain 

at least the correct form of low Q2 behaviour, and our prescription guarantees this. 

5. The VFNS in Practice. 

We now discuss how our procedure is implemented in practice. Of course, in practice the 

first heavy quark we encounter is the charm quark with m, M 1.5GeV. First we consider the LO 
expression. Denoting 6 = m2/Q2 the LO FFNS heavy quark to gluon coefficient function is 

[ (E) ( 5 4  

FF,1 C Z , , ~  (2, 6 )  = (P:g(z) + 46z(1 - 32) - 8c2z2) In 

+ (82 ( l -  Z )  - 1 - 4 ~ z ( 1 -  z)). e ( W  - 4m,2), 1 
where = Q2(1/z - l), the gluon quark centre of mass energy, w is the velocity of the heavy 

quark or antiquark in the photon-gluon centre-of-mass frame, defined by w2 = 1 - 4m,?/w2, and 

Pig(,) = (z2+  (1 - z ) ~ ) .  These v-dependent terms ensure that the coefficient function tends to zero 

smoothly as = 4mz is approached from below, and hence the structure function has a smooth 
threshold in W2. Taking the In Q2-derivative of this is a straightforward matter and results in 

and it is easy to see that in the limit Q2 + 00, 

F F N S , O  Hence, from (4.6), we see that C2 ,; 
limit. 

( z ,  C) must indeed tend to the simple form A(l- z )  in this 

Solving (4.6) for C ~ ~ N S " l ( z ,  6 )  at arbitrary 6 is not too complicated. Taking moments of both 

sides the Mellin transformation of C , " ~ N s l o ( z , ~ )  is the product of the Mellin transformation of 
dc,F:;l(z ,e) 

d In Q2 and the inverse of the Mellin transformation of (P,",(z)), which is 
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This leads to  the following expression for the convolution of C, F F 3 N S * o ( ~ ,  cc E) with the heavy quark 

distribution, 

FF,1 jXo  dx dC2’cg (” (s> ( c ( z / z ,  Q2) + E(x/z,  Q2)) + 3  

- 2 J” dt. dC2ici 

X d In Q2 

2 F F 1  1 
dz’ P‘ (z ’ ) - (c (x/zz’ ,  Q2) + E ( Z / Z Z ’ ,  Q2)) ,  

X dlnQ2 Llz zz‘ 

where xo = (1 + 4 ~ ) - ~  and r(z) is given by 

(5.5) 

Using this expression we are able to calculate the LO contribution to  the heavy quark structure 

function using a particular set of parton distributions. In practice we use those obtained from a 

global fit to structure function data using the NLO formalism (details later). In order to  get the LO 

parton distributions we simply take the same input parameterizations for the partons but evolve 

them using the LO evolution equations. Our prescription for the LO aS(Q2) across the charm 

threshold is to define 

i.e. h g c ~  is defined for 4 flavours, and take for three flavours 

This prescription precisely reproduces the results of summing the leading logs in (Q2/m2) in (3.14). 

The results of the LO contribution for the heavy quark coefficient function are shown in fig. 3, along 

with the continuation of the LO FFNS expression and also the LO ZM-VFNS expression. One can 

see that the LO VFNS expression departs very smoothly from the continuation of the LO FFNS 
expression, then rises above it, and in the limit of very high Q2 becomes essentially identical to the 

LO ZM-VFNS result. This is precisely the behaviour we would expect. We also note that unlike 

other approaches the expression does not rely on any cancellation between terms. 

We now consider also the NLO expression for the heavy quark structure function. As well 

as the LO coefficient function just introduced we include the 0 ( ~ ~ , ~ , + 1  (Q2)) coefficient functions. 
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The expression for C:zl(z, c) is as in (4.7), and is in terms of quantities we have written explicitly 

above in (5.1) and (5.2), i.e. 

(5.10) 

Hence, there are no new problems in implementing C~~l(z,c). In the limit Q2 + 00 the first of 

Using this, along with (5.3) and the definition (5.10), we see that in the limit c + 00 

Clzl(z,c) + P : g ( z ) l n ( q )  + ( 8 z ( l - z )  - 1 )  

(5.11) 

(5.12) 

in the renormalization scheme. 

From the arguments leading up to (4.12) it is clear that C~~Nsll(z,c) also tends to the 

correct asymptotic limit, and indeed, all coefficient function are constructed so that this will be 

true. However, it is not possible to exhibit this in such an explicit manner since the expression 

for C ~ ~ N S s l ( z ,  c) depends on C:z2(z,  6 )  for which there is no analytic expression.6 Likewise, it 
would be extremely difficult to implement C:ZNSJ1 ( z ,  e )  into the calculation precisely. In practice 

we find that the contribution to the total heavy quark structure function of this term convoluted 
with the heavy quark parton distribution is only a very small fraction of the total. Hence, we 

include this contribution to the total heavy quark structure function in an approximate manner, 

being confident that it is very far from being significant at the present level of accuracy required. 

Using our NLO prescription we use our NLO partons to calculate the heavy quark structure 

function. Our prescription for the NLO aa(Q2) is to define oa(Q2,n)  by the standard two loop 

extension of (5.7), and then to use (5.8) and (5.9) once again. (5.9) does not sum all leading and 

next-to-leading logs in (Q2/mZ) absolutely correctly, but is an extremely accurate representation 

of the precise expression. The NLO charm structure function is shown in fig. 4 along with the 

continuation of the NLO FFNS expression and the NLO ZM-VFNS result. As at LO the VFNS 

departs very smoothly from the continuation of the FFNS expression. Although at this order we 

have not been able to demand absolute continuity of the derivative of the structure function across 

Q 2  = rn: we see that there is no visible evidence of discontinuity at all. In fact the transition from 

one scheme to the other is smoother than at LO. Also the VFNS stays closer to the continuation 

of the FFNS at higher Q2 at this order. This is as we would expect, since as one works to higher 

' We are grateful to Jack Smith and Steve Ftiemersma for providing the extensive program to compute 
the O(az) FFNS coefficient functions [29]. 
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orders in a, in the FFNS one automatically includes more 1n(Q2/m,2) terms which are completely 

summed in the VFNS. At all orders the two schemes become identical insofar as physical quantities 

are concerned. At very high Q2 then our expression tends towards the NLO ZM-VFNS exactly as 

required. 
Of course, at higher Q2 we also have effects due to the bottom quark which has mb k: 5GeV. 

Below Q2 = mi there is no bottom quark distribution and we take account of the bottom quark 

effects by using treating all diagrams including bottom quarks in the fixed flavour scheme, and all 

other effects decouple. At Q2 = mt we switch to a VFNS for inclusion of the bottom quark effects. 

