RALPAR - RAL Mesh Partitioning Program
Version 2.0

RF Fowler and C Greenough

December 1997

Abstract

This report describes the second release of the Rutherford Appleton Laboratory Mesh Partitioning Program
ralpar. Ralpar is a software tool to split up unstructured meshes into subdomains for parallel processing on
MIMD type architectures. A wide range of basic decomposition methods have been implemented within this
tool. This document briefly describes these methods and how to use ralpar to partition meshes. It also gives
details of the measures of partition quality that are provided.

A copy of this report can be found at the Department’s web site (http://www.dci.clrc.ac.uk/) under page
Group.asp?DCICSEMSWor anonymousftp server wwwiinf.rl.ac.uk under thedirectory pub/mathsoft/publications

Mathematical Software Group

Department for Computation and Information
Rutherford Appleton Laboratory

Chilton, DIDCOT

Oxfordshire OX11 0QX

Contents

1

Introduction e 1
Parallel processing and mesh decomposition 1
Measuring partition quality 2
Mesh partitioning techniques 3
Multilevel partitioningmethods Lo 4
Modelling parallel system performance 5
Usingralpar e 6
7.1 Startingexecution oL e e 6
72 RalparCommands. e 7
7.3 Interna Commands 8
74 Daalnputand Output L 8
75 Partitioningatwodimensionamesh L. 9
7.6 Partitioningathreedimensionalmesh 12
7.7 Partitioning Elementsof Different Weights 16
7.8 PartitionHaos. 16
7.9 Comparing methodsusingthet able command 16
Theralpar Command Summary o 20
A.1 DISPLAY (Application) - to display partitionresults 21
A.2 HALO (Application) - to construct element haloregions 23
A.3 INFORMATION (Application) - control messageoutput 24
A.4 INPUT (Application) -toreadinmeshfile 25
A5 LOADPAR (Application) - toread in partitiondata 26
A.6 MACHINE (Application) - to specify machineconstants 27
A.7 MLPART (Application) - to use amultilevel partitioningmethod 29
A.8 OUTPUT (Application) - to write neutrd file with partitionnumbers 32
A.9 PARTITION (Application) - to partitionthedata 33
A.10 PLIST (Application) - to list element numbersin apartition 35
A.11 QUIT (Application) -toquitprogram 36
A.12 TABLE (Application) - to evaluate or display tableof costs. 37
A.13 VIEW (Application) - to set viewing anglefor thenextplot 39
A.14 WEIGHT (Application) - to definedement weights 40
A.15 CHANGE (Internal) - to changeworking directory 41
A.16 COPY (Internal) -tocopy afile 42
A.17 DELETE (Internal) - to delete (remove) afile 43
A.18 HELP (Internal) - toaccessHELPsystem 44
A.19 LIST (Internal) - to providedirectory listing 45
A.20 READ (Internal) - to redirect the input stream toread fromafile 46
A.21 RENAME (Internd) -torenameafile 47

A.22 SYNTAX (Internal) - to providethesyntax of acommand 48

A.23 WRITE (Internal) - to provide monitoring of asession

B Fileformats e
B.1 RALBIC fileformat
B.2 ASCII fileformat

C Control of memory allocation

1 Introduction

This document describes Version 2.0 of the ralpar mesh partitioning tool. This tool implements a
wide range of basic mesh partitioning algorithms for unstructured finite element type meshesin two
and three dimensions using direct and graph based methods. The tool provides some simple display
options and commands for storing information about the partitions generated.

Mesh partitioning for unstructured meshes is important in the area of parallel processing for grid
based calculations. ralpar is atool to help in the generation of these partitions. The initial sections
of this report review the requirements of mesh partitioning for parallel and distributed computing.
A short description of the partitioning methods contained in ralpar is included together with some
thoughts on measuring the quality of the partitions generated.

Much of the report is given over to the detailed use of ralpar which isillustrated using some two
and three-dimensional examples.

Appendix A is a command reference Section for ralpar,. The interface to RALBIC neutra files
and memory management control are discussed in Appendices B and C respectively.

2 Parallel processing and mesh decomposition

The use of computing systems with some type of parallel architecture has grown significantly over
the past few years. These systems are seen as the path by which sufficient computing power can
be provided for accurate three dimensional simulations of complex phenomenon in areas such as
fluid dynamics, stress analysis and electromagnetism. Such simulations typically use meshes or
grids containing 10° to 10° nodes and may employ automatic grid refinement during the solution.
Unstructured grids are often necessary due to complex geometries and the need to place nodes in an
intelligent manner, to minimisethe overall error in the solution.

Many of the parallel machines now being used are based on the MIMD form of parallelism where
the memory of the machine is distributed over a network of processors. A consequence of thisis
that the program and its associated data must also be distributed between these processors. In finite
volume and finite element methods this leads to the problem of how to distribute large unstructured
grids and meshes initially, and how to redistribute them subsequently, if refinement is made. This
tool only addresses the problem of the initial partitioning and assumes that a single processor with
sufficient memory is available to partition the complete mesh.

When moving alarge grid based computation to a distributed memory machinethere are two main
approaches:

¢ Direct pardldisation of the existing solution algorithm. In this case data exchanges are made
between processors whenever required by the algorithm.

¢ TrueDomain Decomposition (DD) methods. In thiscase separate problemsare solved on each of
the subdomai nsindependently and then somemethod isused to “ patch” together these solutions,
which again involvesinterprocessor communication. Two subclasses within DD methods are:

1. Overlapping subdomains. In this case a layer of mesh elements on the interface between
two subdomainsis assigned to both of them. These allow methods based on the Schwarz
alternating procedure [1] to be used.

2. Non-overlapping subdomains. Inthiscaseitisnecessary to solveaseparate global problem
for the interface nodes between domains. One approach isto form the Schur complement
matrix for the interface.

The current version of ralpar only produces non-overlapping mesh decompositions, though the HALO
command alows the identification of elementsin an overlap region.
Three of the mgjor requirements for efficient parallel processing are:

1. To minimisethe sequential part of the computation.
2. Toensurethat al processors have the same amount of work to do.
3. To minimiseinterprocessor communication.

Thefact that ralpar isasequential programis not optimal with regard to thefirst point, but the cost of
partitioning is often quite small compared to the actual computations performed on the mesh.

Load balancing is often achievable by assigning the same number of elements to each processor.
However in many cases, such aswith amixed mesh containing severa different element types, it can
be desirable to attach a computational weight w; to each element. Partitioning of the mesh into NV
parts should then aim to assign each domain a set of elementswith weight W given by

2o Wi
W= (1)
The current version of the tool only deals with element partitioning, though there can be cases where
a partitioning of the nodes is more appropriate.

Another extension that is becoming important for computations on heterogeneous workstation
clustersisthat of domain weighting. It may be that one machineis more powerful than the others and
hence should have a larger share of the work. This can also be included in the above scheme and is
availablein the current version of ralpar.

Minimisation of interprocessor communication time is very important in distributed grid based
caculations. Anideal case would be where the subdomains could be completely decoupled and no
exchange of informationwasrequired. Thisisrarely the case, so theaim of amesh partitioning method
isto find a splitting that minimises the communication cost. The NP-hard nature of this minimisation
meansthat al methodsare heuristic, and may not find the global minimum. The actual communication
time will also depend on the characteristics of the parallel machine, the solution agorithm and the
nature of the problem being solved.

3 Measuring partition quality

Thetrue measure of interest for any mesh partitioning method isthe effect it has ontheruntimefor the
computationsthat are to be performed on area paralel system. Generadly, this effect istoo sensitive
to the particular combination of algorithm and parallel hardware being used to be practical. Instead
simpler models are used which measure the size of the interface between subdomains and related
guantities.

Load balancing, by assigning the same amount of work to each processor, is built into al the
decomposition schemes discussed here. Hence it is not a good measure to compare decomposition
methods with. Multi-level methods which do not include some form of smoothing on the first level

can produce poorer load balance than expected. As aresult in most implementations of multi-level
techniques smoothing in provided between expansions.

As was noted in the previous section, the number of interface nodes that a mesh decomposition
produces can effect the size of theinterface problem to be solved. This quantity istaken as our main
measure of interface size. For all methods ralpar reports the total number of interface nodes that are
generated.

Another measure that may be of importanceisthe number of neighbouring subdomains about each
subdomain. Thiscan beimportant in matrix assembly operationsfor node based quantitieswhere each
processor will have to exchange interface data with all its neighbours. While the total amount of data
to be exchanged will be proportional to the number of interface nodes, there isaways a certain amount
of time involved in initiating a communication with another processor. Under some circumstances
this time can be a significant amount of the total communication time. In ralpar the user is provided
with the average number of neighbouring subdomains for the partition along with the minimum and
maximum number of neighboursfor any one subdomain.

