
RALPAR - RAL Mesh Partitioning Program

Version 2.0

RF Fowler and C Greenough

December 1997

Abstract

This report describes the second release of the Rutherford Appleton Laboratory Mesh Partitioning Program

ralpar. Ralpar is a software tool to split up unstructured meshes into subdomains for parallel processing on

MIMD type architectures. A wide range of basic decomposition methods have been implemented within this

tool. This document briefly describes these methods and how to use ralpar to partition meshes. It also gives

details of the measures of partition quality that are provided.

A copy of this report can be found at the Department’s web site (http://www.dci.clrc.ac.uk/) under page

Group.asp?DCICSEMSW or anonymous ftp server www.inf.rl.ac.uk under the directory pub/mathsoft/publications

Mathematical Software Group
Department for Computation and Information
Rutherford Appleton Laboratory
Chilton, DIDCOT
Oxfordshire OX11 0QX

Contents

1 Introduction : 1

2 Parallel processing and mesh decomposition : 1

3 Measuring partition quality : 2

4 Mesh partitioning techniques : 3

5 Multilevel partitioning methods : 4

6 Modelling parallel system performance : 5

7 Using ralpar : 6
7.1 Starting execution : 6
7.2 Ralpar Commands : 7
7.3 Internal Commands : 8
7.4 Data Input and Output : 8
7.5 Partitioning a two dimensional mesh : 9
7.6 Partitioning a three dimensional mesh : 12
7.7 Partitioning Elements of Different Weights : 16
7.8 Partition Halos : 16
7.9 Comparing methods using the table command : : : : : : : : : : : : : : : : : : : 16

A The ralpar Command Summary : 20
A.1 DISPLAY (Application) - to display partition results : : : : : : : : : : : : : : : : : 21
A.2 HALO (Application) - to construct element halo regions : : : : : : : : : : : : : : : 23
A.3 INFORMATION (Application) - control message output : : : : : : : : : : : : : : : 24
A.4 INPUT (Application) - to read in mesh file : 25
A.5 LOADPAR (Application) - to read in partition data : : : : : : : : : : : : : : : : : : 26
A.6 MACHINE (Application) - to specify machine constants : : : : : : : : : : : : : : : 27
A.7 MLPART (Application) - to use a multilevel partitioning method : : : : : : : : : : : 29
A.8 OUTPUT (Application) - to write neutral file with partition numbers : : : : : : : : : 32
A.9 PARTITION (Application) - to partition the data : : : : : : : : : : : : : : : : : : : 33
A.10 PLIST (Application) - to list element numbers in a partition : : : : : : : : : : : : : 35
A.11 QUIT (Application) - to quit program : 36
A.12 TABLE (Application) - to evaluate or display table of costs : : : : : : : : : : : : : : 37
A.13 VIEW (Application) - to set viewing angle for the next plot : : : : : : : : : : : : : 39
A.14 WEIGHT (Application) - to define element weights : : : : : : : : : : : : : : : : : 40
A.15 CHANGE (Internal) - to change working directory : : : : : : : : : : : : : : : : : : 41
A.16 COPY (Internal) - to copy a file : 42
A.17 DELETE (Internal) - to delete (remove) a file : 43
A.18 HELP (Internal) - to access HELP system : 44
A.19 LIST (Internal) - to provide directory listing : 45
A.20 READ (Internal) - to redirect the input stream to read from a file : : : : : : : : : : : 46
A.21 RENAME (Internal) - to rename a file : 47
A.22 SYNTAX (Internal) - to provide the syntax of a command : : : : : : : : : : : : : : 48

i

A.23 WRITE (Internal) - to provide monitoring of a session : : : : : : : : : : : : : : : : 49

B File formats : 50
B.1 RALBIC file format : 50
B.2 ASCII file format : 51

C Control of memory allocation : 53

ii

1 Introduction

This document describes Version 2.0 of the ralpar mesh partitioning tool. This tool implements a
wide range of basic mesh partitioning algorithms for unstructured finite element type meshes in two
and three dimensions using direct and graph based methods. The tool provides some simple display
options and commands for storing information about the partitions generated.

