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Abstract 

We are concerned with finding a few eigenvalues of the large sparse 
nonsymmetric generalized eigenvaliie problem Az = XBx that arises 
in stability studies of incompressible fluid flow. The  matrices have a 
block structure that is typical of mixed finite-element discretixations 
for siich problems. We examine the use of shift-invert and Cayley trans- 
formations in conjunction with the implicitly restarted Ariioldi method 
along with iising a semi-inner product induced by B and purification 
techniques. Numerical results are presented for some model problems 
arising from the ENTWIFE finite-element package. Our conclusion is 
that, with careful implementation, implicitly restarted Arnoldi meth- 
ods are reliable for linear stability analysis. 
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1 INTRODUCTION 1 

1 Introduction 

Mixed finite-element discretizations of time-dependent equations modelling 
incompressible fluid flow problems typically produce nonlinear finite 
dimensional systems of the form 

Mu + H(u)u + Lu + Cp = b, 
(1.1) 

CTu = c, 

where U E R", p E Rm with n > m. M and L are symmetric positive 
definite n x n matrices, H(u) is a nonsymmetric n x n matrix, and C is an 
n x m matrix of full rank. Linearized stability analysis of (1.1) leads to  the 
problem of finding a few eigenvalues of the generalized eigenvalue problem 

Ax = XBx (1.2) 

where 

In the case of the so-called primative variable formulation of the discretized 
Navier Stokes equations for incompressible flow, U and p denote the velocity 
and pressure degrees of freedom, respectively (see, for example, Cliffe, 
Garratt and Spence, 1993). The matrix M is the mass matrix and K is 
nonsymmetric because of the linearization of the convection term. The 
matrices K ,  C, and M are all sparse and in real applications are very large. 

For stability analysis, the interest lies in computing the eigenvalues of 
smallest real part (the left-most eigenvalues) (Georgescu, 1985 and Sattinger, 
1973). Of special interest is the case when the eigenvalues of smallest real 
part are complex, because algorithms for the detection of Hopf bifurcations 
in parameter dependent systems can be developed from knowledge of these 
eigenvalues. A complication that arises is that the eigenvalue problem can 

have infinite eigenvalues, corresponding to eigenvectors of the form 

(see Malkus, 1981, Ericsson, 1986 and Cliffe, Garratt and Spence, 1994). 
A standard approach for finding the left-most eigenvalues of the 

discretized Navier Stokes equations is to use a rational transformation 
such as a shift-invert or a Cayley transformation, and then to apply 

(3 
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an iterative technique, for example, subspace iteration or Arnoldi’s 
method, to the transformed problem. Traditionally, subspace iteration 
has been the method of choice because Arnoldi’s method was perceived 
as being less reliable. Experiments reported by Garratt (1991) found that 
Arnoldi’s method sometimes missed the sought-after left-most eigenvalue 
and, because reliability is more important than efficiency in linear stability 
analysis, Garratt favoured subspace iteration. However, the recent work 
of Meerbergen and Spence (1997) demonstrates, in theory, that the implicitly 
restarted Arnoldi method of Sorensen (1992), combined with shift-invert 
transformations, can be successfully employed to compute the left-most 
eigenvalues of generalized eigenvalue problems with the block structure (1.3). 
In this report, we look at  using the package ARPACK of Lehoucq, Sorensen 
and Yang (1998), which implements the implicitly restarted Arnoldi method, 
to compute eigenvalues of the discretized Navier Stokes equations. Our 
results show that implicitly restarted Arnoldi methods can be used reliably. 

The outline of this report is as follows. In Sections 2 and 3 we give 
brief introductions to the implicitly restarted Arnoldi method and matrix 
transformations for generalized eigenvalues. We then look at shift-invert 
and Cayley transformations in Sections 4 and 5 .  We discuss the generalized 
Cayley and modified Cayley transformations; the latter was introduced by 
Cliffe et al. (1993) as a way of mapping the unwanted infinite eigenvalues 
to a part of the spectrum where they are unlikely to be computed by the 
eigensolver. The algorithm which we propose for computing eigenvalues of 
the discretized Navier Stokes equations is outlined in Section 6. In Section 7, 
we explain our choice of linear equation solver. Section 8 introduces the 
software package ARPACK,  that implements the implicitly restarted Arnoldi 
method. We also highlight the modifications to ARPACK that allowed us to 
use Cayley transformations. Numerical results are presented in Section 9. 
Finally, we make some comments on our findings and on possible future 
work. 

Throughout this report, the finite eigenvalues of the generalized 
eigenvalue problem (1.2) are denoted by A, ( i  = 1,. . . , n - m) and it is 
assumed that they are ordered by increasing real parts i.e. i > j =$ Re(Aj) 2 
Re(Aj). The standard inner product of two vectors x and y is x H y  where 
xH is the complex conjugate transpose of x (if z is real then xH is equal to 
zT). The Euclidean norm of a vector x is defined to be IIxl12 = &%. The 
B semi-inner product of two vectors x and y is z H B y  and induces the B 
semi-norm 11x1(~ = a. The use of 11x11 implies that either the standard 
or B semi-norm may be used. 
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2 The implicitly restarted Arnoldi method 

A relatively recent variant of Arnoldi's method is that developed by Sorensen 
(1992) as a more efficient and numerically stable way to implement 
restarting. The scheme is called implicit because the starting vector is 
updated by combining the implicitly shifted QR algorithm with an Arnoldi 
reduction to obtain a truncated form of the implicitly shifted Q R  iteration. 
One of the benefits of an implicitly restarted Arnoldi method is that it avoids 
the need to  restart the Arnoldi reduction from scratch and thus fixes storage 
requirements. 

Consider an Arnoldi reduction of length T of a matrix A 

AV, = V,Hr + fie:, (2.1) 

where the n x T matrix V, has orthogonal columns, VrHfr = 0, and Hr is 
an T x T upper Hessenberg matrix. The columns of V, are an orthogonal 
basis for the Krylov space IC,(A,v1) = {vl ,Avl , . . . ,A ' - lv l } ,  where vi 
is the first column of V,. Let $;(A) = n i = l ( A  - rj) where i 5 T .  In 
the discussion that follows, we will show how to implicitly compute an 
orthogonal basis (and corresponding Arnoldi reduction) for the updated 
Krylov space $ ; ( A ) K r - ; ( A , q ) ,  that is, we compute an orthogonal basis for 
the updated space without using A. In particular, if all the rj are equal to 
zero, then we have equivalently performed subspace iteration on &-,(A, vi) .  

A tedious but straightforward induction argument shows that 

$i ( A )  Vr-i = Vr Gr -i , (2.2) 

where G,-; contains the leading T - i columns of $;(ITr). If the Q R  
factorization of G,-j is UlR1, where R1 is an upper triangular matrix of 
order T - i ,  then 

Thus the T - i columns of VLi  provide an orthogonal basis for the range of 
$(A)Vr-;. In particular, the starting vector v1 associated with the Arnoldi 
reduction (2.1) has been updated with the polynomial filter $;(A). The roots 
or implicit shifts rj may be selected to filter unwanted information from the 
starting vector and hence from the Arnoldi reduction. 

Although another Arnoldi reduction can be computed using the first 
column of V:; as the starting vector, the Arnoldi reduction (2.1) can be 
updated directly to obtain 

$(A)Vr-j = VrUlR1 3 VLjR1. (2.3) 
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We now briefly explain how this can be accomplished. 

1. Perform i steps of the implicitly shifted QR algorithm on H,. This 
results in the similarity transformation HTU = UH,?, where U is an 
orthogonal matrix of order T and H$ is also upper Hessenberg. 

2. A classical result shows that the first r - i  columns of U are equal to U1 
and, therefore, they provide an orthogonal basis for the leading T - i 
columns of $;(H,.). (See Stewart, 1973, pages 351-355 or Watkins, 
1991, pages 293-305.) 

3. Postmultiply the Arnoldi reduction (2.1) with U1 to obtain AV,U1 = 

4. Equate the first r -i columns of H,U = UH: to get HrU1 = UlH,f_;+ 
&u,-;+1, where H:-; is the leading principal matrix of order T - i 
in H,?, p:-i is the subdiagonal element in row r - i of H,?, and u,-i+l 

is column T - i + 1 of U .  
5. Insert the expression for H,.U1 derived in step 4 into the postmultiplied 

V,H,Ul+ freTU1. 

Arnoldi reduction of step 3 to obtain (2.4). 

The above development shows that the IRAM is subspace iteration (via 
$(A)) in disguise. This equivalence was mentioned in Meerbergen and 
Spence (1997). See Lehoucq (1997) for further details on the connection 
between subspace iteration and the implicitly shifted Q R  algorithm. 