Many partitioning methods can be cast in terms of an undirected graph which describestheway in
which elements are connected together. Within such a graph, each element is represented as a vertex
of the graph. The need for communication between neighbouring elements is then indicated by an
“edge” of the graph, joining the two vertices. This approach is more fully explained in [11]. For
such methods a convenient measure of the quality of a partition isthe number of cut edges generated.
A cut edge occurs when the vertices (elements) at either end of the edge are assigned to different
subdomains. Ralpar calculates the sum of these cut edges for all graph based methods. This measure
isnot identical to the number of interface nodes, but they are roughly proportional to each other. The
number of edges in a graph, and hence the number of cut edges, depends on the definition used for
elements to be connected. The three options are available within ral par are:

EDDG - elements are linked if they have a common face with a neighbour TRUE -
elementsare linked if they share one or more nodeswith aneighbour WEIGHT - elements
are linked if they share one or more nodes with a neighbour and the edge is weighted by
the total number of common nodes.

The number of cut edges reported will depend on which definition has been used. For the first two
options, all edges are assigned aweight of one.

4 Mesh partitioning techniques

All mesh partitioning methods generate a parameter or measure to separate elements into partitions.
These separators can be based on some geometric property of the mesh or based on some attribute of
the graph associated with the topology of the mesh. Some methods have more heuristic origins and
base the separation on sometype of cost measure. ralpar is apre-processor of finite element meshes
prior to their use in paralle or distributed computation. It provides the analysis program with alist
of elements along with the partition number that they have been assigned to. The following mesh
partitioning techniques are currently available within ralpar:

Geometric Methods
Geometric bisection (geo- bi s):

Cost Optimised geometric bisection (cost geo)

3

Geometric bisection on axes of inertia(i nerti a)

Recursive version on Inertiamethod (r - i nerti a)
Graph Based M ethods

Graph bisection method (gr aph)

Mal one bandwidth minimisation agorithm (bandwdt)
Variation of Malone method with profile minimisation (pr ofil e)
Greedy agorithm of Farhat (gr eedy)

Cost optimised version of Greedy algorithm (gl ut t on)
Kernighan and Lin method with a Greedy start (kI - gr eedy)
Kernighan and Lin method with arandom start (kI - r and)
Kernighan and Lin with a graph bisection start (kI - r gb)
Spectral bisection (may use KL refinement) (spect)
Multi-Level Methods

A more detailed descriptions of these methodsisgivenin [11].

5 Multileve partitioning methods

Some partitioning methods can be very expensive in terms of CPU time and memory requirements
for large problems. The spectral method is a prime example of this as the eigenvector solution can be
very expensive when dealing with the order of amillion elements. Multilevel methods[12] have been
proposed as way of reducing the costs of such techniqueswhilestill generating high quality partitions.
These work on the connectivity graph of the mesh, but instead of trying to split thisdirectly, the graph
is first “condensed” through a number of levels. The condensation is achieved through clustering
together verticesthat are “ close together” to produce a graph with fewer vertices. New edges between
the clusters are weighted to reflect the number of edges that existed in the larger graph.

By using severa levels of condensation a much smaller graph can be obtained that is easily
partitioned by amethod such as spectral bisection. This partitioninginformation can then betransfered
up throughthelevelstotheorigina graph. Inpracticeitisfound that somerefinement of thepartitionis
required on the higher graph levels, and this can be done using the Kernighan and Lin (KL) technique.

The multilevel methods can be accessed using the MLPART command. This gives a number of
options as to the number of levels of condensation to be used and how vertices are to be clustered at
each level. The set of methodsthat can be used to partition the smallest graph is asfollows:

Graph bisection (gr aph)

Dual graph variation of graph bisection (dgr aph)

M al one bandwidth minimisation algorithm (on vertices) (mal one)
Greedy algorithm of Farhat (gr eedy)

Cost optimised version of Greedy algorithm (gl ut t on)

Random partitioning (r and)
Spectral method (spec)

All these methods can be combined with KL refinement at just the lowest graph level or at all levels.
In addition the methods can be used in three different ways:

Recursive bisection: splitting the graph in half each time (bi sect)
Recursive section: splitting one subdomain at atime from the remaining graph (r ecsect)

Linear section: where the method is applied just onceto get asingle ordering of the vertices. Thisis
then split into the required number of subdomains. (I i nsect)

In the current release KL refinement can not be used with linear sections.
Them part command allows an additional parameters to control the KL refinement process.

6 Modelling parallel system performance

For a given algorithm and data distribution it is often possible to specify how much data needs to be
exchanged and between which processors this has to occur. The time to send »n bytes between two
processorsin a parallel machine can often be approximated by the equation

= tstart + ntsend (2)

where t,,: IS the time to initialise communications and #,.,.4 is the time to send one byte. This
formula ignores many factors, such as contention (due to other messages in the system), multihop
costs, message length dependent buffering strategies and so on. However it is a reasonable first
approximation and the parameters have been measured for most paralel systemsin common use.

If the knowledge of the algorithm communication requirements is combined with the data distri-
bution of a given partition and acommunication cost model, like (2), then it is possibleto estimate the
actual communication time.

As afirst step in this direction, two simple cost modelling schemes have been built into ralpar.
There are two commands associated with these:

¢ Machi ne - thiscommand allows machine communication parameters to be stored and viewed.
The parameters used are the t;,,,; and ¢,.,4 values defined above, expressed in units of mi-
croseconds. R, and Ny, the maximum communication rate and half performance message
length respectively, are caculated from ¢, and t,.,,4. The machi ne command aso selects
which machine typeisto be used by the next t abl e calculation.

e Tabl e - this command calculates or displays the results for a given mesh using a range of
partitioning methods. Results can also be written to file using this command.

The cost models currently implemented assume a simple contribution assembly cal culation where
each processor will have to transmit or receive data proportional to the number of interface nodes
that it has. We assume that one 8 byte value will be associated with every interface node and must
be swapped with a neighbouring subdomain. For the first model we assume communications on a
bus type architecture, such as a network of workstations connected via Ethernet. Thisis referred to

as SEQCOWM as in this case only one message can be active at a time and the total time spent in
communication is just the sum of al the communication times for individua subdomains. Thus we
calculate the communicationtime 7,,,,,.,, as,

p

Tcomm = Z(Nitstart + 8tsendli)
=1

p
= Nptgpars + 8toena Y1 €)
i=1

where I; is the number of interface nodes associated with subdomain ¢ and ; is the number of
neighbour subdomainsfor i. Ny isthe total number of neighbours, given by summing N;. Clearly,
there are anumber of variations one could makein thisformula, depending on the number of variables
to be evaluated and which processors need to know the result. However, (3) isone possible form and
we can make comparisons between methods using it, as long as we accept the results are quditative
rather than quantitative.

The second model that has been implemented is referred to as PARACOMM This model assumes
that all processors can perform their communicationin parallel. It isagain assumed that each processor
will have to send or receive 8 bytes of data for each interface node that belongs to its domain and
also to start communication with as many other processors as it has neighbours. Hence the total
communication timefor one processor isjust

Tcomm (Z) = 8tsendli + Nitstart (4)

Thus communication tasks within a single processor will be done sequentially, but each processor will
do thisin paralel with al the others. On some systems, such as the Intel iPSC/860, it is possible to
have concurrent communi cation on one processor using all thelinksavailable at once, though this may
result in increased network contention. Such contention is ignored in the PARACOVM model. Note
that in this mode we use the I; to represent all the interface nodes on subdomain ¢, where asin the
sequential model interface nodes were assigned to the first subdomain they appeared in. Hence we
have alarger amount of data interchange in this case.

Assuming that all the processors can operate in parallel without any contention, then the total
communication time will be given by the largest value of 7., (i). The PARACOMM model reports
both the maximum and average values of T.,,,,, (7). Details of how the Machi ne and Tabl e
commands can be found in the Command A ppenix.

7 Using ralpar

7.1 Starting execution

To start the standard version of ralpar, you need to be in a directory that contains the command
definitionfiler al par . cnd. If thisfileisnot present, ralpar will stop and issue an error message.

The partitioner is started by issuing the executable name, if it has been placed in your search path,
or the full pathname otherwise, e.g. . ./ ral par. Thiswill cause a short introductory message to
be printed followed by the prompt Ral par:. Any valid command can than be issued and these
commands are fully described in Appendix A.

7.2 Ralpar Commands

Ralpar has a comprehensive set of commands to control partition creation, method selection and
information output. To get an online list of command names you just type hel p. The commands
currently defined are:

Appl i cations Conmands

| NPUT - toread in mesh file

PARTITION - to partition the data

DI SPLAY - to display partition results

PLI ST - to list element nunbers in a partition
QUTPUT - towite output file with partition nunbers
VAEI GHT - Define el ement wei ght

MACHI NE - to specify machi ne constants

TABLE - to evaluate or display table of costs

| NFORMATI ON - control message out put

QT - to quit program

VI EW - to change viewing angle for current plot
HALO - to construct el enent hal o regions
LOADPAR - toread in partition data

M_PART - multilevel partitioning

nt er nal Comrands

CHANGE - to change working directory

RENANVE - to renane a file

CoPY - to copy a file

DELETE - to delete (renmove) a file

LI ST - to provide directory listing

WRI TE - to provide nonitoring of a session

READ - toredirect the input streamto read froma fil e
SYNTAX - to provide the syntax of a command

HELP - to access HELP system

For further information type: HELP <command nane> [<option>],
where <option> is BRI EF or FULL

All the commands can be typed in upper or lower case. The syntax of each command can be obtained
by using the synt ax command. For example

syntax partition
produces

Partition [Processors=<integer>] [, Method=<choice>] [, LEvel =<i nt eger >]
[, CGraph=<choi ce>] [, KLBI SC=<choi ce>] [, KLREF=<choi ce>]
[, PWeight=<real list>] [,Fllepw=<string>]

To get full details on a command and its parameters, such as the PARTI TI ON command, you can
use HELP PARTI TI ON.