Analogously to the charm quark this involves switching to a 5 flavour coupling constant, defined 

a;,i(Q2) = o r 1 ( Q 2 ,  5) + aa1(m;,4) - a r l ( m i ,  5), 
bY 

(5.13) 

and beginning the evolution of the bottom quark density. The VFNS coefficient functions are 

defined using a generalization of (3.5)-(3.9). There are now two heavy quarks in the definition of 

the fixed flavour number scheme, so we have two extra equations for c 2 , b i  and C[zs, and there 

are now extra VFNS coefficients such as c,,b, or c:zps. Also, the finite operator matrix elements 

will depend on both the charm and bottom mass effects. However, exactly the same principles as 

outlined in the last section apply for determining the VFNS coefficient functions. At low orders 
in a,(Q2) there is no mixing between the charm mass effects and the bottom mass effects. Hence, 

the VFNS charm coefficients functions we have mentioned explicitly above remain the same above 

Q2 = mi (except for a completely negligible change in C,”?”””) and the bottom quark coefficient 

functions are obtained simply by replacing m, with mb and nj + 1-flavour splitting functions with 
nf + 2-flavour splitting functions. At higher orders the VFNS charm coefficient functions change 

above Q2 = m;, acquiring mb dependent corrections (in particular C : ~ p s  comes into existence), 

and bottom coefficient functions acquire charm mass corrections. 

F F S  

VF,S 

Thus, we have described how one may implement our prescription for the VFNS in practice, 

showing that there is no real difficulty. We have also demonstrated that the results have precisely 

the properties that our theoretical arguments in the previous section lead us to expect. In order to 
make even more concrete statements regarding the suitability of our VFNS for the calculation of 

structure functions we will now discuss a comparison with data. 

6. Phenomenological Results. 

Using the prescription for heavy partons discussed above ’we can calculate the full structure 

functions in terms of input parton densities for the light quarks and gluon. The input scale is chosen 

as Qi = 1GeV2, and the input parton distributions are then determined by performing a best fit 

to a wide variety of structure function and related data. Hence we repeat the type of procedure 
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adopted by MRS and CTEQ (and others) in their global determination of parton distributions. We 

note that apart from the masses m, and mb, which we fix at 1.35GeV and 4.3GeV respectively, the 

heavy quark contributions to structure functions have no free parameters. The overall description 

of the data is shown in table There is a clear improvement when compared to the MRS(R2) 

fit [30], which uses the ZM-VFNS prescription with a phenomenologically motivated smoothing 

function, and a small but definite improvement when compared to the MRRS fit.8 
Full details of a global analysis using this procedure will be presented in a future publication. 

However, here we will concentrate on those data which describe the charm contribution to the 

structure function only. The component F2,, has been measured at intermediate 2 values by 

EMC [32] (via the detection of inclusive muons) and at small z by the H 1  [4] and ZEUS [5] 

collaborations at HERA (through measuring D and D' cross-sections). The latter indicate that 

as much as 20 - 25% of the total F2(z,Q2) is due to F2,,(z,Q2). While these data on F2,,(z,Q2) 

are not included as part of the general fitting procedure we can compare them with our theoretical 
predictions. The results are shown in fig. 5. A very good description of both the small and medium 

z data is achieved for a charm mass of m, = 1.35GeV,9 although there is a strong suggestion that 

a slightly higher mass would be preferred, i.e. the curves for m, = 1.5GeV give a rather better 

description. In fact it is the data for Q2 N 2GeV2 which strongly favour this higher value of m,. 

Since in this region of Q2 the theoretical approach is unambiguous, i.e. the true result must be 

very similar to the FFNS calculation, these points may be thought of as determining the value of 

m, at about 1.5GeV, and a value very similar to this that should be used over the whole range. 

Also, in fig. 6 we show the relative importance of the charm and bottom components to the total 

structure function, and note the large fraction which is due to charm in the HERA low z region. 

The bottom contributes no more than N 4% in any currently accessible range of z and Q2. 

7. The Longitudinal Structure Function. 

Finally we discuss our prediction for the heavy quark contribution to the longitudinal structure 
function. Although there is no data directly available on this quantity, we feel that it is an important 

issue. This is because the implementation is a little different from the case of F~(z, Q 2 ) ,  also because 

' We note that we do not alter the values of F2(5,Q2) for the HERA data to take account of our 

predictions for FL(z, Q2), as should really be done. The FL(z, Q2) values used in [2] and [3] are obtained 
using a NLO-in-cr,(Q2) calculation, and so are not very different from ours in general, and the number of 
points affected is relatively small. Hence the quality of the overall fit is very insensitive to the neglect of 
this small correction. 

a The fit is not as good as the LORSC fit [31][20], which includes ln(l/z) corrections but not yet charm 

There is also a single EMC data point at z = 0.422 and Q2 = 78GeV2 not shown in fig. 5, which has 

mass corrections. 

F2,=(2, Q2) = 0.00274 f 0.00152 compared to a prediction of 0.0003. 
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the charm contribution has a very important bearing on the total longitudinal structure function, 

contributing up to about 35% in the ZM-VFNS for example, and finally because our results are 
very different from those in other ways of implementing a variable flavour number scheme. 

As for F2(z,Q2), and for the same reasons, there is no way we can obtain the (hypothetical) 
absolutely correctly ordered expression. Therefore, as in this previous case we want some relatively 
simple prescription which will reflect the physics involved correctly. There is a lot of similarity 
between our order-by-rder prescription for the heavy quark contribution to F'(z, Q2) and that 
for F2(z,Q2), and the equations that the VFNS coefficient functions must satisfy in terms of the 

operator matrix elements and the FFNS coefficient functions are once again (3.5)-(3.9). One large 
difference between the two is the fact that in a zero-mass formulation there are no zeroth order 

in Q, (Q2) coefficient functions for the longitudinal structure function, and hence the O(a, (Q2)) 
coefficient functions are leading order and renormalization scheme independent. All previous imple- 

mentations of a VFNS [22][23][28] have included a zeroth order heavy quark longitudinal coefficient 
function, i.e. the term in (4.23) which oc 4M2/Q2. This procedure means that there is a coefficient 

function at lower order than the one which becomes leading order in the ZM-VFNS limit, and 
hence in order to reach this limit with the LO VFNS expression coefficient functions at both zeroth 
and first order in a,,,,+l(Q2) would need to be included. Also, if one includes any zeroth order 
coefficient function, using the expression (3.5) for the O(a,,,,+l (Q2)) gluon coefficient function 

results in  C,!si(z, Q2/M2) having a component which is renormalization scheme dependent. 
Hence, we choose not to have any zeroth order contribution to the longitudinal coefficient 

functions. As with F2(z,Q2) our VFNS coefficient functions are then determined entirely by the 
requirements of reduction to the ZM-VFNS order by -order as Q2 + oo and continuity with the 

FFNS across the boundary Q2 = M2. Therefore, the prescription for the VFNS longitudinal 

structure function is very similar to that for F2(z,Q2), except that the relative order of heavy 
quark coefficient functions above M2 = Q 2  and light quark coefficients at all Q2 is one higher, i.e. 

O(a,,,,+1(Q2)) is leading order etc.. The prescription for the FFNS structure function at fixed 
order is then very straightforward, i.e. 

for both the heavy and light quark structure functions. The general form of the expression above 
Q2 = M2 is the same as this, i.e. 