We end our discussion by addressing the issue of the selection of the 
implicit shifts y j .  One possible shift selection strategy is the so-called 
ezact shift (Sorensen 1992) strategy, where the T eigenvalues of H,. are 
partitioned into a set of k wanted and 1 unwanted ones according to a 
selection criterion. For example, if the left-most eigenvalues are sought, 
the unwanted set comprises the 1 right-most eigenvalues. The unwanted 
eigenvalues are used as the shifts and thus a polynomial filter of degree 
i = 1 is applied. This is equivalent to restarting the Arnoldi reduction with 
a linear combination of the approximate eigenvectors associated with the 
wanted eigenvalues. Another possibility is to use implicit shifts of zero. 
As already discussed, this is equivalent to performing subspace iteration 
on V,-i. The use of implicit shifts of zero is also discussed by Meerbergen 
and Spence (1997) and will be reported on in our numerical experiments 
(Section 9). 
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3 Introduction to matrix transformations 

Before we can apply an iterative eigensolver, we transform the generalized 
eigenvalue problem Az = XBz into a standard eigenvalue problem of the 
form 

We need to do this because iterative methods such as subspace iteration 
or Arnoldi’s method cannot be used directly to  solve the generalized 
eigenvalue problem. It is well known that iterative eigensolvers rapidly 
provide approximations to well-separated extremal eigenvalues. When the 
eigenproblem arises from the spatial discretization of a partial differential 
equation, the sought-after eigenvalues (in our application, those of smallest 
real part) are generally not well separated. This results in slow convergence 
of the iterative method and, indeed, the method may never provide good 
approximations to the wanted eigenvalues. We therefore want to choose T 
to have the following properties: 

0 The sought-after eigenvalues of ( A , B )  should be transformed to well- 
separated extremal eigenvalues of T.  

0 The wanted left-most eigenvalue XI of ( A , B )  must be easily 
recoverable from the dominant eigenvalue of T. 

0 For any U, w = Tu should be efficiently computed. 

We shall denote the eigenvalues of T by 8; ( i  = 1,. . . , n + m) and we 
will assume that these eigenvalues are ordered by decreasing order of their 
absolute values i.e. i > j * l8;l 5 ISjI. 

For the generalized eigenvalue problem, As  = XBs, rational 
transformations are an obvious choice because the solution of some linear 
system involving A ,  B and/or a linear combination of A and B is needed. 
In this report, we study shift-invert and Cayley transformations. 

4 Shift-invert techniques 

In this section, we review the use of the shift-invert spectral transformation 
and the many associated details for the eigenvalue problem (1.2). 
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4.1 The shift-invert transformation 

If we subtract oB (A  # o) from both sides of A z  = XBz and then 
postmultiplying by ( A  - oB)-l(A - o)-', 

( A  - o ~ ) - l ~ a :  = ex, e = (A - a)-l ( 4 4  

(4.2) 

results. The matrix 

Tsi(~) = ( A  - oB)-lB 

is termed the shift-invert transformation, and was first introduced 
by Ericsson and Ruhe (1980) for use in a Lanczos method. The scalar 
o is referred to as the shift or pole. Since the eigenvectors of (A ,  B) and Tsi 
are identical, the relationship 

(4.3) 
1 

X = c r + -  e 
can be used to recover the eigenvalues of ( A , B )  from those of the 
transformed problem. The shift-invert transformation combined with an 
iterative eigensolver can be used to find eigenvalues of ( A , B )  lying close 
to cr because eigenvalues close to cr are mapped away from the origin while 
those lying far from o are mapped close to zero. 

For the shift-invert transformation to be suitable for finding complex 
eigenvalues with arbitrary imaginary part, the shift cr must be complex. 
One possibility is to work entirely in complex arithmetic but, in our 
application, the matrices A and B are real. The eigenvalues of ( A , B )  
come in complex conjugate pairs and so it is desirable to use algorithms 
which compute complex conjugate pairs. This is because, if there are pairs 
of eigenvalues lying close to one another, it may be difficult to match the 
pairs if the conjugates are only computed approximately. A wrong match 
can give incorrect eigenvectors. The alternative is to work entirely using 
real arithmetic. This is discussed by Parlett and Saad (1987). Maintaining 
real arithmetic can only be done at the cost of either affecting sparsity or 
doubling the dimension of the problem. Because of these disadvantages that 
result from using complex shifts, in this study we do not consider their use. 

4.2 Shift-invert theory for the discretized Navier Stokes 

In this section we consider the discretized linearized Navier Stokes 
equations (1.2-1.3). From a theoretical point of view, no generality is lost 

equations 
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by taking the pole 0 in the shift-invert transformation to be zero. In this 
case we define the operator S to be 

s = ~ ~ ~ ( 0 )  = A - ~ B .  (4.4) 

The following result is given by Meerbergen and Spence (1997) (see 
also Malkus, 1981 and Ericsson, 1986). 

Theorem 1 S defined by (4.4) has n - m nonzero eigenvalues, a zero 
eigenvalue of algebraic multiplicity 2m and geometric multiplicity m. The 
order of the Jordan blocks corresponding to the defective eigenvalue 0 is 
two. The null space hf Null(S) = Null(B) has dimension m and the 
generalized null space 6 Nt~ll(S~)\Nz~ll(S) also has dimension m. n/ 
and E satisfy SG = hf and S2G = Shf = 0,  and, if R := Range(S2), C can 
be represented as a direct sum of hf, 9, and R. 

In exact arithmetic, when Arnoldi's method is applied with a starting vector 
v1 E R then only approximations to the nonzero eigenvalues of S can 
be computed. Such an initial vector can be chosen as V I  = S2v with v 
arbitrary because S2(N + 6 )  = 0. However, in practice, rounding errors 
introduce components in hf + 9 which corrupt the approximate eigenvalues 
and eigenvectors. The paper by Meerbergen and Spence (1997) looks at the 
efficient control of these unwanted directions and we discuss this in the rest 
of this section. 

From (1.2-1.3), we see that S has the structure 

S = ( s1 ) S1 E R"'", S2 E Rmx". 
s2 0 (4.5) 

Therefore, if  z = ( ) , U E C", p E Cm is an eigenvector of S, then 

If 9 # 0 (A is finite), then 

and the reduced problem 
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may be used to determine the nonzero eigenvalues and corresponding 
eigenvectors of S. (Since SI E R"'", there still remains m zero eigenvalues.) 
We did not consider solving this reduced eigenvalue problem because it 
involves applying a projection that includes (CTK-lC)-l. 

The standard Arnoldi method uses the classical inner product z H y .  
For the generalized eigenvalue problem Az = XBz, if the matrix B is 
symmetric positive semi-definite, the B semi-inner product z H B y  may be 
used instead. The so-called B-orthogonal Lanczos method has been used 
by Ericsson (1986) and Nour-Omid, Parlett, Ericsson and Jensen (1987) 
for the symmetric generalized eigenvalue problem; Meerbergen and Spence 
(1997) extend its use to the nonsymmetric problem. They show that 
the B-orthogonal method applied to S is equivalent to the M-orthogonal 
method applied to SI and that the H, produced by Arnoldi's method is 
only contaminated by G components in the Arnoldi vectors. Furthermore, 
their analysis also shows that the p component of the eigenvector 2 does 
not play a role in the B-orthogonal Arnoldi method and therefore cannot 
be guaranteed to be correct. 

The p component of z may be computed by applying S to z. This can 
be achieved with an implicit application of S. Observe that if x = V,y with 
HrY = 8y then a formal step of inverse iteration with S gives 

Ericsson and Ruhe used the above implicit application of S to improve 
the quality of the eigenvector z. Following Meerbergen and Spence (see 
also Nour-Omid et al. (1987)), we use the expression puri,fication of z to 
refer to the operation of applying S (or more generally, T.1) to the vector 
z. The purified vector is z = z + f,e;y/e. 

In summary, two applications of S are required to produce approximate 
eigenvectors and eigenvalues that are not corrupted by components in n/ 
or Q. In exact arithmetic, a starting vector in the range of S2 avoids 
any possible corruption. However, as usual, rounding errors complicate 
the situation. Meerbergen and Spence propose an approach that is a 
combination of the B-orthogonal implicitly restarted Arnoldi method and 
purification. Recall from Section 2 that an implicit restart with a zero shift 
is equivalent to employing a starting vector Svl. Thus using a zero shift 
has the effect of removing the n/ component and maps the Q component 
into n/. This remaining n/ component may be removed by a second implicit 
application of S using (4.9). 
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5 Cayley transformations 

The use of generalized and modified Cayley transformations for the 
eigenvalue problem (1.2) are addressed. 