Nane . PARTI TION

Purpose : to partition the data

Syntax : Partition [Processors=<integer>] [, Method=<choi ce>]
[, LEvel =<i nteger>] [, CG aph=<choi ce>]
[, KLBI SC=<choi ce>] [, KLREF=<choi ce>]
[, PWeight=<real list>] [,Fllepw=<string>]

Keywor d Type St at us Current Val ue
PROCESSORS i nt eger retai ned 4
METHOD choi ce retai ned GEO BI S, cost geo, greedy, gl utton,

bandwdt , profil e, i nertia, r-iner,
kl - greedy, kl -rand, spec, gr aph,

kl -rgb,
LEVEL i nt eger ret ai ned 5
CGRAPH choi ce r et ai ned EDGE, t r ueconm
KLBI SC choi ce r et ai ned TRUE, f al se
KLREF choi ce r et ai ned FALSE, true
PWVEI GHT real list reset 0

FI LEPW string reset

A command can be abbreviated, the shortest vaue being indicated by the uppercase letters in the
syntax section, e.g. thePar t i ti on command may be shortened to just p. The system is reasonably
simpleto use and working through one or two of the examples bel ow should enable one to get to grips
withit.

7.3 Internal Commands

Ralpar providesanumber of internal commands. These commands, such as HELP and COPY, provide
standard information and file handling from within ralpar. As with al commands, details of their
usage can be obtained through the HELP command. A summary of these commandsis given in the
Command Appendix.

Those commands that access the file store do so by invoking the appropriate system command
of the operating system being used. This means that in general if an report or error on an action is
produced, these will be those of the host operating system.

For example, on UNIX systems, the RENAME command will usethe UNIX commandnv. Similarly
LI ST usesthe UNIX command | s. Although the parameter types for these commandsis string, the
appropriate host systemsfile expression can be used. An example of thisis:

LI ST *. MBH
On a UNIX system this command will list al files with extension . MSH in the current working
directory.
7.4 Datalnput and Output
Ralpar currently supportsthree main formats for datainput and output. These are:

RALBIC - A formal format defined for finite element meshes, full details of which are givenin[10].

8

ASCII - A simple format which should be easier to use than the RALBIC one.
BINARY - A binary version of the ASCII format, mainly used to save and restore results quickly.

A full mesh isrequired asinput, including the nodal coordinates and the el ement topology. There are
three commands related to input and output operations. | nput isused to read a mesh in one of the
above formats. The out put command will, by default, write a file with the mapping of elements to
partitionsin the selected format. Finally, | oadpar can be used to read in the results of a previously
saved partitioning operation. This requires that the mesh has aready been read viai nput. The
details of these formatsis given in Appendix B.

7.5 Partitioning atwo dimensional mesh

Thefile CMPLX1. M5SH containsthe RALBIC neutral file description of atwo dimensional mesh with
165 quadrilateral elements and 200 nodes. Notethat all RALBIC mesh files have the extension. MSH
and that the filenameisin uppercase. Thei nput command will automatically add the extension and
convert the name to upper case. Thusto read in this file we can use the command
Ral par: input cnplxl
which isthe same as
Ral par: input fil e=cnpl x1 type=ral bic
since the last parameter is optional and defaultstor al bi c.

You can than view the mesh using the command
Ral par: displ ay

This should give a plot of the mesh similar to that shownin Figure 1.
To partition the mesh use either theparti ti on or them part commands. Thus, after having
read the mesh with thei nput command, one can type

Ral par: partition 4 geo
Ral par: displ ay
Ral par: part 4 band

Ral par: disp
Ral par: mpart 4 spec maxlvl=1 klref=full
Ral par: disp

to compare the results of three different methods for the case of dividing the mesh into four parts.
Typical resultsare shownin Figures 2, 3 and 4.

Notethat after each parti ti on command has been completed, the tool provides someinforma-
tion on the number of interface nodes that have been generated, such as:

Inform Interface node cost= 45
Nei ghbour donai ns: Ave. = 2.500 Max. = 3 Mn.= 2
Inform CPU tine = 0.010 s

Also reported are the average number of domains about a domain and the minimum and maximum
value of this quantity. For methods which are graph based, we aso give the number of cut edges
generated:

Mesh plot of CMPLX1.MSH

Figure 1: The mesh CMPLX1. MSH as displayed using thedi spl ay command.

Mesh plot of CMPLX1.MSH using GEO-BIS method

Number of partitions= 4 Cost= 39

Figure 2: The mesh CMPLX1. MSH partitioned into 4 using the geometric bisection method.

10

Mesh plot of CMPLX1.MSH using BANWDT method

Number of partitions= 4 Cost= 48

Figure 3: The mesh CMPLX1. MSH partitioned into 4 using the bandwidth (Malone) method.

Mesh plot of CMPLX1.MSH using MULTILEVEL method

Number of partitions= 4 Cost= 28

Figure 4: The mesh CVMPLX1. MSH partitioned into 4 using a multi-level method.

11

Ral par: part 4 kl-gre

Inform Edge cut cost= 26 for 4 domai ns
Inform Interface node cost= 29

Nei ghbour donai ns: Ave. = 2.500 Max. = 3 Mn.= 2
Inform CPUtine = 0.080 s

Note that the cut edge cost depends on the definition of the communication graph that is used. The
default is to use the edge communication graph (described in the section on methods). Using the true
communication graph with the same method, we get:

Ral par: part 4 kl-gre cg=true

Inform Edge cut cost= 62 for 4 domai ns
Inform Interface node cost= 28

Nei ghbour donai ns: Ave. = 2.500 Max. = 3 Mn.= 2
Inform CPUtine = 0.130 s

It should be noted that most optional parameters are retained, that isif you change the value in one
command, it will become the new default. So for example, if thecommandpart 5 wasissued after
the above partition command, it would use the kil - gr e method with the true communication graph.

Having made a partition of the mesh, the results can be written out to a file using the out put
command. By default this command will create a RALBIC file with the extension “.PAR”. This will
contain just a list of the mapping of element numbers to the partition they have been assigned to.
ASCII or BINARY formats can be selected if required. If the parameter FULLMESH isset to TRUE,
then the complete mesh will be written as well as the partition information. In this case the “.MSH”
extension will be added to thefile in the RALBIC case. For example, to write just the partition data
to thefile CMPLX2. PAR, one could issue the command:

Ral par: out put cnpl x2
This partition could then be read back in at alater time with the command:
Ral par: | oadpar cnpl x2

Appendix C gives details of the RALBIC and ASCII formats. This should allow conversion of
existing data to aform that can be read by ralpar.

7.6 Partitioning athree dimensional mesh

All the same commands used for two dimensiona meshes can be used the three dimensiona ones. A
simple three dimensional mesh, just consisting of one plane of hexahedral lementsin the form of a
“T", isgiven in the neutra file T. MSH which is provided with the standard ralpar release. Figure 5
shows the basic mesh.

The first method used isgeocost and the result is shown in Figure 6. Other methods shown in
Figures 7-9 are: kil - r gb, pr ofil e and m p with a spectral bisection root.

The commands used to generate these partitions are:

Ral par: input t
Inform Data file read: Nodes= 3402 El enents= 1600 Periodic nodes=
Ral par: display sty=line

12

Mesh plot of T.MSH using PROFILE method

Number of Partitions = 0 Cost = 440

Figure 5: The mesh T. MSH as displayed using thedi spl ay command.

Mesh plot of T.MSH using COSTGEO method

ST

S
<SSO

Number of

Figure 6: The mesh T. MSH partitioned into 4 using the cost variation of the geometric bisection
method.

13

Mesh plot of T.MSH using PROFILE method

vz L L A O O W

Number of Partitions = 8 Cost = 440

Figure 7: The mesh T. MSH partitioned into 4 using Malone’'s method.

Mesh plot of T.MSH using KL-RGB method

e e
S

SSSSST)

SSSOT T H
<SSP

Number of titions= 8 Cost = 282

Figure 8: The mesh T. MSH partitioned into 4 using a Kernighan and Lin method with a rgb start.

14

Mesh plot of T.MSH using MULTILEVEL method

[
Number of Partitions= 8 Cost = 350

Figure 9: The mesh T. MSH partitioned into 4 using a multi-level method.