Mesh partitioning for unstructured meshes is important in the area of parallel processing for grid
based calculations. ralpar is a tool to help in the generation of these partitions. The initial sections
of this report review the requirements of mesh partitioning for parallel and distributed computing.
A short description of the partitioning methods contained in ralpar is included together with some
thoughts on measuring the quality of the partitions generated.

Much of the report is given over to the detailed use of ralpar which is illustrated using some two
and three-dimensional examples.

Appendix A is a command reference Section for ralpar,. The interface to RALBIC neutral files
and memory management control are discussed in Appendices B and C respectively.

2 Parallel processing and mesh decomposition

The use of computing systems with some type of parallel architecture has grown significantly over
the past few years. These systems are seen as the path by which sufficient computing power can
be provided for accurate three dimensional simulations of complex phenomenon in areas such as
fluid dynamics, stress analysis and electromagnetism. Such simulations typically use meshes or
grids containing 105 to 106 nodes and may employ automatic grid refinement during the solution.
Unstructured grids are often necessary due to complex geometries and the need to place nodes in an
intelligent manner, to minimise the overall error in the solution.

Many of the parallel machines now being used are based on the MIMD form of parallelism where
the memory of the machine is distributed over a network of processors. A consequence of this is
that the program and its associated data must also be distributed between these processors. In finite
volume and finite element methods this leads to the problem of how to distribute large unstructured
grids and meshes initially, and how to redistribute them subsequently, if refinement is made. This
tool only addresses the problem of the initial partitioning and assumes that a single processor with
sufficient memory is available to partition the complete mesh.

When moving a large grid based computation to a distributed memory machine there are two main
approaches:

� Direct parallelisation of the existing solution algorithm. In this case data exchanges are made
between processors whenever required by the algorithm.

� True Domain Decomposition (DD) methods. In this case separate problems are solved on each of
the subdomains independently and then some method is used to “patch” together these solutions,
which again involves interprocessor communication. Two subclasses within DD methods are:

1. Overlapping subdomains. In this case a layer of mesh elements on the interface between
two subdomains is assigned to both of them. These allow methods based on the Schwarz
alternating procedure [1] to be used.

1

2. Non-overlapping subdomains. In this case it is necessary to solve a separate global problem
for the interface nodes between domains. One approach is to form the Schur complement
matrix for the interface.

The current version of ralpar only produces non-overlapping mesh decompositions, though the HALO
command allows the identification of elements in an overlap region.

Three of the major requirements for efficient parallel processing are:

1. To minimise the sequential part of the computation.

2. To ensure that all processors have the same amount of work to do.

3. To minimise interprocessor communication.

The fact that ralpar is a sequential program is not optimal with regard to the first point, but the cost of
partitioning is often quite small compared to the actual computations performed on the mesh.

Load balancing is often achievable by assigning the same number of elements to each processor.
However in many cases, such as with a mixed mesh containing several different element types, it can
be desirable to attach a computational weight wi to each element. Partitioning of the mesh into N

parts should then aim to assign each domain a set of elements with weight W given by

W =

P
i wi

N
(1)

The current version of the tool only deals with element partitioning, though there can be cases where
a partitioning of the nodes is more appropriate.

Another extension that is becoming important for computations on heterogeneous workstation
clusters is that of domain weighting. It may be that one machine is more powerful than the others and
hence should have a larger share of the work. This can also be included in the above scheme and is
available in the current version of ralpar.

Minimisation of interprocessor communication time is very important in distributed grid based
calculations. An ideal case would be where the subdomains could be completely decoupled and no
exchange of information was required. This is rarely the case, so the aim of a mesh partitioning method
is to find a splitting that minimises the communication cost. The NP-hard nature of this minimisation
means that all methods are heuristic, and may not find the global minimum. The actual communication
time will also depend on the characteristics of the parallel machine, the solution algorithm and the
nature of the problem being solved.

3 Measuring partition quality

The true measure of interest for any mesh partitioning method is the effect it has on the run time for the
computations that are to be performed on a real parallel system. Generally, this effect is too sensitive
to the particular combination of algorithm and parallel hardware being used to be practical. Instead
simpler models are used which measure the size of the interface between subdomains and related
quantities.