5.1 Generalized Cayley transformation 

Given real numbers U and p with U # Xi  (i = 1,. . . , n - m), the generalized 
Cayley transformation Tc (see, for example, Garratt, Moore and Spence, 
1991) is defined by 

T c ( ~ , p )  = ( A  - oB) - l (A  - pB),  U < p. (5.1) 

We term U the pole and p the zero. This is a generalization of the standard 
Cayley transformation where p = -U (Franklin, 1968) and a special case of 
the Mobius transformation 

(CA + dB)-’(aA + bB), ad - bc # 0. (5.2) 

The relationship between the finite eigenvalues of ( A , B )  and those of the 
transformed problem is 

A=-* U6 - p 
6-1 (5.3) 

The usefulness of the generalized Cayley transformation lies in the fact that 

1 
Re(X) < ~ ( u  + p)  CJ 161 > 1 

1 
R e P )  2 5 ( U + P )  * PI 5 1  

(see Garratt, 1991). Eigenvalues lying far from U and p are mapped close 
to +l. This includes eigenvalues with large real parts as well as those with 
large imaginary parts. In many applications arising from discretizations of 
partial differential equations, a significant proportion of the eigenvalues of 
( A ,  B )  have a large positive real part and only a small number of eigenvalues 
lying close to the imaginary axis are of interest in stability analysis. Since 
the former map close to  unity and (small) changes in the pole and zero have 
little effect on this, one way that U and p may be chosen is to  place the 
first unwanted eigenvalue eS+l (s 2 1) on the unit circle and then maximize 
the distance of the dominant eigenvalue 61 from the unit circle. With this 
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choice, Arnoldi’s method can be expected to  rapidly provide approximations 
to the sought-after eigenvalues. 

The Cayley transformation (5.1) can also be written in the form 

Tc(0, P) = I + (0 - P)TSI(4’ (5.5) 

where Tsr(a) is the shift-invert transformation given by (4.2). Thus the 
Cayley transformation is a scaled and translated shift-invert transformation. 
Since in exact arithmetic Arnoldi’s method is translation invariant 
(see Parlett, 1980), the two formulations (5.1) and (4.2) are equivalent in 
the sense that Range(Vr(C)) = Range(V,(SI)) (provided the poles of the 
transformations are equal and the same starting vectors are used). 

The discussion at the end of section 4.2 explained how we can remove 
contamination by n/ and 8 when using a shift-invert transformation. 
Therefore, from (5.5) we deduce that an implicit restart with a shift of 
one removes the h/ and maps the B to a n/ one. To remove this final n/ 
component, an implicit application with Tc - I is performed. This also 
ensures that the p component of the computed eigenvector is correct. 

5.2 Modified Cayley transformation 

A major drawback of the generalized Cayley transformation Tc is that the 
infinite eigenvalues of the discretized Navier Stokes equations are mapped 
to +l. It is anticipated that this may cause numerical difficulties because, 
in general, eigenvalues at +1 lie in the outer part of the spectrum of the 
transformed problem and, as a result, approximations to these eigenvalues 
are likely to be computed by iterative methods such as Arnoldi’s method. To 
try and overcome this, Cliffe et al. (1993) propose using a modified Cayley 
transformation to solve (1.2). They define the modified problem 

K - P M  ’”) ( ; ) = 8 (  K - O M  CT ” )  0 (;), (5.6) 

with P a real scalar. Clearly, /3 = 1 corresponds to the generalized Cayley 
transformation applied to the discretized Navier Stokes equations. The 
modified Cayley transformation TM is defined by 

where A(P) denotes the matrix on the left-hand side of (5.6). 

the modified problem (5.6) (see Garratt, 1991). 
It is straightforward to prove the following result for the eigenvalues of 
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Theorem 2 Assume a # A; (i = 1,. . . , n  - m). If A is an eigenvalue 
of the discretized Navier Stokes equations (1.2), then (A - p ) / ( A  - a) as 
an eigenvalue of the modified problem (5.6). In addition, (5.6) has m 
eigenvalues P, each with algebraic multiplicity 2 and geometric multiplicity 
1. 

The parameter P is chosen so that the infinite eigenvalues are mapped inside 
the unit circle, where they are much less likely to be computed by an iterative 
eigensolver. An obvious choice is P = 0 and this is the value which will be 
used in our numerical experiments. 

Garratt also gives the following simple relationship between the 
eigenvectors of the original problem (1.2) and those of the modified problem 
(5.6). 

Theorem 3 Assume a # A; and /3 # (A; - p)/(A; - a)  (i = 1,. . . ,n - m),  

then (A, ( )) is  an eigensolution of the original problem (1.2) if and only 

if (e, ( )) i s  an ezgensolution of the modified problem (5.6) where 

6 = (A - P ) / ( A  - 4 e W}, 9 = (8 - M e  - P I P *  (5.8) 

Using this theorem, approximate eigenvectors of (1.2) can easily be obtained 
from the computed eigenvectors of (5.6). 

In practice, regardless of the Cayley transformation employed, the 
Cayley parameters a and p are updated at each restart. This allows rapid 
computation of the left-most eigenvalues. If we denote by a ( j )  and p ( j )  
the Cayley parameters during restart or iteration j ,  then an important 
consequence of the above result is that the eigenvectors computed with 
a = a ( j )  and p = p ( j )  are not identical to those with a = a ( j  + 1) and 
p = p ( j +  1) (unless the poles and shifts remain the same). Using Theorem 3 
it can be shown that the eigenvectors of (5.6) with a( j  + 1) and p( j  + 1) can 
be obtained from those with a ( j )  and p ( j )  by an appropriate scaling of the 
q term of the eigenvectors. Full details are given by Garratt (1991) (page 
98). 

We would like to avoid having to scale the eigenvectors at the start of 
each iteration. We now discuss how this can be done. With the choice P = 0, 
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the modified problem (5.6) can be rewritten in the form 

s(  ;)=( 2 ;) ( ; ) = e (  ;), (5.9) 

where has the same structure as the shift-invert operator S for the 
discretized Navier Stokes equations described in Section 4.2. We also note 
that when using the modified Cayley transformation in the B-orthogonal 
Arnoldi method, the q component of the eigenvector does not play a role 
and the correct eigenvector is obtained by post-processing with 8. The 

required eigenvector ( ) of the discretized Navier Stokes equations can 

then be computed using Theorem 3. However, as it is p and not q that is 
required, we may compute p directly by purifying with Tsr. 

More generally, using either the standard inner product or the B semi- 
inner product, we can obtain the eigenvector of the original problem by 
applying Tsz to the computed eigenvector of the modified problem. 

6 Cayley transform Arnoldi 

In this section, we summarize the algorithm we use for the solution of the 
discretized linearized Navier Stokes equations. We combine shift-invert and 
Cayley transformations with Arnoldi’s method. Shift-invert is used to get 
an initial approximation to the spectrum and is also used to purify the 
computed eigenvectors. Various implementation details are discussed. In 
Sections 7 and 8 we look at the linear equation solver and the use of the 
ARPACK software to implement our algorithm. 

6.1 Algorithm outline 

We first present an outline of our Cayley transform Arnoldi algorithm. Here 
we assume that the number of sought-after eigenvalues is s and the number 
of Arnoldi vectors to be generated at each iteration is T .  

In an abuse of notation, we denote the approximate eigenvalues and 
eigenvectors computed for Tsr or Tc by 6 and z,  respectively. Hence, X 
is a 6 that is mapped back to an approximate eigenvalue of the original 
eigenvalue problem (1.2). 
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Shift-invert iteration: 

1. Factorize A = LU 
2. Choose v1 randomly and normalize. 

3. Compute v1 + S2v1 ( S  = A-'B) and normalize. 

4. Compute &,&, . . . ,Or by computing an Arnoldi reduction of length r 

5. Let A; = l\&, i = 1,2,. . . , T .  

6. Order A; in increasing order of their real parts. 

for S. 

Cayley iterations: 

7. Choose 211 randomly and normalize. 

8. Compute + S2v1 and normalize. 

9. repeat until convergence 
(a) Choose Q < p with (Q + p)/2 = Re(A,+1). 
(b) Factorize A - OB = LU. 
(c) Compute &,&,  . . . ,Or by computing an Arnoldi reduction of 

(d) Let A; = T;'(O;), i = 1,2,. . . , T .  

(e) Order A; in increasing order of their real parts. 
(f) Construct a new starting vector v1 by implicitly restarting the 

10. Compute eigenvectors z; of Tc corresponding to the converged 

11. Obtain eigenvectors of ( A , B )  by purifying z; + Tsr(a)z;. 

length T for Tc.  

Arnoldi reduction of length T .  

eigenvalues. 

We observe that shift-invert with a zero pole is used to compute an initial 
approximation to the spectrum of ( A , B ) .  Zero is an appropriate choice for 
the pole because the interest is in the eigenvalues lying close to the imaginary 
axis. We do not test for convergence after the shift-invert step because the 
eigenvalues close to the origin may not be the left-most eigenvalues. We 
thus always force at least one step of the Cayley iteration to be performed. 
During the Cayley iterations, we check at each iteration that Q has changed 
since the previous iteration to avoid refactorizing A - OB unnecessarily. 