Ral par: part 8 costgeo
Inform Interface node cost= 282
Nei ghbour donai ns: Ave. = 3.250 Max. = 5
Inform CPUtinme = 0.672 s
Ral par: display exp=0.25 sty=line
Ral par: part 8 kl-rgb
Inform Edge cut cost= 432 for 8 donai ns
Inform Interface node cost= 326
Nei ghbour donai ns: Ave. = 2.500 Max. = 4
Inform CPUtinme = 1.920 s
Ral par: disp
Ral par: part 8 profile
Inform Interface node cost= 440
Nei ghbour donai ns: Ave. = 1.750 Max. = 2
Inform CPUtinme = 1.515 s
Ral par: mp 8 spec
Inform CPUtine M. part = 5. 884 secs
Cut edges= 466

Wor st bal ance factor = 0.000000

M NCON= 84 MAXCON= 166 AVECON= 116. 500

M NNEI = 2 MAXNEI = 5 AVENEl = 3. 000

Interface node cost = 350

Inform Interface nodes= 350 Cut edges= 0
CPU tinme (secs)= 5. 884

15

M n.

M n.

M n.

1
N

1
=

1
=

| mbal ance=

0. 000000

Ral par: di spl
Ral par:

For this highly regular case the cost-geometric method happens to give the best result in terms of
interface nodes.

7.7 Partitioning Elements of Different Weights

If we wish to assign non-uniform weightsto each element we can do thiswith thewei ght command.
Inthemesh T. MSH all the elements are of the same type, so using the weighting on number of nodes
(wei ght nodal) will have no effect. Instead we can use afile to specify the weights. This can be
anormal text file with one number to aline which gives the weights in sequence for each element. If
we assume such afile (wfil e) has been written, then it can be used in the following way:

Ral par: wei ght fil e wfil e

Using el enent wei ghts from fil e: wfil e
Ral par: info high
Ral par: part 2 glutton

Inform Target weight per partition = 0.120025E+04
Mn. weight = 0.119931E+04 Max. weight = 0. 120119E+04
Rati o (max. weight)/(ave. weight) = 0. 100078E+01
Inform Using |ISTART= 5
Inform Interface node cost= 100
Nei ghbour donai ns: Ave. = 1.000 Max. = 1 Mn. = 1
Inform Wbrkspace used 26210 out of 2800000 I *4 words
M ni mum val ue of RALPAR MEMORY_SF = 15
Inform CPUtinme = 0.730 s

Note that we have used thei nf or mat i on command to increase the amount of detail that isreported
inthis case. Much of the extra detail is not usually wanted, though in this caseis allows us to see how
well the load balance has worked in the case with weighting. If highly non-uniform weighting are
used it is possible to get poor load balancing results. An element weight is area value greater than
zero.

7.8 Partition Halos

In many computationa methodsthe partition halo isrequired to enable a subdomain iteration process.
Often thisinvolvesthe iterative update of an overlap region. Theralpar command HALO generates a
single depth element halo on dl partition interfaces.
Those elements contained in the halo are all those that are connected to the interface nodes. Other
types of halo or overlap are possible but asinglelevel halo of thistype seems currently the most used.
Figure 10 and Figure 11 show two examples of the halos generated by ralpar.

7.9 Comparing methodsusingthet abl e command

The machi ne and t abl e commands can be used to compare partitioning methods. Currently the
t abl e command implements the simple model for bus type communication architectures and the

16

Mesh plot of T2.MSH using GEO-BIS method

Number of partitions= 4 Cost= 103

Figure 10: The halo generate for the T. MBSH mesh.

Mesh plot of COUDE.MSH using GEO-BIS method

Number of Partitions= 4 Cost = 144

Figure 11: The halo generate for the COUDE. MSH mesh.

17

parallel model, as described in the previoussection. Thiscommand may be extended infuture versions
of ralpar.

Having read in amesh file, such as T. MBH, it is hecessary to first select the machine parameters
to be used in the calculation. Thisis done with the machi ne command. To see what machines are
available you can use the command:

Ral par: machi ne acti on=di spl ay

Machi ne Tstart Tsend n- hal f R-i nf
i 860 175. 000 0. 360 486. 000 2.800
i psc/2 612. 000 0.360 1750. 000 2.800
Super Node 1200. 000 1. 340 895. 000 0.710
Transput er 8.730 1.130 7.844 0. 898

This gives names and parameters of the available machines.
Itispossibleto extend thislist within the current run of ralpar. For exampleto add the parameters
for PVM running over a Ethernet at RAL the commandswould be:

Ral par: mach add new 1500 1.5 nane=pvm

This will cause pvmto be added to the list of available machines. Times are in microseconds and
communication rate in Mbytes/s. New machine names and parameters are not automatically saved
between runs of ralpar, though it is possible to usethewr i t e option of the machi ne command to
save the data and reload it in another run with ther ead option.

To compare selected methods over a range of partition numbers, one can then use the sel ect
option of the machi ne command followed by thet abl e command, e.g.

Ral par: mach sel ect pvm
Ral par: table conpute nethods=(kl-rgb, prof) part=(2,4,8)

Ral par: table disp data=seqcomm

Table for: Sequ. Conm nodel

2 4 8
kI -rgb 3. 984000E+03 1. 646400E+04 4.838400E+04
pr of 4. 104000E+03 1.111200E+04 2. 628000E+04

The table gives the tota time in microseconds for communication of one value per interface node,
based on the models discussed previously. In this case the high cost of the start up times means that
the pr ofil e method, which minimisesthe number of neighbour domains, gives better resultsthan the
kl - r gb method which gives fewer interface nodes, when for 4 or 8 processors are used.

18

References

[1]
[2]

(3]

[4]

(3]

6]

[7]

8]

[9]

[10]

[11]

[12]

HA Schwarz: “Uber einige Abbildungsauf-gaben”, Ges. Math. Abh. 11 65-83 (1869).

YF Hu and R Blake, “Numerical experiences with partitioning unstructured grids’, Daresbury
Laboratory Report, DL/SCI/P865T, March 1993.

C Farhat, W Wilson and G Powell: “ Solution of Finite Element Systemson Concurrent Processing
Computers’ Engineering with Computers, 2, 157-165, (1987).

RF Fowler, BW Henderson, and C Greenough, “Initial Experiences in Porting a Three-
Dimensional Semiconductor Device Modelling Program to the Intel iPSC/860”, Rutherford
Appleton Laboratory Report, RAL-92-090 (1992).

YF Hu and RJ Blake: “Numerical Experiences with Partitioning Unstructured Meshes’, Dares-
bury Laboratory Report, DL/SCI/P865T, March 1993.

B Kernighan and SLin: “An efficient heuristic procedure for partitioning graphs’, Bell System
Technical Journal, 29 (1970), pp. 291-307.

JG Madone: “Automatic Mesh Decomposition and Concurrent Finite Element Analysis for
Hypercube Multiprocessor Computer”, Comp. Meth. in Applied Mechanical Eng., 70, 27-58
(1988).

Algorithm 582, Collected algorithmsfrom ACM, ACM-Trans. Math. Software, Vol. 8, No. 2, p.
190, June 1982.

C Greenough and RF Fowler: “Partitioning Methods for Unstructured Finite Element Meshes”,
Rutherford Appleton Laboratory Report, RAL-94-092.

CRI Emson, C Greenough, NJ Diserens and KP Duffy, “RALBIC - A Simple Neutral File for
Finite Element Data: File Definition”, RAL Report RAL-87-102, 1987.

C Greenough and RF Fowler: “A Review of Partitioning Methods for Unstructured Finite
Element Meshes’, Rutherford Appleton Laboratory Report, (To be published).

ST Barnard and HD Simon, “A fast multilevel implementation of recursive spectral bisection for
partitioning unstructured problems’, Proceedings of the 6th SIAM conf. on parallel processing
for scientific computing”, p711-718, 1993.

19

A Theralpar Command Summary

This Appendix provides a summary of al the commands available within ralpar. These commands
are listed below in a phabetic order, with full details of each in the corresponding section.

Application commands

A.1 DISPLAY
A.2 HALO

- to display partition results
- to construct element halo regions

A.3 INFORMATION - to control message output

A4 INPUT
A5 LOADPAR
A.6 MACHINE
A7 MLPART
A8 OUTPUT
A9 PARTITION
A.10 PLIST
A.11 QUIT
A.12 TABLE
A.13 VIEW
A.14 WEIGHT

I nternal commands

A.15 CHANGE
A.16 COPY
A.17 DELETE
A.18 HELP
A.19 LIST
A.20 READ
A.21 RENAME
A.22 SYNTAX
A.23 WRITE

- toread in amesh file

- to read in partition data

- to specify machine constants

- to partition using amultilevel method
- to write out partition data

- to partition the mesh

- to list element numbersin a partition
- to quit program

- to evaluate or display table of costs

- to set viewing angle for the next plot
- to define dement weights

- to change working directory

- to copy afile

- to delete afile

- to access HEL P system

- to provide directory listing

- to redirect the input stream to read from afile
- to rename afile

- to provide the syntax of a command

- to provide monitoring of a session

20

A.1 DISPLAY (Application) - to display partition results
Syntax

Display [Boundary=<choice>] [,Mesh=<choice>] [,Label=<choice>]
[,DEvice = <choice>] [, STyle = <choice>] [,SHrink = <real>]
[,EXplode = <real>] [,DOmMain =<integer>]

Description
The DISPLAY command plots the current mesh and partition on the selected output
device. Thefinite elementsin the mesh can be shrunk to help see the partition boundaries.