(7.2) 
Since the expressions are now of an identical form both sides of the transition point (which was 
impossible for F2(z, Q2) because of the requirement of zeroth order heavy quark coefficient functions 
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above Q2 = M2), and are identical to all orders, continuity of the structure functions themselves 

is guaranteed order by order in  a,(Q2) across the transition point. However, as in the case of 

F2(s,Q2) the heavy quark coefficient functions at each order have to be determined using some 

prescription. (This ambiguity has no effect on the continuity of the structure function since at nth 

order in the expression for the structure function the nth-order heavy quark coefficient functions 

only appear coupling to the zeroth order heavy quark distribution, which vanishes at Q2 = M2.) 
As with F2(s,Q2) it would be nice to demand both continuity of the structure function and 

its In Q2-derivative across the transition point. Since the expressions for the structure function are 

of exactly the same form both above and below Q2 = M 2  in this case (essentially because there are 

no zeroth order terms in the longitudinal structure function), we can now attempt to equate the 

InQ2 derivatives of the n t h  order terms in both expressions rather than making the derivative of 

the nth-order VFNS expression match on to the nth order derivative in the FFNS as was necessary 

for F2(z,Q2). As in the previous case we have enough choice to demand only that this is true in 

the gluon sector, but again by far the dominant contribution to this derivative comes from this 
sector. However, now we have an additional problem compared to the previous case. This can be 

seen by examining the lowest order expressions. 

In the FFNS the lowest order expression for the heavy quark structure function is 

while in the VFNS it is 

Cl ,z ; (z ,  M2/Q2) = CL,Hg(z, FF,1 M2/Q2) = F z ( 1  - z)v - 8cz2 In 
(7.5) 

for the charm quark, where again c = m,?/Q2 and - 4m;) is implied whenever w appears. 

Clearly the structure functions are the same at Q2 = M2. It is also clear that the O(as(Q2)) 

expression for the In Q2-derivative is the same on both sides, i.e. 

However, this expression, which vanishes as Q2/M2 + 00, is lower order than the leading order 

asymptotic expansion, which is O(a?(Q2)). It is this, rather than a zeroth order coefficient function, 
which truly reflects the fact that the heavy quark longitudinal structure function has behaviour 

which begins at lower order than the massless expression. This O(a,(Q2)) derivative means that 
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while the asymptotic O(a : (Q2) )  expression for the total derivative of the, longitudinal structure 

function is renormalization scheme independent, it contains a part which vanishes as Q2/M2 -+ 00 

which is renormalization scheme dependent. This is different to the case for F ~ , H ( s , Q ~ )  where 

the leading asymptotic and O(M2/Q2) parts of the derivative are both of the same order, i.e. 

If we treat the O(a,(Q2))  component of dF2$$Qa) as a superleading part which is trivially 

continuous across Q2 = M 2 ,  and then examine the form of the O(a,2(Q2)) terms coming from the 

derivatives of (7.3) and (7.4), then since each of the leading-order expressions is renormalization 

scheme independent then so are the contributions obtained in the expressions for the derivatives. 

Explicitly we obtain in the FFNS 

O(as ( Q 2 ) ) .  

and in the VFNS 

nf+lg: I  ( Q 2 )  + p;inf +1 @ gnf ( ~ F L , H ( z ,  d In Q2 Q 2 )  = ( as,nj+l (Q2)  2 K  ) [CZIF,i(Q2/M2) 8 (-PO o Q 2 )  

+ pg"p 8 E:' ( Q 2 ) )  + Cl,SL(Q2/M2) 8 (p4", 8 ( Q 2 ) ,  

+ p,", 8 (H(Q2) + R(Q2l)o) - PO (H(Q2) + f i c O 2 ) ) o ] .  fl'tl 

- (7.8) 
VF1  From previous arguments it is clear that the terms 0; CL,ljg(z, Q2/M2) in each equation are equal at 

Q2 = M 2 .  The vanishing of the heavy quark distribution at this scale, lead to the single condition 

in order to match these O(a:(Q2))  contributions to the derivative. Thus, we have this condition, 

along with the fact that C, l jH(z,Q2/M2) must reduce to the correct asymptotic form, in order VF1  

to determine C, VF1  i H ( z ,  Q2/M2). It is clearly possible to choose forms for C ~ , ~ & ( z l  Q2/M2) which 

satisfy these conditions, but there is rather less guidance as to the precise form required than for 

F 2 , ~ ( 2 ,  Q 2 ) ,  where the condition at Q2 = M 2  contained a component which was clearly identifiable 

as the asymptotic expression. 

This indeterminacy is due to the fact that the O(M2/Q2) contributions to the derivative 
begin at one lower order than the asymptotic form, rather than our chosen manner of imposing 

the matching. If we had chosen to match (7.8) to the total O(a : (Q2) )  expression for !w 
in the FFNS, rather than just the part coming from (7.7), i.e. analogously to F ~ , H ( B , Q ~ ) ,  we 
would have encountered a different problem. In this case the determined value of CL,HH(z,l)  VF,1 
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d c F F , 2  
would have contained a part oc 

limit would therefore appear more naturally. However, the full expression for 

L!Hl,(:flalMa), which contains C ~ , ~ ~ f + l ' l ( z ) ,  and.the asymptotic 
d C : y  (zsQa/Ma), and 
l,,, 81 

V F 1  consequently the full  expression for C L , i H  ( 2 ,  Q2/M2) implied, contains O(M2/Q2) parts which 

are renormalization scheme dependent (since they are subleading to the O(a, (Q2)) expression). 

This is not satisfactory in the definition of the leading order VFNS coefficient function, and the 

renormalization scheme dependent part of the expression should be removed. However, there is no 

unique way to do this, and hence the definition of C L , i H ( z ,  M2/Q2) would be just as ambiguous 

as when using our chosen matching condition. 

Hence, we have to live with the fact that there is no completely satisfactory way to determine 

C L , 2 k ( z , Q 2 / M 2 )  from physical arguments. We choose to impose (7.9), as well as the fact that 
CL,,,(z,Q2/M2) must reduce to the correct asymptotic form, and also choose the coefficient 

function so that a smooth threshold in is automatically incorporated. A simple choice satisfying 

all these requirements is 

V F 1  

VF,1 

(7.10) C L , H H ( ~ , Q 2 / M 2 )  = -w(l- M2/Q2)z. 

In practice this ambiguity has little effect phenomenologically since the vast majority of the LO 
expression for F',H(z, Q2) comes from the gluon contribution which is determined uniquely. Using 

(3.5) we have now also defined CL,Hg(~, Q 2 / M 2 ) ,  i.e. 

VF,1 8 
3 

VF,2 

V F 1  in MS scheme, although we do not have to make use of this yet. The fact that CL IjH(z,Q2/M2) 

reduces to the correct asymptotic limit guarantees that CL,Hg(~, Q z / M 2 )  does. 
As far as the light quark contribution is concerned the coefficient functions are identical above 

and below Q2 = M2, and the only effect is the change of the evolution of the parton distributions 

and in the running of the coupling. The lnQ2-derivatives of these LO light quark distributions 

which are entirely of O(a:(Q2)), are not quite continuous across the transition point because of 
the flavour dependence of PO and of the lowest order splitting functions, i.e. of P:",z). As in the 

O(aZ(Q2)) derivative for F2,i(z,Q2) there is continuity in the gluon sector, but not in the quark 

sector. Phenomenologically the discontinuity is very small, and becomes formally smaller as we 

work to higher orders. 