In our numerical experiments, we used the generalized and modified 
Cayley transformations in conjunction with the standard inner or B semi- 
inner products. 
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6.2 Convergence testing 

We have to decide when the computed eigenvalues and eigenvectors are 
good approximations to those of ( A ,  B).  We proceed to determine this in 
two steps. The first step checks if 8 and z are acceptable as approximations 
to an eigenpair of Tc. The second step checks that 8 and z produce an 
acceptable approximation to an eigenpair of (A,  B). 

Let z = V,y with H,y = By, where llyll2 = 1 .  Although the direct 
residual IITcz - 8zll could be computed, this would involve additional 
applications of Tc. However, 

(6.1) 
T TCX - OX = T c V , ~  - VpHry = fp e ,  y ,  

and so the Ritz estimate l l f , l l  leTyl is equal to the direct residual. ARPACK 
accepts 8 as a good approximation if llfpll leTyl l 8 l q ~ ,  where EU is 
a user-specified tolerance. We remark that ARPACK uses llf,llB or llfrll2 

depending on the inner product used. Since the eigenvalues of interest are 
the eigenvalues of Tc of largest modulus, normalizing the residual by 181 
takes into account the scale of the data. 

We now discuss how to check whether 8 and z provide a good 
approximation to an eigenpair of ( A ,  B).  A simple rearrangement of (6.1) 
results in m 

and this is the residual of the computed eigenpair in the original system. 
However, as discussed in Section 5.1, purification of z is performed-to 
remove nullspace components of B and as an inexpensive means of improving 
the quality of z-via an implicit application of Tsz or, equivalently, via 
Tc - I. Using (6.1), 

( ~ c ( a , p )  - 1 ) ~  = (8 - 1). + eTyf,. (6.3) 

The approximate eigenvector z is replaced by the purified vector z = z + 
eTy/(8 - 1 ) f i . e  From (6.2), it is straightforward to show that the residual of 
the purified vector in the original system is 
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From Equation (6.1), we see that z is orthogonal to the residual Tcz-Oz. 
This Galerkin condition is lost upon transforming the computed eigenpair 
to the original system-whether we use z or z .  This is because e is not 
the Rayleigh quotient associated with z or z .  If the B-orthogonal Arnoldi 
method is used, then from (6.4) 

The last inequality follows because 11z11i 2 1. In other words, the 
approximate eigenvalue (a0 - p)/(0 - 1) is nearly a Rayleigh quotient for 
(A,B) when the purified vector z is used as the approximate eigenvector. 
On the other hand, from Equation (6.2) we deduce that 

is the error in using (a0 - p)/(0 - 1) as a Rayleigh quotient for (A, B)  when 
the unpurified eigenvector z is used. 

Equations (6.4) and (6.5) imply that the purified vector z is a better 
approximation than z for the eigenvector associated with the approximate 
eigenvalue (d-p>/(0-1) provided that 10-1 I is greater than one. Moreover, 
when 10 - 1 I > 1, only a moderately-sized Ritz estimate is needed to achieve 
a small direct residual, a small Rayleigh quotient error, and 11~11 = 1 up 
to second order terms. If the pole U is near the left-most eigenvalues, then 
these left-most eigenvalues are mapped by Tc to large eigenvalues and hence 

Our numerical experiments measure the direct residual using both z and 
z with X = (aO-p)/(O-l). We define the relative residualof an approximate 
eigenvector U to be 

We employ the Euclidean norm for the relative residual regardless of 
whether ARPACK is used with the standard inner or B semi-inner product 
so that the pressure component of the approximate eigenvector can be 
checked. Section 8.1 will give details of how ARPACK normalizes the computed 
eigenvectors. 

le - 11 > 1. 

llAU - ~ B 4 l Z / l l 4 l Z .  (6.7) 

6.3 Missing eigenvalues 

It is necessary to exercise some caution to avoid accepting an approximation 
to an eigenvalue that is not the one of smallest real part. Recall that 
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the parameters o and p are chosen using the latest approximations to 
the eigenvalues. Suppose the left-most eigenvalue A 1  is complex with a 
large imaginary part and A3 is real with A3 z Re(A1), and let be 
the eigenvalue of the transformed problem corresponding to A;. We have 
observed during numerical experiments that 1831 > 1811 with 81 close to +l. 
In this case, Arnoldi’s method rapidly produces an accurate 83 and, without 
further checks, the corresponding eigenvalue A3 is accepted as the left-most 
eigenvalue of the original problem. We stress that this is a result of only 
having available approximations to the eigenvalues when selecting o and 
p. This problem was also observed by Garratt (1991) and Meerbergen and 
Roose (1996). 

In an attempt to overcome the problem of accepting the wrong eigenvalue 
as the left-most one, we introduce an additional test on the computed 
eigenvalues. Once the dominant eigenvalues (largest in magnitude) of 
the transformed problem are acceptable approximations, we order the T 

eigenvalues of the transformed problem in decreasing order of their moduli. 
We then compute the corresponding T eigenvalues of the original problem 
and order them in increasing order of their real parts. B y  comparing the 
two orderings we are able to check whether or not any computed eigenvalues 
lie to the left of those that are acceptable approximations. If there any such 
eigenvalues, we increase the number s of eigenvalues requested. Although 
this strategy is not guaranteed to find eigenvalues that have been missed, it 
can help avoid accepting the wrong eigenvalue. Numerical experiments in 
Section 9 demonstrate that our strategy is effective. 

6.4 Spurious eigenvalues 

Recall from Theorem 2 with p = 1 that the generalized Cayley 
transformation applied to the discretized Navier Stokes equations has 2m 
eigenvalues at +1 corresponding to the infinite eigenvalues of (1.2). These 
eigenvalues are not relevant for the stability analysis but are likely to 
be computed because they lie in the outer part of the spectrum of the 
transformed problem. It is important when updating the Cayley parameters 
o and p that we do not use these spurious eigenvalues. The eigenvalues 
used in choosing o and p are the current s + 1 left-most eigenvalues 
A 1 , A 2 , .  . . , A s + l .  From (5.3)) it follows that if 8 = 1 + 6 with S > 0 
small, A will be large and negative and will be used in selecting the Cayley 
parameters. On each iteration we therefore exclude all real 6; which lie close 
to 1. Our numerical experiments showed that if we did not do this, the 
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IRAM did not produce approximations to  the wanted eigenvalues. We also 
exclude spurious eigenvalues when we search for possible missing eigenvalues. 

7 The linear equation solver 

The efficiency of an iterative eigensolver for the generalized eigenvalue 
problem depends on the efficiency of the method used to  solve linear systems 
of the form 

Either a direct method or an iterative method may be used. For 
very large problems, direct methods can be prohibitively expensive in 
terms of both time and memory requirements. However, there are 
also difficulties associated with selecting and using iterative methods for 
eigenvalue computations and they have not yet been widely adopted for 
the solution of industrial problems (see Meerbergen and Roose, 1996 for 
a discussion and references). In this study, we use a frontal method for 
the solution of (7.1). One important reason for this choice is that,  in the 
applications of interest to us, finite-element discretizations are used and the 
matrices A ,  B are available as unassembled finite element matrices of the 
form 

1=1 1=1 

where A(') and B(') are nonzero only in those rows and columns that 
correspond to  variables in the lth element. The recent study by Duff and 
Scott (1996a) has shown that for efficiency in terms of the factorization 
time and sparsity of the matrix factors, it is important not to  assemble 
the matrices prior to solving the linear system but the element form 
should be exploited. Using the element form also allows us to  solve much 
larger systems than might otherwise be possible because each element 
matrix A(') and B(') need only be generated as it is required, substantially 
reducing storage requirements. Storage requirements can be further 
reduced by holding the matrix factors out-of-core. The only code for 
nonsymmetric systems we currently have available in the Harwell Subroutine 
Library (Harwell Subroutine Library 1996) that allows both element input 
and (optional) out-of-core storage is the frontal solver MA42 of Duff and Scott 
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(1993, 1996b), and this is the code we use in our numerical experiments. For 
simplicity of notation, in the following brief discussion of frontal schemes, 
we assume we are solving As  = b (that is, U = 0). 