The partitions are shown in different colours and the partition boundaries in heavy lines
(2D only). The command provides parameters to control the style of graphical output.

Parameters

BOUNDARY retained choice: initial = YES

The BOUNDARY parameter controls the display of the partition boundaries.
Its values are: NO (no boundaries) and YES (partition boundaries are dis-
played). Only appliesto 2D meshes.

MESH retained choice: initid = YES

The MESH parameter controlsthe display of the mesh. Itsvauesare: NO (no
mesh) and Y ES (mesh displayed). Only appliesto 2D meshes.

LABEL retained choice: initiad = NO

TheLABEL parameter control sthedisplay of thenodeand el ement numbers.Its
values are: NO (no labels) and YES (node and element numbers displayed).
Only appliesto 2D meshes.

DEVICE retained choice: initial = SCREEN

The DEVICE parameter controls the destination of the graphical output. This
can be either to the screen or to afile (e.g. if aPostScript driver is available).
Its values are: SCREEN (output to screen) and FILE. Note: the the action of
option FILE is dependent of the host graphics system.

STYLE retained choice: initial = SOLID

The STYLE parameter controls how elements are drawn, either as a SOLID
(filled area) or LINE (outline only).

COLMAP retained string : initial ="’

The COLMAP parameter allowsthe user to control the coloursused by display.
COLMAP should be avalid file name in which the RGB values of the colour
defined.

21

Thefile structureis:

n - the number of colours defined in thefile
mr-val g-val b-val - the colour number followed by RGB values

The RGB values are given in the range [0-1].

SHRINK retained real : initial = 1.0

The SHRINK parameter controls the size of elements. A vaue of 1.0 gives
full size while smaller values shrink each element.

EXPLODE retainedreal : initial = 0.0

The explode factor only appliesto 3D meshes. If avaue greater than zero is
given, domains are moved apart to reveal interna interfaces.

DOMAIN retained integer : initial =0

If greater than zero this selects a single domain to be displayed. Otherwise all
domains are shown. Appliesto 3D meshes only.

Examples

Ral par: DI SPLAY
Ral par: dis yes yes yes
Ral par: Disp shrink=.6 explod=.5

22

A.2 HALO (Application) - to construct element halo regions
Syntax

HALo [DOMAIN=<integer>]

Description

The HALO command allowsthe user to control the generation of halo information by the
program. A halo is defined to be a region along the boundary of a partition which has
a one-element thickness. These elements are indicated by negative partition numbersin
output lists and darker shading in DISPLAY.

Parameters

DOMAIN retained integer : initial =0

If greater than O, this parameter isthe single domainin whichthe halo el ements
should be marked.

Examples

Ral par: HALO
Ral par: hal 3

23

A.3 INFORMATION (Application) - control message output
Syntax

INFormation [LEvel=<choice>]

Description

The INFORMATION command allows the user to control the amount of information
provided by the program during its execution.

Parameters

LEVEL retained choice: initial = QUIET

The LEVEL parameter controlsthelevel of information output. Itsvalues are:
QUIET, MEDIUM, HIGH and VERBOSE.

Examples

Ral par: | NFORVATI ON VERBCSE
Ral par: info q

24

A.4 INPUT (Application) - toread in mesh file
Syntax

Input [File=<string>] [, Type=<choice>] [,Access=<choice>]

Description

The INPUT commands reads a complete mesh from the specified file. The description
contains the nodal positions and the element topologies. The command allows for the a
number of input formats: RALBIC, ASCII, BINARY, TEST. If the file was generated by
aprevious OUTPUT command from RALPAR with partition information, this data will
also be read.

Parameters

FILE required string
The FILE parameter specifies the file namein which the datais held.

TYPE retained choice: initial = RALBIC

The TY PE parameter specifies the type of format in which the data is stored.
It hasvalues: RALBIC, ASCII, BINARY and TEST.

TESTSIZE retained integer list : initial = ()

This parameter isonly used when generating test meshes, (TY PE=TEST). Test
meshes are regular hexahedral grids and the integer list must give the number
of nodesin X, Y and Z directions. If only one node plane is specified in Z, a
2D mesh results.

Examples

Ral par: | NPUT FI LE=DATA, TYPE=FELI B, ACCESS=FORMATTED
Ral par: i data
Ral par: I np type=test testsize=(9 17 1)

25

A5 LOADPAR (Application) - toread in partition data
Syntax

L Oadpar [File=<string>] [, Type=<choice>]

Description

The LOADPAR command reads afile containing a previously calculated partition for the
current mesh. It checksthat amesh has been read and that the number of elementsinit and
thedatafileare consistent. A number of different file formatsare allowed, as described for
the OUTPUT command. To read afile that has been written with QUT FULLMESH=T,
the INPUT command must be used instead.

Parameters

FILE required string

The FILE parameter specifies the file name in which the data is held. For
RALBIC files, do not include the “.PAR” extension, and note that these file
names are automatically converted to uppercase.

TYPE retained choice: initial = RALBIC

The TY PE parameter specifies the type of format in which the datais stored.
It hasvalues: RALBIC, ASCII, BINARY or BERTIN.

Examples

Ral par: LOADPAR FI LE=DATA, TYPE=ASC |
Ral par: | oad ol dpart

26

A.6 MACHINE (Application) - to specify machine constants

Syntax

MAChine[ACtion=<choice>] [, Type=<choice>] [, TSTART=<real>]
[,TSEND=<real>] [[NAme=<string>] [,FILename=<string>]

Description

The MACHINE command allows the user to select and modify the machine constant
table. These constants are used by the TABLE command for simple estimates of parallel
communication times. New machines can be added into the list of names aong with
known values of communication parameters. The list of machine details can be saved to
(or restored from) afile.

Parameters

ACTION retained choice: initial = SELECT
The ACTION parameter control the process of the command. The current
actionsare;

SELECT - To select aparticular set of machine values.
READ - Toread atable of values from FILENAME.

WRITE - To write the machine constant table to FILENAME.
DISPLAY - To display the current table values.

ADD - To add a new machine to the table.

The TABLE command will use the machine parameters that have been SE-
LECT ed.

TYPE retained choice: initial = ipsc/860

TheTY PE parameter specifies which set of machine parameters are to be used.
Parameters are included for iPSC/860, iPSC/2, SUPERNODE and TRANS-
PUTER systems, but thislist can easily be extended.

TSTART retained real : initial = 175.0

The TSTART parameter specifies the communication start-up time in micro-
seconds. This parameter is used with ACTION=ADD.

TSEND retained real : initial = 0.36

The TSEND parameter specifies the communication ratein Mbytes per second.
This parameter is used with ACTION=ADD.

NAME reset string : initia =

The NAME parameter specifies the name of the new machine to be added to
the machine constantstable. This parameter isused with ACTION=ADD.

27

FILENAME retained string : initial = machine.cst

TheFILENAME parameter specifiesthefilename where the machine constants
tableis stored (ACTION=WRITE) or read from (ACTION=READ).

Examples

Ral par: MACH NE TYPE=SUPERNCDE ACTI ON=SELECT
Ral par: mach add new 1500 1.5 pvm

Ral par: machi ne action=dis

Machi ne Tstart
i psc/ 860 175. 000
i psc/2 612. 000
Super Node 1200. 000
Transput er 8.730
par agon 175. 000

28

Tsend

0. 360
0. 360
1. 340
1.130
0. 360

n- hal f

486. 000
1750. 000
895. 000
7.844
486. 000

R-i nf

2. 800
2. 800
0.710
0. 898
2. 800

A.7 MLPART (Application) - to use a multilevel partitioning method

Syntax

ML Part [NPart=<integer>] [METHod=<choice>]
[,SECtion=<choice>] [,CGraph=<choice>]
[,CLUst=<choice>] [MAXLvl=<integer>]
[LMINSiz=<integer>] [,KLRef=<choice>]
[,KLLim=<integer>] [,PWeight=<real list>]
[,FILEPW=<string>]

Description

The MLPART command provides access to a set of partitioning routines that can make
use of multilevel techniques. These methods include some of those available in the
PARTITION command, but with greater flexibility.

Parameters
NPART retained integer : initial =4
The NPART parameter specifies the number of partitionsinto which the mesh

isto be partitioned. The number of partitions must be less than the number of
elementsin the mesh.

METHOD retained choice: initial = SPECT

This parameter specifies the partitioning method to be used. The current
methods are:

MALONE - Element re-ordering for minimum profile width.

SPEC - Spectra bisection.

GRAPH - Graph bisection.