VF,2 

The result of our leading order calculation of FL,,-(z,Q~), using the same LO parton distribu- 
tions as before, is shown in fig. 7, along with the LO FFNS and the LO ZM-VFNS results. As in  
the case of F Z , ~ ( ~ , Q ~ )  one can see that the transition from the FFNS result is extremely smooth, 
and of course, the the correct asymptotic limit is reached. We note that at low Q2 the VFNS result 

for FL,=(z, Q2) is very different indeed from that in the ZM-VFNS. This leads to a very significant 

difference between the results for the total FL(z, Q2) in the two different schemes, and important 
phenomenological implications. We also show explicitly the contribution made by the charm quark 
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distribution. At high Q2 this is unambiguously defined, and at low Q2 it is very small indeed. 

Therefore, the ambiguity in the low Q2 heavy quark contribution is not really significant. 
A very important difference should be noted between this approach and previous VFNS ap- 

proaches at this point. As already mentioned, all previous approaches have used a zeroth order 

charm quark coefficient function of the form 

(7.12) 

If one were to  regard the LO expression for FL,~(z, Q2) as just this coefficient function convoluted 
with the heavy quark distribution function then the behaviour would be rather strange, having a 

sharp threshold at Q2 = m;, growing quickly, then turning over and going to  zero as Q2/m; + 00. 

If, as is more likely, the LO expression is taken to  include both the zeroth order and O(a,(Q2))  
coefficient functions, so that the correct asymptotic LO limit is reached, then C ~ , ~ ~ ( z ,  e )  is defined 

by (3.11), i.e. 

(7.13) 

As well as this introducing incorrect renormalization scheme dependence into a leading order ex- 

pression (via cr3) , it h a s  unfortunate phenomenological consequences. The VFNS differs from the 
FFNS expression by 

where we have used MS scheme. These two terms are intended to largely cancel at and just 

above Q2 = m:, ensuring a relatively smooth transition as in the ACOT prescription for the LO 
expression for F2,c(2,Q2). The procedure works well in  the case of F 2 , c ( ~ , - Q 2 ) ,  and the transition 

is quite smooth, as we have seen. However, the cancellation is not exact (otherwise we would just 
have the FFNS),  (c(z,  Q2) + E(z, Q2))0 k: a8,4(Q2)Pgg ln(Q2/m:) 8 g:(Q2) for Q2  just above m:, 
but the resummation of  the logs in the evolution of the charm quark distribution leads to  differences 

appearing. To a rough approximation, 

at moderate Q2. Inserting this into (7.14) leads to 

46(aa,4(Q2) ln(Q2/m:))2A(h - z )  €3 Pp"g €3 P:b4 €3 g,"(Q2). (7.16) 

For Q2 a 5 - 10GeV2 this expression is comparable in size to  the FFNS component of the full 
expression for F',,.(z, Q2),  which N a,g:(Q2) with damping due to  kinematic factors (and which 
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is more than 10 times smaller than the LO FFNS component for F2,c(z,Q2)). However, it falls 

away quickly at larger Q2. This leads to the LO VFNS expression for F L , ~ ( Z , Q ’ )  increasing very 

quickly above the FFNS expression above the transition point, dramatically slowing, or perhaps 

even falling at Q2 N 5m:,  and then smoothly approaching the correct asymptotic limit. i.e. there 

is a very pronounced unphysical bulge in  the value of FL,,(z, Q2) calculated in this way. When one 

calculates R, = F L , ~ / ( F ~ , ~  - F L , ~ ) ,  which exhibits the relative rate of growth of FL,= and F Z , ~ ,  the 

effect is demonstrated much more clearly as a distinct hump peaking at about Q2 = 3m:. This can 

be seen very clearly in fig. 9 of [28], where the effect is particularly dramatic since the evolution 

of the heavy quark distribution there is even quicker than in m, and is at NLO. However, the 

treatment of coefficient functions follows the same general principles as ACOT, and the same type 

of effect, if somewhat smaller (the reduction depending very strongly on the particular choice of 

renormalization scale - one which departs extremely slowly from mz as Q2 increases could remove 

the effect) will be clearly seen in their expressions.1° Even in the absence of detailed data this type 

of effect seems sufficient to rule out this approach as a suitable way to order a VFNS expression. 

We now consider the NLO expressions for the longitudinal structure functions. For both 

heavy and light quark structure functions both above and below Q2 = M 2  we add to the LO 

expressions the O(a: (Q2)) coefficient functions convoluted with the LO parton distributions and 

the C3(a,(Q2)) coefficient functions convoluted with the NLO parton distributions. Let us first 

consider the heavy quark coefficient function. It is guaranteed by satisfying (3.5)-(3.9) order by 

order in ad(Q2), while also satisfying the correct relations between parton distributions and the 

coupling, that this procedure will lead to structure functions which are continuous across Q2 = M 2 .  

This is straightforward, if a little tedious to check. Continuity of the derivative of the heavy quark 

structure function across the threshold is not guaranteed, but depends on the particular choice of 

the heavy quark coefficient functions. We can compare the derivatives of the full NLO expressions 

in both the FFNS and VFNS up to O(a:(Q2)). From the conditions we have already imposed using 

(3.5)-(3.9) it is guaranteed that all new terms we introduce which behave like crP(Q2), i.e. those 

depending on 4~22)  , will be continuous across the transition point. Again this is straightforward 

to check. If we examine the O(a:(Q2)) contributions to the expressions then both in the FFNS and 

VFNS these are very involved, i.e. containing rather more terms than (4.10) and (4.11). However, 

as with (4.10) and (4.11) many of these terms vanish at Q2 = M 2 ,  because the heavy parton 

distribution vanishes here, also because in this case C ~ , ~ ~ s l l ( z ,  1) = 0,  and also because many 

d C F ( V ) F , a  

other terms are the same in both expressions. A long, but entirely 

l0 In fact, since as we see in fig. 1 at z = 0.005 the subtraction term is 

distribution, the effect will be negative. 

straightforward calculation 

larger than the heavy parton 
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reveals that if we require continuity of the derivative in the gluon sector we have the requirement 

that 

V F S 2  FF,2 FF,1 C ~ , t j i  (Q2/M2)  @ PPlg = C L , H g ( z ,  Q 2 / M 2 )  (PO””’ - PO”’) 4- C L , H ~ ( ~ ,  Q 2 / M 2 )  (P;’” - By’) 
CFFil (Q2/M2)  8 (Pg; 1 nt+l - p$t), - L,Hg 

(7.17) 
at Q2 = M 2 .  So at O(a;(Q2)) ,  as at O(a,(Q2)) ,  there is no implication of the asymptotic form 
required of the heavy quark coefficient function in the condition at Q2 = Ad2, but the condition is 

no longer that the coefficient function is zero at this value of Q2. We can understand where the 
nonzero terms come from quite easily. If we had used the whole of the O(a;+,(Q2)) expression 
for the derivative of the heavy quark structure function in the FFNS, and equated this to our 
VFNS expression then the asymptotic form of C, H H ( z ,  Q2/M2)  would have appeared naturally in 

the expression for dln $. However, by examination of the expression for ::$? contained within 

(3.5) we would find that the definition of C l , s ~ S p 2 ( z , Q 2 / M 2 )  would also need to contain terms 
of the sort in (7.17), as well as others which vanish at Q2 = M 2 ,  in order to reduce to the correct 
asymptotic limit. However, in an analogous fashion to our previous discussion at leading order, we 

do not use this technique since parts of the O(M2/Q2)  corrections to are properly of NNLO, 
i.e. are renormalization scheme dependent in such a way as  to compensate for the renormalization 

scheme variation of the NLO terms. This would require an ambiguous subtraction procedure for 
these terms, and we would have no more real information than that contained in (7.17) and the 
asymptotic condition. 