The frontal method (Irons 1970, Hood 1976, Duff 1984) is a variant of 
Gaussian elimination and involves the matrix factorization 

A = PLUQ, 

where P and Q are permutation matrices, and L and U are lower and 
upper triangular matrices, respectively. The solution process is completed 
by performing the forward elimination 

PLY = b, (7.3) 

followed by the back substitution 

UQx = y.  (7.4) 

The method, although originally developed by Irons for symmetric positive 
definite systems, can be used for symmetric and nonsymmetric systems. If 

assembly operation when forming A is of the form 

aij and aaj (1) denote the ( i , j ) t h  entry of A and A('),  respectively, the basic 

It is evident that the basic operation in Gaussian elimination 

aij e aaj - aaq[aqq]- 1 dqj  

may be performed as soon as all the terms in the triple product (7.6) are 
fully summed (that is, are involved in no more sums of the form (7.5)). 
The frontal method interleaves the assembly and Gaussian elimination 
processes and avoids the explicit assembly of the matrix A. This allows 
all intermediate computation to be performed on a dense matrix, termed 
the frontal matrix, whose rows and columns correspond to variables that 
have not yet been eliminated but occur in at least one of the elements that 
have been assembled. By working within the frontal matrix, it is possible 
to use dense linear algebra kernels and, in particular, the Level 3 BLAS can 
be exploited (Dongarra, DuCroz, Duff and Hammarling 1990). The use of 
BLAS in MA42 is described in Duff and Scott (1996b). 
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In practice, for general systems of equations, stability considerations may 
delay some eliminations. MA42 uses a threshold criterion of the from 

where the stability threshold U E (0,1] is a parameter chosen by the user. 
Note that using a small value of U will lead to few delays and minimize the 
number of entries in the factors while a larger value of U (for example, the 
default value U = 0.1) improves stability. The choice U = 1.0 corresponds to 
partial pivoting. 

By holding the matrix factors in direct access files, the frontal method 
can solve quite large problems with modest amounts of high-speed memory. 
We remark that, because the size of the frontal matrix increases when a 
variable appears for the first time and decreases whenever it is eliminated, 
the order where the elements are assembled has a crucial effect on the storage 
requirements and on the number of floating-point operations. Elements 
should be preordered to reduce the size of the frontal matrices. In our 
experiments the elements are preordered using the Harwell Subroutine 
Library code MC43. 

Once the matrix factors have been formed and stored, the MA42 package 
has a separate entry, MA42C, that uses the factors for solving a linear system 
with multiple right-hand sides b. As well as using high level BLAS in the 
factorization, the BLAS are used when performing the forward elimination 
(7.3) and the backward substitution (7.4). When solving for a single right- 
hand side, the Level 2 BLAS are used but if there are multiple right-hand 
sides, the Level 3 BLAS are used. Since greater efficiency is achieved by 
using the Level 3 BLAS and the factors have only to be read in once for 
each call to MA42C, the performance of MA42 improves with the number of 
right-hand sides. This is illustrated in Section 9 (see also Duff and Scott, 
1993). 

When using a shift-invert or Cayley transformation, the matrix A - QB 
must be refactorized each time the pole Q is updated. A disadvantage of 
using Arnoldi’s method as the eigensolver is that it requires the repeated 
solution of linear systems with a single right-hand side. This is in contrast 
to the subspace iteration method, where the number of right-hand sides is 
equal to the subspace dimension T .  Partly because of this, Lehoucq and 
Maschhoff (1997) have recently developed a block version of the implicitly 
restarted Arnoldi method. 
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8 The software package ARPACK 

In this section, we summarize ARPACK and the modifications we made so 
that Cayley transformations could be used. 

8.1 Introduction to ARPACK ' 

The ARPACK software package (Lehoucq et al., 1998) provides subroutines 
that implement the implicitly restarted Arnoldi metho (IRAM). ARPACK 
was developed for finding a few eigenvalues of large-scale symmetric, 
nonsymmetric, standard or generalized eigenvalue problems (complex 
arithmetic versions are available). An important feature of the package 
is the reverse communication interface. This feature provides a convenient 
way to interface with application codes without imposing a structure on the 
user's matrix or on the way in which matrix-vector products are computed. 
In particular, if the matrix is not available explicitly, the user is free to 
express the action of the matrix on a vector through a subroutine call or 
code segment. This makes the code attractive for our applications where the 
matrices A and B are unassembled finite-element matrices (see (7.2)). For 
large problems, there may be insufficient storage to hold all the element 
matrices A(') and B(') in-core. The use of an eigensolver which does 
not require the matrices to be held using a prescribed format is therefore 
essential. 

Another important feature of ARPACK is that full numerical orthogonality 
(to machine precision) of the Arnoldi basis vectors is maintained. A point 
we wish to  emphasize is that the cost of this orthogonality often represents 
less than 5% of the total cost of the eigensolver. For large-scale problems, 
the dominant cost is that of performing matrix-vector products. 

There are many different options included within the ARPACK package. 
Here we briefly mention those that are useful for solving the problems of 
interest to us: full details of ARPACK are given in Lehoucq et al. (1998). 

0 The user may select the implicit shifts in the implicitly shifted Q R  
algorithm performed during each iteration. This allows implicit shifts 
of zero to be used. 

In our 
experiments, we want to purify the starting vector before using ARPACK 
and this option enables us to do this. 

0 The initial starting vector 211 may be chosen by the user. 
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0 The default convergence tolerance use( 
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PACK is machine 
precision. Since our main interest is in determining whether the 
left-most eigenvalue has a positive or negative real part, we do 
not need to compute the eigenvalues to a large number of decimal 
places. Therefore, in our experiments we will use a larger convergence 
tolerance (see Section 9). 

0 When using ARPACK to solve the generalized eigenvalue problem, Az = 
XBs, where B is a symmetric positive semi-definite matrix, the B 
semi-inner product may be used. We will use both the standard inner 
product and the B semi-inner product. 

0 For the generalized eigenvalue problem, the user has the option of using 
a shift-invert transformation T, r (a )  or, if A is symmetric, a standard 
Cayley transformation Tc(a, -a). If the shift-invert or Cayley mode 
is used, ARPACK accepts a computed eigenvalue and eigenvector of Tsr 
or Tc if the associated Ritz estimate (6.1) is sufficiently small. See the 
discussion after (6.1). 

0 Eigenvectors may be computed on request once approximations to the 
sought-after eigenvalues have converged. If eigenvectors are requested 
and a shift-invert or Cayley transformation has been employed, the 
computed eigenvalues are mapped to those of the original system. 

We conclude by explaining how ARPACK normalizes the computed 
eigenvectors. If the standard inner product is used, the computed 
eigenvector U corresponding to a real computed eigenvalue is normalized 
so that 11~112 = 1; if the B semi-inner product is used, then 1 1 ~ 1 1 ~  = 1. 
When the eigenvectors corresponding to a computed complex conjugate 
pair of eigenvalues are computed, the real and imaginary parts, U R  and 
u ~ ,  of the vector associated with the computed eigenvalue with positive 
imaginary part are stored. If the standard inner product is used, 'U is 
normalized so that U ~ U R  + u y u ~  = 1; if the B semi-inner product is used, 
then UTRBUR + uyBul= 1. 

8.2 Modifications to ARPACK 

To use ARPACK for computing the left-most eigenvalues of the discretized 
Navier Stokes problems, it was necessary to make a small number of 
modifications to the package. These modifications essentially involved 
making the existing reverse communication interface more flexible. This 
flexibility was necessary to accommodate our use of spectral transformations. 
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As mentioned above, for the generalized eigenvalue problem As = XBs, 
the user may optionally use a shift-invert transformation Tsr(o). When 
using this option, it is assumed that the user has chosen the pole o and 
that the same pole is used throughout the computation: a facility for 
updating the shift is not explicitly offered. There is also no option for 
using a Cayley transform when A is nonsymmetric. We had to make 
minor changes to ARPACK so that we could use the generalized or the 
modified Cayley transformation. In addition, we needed changes to enable 
us to switch between using shift-invert and Cayley, and to allow us to 
update the Cayley parameters at each iteration. Our modified codes 
are available by anonymous ftp from f t p  . cam. r i c e .  edu in the directory 
pub/software/ARPACK/CONTRIBUTED. 

We observe that MA42 does not assume the degrees of freedom are 
numbered contiguously from 1 to n + m. MA42 is designed in this way 
because in many finite-element applications (including the examples used 
in our numerical experiments), the boundary conditions imply that some of 
the degrees of freedom are known and so do not appear in the element data 
passed to the linear solver. As a result, the largest integer used to index 
a variable is greater than the order of the system. However, ARPACK does 
require contiguous numbering and we therefore have to map between the 
global freedom numbers used by MA42 and the local freedom numbers used 
by ARPACK. Using MA42 with ARPACK also means that we have two reverse 
communication interfaces to deal with, and this adds to  the programming 
complexity. 