RAND - Random partitioning.

DGRAPH - Variation on graph bisection.

GREED - Greedy agorithm based on that of Farhat.

GLUT - Extended Greedy algorithm.

SECTION retained choice : initia = BISECT

The SECTION parameter specifies theway inwhich the chosen method should
be applied to partition the mesh.
LINSEC - The selected method is called once to get asingle ordering
of the elements. Thislist is then split into the required number of
partitions.
BISECT - The selected method is used recursively to split the mesh
into two parts until the required number of partitionsis generated.
RECSECT - Each required partitionissplit away from theremaining
mesh, one at atime.

29

CGRAPH retained choice: initiad = EDGE

This value controls how edges in the communication graph will be generated
from the mesh. Possible values are:

EDGE - Any two e ements with a common edge (2D) or face (3D)
will be connected.

TRUE - Any e ements with one or more nodes in common are con-
nected.

WEIGHT - Any elements with one or more nodes in common are
connected, and the connection is weighted by the number of such
common nodes.

CLUST retained choice: initia = A

This parameter controls how clusters are formed. At each level of graph
reduction, vertices are joined together. The default method (CLUST=A) is
a greedy one where non-clustered vertices are joined to al neighbours that
are not aready in a cluster. CLUST=B merges each free vertex to the free
neighbour with greatest edge weight.

MAXLVL retained integer : initial = 1

This parameter controls how many levelsthe graph will be condensed through
before being partitioned.

MINSIZ retained integer : initial = 20

When a graph contains less than MINSIZ vertices it will not be reduced any
further, even in the value of MAXLVL would allow this.

KLREF retained choice : initial = NONE

Any of the partitioning methods available to MLPART can be combined with
Kernighan and Lin stylerefinement. Thiscan beappliedto either just thelowest
graph level (KLREF=MINLVL) or at al levels of the graph (KLREF=FULL).
The latter gives better results but is slower. Currently, refinement can not be
used with LINSECT option.

KLLIM retained integer : initial =0

The Kernighan and Lin refinement process involves repeated passes through
all vertices, searching for a better configuration. When set to a value greater
than zero, KLLIM causes these loops to terminate early if the reduction in
cut edges falls below the current best vaue less KLLIM. This speeds up the
method, at the cost of sometimes giving poorer results. Typical values to try
are 100 to 5000 depending on mesh size.

30

PWEIGHT reset real _list : initial =0

The weights of each partition may be set by the PWEIGHT parameter. All
weights must be positive. If neither PWEIGHT or FILEPW are specified, al
partitions will have the same weight.

FILEPW reset string : initial =*”

Partition weights will be read from the file named FILEPW if this parameter
isset. Thefileisread in free format and should contain one number per line
giving the weight of each partition in sequence. All values must be greater
than 0.

Examples

Ral par: M.PART 2 SPEC Bl S MAXLVL=2

Ral par: mp 32 klref=full

Ral par: mp 20 spec lin klref=none

Ral par: M.P 6 mal pweight=(4,2,2,1,1,1)

31

A.8 OUTPUT (Application) - to write neutral file with partition numbers
Syntax

Output [Flle=<string>] [, Type=<choice>] [,FULLmesh==<choice>]

Description

The OUTPUT command writes the current partition data to afile in one of the available
formats. With the FULLMESH=TRUE option the whole mesh can be written to output
file as well as the partition data.

Parameters

FILE retained string : initial = RALPAR
The FILE parameter specifies the file namein which the datais held.

TYPE retained choice: initial = RALBIC

The TYPE parameter specifies the format in which the datais to be stored. It
can take thevalues: RALBIC, ASCII or BINARY. RALBIC fileswill havethe
extension“.PAR” appended to the namefor partitioninformation, or “.MSH” if
thefull meshiswritten. RALBIC filenames are dwaystranslated to uppercase.

FULLMESH retained choice: initial = FALSE

The FULLMESH parameter specifies whether the whole mesh should be writ-
ten to thefile, or just the partition data (the default).

Examples

Ral par: OUTPUT FI LE=PARTO1 TYPE=RALBI C
Ral par: out data900 ascii true

32

A.9 PARTITION (Application) - to partition the data
Syntax

Partition [Processors=<integer>] [,Method=< choice>]
[,LEvel=<integer>] [,CGraph=<choice>]
[,KLBISC=<choice>] [,PWeight=<real list>]
[,Fllepw=<string>]

Description

The PARTITION command controlsthe partitioning of the meshes read into the program.
The command specifies the number of partitions, the method to be used and the values of
some control parameters. For multilevel methods, see the MLPART command.

Parameters

PROCESSORS retained integer : initial =4

The PROCESSORS parameter specifies the number of partitions into which
the mesh isto be split. The number of partitions must be compatible with the
method being used.

METHOD retained choice: initial = GEO-BIS

The METHOD parameter specifies the partitioning method to be used. The
current methods are:
GEO-BI'S - geometric bisection
COSTGEO - geometric bisection using lowest cost directions
GREEDY - greedy agorithm due to Farhat
GLUTTON - greedy agorithm with multiple seed point searching
for minimum cost
BANDWTH - nodal re-ordering for minimum bandwidth (Malone)
PROFILE - nodal re-ordering for minimum profile width
INERTIA - bisection based on axes of inertia
R-INER - recursive inertial bisection
KL-GREEDY - Kernighan & Linwith GREEDY starting point
KL-RAND - Kernighan & Lin with random starting point
SPEC - recursive spectral bisection
GRAPH - recursive graph bisection
KL-RGB - Kernighan & Lin with RGB starting point

LEVEL retained integer : initial =5
The LEVEL parameter specifies the number of levels to be searched in the
GLUTTON dgorithm.

CGRAPH retained choice: initia = EDGE

33

The CGRAPH parameter specifies the type of communication to be used in
generating the communication graph. Possible values are EDGE or TRUE.

KLBISC retained choice: initiad = TRUE

The KLBISC parameter specifies whether the Kernighan & Lin methods are
to be recursive bisection methods. If FALSE, then one subdomain at a time
is split from the remaining mesh. This can be expensive for large numbers of
partitions.

KLREF retained choice: initial = FALSE

The KLREF parameter specifies whether Kernighan & Lin refinement should
be used with the SPECTRAL method. All other methods are unaffected by
this parameter.

PWEIGHT reset real _list : initial =0

The weights of each partition may be set by the PWEIGHT parameter. All
weights must be positive. If neither PWEIGHT or PFILE are specified, all
partitions will have the same weight.

FILEPW reset string : initial =

Partition weights will be read from the file named FILEPW if this parameter
isset. Thefileisread in free format and should contain one number per line
giving the weight of each partition in sequence. All values must be greater
than 0.

Examples

Ral par: PARTI TI ON PROC=16 METHOD=KL- RAND CGRAPH=TRUE
Ral par: par 32 geo
Ral par: part 6 prof pweight=(4,2,2,1,1,1)

34

A.10 PLIST (Application) - to list lement numbersin a partition
Syntax

PList [Partition=<integer>] [,Limit=<integer>]

Description

ThePLIST command allows the user to list the elements allocated to one or al partitions.
A limit on the number of lement listed per partition is useful for large meshes.

Parameters
PARTITION retained integer : initial =0

The PARTITION parameter specifies which partition isto be listed. If thisis
set to zero, al partitionswill be listed.

LIMIT retained integer : initial = 50
No more than LIMIT elements will belisted for each subdomain.

Examples

Ral par: PLI ST PARTI TION=2 LI M T=10
Ral par: pl 0 50
Ral par: pli st

35

A.11 QUIT (Application) - to quit program
Syntax

Quit

Description
The QUIT command closes all files and terminates the program.
Parameters

This command has no parameters.

Examples

Ralpar: quit

36

A.12 TABLE (Application) - to evaluate or display table of costs
Syntax

TABIe [ACtion=<choice>] [,MEthods=<string>]
[,PARtitions=<stringlist >] [,FILename=<integer _list >]
[,DAta=<choice>]

Description

The TABLE command allows the user to compare a range of methods over a number of
partitions. The user has to define the methods to be used, and the number of partitions
which are used in the COVPUTE action. Results can then be viewed with the DI SPLAY
action or written to file with WRI TE.

Parameters

ACTION retained choice: initial = COMPUTE
The ACTION parameter specifies the action to be taken by the TABLE com-
mand. Currently values are:
COMPUTE - to perform the cost table calculations
DISPLAY - todisplay the calculated cost table
WRITE - towriteacalculated cost table to file

FILE retained string : initial = rapar.ctab

The FILE parameter specifies the file name to write the cost table to, if AC-
TION=WRITE.

METHODS retained string_list : initial = (GEO-BISINERTIA)

The METHODS parameter specifies the methods to be used in the table cal-
culations. Available methods are; GEO-BIS, COSTGEO, GREEDY, GLUT-
TON,BANDWDT, PROFILE, INERTIA, R-INER, KL-GREEDY, KL-RAND,
SPEC, GRAPH and KL-RGB. Used when ACTION=COMPUTE.