Hence, as for the O(a,,,,+l (Q2)) Coefficient function we make a simple choice for the coefficient 
function which satisfies (7.17), which reduces to the correct asymptotic limit, and which explicitly 

contains the correct threshold behaviour. Once again we multiply the asymptotic limit, which makes 

no appearance at Q2 = M 2 ,  by (1-M2/Q2)v.  We multiply the terms appearing in (7.17), but which 
must disappear asymptotically, by M 2 / Q 2  (in this case the threshold behaviour is automatically 

contained in the expressions). Hence we obtain 

FF,2 

dC1 F F , 3  

d C e y  

This definition is ambiguous at low Q2,  but as at leading order the total heavy quark structure, 
function at NLO is totally dominated by the gluon contribution. We also note that the ambiguity 
introduced at LO from the definition of the heavy quark coefficient function is very largely negated 

at NLO by the inclusion of C L , , ,  V F i N S t l ( ~ ,  Q 2 / M 2 )  in the expression for C ~ ~ 2 ( z ,  Q 2 / M 2 )  (7.11). As 
we work to higher orders the ambiguity formally disappears. We also note that the coefficient 

function Cl,s22(z, Q 2 / M 2 )  is the sum of the nonsinglet and pure singlet coefficient functions. We 
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are free to separate them as we wish, using the condition that each tends to the correct asymptotic 

limit. It would also be desirable to choose each so that they respect the kinematic threshold. The 

choice has no bearing on the expression for the structure function but a simple choice is to let the 

nonsinglet part contain all parts a U, and to split the other part simply in terms of the asymptotic 

form. 

Comparing the C?(cr:(Q2)) expressions for the derivative of the heavy quark structure func- 

tion which are proportional to the singlet quark distribution, then as for the NLO derivative for 

F2,H(2,Q2) we see that continuity is not achieved. The difference between the VFNS expression 
and the FFNS expression is 

(7.19) 

FF,PS,2 VF,PS,2 where CHq 

F ~ , H ( Z , Q ~ )  the effect disappears as we work to higher orders. 
(z1Q2/M2) = CL,,, (zlQ2/M2). This NLO effect is very small, and as for 

For the light quark structure functions there is one choice to make. There is a mass de- 

pendent contribution to the nonsinglet coefficient function at U(cr,2(Q2)), but the form of the 

VFNS coefficient function is determined entirely by (3.7). In essence the mass dependent cor- 

rection to C N S ~ n f ~ 2 ( z )  contain a piece which becomes constant asymptotically which represents 

CNS,n j+ l ,2  ( z )  - C N S ~ n f ~ 2 ( z ) ,  and a piece which grows like 1n(Q2/M2) which takes account of the 
difference between the nj  + 1 and nj  flavour couplings. The C3(a:(Q2)) In Q2 derivative is slightly 

discontinuous at Q2 = M2, but this is corrected by inclusion of the O(cr:(Q2)) coefficient functions. 
For the pure singlet and gluon coefficient functions coupling to light partons there are no mass de- 

pendent corrections in the FFNS at O(cr~,nf (&')), and we simply use the same coefficient functions 
above and below Q2 = M 2 .  Continuity of the NLO structure functions is then automatic. How- 
ever, the pure singlet coefficient function CL,qH vF~ps32(zl  Q2/M2) becomes nonzero at this order. It 

can be determined by demanding continuity of the In Q2-derivative of the structure function in the 

gluon sector. This results in a similar procedure as for the heavy to heavy coefficient function: the 

asymptotic form is put in by hand and multiplied by (1 - M2/Q2)w while there are nonzero terms 

at Q2 = M 2  which are multiplied by U to ensure that they vanish as Q2/M2 + 00. The calculation 

is straightforward, and we do not present details here. As for the heavy quark structure function 
the C?(cr:(Q2)) lnQ2 derivative in the singlet quark sector is slightly discontinuous at Q2 = M2, 
but again this is corrected at next order by inclusion of the C?(a:(Q2)) coefficient functions. 

Now that the NLO prescription for the longitudinal structure function is completely defined we 
can examine the results. Using our NLO coefficient functions (7.18) and (7.11) and the NLO partons 

obtained from the best fit we calculate the NLO charm quark longitudinal structure function. This 

is shown in fig. 8 along with the continuation of the NLO FFNS expression and the NLO ZM- 
VFNS result. Once again the VFNS increases above the FFNS result very smoothly despite the 

discontinuity in the In Q2 derivative in  the singlet quark sector which is now demonstrably minute. 
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At very high Q2 our expression tends towards the ZM-VFNS as required, but as at LO the two 

become very different at lower Q2.  As in the case of F2(x,Q2) at NLO the difference between the 

VFNS and the continuation of the FFNS is reduced compared to the difference at LO for the same 

reasons. Hence we have every reason to consider our prescription for the longitudinal structure 

functions quite satisfactory. 

In fact we can compare to some data. At x < 0.1 the VFNS, ZM-VFNS and FFNS values 

for the total F L ( ~ ,  Q2)  are very similar. However, the NMC collaboration have produced data for 

0.11 > x > 0.0045 and 1.3GeV2 < Q2 < 20.6GeV2 [33], Q2 increasing as x increases. These data 

are in the region where our VFNS prescription produces very different results to the ZM-VFNS 

(but almost identical to the FFNS) for F+(s,Q2), and hence significantly different results for the 

total longitudinal structure function. Using the parton distributions obtained from our best global 

fit we produce predictions for R(x, Q2)  = F L ( ~ ,  Q2)/(F2(x,  Q2) - F L ( ~ ,  Q 2 ) )  using the ZM-VFNS 

and the VFNS, and compare to the data. The results are shown in fig. 9. The kink in both curves 

at the lowest x values comes about because for all data points other than that at x = 0.0045, as 

x decreases Q2 also decreases smoothly, while for this point the extraction of R(z ,  Q2) relies on an 

extrapolation and the Q2 is actually almost identical to that for the x = 0.008 point. The kink in 

the ZM-VFNS expression at Q2 = rn: = 1.8GeV2 is due to all charm coefficient functions turning 

on discontinuously at this point. Comparing to the data it is clear that the ZM-VFNS curve is 
much too large for most of the x-range, while down to z = 0.01 the VFNS curve matches the 

data quite well. Thus, there is strong evidence for including charm mass effects in the longitudinal 

structure function, and our prescription seems reasonably successful. Other VFNS prescriptions 

would lead to R(z ,  Q2)  somewhere between the two curves. The theory is clearly below the data for 

the lowest x and Q2 points where the charm contribution to R(x,Q2) is extremely small, i.e. the 

VFNS and ZM-VFNS curves are almost identical. The smallness of R(x, Q2) ,  and the decrease with 

decreasing x at constant Q2 in this region are largely due to a negative small x contribution from 

C,";$"(z) which becomes increasingly important as x and Q2 fall. Thus, the difference between the 

theory and data for the two lowest x points is perhaps a sign of the failure of the NLO-in-a,(Q2) 

calculation of structure functions at small z.ll 

As with F2(x, Q2)  the NLO calculation is the best that can be done explicitly with the present 

knowledge of structure functions. However, as in this previous case, we outline the procedure for all 

orders. The general form of the expressions is presented in (7.1) and (7.2), and for the heavy quark 

l 1  The curve labelled RQCD in fig. 10 of the NMC paper [33] contains little information. For FL(E, Q2) 
it uses a LO formula [34](and hence does not contain the important NLO small E effect) which assumes 4 

massless quarks at d Q2,  along with a gluon which has been extracted using a NLO fit in the FFNS [2]. 