9 Numerical experiments 

In this section, we present numerical results for three tests problems. The 
test problems were supplied to us by Simon Tavener of Pennsylvania State 
University and were obtained using the finite-element package ENTWIFE 
(Cliffe, 1996). ENTWIFE was developed by AEA Technology to solve 
discretized elliptic and parabolic partial differential equations using finite- 
element methods. The code is used to compute singular points such as limit 
points, symmetry-breaking bifurcation points, and Hopf bifurcation points 
of the steady solution set. The current interest is in stability of laminar 
flows both in expanding channels and pipes and past bodies in pipes and 
channels. ENTWIFE uses subspace iteration as its eigensolver and employs 
the frontal code MA42 as its linear equation solver. Experience has shown 
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the subspace iteration solver to be reliable but the method is too slow to  
solve the large problems (up to  250,000 degrees of freedom) that are now 
of interest. One of the major aims of this project was to investigate the 
reliability of implicitly restarted Arnoldi with a view to using ARPACK as 
the eigensolver in ENTWIFE. 

The problems used in our tests, while not as large as those AEA 
Technology would like to solve, are typical of the problems of interest. All the 
tests were performed on a SUN Ultra 1 workstation using double precision 
arithmetic. All timings are CPU times in seconds. As explained at the end 
of section 6.2, the Euclidean norm is used for computing all residuals. In 
each test, we were seeking the two left-most eigenvalues. 

In our tables of results, the residual is given both before and after 

(3 purification, that is, before and after the computed eigenvectors z = 

are premultipled by the shift-invert operator Tsz. Recall that for the 
modified Cayley transformation TM, the p component of z is not guaranteed 
correct until premultiplication by Tsr has been performed and so, in this 
case, the residual is only given after purification. 

We also point out that,  as mentioned, ARPACK maintains full (numerical) 
orthogonality of all T Arnoldi vectors. It should be emphasized that the 
dominant costs in time when computing eigenvalues of our test problems 
are those associated with performing matrix factorizations, solving linear 
systems using the matrix factors, and performing matrix-vector products 
with A(P) and B. Our experience was that the time required to  maintain 
the full orthogonality of the Arnoldi vectors along with all the other costs 
associated with the ARPACK implementation of the IRAM represented only 
2%-3% of the total computation time. This is why in our tables of results we 
only give the total time together with the times for the matrix factorizations, 
solving linear systems, and performing matrix-vector products. 

9.1 Problem 1 

The first problem we look at is that of two-dimensional double-diffusive 
convection in a box (see Ortega, 1973, chapter 8, and Garratt, 1991, page 
102). The model used has the following non-dimensional parameters: the 
Prandtl number Pr, the Rayleigh number Ra, the salinity Rayleigh number 
Rs and T ,  the ratio of solutal and temperature diffusivities. A mixed finite- 
element approximation is used, with nine-noded quadrilateral elements with 
biquadratic interpolation for velocities, temperatures, and salinities, and 
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discontinuous piecewise linear interpolation for pressures. This leads to  a 
system of equations of the form (1-1), where U E R" represents velocity, 
temperature, and salinity, and p E Rm represents pressure. Using a 16 x 16 
grid, there are a total of 4859 degrees of freedom. Although it is possible 
to solve the linearized stability problem analytically, the problems which 
are obtained by varying the parameters are ideally suited for testing the 
effectiveness of our eigensolver for detecting Hopf bifurcations. We compute 
the left-most eigenvalues using the parameter values Rs = 2000, Pr = 10, 
and 7 = 10-2 and three different values of the Rayleigh number Ra. For 
each value, the left-most eigenvalues are listed below (see Cliffe et al., 1993). 

a Ra = 2440: 
A1 = 9.8696 x 10-2, A2 = 3.9478 x lO-l, 
A3,4 = 3.9478 x 10-1 f i2.4561 x 10. 

a Ra = 2480: 

A1,2 = 4.7486 x 10-2 f i2.4502 x 10, A3 = 9.8696 x 10-2. 
a Ra = 2520: 

A1,2 = -3.5071 x 10-1 f i2.4437 x 10, A3 = 9.8696 x 10-2. 
The interest lies in the loss of stability as Ra increases. The values Ra = 
2440 and 2480 correspond to stable steady state solutions and Ra = 2520 is 
an unstable steady state. The change in stability is due to a complex pair 
of eigenvalues crossing the imaginary axis at a Hopf bifurcation at Ra 
2484. We anticipate that Ra = 2480 may cause our eigensolver difficulties 
because IRe(A1) - Re(A3)l is small relative to IIrn(A1)l. For Ra = 2440 
the left-most eigenvalues are real and shift-invert with a zero shift will be 
successful. However, for Ra = 2480 and 2520, shift-invert misses the left- 
most eigenvalues. 

We also consider varying Rs, with Ra = 2440 and the remaining 
parameters unchanged. 

0 Rs = 1900: 

A1,2 = -4.6001 x 10-1 f i3.3800 x 10, A3 = 9.8696 x 10-2. 
a Rs = 1950: 

A1,2 = -7.5082 x 10-3 f i2.4185 x 10, A3 = 9.8696 x 10-2. 

A1 = 9.8696 x 10-2, A2,3 = 2.2047 x 10-' f i2.4374 x 10, 
A4 = 3.9478 x 10-'. 

a Rs = 1975: 
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= 1 0 - ~  
Flops for factorization 1.19 x 108 
Real factor storage (Kwords) 965 
Integer factor storage (Kwords) 92 
Minimum in-core storage (Kwords) 23 
Factorize time (secs) 6.7 
Solve time: 1 right-hand side (secs) 0.5 

1.5 Solve time: 10 right-hand sides (secs) 

Rs = 1900 and 1950 correspond to unstable steady state solutions while 
Rs = 1975 is a stable steady state. We expect that finding A2 will be 
difficult in the case Rs = 1975 since A2 has a large imaginary part and lies 
between 2 real eigenvalues with IRe(A1) - Re(X2)I and IRe(X4) - Re(X2)I 
small compared to IRe(X2)l. 

In Table 1 we present statistics for this problem for factorizing A and 
solving systems Az = b using MA42. We give results for the first set of 
parameter values given above (Rs = 2000, Pr = 10, T = 10-2, Ra = 2440) 
but similar results are obtained for the other parameter values used, Here 
and in other tables where the number of floating-point operations (“flops”) 
are quoted, we count all operations (+,-,*,/) equally. Following advice from 
AEA Technology, here and elsewhere the threshold parameter U (7.7) is set 
to l O - ’ .  For our test examples, we found that this choice of U did not 
lead to any instabilities and gave significantly sparser factors than those 
obtained using the default value of 0.1. Sparse factors are important for the 
factorization and solve times. 

U = 10-1 

3037 
217 
286 
113.8 
1.5 
4.4 

1.17 x 109 



9 NUMERICAL EXPERIMENTS 26 

Table 2: Basic operations, times, and residuals for Tc and TM for problem 
1 with a range of values of Ra. Zero shifts and the B semi-inner product 
are used. For Tc, p = 1.0 and for TM, p = 0.0. 

Ra = 2440 Ra = 2480 Ra = 2520 
Tc TM Tc TM Tc TM 

Basic operations: 
Factorizations 2 2 2 2 2 2 
Linear solves 46 46 46 46 46 46 

B * x  126 126 127 127 127 127 

Times (secs) : 
Factorizations 14.6 14.2 14.3 14.1 14.2 14.0 
Linear solves 23.9 24.9 24.0 24.2 24.6 25.1 
A(P) * z 4.3 12.8 4.4 13.0 4.3 12.9 
B * Z  30.5 30.3 30.9 30.2 30.4 30.8 

- PB) * 0.4 0.8 0.4 0.6 0.4 0.7 
Total 75.4 84.8 75.7 83.7 75.5 85.1 
Relative residuals: 

After Durification 1.61d-17 1.63d-17 5.90d-10 5.90d-10 4.65d-10 4.65d-12 

A(P) * z 20 20 20 20 20 20 

(A(P)  - PB) * 2 1 1 1 1 1 1 

Before purification 1.74d-17 1.19d-08 1.17d-08 
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Table 3: Basic operations, times, and residuals for Tc and TM for problem 
1 with a range of values of Rs. Implicit shifts of zero and the B semi-inner 
product are used. For Tc, p = 1.0 and for TM, p = 0.0. 

128 = 1900 RA = 1950 RA = 1975 
Tc TM Tc TM Tc TM 

Basic operations: 
Factorizations 2 2 2 2 5 5 
Linear solves 46 46 46 46 119 119 
A(P) * = 20 20 20 20 90 90 
B * Z  126 126 127 127 339 339 
( 4 P )  - P B )  * Z 1 1 1 1 4 4 
Times (secs): 
Factorizations 14.2 14.0 14.3 14.0 35.3 34.9 
Linear solves 25.1 25.0 24.9 24.9 64.5 64.3 
A(P) * Z 4.3 12.8 4.3 12.8 19.2 58.0 
B * Z  30.0 30.2 30.1 30.2 80.1 81.4 
( 4 P )  - PB) * 2 0.4 0.7 0.4 0.8 1.7 2.6 
Total 75.7 84.3 75.7 84.4 205.3 245.6 
Relative residuals: 

After Durification 4.31d-10 4.31d-10 5.69d-10 5.69d-10 7.71d-10 1.49d-10 
Before purification 6.39d-09 8.74d-09 1.49d-08 
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S for the shift-invert step and a single Cayley iteration. For Rs = 1975, 
the test described in Section 6.3 found that the left-most eigenvalues had 
been missed. At this point T was increased to 25 and the number of 
requested eigenvalues was increased to  4. The computation then continued 
and the correct eigenvalues converged. We remark that this check for missing 
eigenvalues and the subsequent increase in T and the number of sought-after 
eigenvalues is performed automatically within our code: no action is required 
by the user. 