PARTITIONS retained integer list : initial = (2,4)

The PARTITIONS parameter specifies the partitions that are to be used for
each method in calculating the cost table. Used when ACTION=COMPUTE.

DATA retained choice : initial = SEQCOMM

The DATA parameter specifies which results are to be shown when AC-
TION=DISPLAY or WRITE is used. Options available aree ALL, SEQ-
COMM, PARACOMM, INTERFACE, NEIGHBOURS. Note that al the data
is calculated when ACTION=COMPUTE, irrespective of the setting of this
option.

37

Examples

Ral par: table methods=(geo-bi s, cost geo, greedy) part=(2,4, 8, 16)
Ral par: TABLE ACTI ON=WRI TE FI LE=COST- TABLE dat a=al |
Ral par: TABLE di spl ay data=seqcomm

38

A.13 VIEW (Application) - to set viewing anglefor the next plot
Syntax

VEIw [XROT=<real>] [, YROT=<real>] [,ZROT=<real>]
[,SCALE=<real> >]

Description

The VIEW command allows the user to change the orientation of 3D meshes and set the
scaling. 2D meshes are not atered by this command. The effect of the new view isonly
seen in subsequent display commands.

Parameters

XROT retained real : initial = 30
The XROT parameter specifies the rotation about the » axisin degrees.

YROT retained real : initial = 20
The YROT parameter specifies the rotation about the i axisin degrees.

ZROT retained real : initial =0
The ZROT parameter specifies the rotation about the » axis in degrees.

SCALE retained real : initia =1

The SCALE parameter specifies a scaling factor to be applied to the display.
Not currently implemented.

Examples

Ral par: VI EW XROT=30 YROT=30
Ral par: view 40 0 10

39

A.14 WEIGHT (Application) - to define element weights
Syntax

WEight [M Ethod=< choice>] [,File=<string>]

Description

The WEIGHT command allows the user to give weighting to the elements of a mesh
being partitioned. The weight of elements can be used to improve load balance in
applications where mixed element types are present, or other factors are known to alter
the computational work per element. Weighting can be set to the number of nodesin each
element or to values read from afile.

Parameters

METHQOD retained choice: initiad = UNIFORM
The METHOD parameter specifies the weighting method to be used. Possible
values are:
UNIFORM - al dements have the same weight

NODAL - elements are weighted according to the number of nodes they
contain

FILE - theweighting information isto be read from afile

FILE retained string : initial ="

The FILE parameter specifies the file from which weighting information is to
betaken. Only used if ACTION=FILE. If use, the file must exist and be atext
file

Examples

Ral par: WEl GHT METHOD=UNI FORM
Ral par: we file weighting-info
Ral par: wei ght nodal

40

A.15 CHANGE (Internal) - to changeworking directory
Syntax

CHAnNge [DIRectory=<string>]

Description

The CHANGE command allowsthe user to change the current working directory without
leaving the program.

Note that the CHANGE command is an INTERNAL command and is system dependent.

Parameters

DIRECTORY reset string : initial ="

DIRECTORY specifies the directory name to which the context should be
changed. Thismust be avalid name for the host system.

Examples

Some examples on UNIX systemsare:

Ral par: change /u/cg/ral par/tests
Ral par: CHA ../tests

41

A.16 COPY (Internal) - to copy afile
Syntax

COPy [FILel=<string>] [,FILe2=<string>]

Description

The COPY command alows the user to copy one file to another without leaving the
program.

Note that the COPY command is an INTERNAL command and is system dependent.
Parameters

FILEL required string

TheFILEL parameter specifiesthe sourcefile. FILEL must beavalid file name
or expression on the host system.

FILE2 required string

The FILE2 parameter specifies the target file or directory. FILE2 must be a
valid file name or expression on the host system.

Examples

Some examples on UNIX systemsare:

Ral par: COPY /u/cg/ral par/tests/testl data
Ral par: cop ../tests/exanple .

42

A.17 DELETE (Internal) - to delete (remove) afile
Syntax

DELete [FILe=<string>]

Description

The DELETE command allowsthe user to del ete files from thefile system without leaving
the program.

Note that the DELETE command is an INTERNAL command and is system dependent.
Parameters

FILE required string

FILE specifies the fileg(s) to be deleted. FILE must be a valid file name or
expression on the host system.

Examples

Some examples on UNIX systemsare:

Ral par: DELETE data
Ral par: del ../tests/exanple

43

A.18 HELP (Internal) - to access HEL P system

Syntax

Help [KEY=<string>] [,OPTion=<choice>]

Description

Givesaccessto theinbuilt HEL P system withinthe command decoder. HEL Pisone of the
internal commands of the command processor and has acompanion command SYNTAX.

HEL P has two parameters allowing the selection of help on a specific command and
the level of help required (SUMMARY, BRIEF and SYNTAX). If no command nameis
given summary help is given on al the commands currently defined.

If an ambiguous or invalid command name is given a warning or error message is
given.

BRIEF help gives information on the purpose, syntax and the current state of the
selected command. A table of command keywords, their type, status and current value (if
applicable) is printed.

Parameters

KEY reset string : initial =

Either the global command name SUMMARY, or the specific command name
on which help is sought.

OPTION reset choice: initial = BRIEF
Thelevel of help required. Thiscan be SUMMARY, BRIEF or SYNTAX.

Examples

Ral par: help plist
Nane : PLIST

Purpose : to list elenent nunbers in a partition

Syntax : PList [Partition=<integer>] [,Limt=<integer>]
Keywor d Type St at us Current Val ue
PARTI TI ON i nt eger retained 0

LIMT i nt eger retained 50

A.19 LIST (Internal) - to providedirectory listing

Syntax

LISt [FILe=<string>]

Description
The LIST allowsthe user to list the files available in the in the system file store.
Note that the LIST command is an INTERNAL command and is system dependent.
Parameters
FILE reset string : initial =

The FILE parameter specifies afile name or file mask over which thelistingis
to search. (The file mask will be system dependent).

Examples

Some examples on UNIX systemsare:

Ral par: LIST FlI LE=dat a
Ral par: lis "* f*"

45

A.20 READ (Internal) - toredirect theinput stream to read from afile
Syntax

REad [Flle=<string>] [, ECHO=<choice>]

Description

TheREAD allowsthe user to execute aset of commandsthat have placedinafile. Linesis
thefile are processed as normal commands and information and error reports are directed
to the terminal.

Note that the READ command is an INTERNAL command and is system dependent.

Parameters

FILE required string

Input file name containing program commands.

ECHO reset choice : initia = OFF

Echo control option. If set to OFF, then commands read from the file are not
echoed to the terminal. Echo is enabled by the value ON.

Examples

Ral par: READ FI LE=scri pt, ECHO=ON
Ral par: read |ong-run off

46

A.21 RENAME (Internal) - torename afile
Syntax

REName[FILel=<string>] [,FILe2=<string>]

Description

The RENAME command allows the user to rename files from the file system without
leaving the program.

Note that the RENAME command is an INTERNAL command and is system dependent.
Parameters

FILEL required string

The FILEL parameter specifies the file to be renamed. FILEL must be avalid
file name or expression on the host system.

FILE2 required string

The FILE parameter specifies the target file. FILE2 must be avalid file name
or expression on the host system.

Examples

Ral par: renane xyz.nsh XYZ. MSH

47

A.22 SYNTAX (Internal) - to providethe syntax of a command
Syntax

SY Ntax [COMmand=<string>]

Description

Displaystheformal syntax of al thecurrently defined commands. If thesyntax of aspecific
command name is required then that nameis given as a parameter to the command.

Parameters

COMMAND retained string : initial = ALL

Specifies the commands name for which the syntax isrequired. If the syntax
of all the currently defined commands is required, then the specia command
name ALL should be used.

Examples

Ral par: syntax machi ne

MAChi ne [ACtion=<choi ce>] [, Type=<choice>] [, TSTART=<real >]
[, TSEND=<real >] [, FlLenane=<string>] [, NAne=<stri ng>]

48

A.23 WRITE (Internal) - to provide monitoring of a session

Syntax

WRIte [STAte=<choice>] [,Flle=<string>] [,PROmMpt=<choice>]

Description

Redirects the command decoder echo output to the file specified by the FILE parameter.
The information flow is controlled by the STATE parameter. This command can enable
the constructions of command files to drive the program in a background mode.

The echoing of the command prompt can be controlled using the PROMPT parameter.

Parameters

STATE required choice

Controlsthe flow of information to the monitoring file It has values ON, OFF
or CLOSE. ON switches on monitoring. OFF suspends it but does not close
the file and CLOSE ends monitoring and closes thefile.

FILE retained string : initiadl = MONITOR

Output file name to receive the monitoring stream.

PROMPT reset choice: initial = OFF

Allowsyou to select whether the command prompt is echoed in the monitoring
file. It has values ON or OFF.