Moreover, this gluon is not constrained at large x and is highly inconsistent with large E data. Rom the 

momentum sum rule this means its form at small E is also much different to a well constrained gluon. 
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structure function nothing essentially new compared to the LO and NLO prescriptions occurs. At 

nth nontrivial order we determine CL,,, (2, Q2/M2) by demanding continuity of the In Q2 derivative 

of the structure function in the gluon sector, and by demanding the correct asymptotic form. At 

each order the correct asymptotic form will not appear in the continuity conditions and need to be 

introduced by hand. Each time we multiply by (1-M2/Q2)v. At each order there will also be terms 

introduced by the continuity demand which must vanish as Q2 + 00, and we multiply these by 

M2/Q2. At every order this determination of CL,HH(z, VF,n Q2/M2) predetermines CL,,, VF1n+l(zl Q2/M2) 

and C ~ , ~ ~ t l  ( z ,  Q2/M2) by using (3.5) and (3.6) to  O(cu;+' (Q2) ) .  The comments concerning the 

separation of C L , H H ( z ,  Q2/M2) into nonsinglet and pure singlet parts in  $4 apply again. 

VF,n 

VF,n 

For the light quark structure function the procedure at higher orders is also straightforward. 

As with the O ( ( Y : , ~ , + ~  (Q2) )  coefficient function we determine CL,qH ( z ,  Q2/M2) by demanding 

continuity of the derivative of the light structure function in the gluon sector, analogously to 

the heavy quark sector. With this one degree of freedom eliminated in this way all other VFNS 

coefficient functions are determined uniquely order by order in Q,,n,+l(Q2) by (3.7)-(3.9), i.e. this 

determination of CL& ( z ,  Q2/M2) predetermines CL,qg 

by using (3.8) and (3.9) to O(a;t1(Q2)) .  

V F,n 

( 2 ,  Q2/M2) 
VF,PS,n+l 

( ~ 7  Q2/M2) and CL,pq V F n  VF,n+l 

Thus, we have completely defined our prescription for calculating the structure function 

F L ( z , Q ~ )  order by order. As for F2(2,Q2) we can sum it up in a simple diagram, shown in 

table 3. The generalization to  the case of two heavy quarks follows the same lines as for the case 

of F2(2,Q2) which was discussed at the end of $5. For Q2 < rni the bottom quark effects are 

all treated via FFNS coefficient functions while in the region above Q2 = mi we have a variable 

flavour scheme for both the charm and bottom quark. For high orders in cr,(Q2) there will be 

mixing of the effects of the two quarks, but for the orders currently available in practice the mixing 

is extremely small indeed, as with F2(2,Q2), and the bottom coefficient functions are essentially 

the same as those for charm with m, -+ mb and with 5 flavours rather than 4. 

Our prescription uniquely determines all VFNS coefficient functions, and as for F2(2, Q2) ,  

while not leading to absolute correctly ordered expressions it is a relatively simple prescription 

for obtaining order by order structure functions which are very similar to the hypothetical strictly 

correct ones, which reduce to  the correct asymptotic form order by order in a,,n,+l(Q2), and which 

are consistent with physical requirements order by order. All ways of satisfying both (3.5)-(3.9) 

and the correct asymptotic limits will be correct in a certain sense 

with ordering within a given renormalization scheme) , but many 

unsatisfactory for Q2 not much larger than M 2 ,  and we have seen 

F2(s,Q2) we believe our prescription to  be very suitable. 

(provided they are consistent 

will have behaviour which is 

an example of this. As with 
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8. Summary and Conclusion. 

In this paper we have constructed an order by order in a, prescription for calculating the 
neutral current structure function including the effects of a massive quark. For the region Q2 < M 2  
this has essentially just been the normal FFNS, where the heavy quark is not treated as a constituent 

of the hadron, but all heavy quarks in the final state are generated via the electroweak boson 

interacting with light partons. For Q2 > M2 we have to solve the problem of summing large logs 
in Q 2 / M 2  and p2/M2 which appear at all orders in ad(p2).  The easiest way to do this is to to 

treat the heavy quark as a parton, in which case the logs will be summed automatically when 
one solves the evolution equations for the partons. If one chooses the parton distributions above 
p2 = M 2  to evolve as though massless and in the MS scheme, then the new nf + 1 flavour parton 

distributions are determined in terms of the FFNS parton distributions at all p2 by well-defined, 

calculable matrix elements which contain logs in p 2 / M 2 .  In particular the heavy quark distribution 
is determined entirely in terms of the light parton distributions. The matrix elements can then be 
used to define the nf + 1 flavour parton distributions in terms of the nf flavour distributions at 
some scale (in practice p2 = M 2  is by far the most convenient), and the evolution upwards can 
take place in terms of nf + 1 massless flavours with the correct asymptotic limits being guaranteed. 
If the massless nf + 1 flavour coefficients functions are used then the correct asymptotic limit for 

the structure functions is also reached. 
The main problem lies in  obtaining the correct description in the region not too far above 

Q2 = M2. We have demonstrated that this is achieved to all orders by defining the mass-dependent 

coefficient functions above Q2 = M 2  in terms of the operator matrix elements and the FFNS 
coefficient functions as in (3.5)-(3.9). However, we have also demonstrated that since there are 

more degrees of freedom on the right hand side of these equations than on the left, the additional 
ones all being coefficient functions coupling to heavy quarks, there is freedom in precisely how the 

coefficient functions may be chosen. Although in a true well-ordered calculation this ambiguity 
disappears, this manner of ordering is at the very least extremely complicated, involving parts of 
the FFNS from all orders in a,(p2) at each order in the calculation, and in practice is probably 
impossible, there being no unique prescription for ordering the O(M2/Q2) terms. Hence we choose 

to order our calculation as in the normal order-by-order in a, (p2) manner, choosing the very simple 
natural scale p2 = Q2, which puts all of the mass effects into the coefficient functions and guarantees 
the correct asymptotic limit order by order in a,(Q2). We then determine the precise form of our 

heavy quark coefficient functions by demanding continuity not only of the structure functions 

at Q2 = M2 (which is automatic), but also the continuity of the lnQ2-derivative of the structure 
function. In practice this exact continuity is only possible for those terms proportional to the gluon, 

but this is by far the dominant contribution. Our constraint then determines our prescription for 
dealing with heavy quarks completely, and incorporates the correct qualitative threshold behaviour 
into every coefficient function at each order of a,(Q2), not relying on cancellations between terms 
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with incorrect behavior and of different orders to obtain satisfactory results. In practice the most 

important of our results are the zeroth order coefficient function for F2,c(5, Q2), (4.6), which exhibits 

the correct threshold behaviour in  as well as reducing to the correct asymptotic form, and the 

absence of a zeroth order coefficient function for FL,~(Z, Q2), the O(a, (Q2)) coefficient functions 

being (7.5) and (7.10), which again exhibit the correct threshold behaviour and asymptotic limits. 