Our results show that, for problem 1, that when using implicit shifts 
of zero during the restart and the B semi-inner product, there is little to 
choose between the generalized and modified Cayley transformations. Both 
use the same number of factorizations and linear solves. However, in terms 
of time, TM is slightly more expensive. This is accounted for by the way we 
hold the element data. 
us is in the form of the 

For each of our test problems, the data supplied to 
element matrices for 

To form A(P) * 2 ,  we only need the first of these matrices when P = 1.0, 
but when p = 0.0, all 3 are needed. The overhead of reading and using 
these extra element matrices makes TM more expensive to use. Moreover, 
purification must be done explicitly when using TM; an implicit purification 
may instead be used when using Tc. 

In Table 4 we report results for problem 1 with Rs = 1975 for a range 
of values of T .  In this table, Tat denotes the final value of T .  We see 
that, even with the test for missing eigenvalues discussed in Section 6.3, 
with T = 10, A2 is missed. As T is increased, the number of factorizations 
(which is equal to one more than the number of Cayley iterations) decreases, 
until with T = 30 the number of factorizations is the minimum possible. 
This highlights one of the difficulties of using ARPACK to  solve a problem 
when the user has no prior knowledge of the spectrum. The user must 
select T .  If T is too small, the sought-after eigenvalues may be missed, 
and if T is too large, unnecessary work is performed. As discussed earlier, 
the most expensive parts of the eigenvalue computation in terms of time 
are those associated with performing matrix factorizations, solving linear 
systems using the matrix factors, and performing matrix-vector products 
with A(P) and B. Increasing T increases the number of matrix-vector 
products performed on each iteration. If the number of iterations does not 
decrease, this can significantly increase the computation time. We see this 



9 NUMERICAL EXPERIMENTS 29 

Table 4: Basic operations, times, and residuals for Tc for problem 1 with 
Rs = 1975 using a range of values of T .  Implicit shifts of zero and the B 
semi-inner product are used. * denotes A2 was missed. 

r = l O  r = 2 0  r = 2 5  r = 3 0  t = 3 5  
rout 10 25 25 30 35 
Basic operations: 
Factorizations * 5 3 2 .  2 
Linear solves * 119 82 66 76 
A*Z * 90 50 30 35 
B * Z  * 339 233 186 216 
( A - p B )  * Z  * 4 2 1 1 
Times (secs): 
Factorizations * 35.3 21.0 14.5 14.5 
Linear solves * 64.5 44.4 34.9 39.3 
A*Z * 19.2 10.7 6.6 7.7 
B * Z  * 80.1 55.6 45.1 53.3 

Total * 205.3 135.7 104.6 119.2 
Relative residuals: 
Before purification * 1.49d-08 2.13d-06 3.26d-07 3.20d-08 
After purification * 1.71d-10 2.43d-08 1.83d-08 8.09d-10 

( A - p B ) * z  * 1.7 0.8 0.4 0.4 
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in Table 4 when we compare T = 30 with T = 35. If it is important that 
no eigenvalues are missed, the user should be cautious in the choice of T ,  

and consider checking results by rerunning with an increased value of T and, 
optionally, increase the number of eigenvalues requested. 

In Tables 5 and 6, we present results for problem 1 with Ra = 2480 for 
implicit shifts of zero and exact shifts, both with the B semi-inner product 
and the standard inner product. 

Table 5: Basic operations, times, and residuals for Tc for problem 1 with 
Ra = 2480 and T = 20. 

E semi-inner Standard inner 
product product 

Zero Exact Zero Exact 
shifts shifts shifts shifts 

Basic operations: 
Factorizations 2 2 4 4 
Linear solves 46 46 98 98 
A * x  20 20 0 0 
B * Z  127 127 25 25 
(A - p E )  * z 1 1 73 73 
Times (secs): 
Factorizations 14.3 14.3 27.9 28.0 
Linear solves 24.0 25.0 56.6 52.9 
A * Z  4.4 4.2 0.0 0.0 
E * Z  30.9 30.0 5.9 5.9 
(A - p B )  * z 0.4 0.4 30.8 30.8 
Total 75.7 75.7 124.8 121.3 
Relative residuals: 
Before purification 1.19d-08 1.19d-08 2.62d-09 9.29d-09 
After purification 5.90d-10 5.90d-10 7.63d-11 4.35d-10 

We see that using the B semi-inner product is more reliable than using 
the standard inner product. With the standard inner product, the modified 
Cayley transformation TM failed to compute the left-most eigenvalues. The 
generalized Cayley transformation Tc was successful in finding the required 
eigenvalues but, as in the case Rs = 1975 discussed above, T was increased 
to 25 by the test for missing eigenvalues, and this increases the cost of the 
computation. For this problem, using the B semi-inner product gave the 
minimum number of restarts; the results were identical for zero and exact 
implicit shifts. We performed additional experiments with Tc where we 
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Table 6: Basic operations, times, and residuals for TM for problem 1 with 
Ra = 2480 and T = 20. * denotes A1 was missed. 

B semi-inner Standard inner 
product product 

Zero Exact Zero Exact 
shifts shifts shifts shifts 

Basic operations: 
Factorizations 
Linear solves 
A(O.0) * x 
B * Z  
(A(O.0) - p B )  * x 
Times (secs): 
Factorizations 
Linear solves 
A(O.0) * z 
B * x  
(A(O.0) - p B )  * z 

2 
46 
20 

127 
1 

2 * 
46 * 
20 * 

127 * 
1 * 

14.1 
24.2 
13.0 
30.2 
0.6 

14.3 * 
24.8 * 
12.8 * 
29.9 * 
0.8 * 

Total 83.7 84.3 * * 
Relative residuals 5.90d-10 5.90d-10 * * 

did not purify the starting vector VI. We found that, if the B semi-inner 
product was used, the number of LU factorizations required for convergence 
increased from 2 to  4 while if the standard inner product was used, the 
left-most eigenpair was not found. This demonstrates the importance of the 
choice of starting vector in these calculations. 

All the results for problem 1 show the benefits of purifying the computed 
eigenvectors. 

9.2 Problem 2 

The second problem is that of the flow of a Newtonian fluid past a cylinder 
in a channel. The problem has 600 elements with a total of 6,398 degrees of 
freedom. The first bifurcation is a Hopf bifurcation with 

A1,2 = 2.6886 x 10-' f i1.0963 x 10, A3 = 2.3827. 

MA42 statistics for this problem are given in Table 10. In Tables 8 and 9, 
we present results for problem 2 with T = 20. The convergence tolerance 
was set to 10-6. Results are given for the generalized and modified Cayley 
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Flops for factorization 
Real factor storage (Kwords) 
Integer factor storage (Kwords) 
Minimum in-core storage (Kwords) 
Factorize time (secs) 
Solve time: 1 right-hand side (secs) 
Solve time: 10 right-hand sides (secs) 

32 

9.99 x 10' 
908 
155 
28 
5.6 
0.6 
1.5 

transformations using implicit shifts of zero and exact shifts, both with the 
B semi-inner product and the standard inner product. 

For this problem, using the B semi-inner product does not improve 
convergence but only adds to the computational cost. Using exact shifts 
gives slightly slower convergence than implicit shifts of zero. 

9.3 Problem 3 

Our third test problem is that of the flow of a Newtonian fluid in a pipe with 
sudden symmetric expansion. The problem has 5800 elements and 87,000 
degrees of freedom. The left-most eigenvalue is real but there are several 
complex eigenvalues X j  such that Re(Xj) - A 1  is small. In particular, 

A 1  = 1.962, X2,3 = 2.014 f i4.118 x 10-l. (9.2) 

MA42 statistics for this problem are presented in Table 10. In our 
experiments, we set T = 30 because we found the left-most eigenvalue 
was missed if we selected a smaller value, such as T = 20. For this large 
problem, while the CPU time required for each LU factorization and each 
solve is not prohibitive, the additional cost of reading the element matrices 
from files was found to be high. To limit the time needed to  perform each 
experiment involving this problem, we restricted the maximum number of 
LU factorizations allowed to 10. With this restriction, the modified Cayley 
transformation using the B semi-inner product and exact shifts failed to 
converge. Because of this and the results of our previous experiments, we 
decided to limit further investigations to using implicit shifts of zero. Results 
are given in Table 1 1 .  