Examples

In this example commands are written to the file MONITOR without the prompt:

Ral par: WRI TE STATE=ON FI LEEMONI TOR PROVPT=CFF

49

B Fileformats

B.1 RALBIC fileformat

The RALBIC neutral file format [10] is atext file format for storing details of finite element meshes
and results. This file format permits many different data fields to be stored in a single file, but for
ralpar only the el ement topology and nodal coordinates of the mesh are required.

By conventionall RALBIC filenamesare in upper case and theextension. MBHisused. A simple
example of the RALBIC neutral file for a two dimensional mesh with just two elements is shown
below:

$HEAD
VER 03_87
$CASE
Ral par
$NODE
6 2
1 0.0000000D+00 0.0000000D+00
2 0.5000000D+00 0.0000000D+00
3 0. 0000000D+00 0.5000000D+00
4 0.5000000D+00 0.5000000D+00
5 0. 0000000D+00 0.1000000D+01
6 0.5000000D+00 0.1000000D+01
$END- NODE
$ELEM
2 8
1 QUo4 AR 4 1 2 4 3
2 QUo4 AR 4 3 4 6 5
$END- ELEM
$END- CASE
$END- HEAD

The node section of the file is quite simple and just contains = and y coordinates for each node. The
element topology section ($ELEM contains one record for each element. This gives the element
number, the element type, the materid type, the number of nodes in the element and then the node
numbers. The material typefield isignored on input into ralpar. On output, an integer iswritten into
thisfield indicating the subdomain to which this el ement has been assigned, if the FULLMESH option
isset to true. If just the partition datais required, the OUTPUT command will produce afile with the
extension “.PAR". For the above mesh split into 2 the file would look like this:

$HEAD
VER 03_87
$CASE
Ral par

SETYP

2

1 2 2 1
$END- ETYP
$END- CASE
$END- HEAD

The partitioning of each element is given in the section labelled ETYP. The first number here is the
number of elements in the mesh. Then each element number is listed aong with the partition it has

50

been assigned to. In this case element 1isin partition 2 and element 2 in partition 1.

To actualy create such files from another format, two example programs are provided with the
standard release of ralpar. Thefirstis| oc2ral . f which reads amesh file in a simple format and
writes out a corresponding RALBIC neutral file. The source code for this program is provided along
with the RALBIC library so that it may be easily modified to read the data according to the preferred
format of theuser. Thiswill then provideatool to convert from any desired format to RALBIC format.

A similar program to convert the output RALBIC file from ralpar into a loca format is aso
suppliedasr al 21 oc. f . Thiscan be maodified to write the specific information that will be required
for the separate subdomains. The element typesthat are supported by the RALBIC interface include
those listed in Table 1.

Element No. of nodes | Name | Type No.
Hexahedra 8 BRO8 1
Prism 6 WG06 2
Tetrahedra 4 TEO4 3
Hexahedra 20 BR20 4
Prism 15 WG15 5
Tetrahedra 10 TE10 6
Triangle 3 TRO3 7
Triangle 6 TR0O6 8
Quadrilateral 4 QU4 9
Quadrilateral 8 QuUO08 10
Line 2 L102 11
Line 3 L103 12
Pyramid 5 PY 05 13
Hexahedra 16 BR16 14

Table 1: Some RALBIC element types.

For partitioning the ordering of nodeswithin an element isnot important, eventhoughthe RALBIC
format does specify the required order. The display command does require the correct ordering of
nodesto enable the resultsto be viewed. The assumed schemeisto number the nodes anti-clockwise.
For 3D elements, the lower plane is numbered first, then the subsequent planes, starting at the same
point as thefirst plane. Details of the numbering for more complex elementsis given in [10].

B.2 ASCII fileformat

The ASCII file format is another text format, similar to that used in the RALBIC format, though
dightly simpler. This format may be easier to write directly from an existing program since it does
not make use of an interface library as is the case with the RALBIC neutral files. For the same two
element mesh that was discussed in the previous section, the ASCII format file would look likethis:

6 2 1 Nodal coordi nates
1 0. 0000000E+00 0. 0000000E+00
2 5. 0000000E-01 0. 0000000E+00
3 0. 0000000E+00 5. 0000000E-01
4 5, 0000000E-01 5. 0000000E-01

51

5 0. 0000000E+00 1. 0000000E+00

6 5. 0000000E-01 1. 0000000E+00

2 4 El ement topol ogy

1 9 4 1 2 4 3
2 9 4 3 4 6 5

As before, the noda coordinates are listed first. The initia line gives the number of nodes, the
dimension of the mesh (2 or 3) and aversion number of the format (=1). Thenthe z and y coordinates
of each node are given. The exact formats used can be seenintheroutinew asci . f inthedirectory
dat ai 0. Thefirst line of the e ement topology section gives the number of elementsin the mesh and
the maximum number of nodesin an element. thisisfollowed by alist of element descriptions. This
consists of the eement number, the element type (as in table 1), the number of nodes in the element

and finally the node numbers themselves.
If the ASCII format isused in the OUTPUT command then the file is of the form shown here:

2 2 1 El ement partition nunbers
2 1

Thethreevaues on thefirst line are the number of elements, the number of partitions used and avalue
indicating which method was used. This isfollowed by the partition number each element has been
assigned to. Note that the element numbers are not listed in this section.

52

C Control of memory allocation

Ralpar is written in standard Fortran 77 as far as possible. As the standard does not alow dynamic
memory allocation, most arrays aretreated as having fixed size. To alow youto adjust the memory use
according to that available on your machine (and size of mesh), dynamic allocation of work arraysis
madeat thetoplevel. By default, spaceisallocated for about 30000 nodes/elements. To partitionlarger
meshes you need to set the environment variables RALPAR NODES and/or RALPAR_ELEMENTS. For
example, if you have 100000 nodes and 120000 elements you could issue the command (csh):

set env RALPAR_ELEMENTS 130000
before running ralpar. In the Bourne shell the command would be:

RALPAR_ELEMENTS=130000
export RALPAR ELEMENTS

Note that if you only set one of nodes or el ements, the other defaults to the same value.

The maximum number of nodes in an element defaults to 8. This is sufficient for most simple
finite elements. However, if dements with greater number of nodes are needed, such as 20 noded
hexahedra, thislimit can be increased by;

setenv RALPAR NODES PER ELEM 20

Conversely, if a mesh only contains tetrahedra for example, setting this parameter to 4 would save
some memory.

Of course, some methods require much more memory than other methods and the partitioner
allocates enough for all methods by default (assuming “reasonable” limits on connectivity). You can
change the amount of workspace allocated by setting the environment variable RALPAR_ MEMORY_SF
if your machine cannot allocate sufficient memory for agiven number of nodes/elements. The default
value of thisis 100, so to half the workspace, you could issue the command (in csh):

set env RALPAR_ MEMORY_SF 50

Note that some methods may not run with this reduced workspace, and you should only try thisif
the partitioner will not run because it failed to allocate enough memory for the requested mesh size.

To find out how much of the available workspace is actually being used by each method, you can
use the command i nf or mati on hi gh. Any subsequent partiti on commands will then aso
print out some details of how much space was actually used.

53

	Abstract
	Contents
	1 Introduction
	2 Parallel processing and mesh decomposition
	3 Measuring partition quality
	4 Mesh partitioning techniques
	5 Multilevel partitioning methods
	6 Modelling parallel system performance
	7 Using ralpar
	7.1 Starting execution
	7.2 Ralpar Commands
	7.3 Internal Commands
	7.4 Data Input and Output
	7.5 Partitioning a two dimensional mesh
	7.6 Partitioning a three dimensional mesh
	7.7 Partitioning Elements of Different Weights
	7.8 Partition Halos
	7.9 Comparing methods using the table command

	References
	A The ralpar Command Summary
	A.1 DISPLAY (Application) - to display partition results
	A.2 HALO (Application) - to construct element halo regions
	A.3 INFORMATION (Application) - control message output
	A.4 INPUT (Application) - to read in mesh file
	A.5 LOADPAR (Application) - to read in partition data
	A.6 MACHINE (Application) - to specify machine constants
	A.7 MLPART (Application) - to use a multilevel partitioning method
	A.8 OUTPUT (Application) - to write neutral file with partition numbers
	A.9 PARTITION (Application) - to partition the data
	A.10 PLIST (Application) - to list element numbers in a partition
	A.11 QUIT (Application) - to quit program
	A.12 TABLE (Application) - to evaluate or display table of costs
	A.13 VIEW (Application) - to set viewing angle for the next plot
	A.14 WEIGHT (Application) - to define element weights
	A.15 CHANGE (Internal) - to change working directory
	A.16 COPY (Internal) - to copy a file
	A.17 DELETE (Internal) - to delete (remove) a file
	A.18 HELP (Internal) - to access HELP system
	A.19 LIST (Internal) - to provide directory listing
	A.20 READ (Internal) - to redirect the input stream to read from a file
	A.21 RENAME (Internal) - to rename a file
	A.22 SYNTAX (Internal) - to provide the syntax of a command
	A.23 WRITE (Internal) - to provide monitoring of a session

	B File formats
	B.1 RALBIC file format
	B.2 ASCII file format

	C Control of memory allocation