We display the results obtained using our prescription for neutral current structure functions 

in figs. 3, 4, 7 and 8,  finding that they exhibit exactly the type of behaviour we would expect, 

i.e. smoothly deviating from the FFNS at low Q2, and tending towards the nj + 1 massless results 

at high Q2,  in all cases. In particular we notice that the bump in the charm quark longitudinal 

structure function at Q2 x 10GeV2 which occurs in other variable flavour number schemes is 

absent here. We also see that our predictions agree very well with the current data on the charm 

structure function which exists from 1.5GeV2 < Q2 < 100GeV2, implying a charm quark mass of - 1.45GeV. We note that comparisons of theoretical predictions with the complete range of data 

on the charm structure function appear very rarely (in particular, detailed comparison with EMC 
data is frequently omitted), and we strongly encourage this as the best constraint on any theory. 

The general technique can be applied to all other quantities in perturbative QCD which require 

the convolution of coefficient functions with parton distributions. We can always choose the parton 

distributions to evolve as though there are nf + 1 massless flavours in the E s c h e m e ,  factor 

these into the mass dependent operator matrix elements and the FFNS parton distributions and 

then obtain the coefficient functions in the variable flavour scheme in terms of those in the fixed 

flavour scheme by equating the parts proportional to each FFNS parton distribution. Indeed, 

the expressions. (3.5)-(3.9) are not exclusive to neutral current structure functions, but apply to 

all quantities which can be written as the sum of convolutions of coefficient functions with single 

parton distributions. In the appendix we discuss the case of the charged current structure functions 

as an example. For expressions involving more than one parton distribution the generalization is 

clear, e.g. for proton-proton scattering the FFNS and VFNS coefficients are related by equations 

of the form CEf = CVFAC5Adb. rcd In all cases there will be ambiguity in definitions of the heavy 

parton coefficient functions, but these can always be eliminated by demanding as much continuity 

of the In Q2-derivative order-by-order in Q, (Q2) as possible. 

Let us briefly discuss problems which arise in other approaches to heavy quark structure 

functions. Buza et al. do not provide a detailed prescription for the region of Q2 just above M2. 
They have a means of extrapolating the structure function from the FFNS result at Q2 < M2 to 

the ZM-VFNS result at Q2/M2 + 00 in a way which guarantees smoothness [14][15], but it seems 

phenomenologically motivated, with no strict definition of the ordering and certainly no expressions 
for parton distributions and coefficient functions in the intermediate region. The ACOT group have 

a prescription which involves switching from nj to nj + 1 massless flavours in the evolution, and 

a way of determining the VFNS coefficient functions [22][23] which at low orders appears to be 
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the same as prescribed in (3.5)-(3.9). However, their way of eliminating the free choices in the 

heavy quark coefficient functions involves assuming that the behaviour is as if there is intrinsic 

charm in the proton at all scales above the transition point, rather than charm being generated 

almost entirely from the gluon. This leads to coefficient functions having thresholds in Q2 = M2 
rather than = 4M2, and a mixing of orders being required (and a complicated renormalization 

scale being advantageous) in order to ensure cancellations and that smooth behaviour occurs, e.g. 
the O(a,(p2)) gluon coefficient function must appear at the same time as the zeroth order quark 

coefficient function. This mixing of orders is incorrect, being at odds with well-ordered asymptotic 

expressions, but removing it results in a lack of smoothness in  the structure functions. Even when 
this mixing is retained the behaviour of the longitudinal structure function is still not smooth. 

The MRRS procedure [28] is based on the leading log limit of Feynman diagrams rather than the 

renormalization group and as such incorporates mass-dependent effects in the evolution, but seems 

more difficult to define formally to all orders in a,. The definition of the heavy quark coefficient 

functions uses similar reasoning to ACOT, but in this case with ordering such that it reduces to 
the correct well-ordered form asymptotically. These coefficient functions along with the imposition 

of this correct ordering leads to an unphysical lack of smoothness in the structure functions (which 
is made slightly worse by the mass-dependent contributions to the evolution), particularly for the 
longitudinal structure function. Our prescription has none of the above problems. It is well-defined 

to all orders, reduces to correct well-ordered expressions at both low and high Q2, and exhibits 

precisely the behaviour one would expect. Hence, we believe that our prescription is the best 
currently available to describe the heavy quark contribution to structure functions. 

Before finishing let us mention a couple of points in which our treatment is incomplete. Firstly, 

we have assumed that there is no intrinsic charm in the nucleon. Eqn. (2.1) is formally correct up to 

the quoted error, but this error has an unknown numerical factor and may be enhanced by functions 
of z. It appears that for intrinsic charm the numerical factor of this “higher twist” correction is 

rather large and that the contribution is enhanced by a factor of (1 - z)-l. Therefore, at large z , 
where the leading twist contribution to the charm structure function is not large anyway, it seems 

as though the “higher twist” intrinsic charm may constitute an important part of the total charm 

structure function [35]. The treatment of this correction is outside the scope of this paper, which 
deals only with the “leading twist” contribution to the structure function, and we believe it is not 

naturally dealt with in any other VFNS. However, it seems very unlikely that in most of the region 

where there is current data on the charm structure function, or where the charm contribution is 
a sizable fraction of the total structure function, that this “higher twist” contribution plays any 

significant role at all. Using the type of values expected for this intrinsic charm (see e.g. [36]) then 
adding to our values does bring the x = 0.422 prediction in line with the EMC data point, raises 

the x = 0.237 predictions quite significantly (but neither really helps or hinders the comparison to 
the three data points), raises the z = 0.133 predictions a little (tending to make the comparison a 
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little worse), and has  negligible effect for lower z. Hence, the z = 0.422, Q2 = 78GeV2 EMC data 

point may be seen as some evidence for this “higher twist” intrinsic charm. 

Finally we note that throughout this paper we have completely ignored the problem of en- 

hancement of higher orders in  Q, by ln(l/s) terms. These terms certainly do have the potential to  

quantitatively alter the results of this paper. Correctly including the leading In(l/z) terms within 

the context of only massless quarks is a complicated procedure, though it does appear to  improve 

the description of small z data [20]. Some results on heavy quark coefficient functions which include 

leading ln(l/z) terms already exist [37][38]. It  would clearly be desirable to extend this work and 

to include both the correct treatment of leading ln(l/z) terms and a correct description of  heavy 

quark results within a single framework. Work along these lines is currently in progress. 

Appendix A. Charged Current Structure Functions. 

The treatment of the charged current structure function follows exactly the same reasoning as 

for the neutral current case. Let us consider F2(z, Q2).  Equations (3.5)-(3.9) are derived in exactly 

the same way, but now take a different form because there are no nonsinglet coefficient functions. 