9 NUMERICAL EXPERIMENTS 33 

Table 8: Basic operations, times, and residuals for Tc for problem 2 with 
r = 20. 

B semi-inner Standard inner 
product product 

Zero Exact Zero Exact 
shifts shifts shifts shifts 

Basic operations: 
Factorizations 4 5 4 5 
Linear solves 86 107 86 107 
A * Z  60 80 0 0 
B * Z  222 243 23 23 
(A - p B )  * z 3 4 63 84 
Times (secs): 
Factorizations 26.4 32.6 26.3 32.5 
Linear solves 49.2 65.3 48.8 65.0 
A * Z  26.5 34.2 0.0 0.0 
B * Z  99.2 108.6 10.2 10.2 
(A - p B )  * z 2.6 3.4 54.4 71.2 
Total 207.5 248.0 143.6 182.8 
Relative residuals: 
Before purification 1.23d-03 2.03d-04 1.21d-04 1.86d-05 
After purification 9.70d-06 1.51d-06 7.39d-05 1.27d-05 
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Flops for factorization 
Real factor storage (Kwords) 
Integer factor storage (Kwords) 
Minimum in-core storage (Kwords) 
Factorize time (secs) 
Solve time: 1 right-hand side (secs) 
Solve time: 10 right-hand sides (secs) 

34 

3.54 x 109 
20702 
2553 
40 
185.2 
14.0 
34.0 

Table 9: Basic operations, times, and residuals for TM for problem 2 with 
T = 20. 

B semi-inner Standard inner 
product product 

Zero Exact Zero Exact 
shifts shifts shifts shifts 

Basic operations: 
Factorizations 4 5 4 5 
Linear solves 86 107 86 107 
A(O.0) * 2 60 80 0 0 
B * x  220 243 23 23 
(A(O.0) - p B )  * x 3 4 63 84 
Times (secs) : 
Factorizations 26.0 32.7 26.6 32.7 
Linear solves 48.3 60.1 48.2 60.0 
A(O.0) * x 77.0 102.7 0.0 0.0 
B * x  98.0 108.3 10.2 10.2 
(A(O.0) - p B )  * 2 4.1 5.2 82.9 109.3 
Total 256.8 312.7 171.5 216.2 
Relative residuals 1.61d-05 1.48d-05 1.07d-04 9.36d-08 
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Table 11: Basic operations, times, and residuals for the generalized Cayley 
transformation (p = 1.0) and the modified Cayley transformation (p = 0.0) 
for problem 3 with T = 30. Implicit shifts of zero are used. 

Tc TM 
Inner product Inner product 
B Standard B Standard 

Basic operations: 
Factorizations 3 4 3 3 
Linear solves 95 126 95 95 

B * x  271 33 271 33 
(A@) - PB) * z 2 93 2 62 
Times (secs): 
Factorizations 588 782 588 586 
Linear solves 1352 1736 1310 1304 . 
A(P)  * 2 358 0 1102 0 
B * x  1634 213 1685 212 
(A(P)  - PB) * z 23 1124 36 1134 
Total 4087 4008 4864 3352 

A(P) * z 60 0 60 0 

9.4 

We end this section on numerical experiments with some overall comments. 
Part of the motivation for this report was to numerically verify the 
theoretical results presented in the paper by Meerbergen and Spence (1997). 
As explained in Sections 4.2 and 5.1, care must taken to  ensure that the 
computed eigenvalues and eigenvectors are not contaminated by the JV or 
Q components that arise in S. In exact arithmetic, this is accomplished by 
using a starting vector in the range of S2. 

To mitigate the influence that rounding errors might introduce, the 
scheme proposed by Meerbergen and Spence is to  use the B-orthogonal 
Arnoldi method using one implicit shift of zero per restart and a final implicit 
purification (via S) of the computed eigenvectors. However, because we use 
Cayley transformations, their scheme requires us to  use an implicit shift 
equal to +1 per restart and to implicitly purify the computed eigenvectors 
with Tc - I. 

Balancing theory and numerical experiments 

Here is a summary of our findings: 

1. Experiments revealed that the use of the B semi-inner product 
improved the results. In theory, only 6 components in the Arnoldi 
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vectors can contaminate H,. 

2. Using at least one implicit shift equal to +1 per restart did not prevent 
H, from producing spurious eigenvalues. In theory, this cannot occur 
because an implicit shift of +1 per restart should produce a H,. that 
is not contaminated by G components (or n/ components that might 
be present due to rounding errors). We explain why this is so below. 

3. T - s implicit shifts of zero per restart gave consistently good results. 
In theory, this is equivalent to performing subspace iteration with 
TE-' on V, (per restart). Again, in theory, H,. could be affected by G 
components in the Arnoldi vectors. 

4. The implicit purification of the computed eigenvectors via Tc - I 
always decreased the size of the direct residuals. 

5. We did not find it necessary to apply TSI a second time to the 
computed eigenvectors. Theory indicates that the purified eigenvectors 
may contain h/ components arising from a Q component in the 
unpurified eigenvector. 

6. Our results always used a random starting vector in the range of 
S2. In theory, this is not needed when using the scheme proposed 
by Meerbergen and Spence (adapted for Cayley transformations), 
because of items 3 and 5. We performed some experiments where the 
starting vector was not purified. We found that convergence was either 
significantly slower or the left-most eigenvalue was actually missed (see 
Section 9.1). 

7. It must be emphasized that T must be selected large enough. Except 
for the possible additional storage, the cost of maintaining the 
orthogonality of T Arnoldi vectors is not a factor. The cost of the 
computation is dominated by the cost of factorizing and solving linear 
systems with A and/or B. Increasing T increases the number of solves 
which must be performed following a factorization. 

Item 2 is easily the most fascinating. The explanation is subtle, 
but straightforward. From Section 2, an implicit shift equal to +1 is 
equivalent to orthogonalizing the columns of (Tc - I)Vr-1. B y  ( 5 . 5 ) ,  this 
is equivalent to orthogonalizing the columns of (0 - p)TsIVr-l. Thus, 
if V L ,  denotes the updated matrix of Arnoldi vectors produced by the 
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IRAM, the corresponding contains no spurious eigenvalues. However, 
as explained in Lehoucq and Sorensen (1996), implicit restarting occasionally 
undergoes forward instability due to rounding errors. An implicit shift of +1 
triggers this instability because the Cayley transformation maps the infinite 
eigenvalues of (1.2) to eigenvalues at +l. Because the computed Hr has an 
eigenvalue equal to +1 with an associated eigenvector y, where eFy is small, 
a small Ritz estimate (see (6.1)) results. This implies that +1 is a good 
approximation for an eigenvalue of TC . Forward instability results precisely 
when this nearly converged eigenvalue is used as an implicit shift. Forward 
instability implies that II(Tc - 1)K-l - VLIII 2 [[(TC - I)Vr-1llCM. (We 
remark that this can happen even though the columns of V L 1  are orthogonal 
to machine precision.) 

In summary, using implicit shifts equal to +1 amplifies any G or 
components that might be present due to  rounding errors when using a 
Cayley transformation. We remark that Meerbergen and Spence conjectured 
that spurious eigenvalues could also be computed-even with their scheme. 
They presented a way to check whether spurious eigenvalues were computed. 
However, our check (that of using implicit shifts with small Ritz estimates) 
is cheaper. 

10 Conclusions and future directions 

We have shown that it is possible to  use the implicitly restarted Arnoldi 
method combined with a generalized Cayley transformation to compute 
the eigenvalues of the discretized Navier Stokes equations. Our results 
suggest that although using the B semi-inner product is more expensive 
than the standard inner product, it does offer advantages in terms of 
reliability and, in general, gives smaller residuals for the same number of 
iterations. Because of the connection with subspace iteration, we also found 
it is more reliable to use zero shifts rather than exact shifts during the 
implicit restarting used by the IRAM. We have experimented with using a 
generalized and a modified Cayley transformation. The numerical results 
for both transformations are similar although, for our examples, use of the 
modified Cayley transformation was more expensive than the generalized 
Cayley transformation. The accuracy of the eigenvectors computed using 
the generalized Cayley transformation can be reduced, sometimes very 
significantly, by purification with Tsr. 

Based on our findings, we plan to incorporate the ARPACK software 
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package with the finite-element package ENTWIFE. In the future, we also 
intend to experiment with a block version of the IRAM (Lehoucq and 
Maschhoff 1997). Since it is significantly more efficient when using the linear 
equation solver MA42 to solve for multiple right-hand sides, we anticipate that 
this will improve the computation times, particularly for the large problems 
which are of current interest to AEA Technology. 
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