For the case where a heavy quark is produced directly by the interaction with the W boson, which 

we call the heavy quark structure function, we have 

and 

We note that what we have denoted the charm quark structure function here may be interpreted 

physically as the unlike sign dimuon contribution. In the case where the W boson directly produces 

a light quark, which we call the light quark structure function, we have 

and 

It  is not only the absence of the nonsinglet coefficient functions which is different, the ordering of  

the other coefficient functions also changes, in particular C:zqj , i # j ,  begins at zeroth order. This 
changes the form of the relationship between the FFNS and the VFNS coefficient functions. For 
example, examination of (A.l) reveals that we have the trivial equality 
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whereas now we have the nontrivial relationship 

e.g. the zeroth order coefficient function for a charm quark to interact with a W- to produce a 
strange quark is undetermined. As in the previous case we determine this zeroth order heavy quark 

coefficient function by demanding continuity of the In Q2-derivative of the structure function, in 
the gluon sector (again at lowest order we have complete continuity), along with demanding the 

correct asymptotic result. Unlike the neutral current case this time it is the strange quark (or 
down quark) structure function on which the condition is imposed, rather than the charm quark 
structure function. This is because at lowest order the charm quark structure function is completely 

independent of the charm quark distribution, whereas the light quark structure functions do depend 
on it. However, in complete analogy with the neutral current case our constraint results in 

where the left hand side automatically has  the correct threshold behaviour and the right-hand side 

-+ P,",(L) as Q2/M2 -+ 00. Using this explicitly in (A.6) then results in the C:Z1(z,Q2/M2) 

reducing to the correct massless MS limit as Q2/M2 -+ 00, as it must by construction. 

This procedure can be repeated at all orders in exactly the same way as for the neutral 

current structure function. This time there are only two coefficient functions to be determined, 

c 2 , H q  V F I P S ( z ,  Q2/M2) as we have just seen, and which exists at all orders, and Cl$Ls(z, Q2/M2). The 

later begins at O(ap(Q2)) and will be determined by demanding continuity of the In Q2-derivative 

of the structure function where a heavy quark is produced directly at the interaction vertex of the 
W boson at O(a:(Q2)). The extension to the longitudinal charged current structure function is 
also easily achieved using the above results and the discussion of the longitudinal neutral current 

structure function in $7. 
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Table 1. 

Prescription for the order by order in cr8(Q2) determination of the VFNS coefficient functions 
for F2(z,Q2). 

Order of 

equality 

4 (Q2) 

(Q2) 

4(Q2) 

4(Q2) 

... 
(Q2) 

Coefficient functions determined 

C:zfsso (by continuity of ( ~ m ) ~ z  dFa H at O(CY,(&~)))~ c2 ,Hg  VF,1 
/*VF,NS,l 

VF,S,2 V F,3 c 2 , H H  (by continuity of ( 3 ) M a  in gluon sector at O ( C Y ; ( Q ~ ) ) ) ,  c ~ , ~ ~  

C::; (by continuity of ( m $ ) M a  dFa i in gluon sector at O(cr?(Q2))), C2,qg VF,3 
nVF.PS.3 

... 
C:$zn-' (by continuity of ( . m ) M a  dFa H in gluon sector at O(a:(Q2))), c2,Hg VF,n 
/rVF,n 

c;;H!- (by continuity of (&)Ma in gluon sector at O(cy:(Q2))), C2,qg V F,n 

rrVF.PS.n 
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Table 2. 

Comparison of quality of fits for a wide variety of structure function data [2][3][33][39][40] [41] using 

our prescription for heavy quarks at NLO (TR) and the NLO fits MRRS and MRS(R2). We do not 
include the small-z, 10w-Q~ data in the second of [2] in our fit in order to make a direct comparison 

with the previous fits. 

Experiment 

H1 Flp 
ZEUS Flp 
BCDMS Flp 
NMC F.fp 
NMC F.fd 
E665 Flp 
E665 F.fd 
SLAC 

data 
points 

193 
204 
174 
130 
130 
53 
53 
70 

8% 

TR 
135 
274 
262 
144 
112 
61 
53 
98 

X' 
MRRS 

133 
290 
271 
145 
119 
60 
54 
96 

149 
308 
320 
135 
99 
62 
60 
95 
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Table 3. 

Prescription foi the order by order in a, (Q2) determination of the VFNS coefficient functions 

for FL(z,Q2). 

. . I  

Coefficient functions determined 

VFS1  ~ F L  H VF,2 c~,tjtj (by continuity of ( . e ) M a  in gluon sector at O(cr:(Q2))), CL ,Hg  

VF,S,2 dFL H VF,3 
c L , H H  (by continuity of ( m y ) i w a  in gluon sector at O(4(Q2))), CL,,, 

... 
C:,2in-' (by continuity of (d ln+ )Ma dFL H in gluon sector at O(aY(Q2))), CL,Hg V F,n 

CVF,n-1 VF,n 
L,qH (by continuity of ( . a a ) M a  in gluon sector at O(cr:(Q2))), CL,qg 

c:2pS8n 
In each case CL VF,n aH ( z ,  M2/Q2) is determined by introducing the asymptotic form multiplied 

by (1 - M2/Q2)u and multiplying the terms determined by continuity by M2/Q2. 
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Figure Captions 

Fig. 1. Charm quark structure function, F ~ , , ( x ,  Q2)  for x = 0.05 and x = 0.005 calculated using 
the ACOT “LO” prescription, our input parton distributions evolved at LO and renor- 
malization scale p2 = Q2.  Shown are the total, the two contributions due to convolution 
of the coefficient function exzi (z ,  Q2/mz) with the gluon distribution (the subtraction 
term making a negative contribution), and the contribution directly due to the charm 
quark. 

Fig. 2.  Same as fig. 1 ,  but with the partons evolved at NLO. 

Fig. 3. Charm quark structure function, F2,,(x,Q2) for z = 0.05 and x = 0.005 calculated using 
our LO prescription, our input parton distributions evolved at LO and renormalization 
scale p2 = Q2. Also shown are the continuation of the LO FFNS expression and the ZM- 
VFNS expression both calculated using the same parton distributions and same choice of 
scale. 

Fig. 4. Same as fig. 3, but with NLO prescriptions and NLO parton distributions. 

Fig. 5 .  Our prediction for F2,,(x,Q2) using our NLO prescription, the NLO partons obtained 
from our global fit and three different values of m, compared with the EMC and HERA 
data. 

Fig. 6 .  The ratios F2,,/F2 and F2,b/F2 at fixed values of Q2 resulting from our NLO parton 
distributions and taking m, = 1.35GeV and mb = 4.3GeV. The experimental data point 
shows the estimate from ref. [4] for F2,,/F2 in the kinematic range 10GeV2 < Q2 < 
100GeV2. 

Fig. 7. Charm quark structure function, F’,,(z,Q2) for x = 0.05 and z = 0.005 calculated using 
our LO prescription, our input parton distributions evolved at LO and renormalization 
scale p2 = Q2.  Also shown are the continuation of the LO FFNS expression and the ZM- 
VFNS expression both calculated using the same parton distributions and same choice of 
scale. 

Fig. 8. Same as fig. 7, but with NLO prescriptions and NLO parton distributions. 

Fig. 9. Our prediction for R(x, Q2)  using our NLO prescription, the NLO partons obtained from 
our global fit and m, = 1.35GeV compared with the NMC data [33]. Also shown is 
the prediction obtained using the same parton distributions but for the NLO ZM-VFNS 
prescription. The curves are computed using Q2 = 1.3GeV2 for z 5 0.0077 and Q2 = 
262x1.09 for x 1 0.0077. 
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