Load balancing, by assigning the same amount of work to each processor, is built into all the
decomposition schemes discussed here. Hence it is not a good measure to compare decomposition
methods with. Multi-level methods which do not include some form of smoothing on the first level

2

can produce poorer load balance than expected. As a result in most implementations of multi-level
techniques smoothing in provided between expansions.

As was noted in the previous section, the number of interface nodes that a mesh decomposition
produces can effect the size of the interface problem to be solved. This quantity is taken as our main
measure of interface size. For all methods ralpar reports the total number of interface nodes that are
generated.

Another measure that may be of importance is the number of neighbouring subdomains about each
subdomain. This can be important in matrix assembly operations for node based quantities where each
processor will have to exchange interface data with all its neighbours. While the total amount of data
to be exchanged will be proportional to the number of interface nodes, there is always a certain amount
of time involved in initiating a communication with another processor. Under some circumstances
this time can be a significant amount of the total communication time. In ralpar the user is provided
with the average number of neighbouring subdomains for the partition along with the minimum and
maximum number of neighbours for any one subdomain.

Many partitioning methods can be cast in terms of an undirected graph which describes the way in
which elements are connected together. Within such a graph, each element is represented as a vertex
of the graph. The need for communication between neighbouring elements is then indicated by an
“edge” of the graph, joining the two vertices. This approach is more fully explained in [11]. For
such methods a convenient measure of the quality of a partition is the number of cut edges generated.
A cut edge occurs when the vertices (elements) at either end of the edge are assigned to different
subdomains. Ralpar calculates the sum of these cut edges for all graph based methods. This measure
is not identical to the number of interface nodes, but they are roughly proportional to each other. The
number of edges in a graph, and hence the number of cut edges, depends on the definition used for
elements to be connected. The three options are available within ralpar are:

EDDG - elements are linked if they have a common face with a neighbour TRUE -
elements are linked if they share one or more nodes with a neighbour WEIGHT - elements
are linked if they share one or more nodes with a neighbour and the edge is weighted by
the total number of common nodes.

The number of cut edges reported will depend on which definition has been used. For the first two
options, all edges are assigned a weight of one.

4 Mesh partitioning techniques

All mesh partitioning methods generate a parameter or measure to separate elements into partitions.
These separators can be based on some geometric property of the mesh or based on some attribute of
the graph associated with the topology of the mesh. Some methods have more heuristic origins and
base the separation on some type of cost measure. ralpar is a pre-processor of finite element meshes
prior to their use in parallel or distributed computation. It provides the analysis program with a list
of elements along with the partition number that they have been assigned to. The following mesh
partitioning techniques are currently available within ralpar:

Geometric Methods

Geometric bisection (geo-bis):

Cost Optimised geometric bisection (costgeo)

3

Geometric bisection on axes of inertia (inertia)

Recursive version on Inertia method (r-inertia)

Graph Based Methods

Graph bisection method (graph)

Malone bandwidth minimisation algorithm (bandwdt)

Variation of Malone method with profile minimisation (profile)

Greedy algorithm of Farhat (greedy)

Cost optimised version of Greedy algorithm (glutton)

Kernighan and Lin method with a Greedy start (kl-greedy)

Kernighan and Lin method with a random start (kl-rand)

Kernighan and Lin with a graph bisection start (kl-rgb)

Spectral bisection (may use KL refinement) (spect)

Multi-Level Methods

A more detailed descriptions of these methods is given in [11].

5 Multilevel partitioning methods

Some partitioning methods can be very expensive in terms of CPU time and memory requirements
for large problems. The spectral method is a prime example of this as the eigenvector solution can be
very expensive when dealing with the order of a million elements. Multilevel methods [12] have been
proposed as way of reducing the costs of such techniques while still generating high quality partitions.
These work on the connectivity graph of the mesh, but instead of trying to split this directly, the graph
is first “condensed” through a number of levels. The condensation is achieved through clustering
together vertices that are “close together” to produce a graph with fewer vertices. New edges between
the clusters are weighted to reflect the number of edges that existed in the larger graph.

By using several levels of condensation a much smaller graph can be obtained that is easily
partitioned by a method such as spectral bisection. This partitioning information can then be transfered
up through the levels to the original graph. In practice it is found that some refinement of the partition is
required on the higher graph levels, and this can be done using the Kernighan and Lin (KL) technique.

The multilevel methods can be accessed using the MLPART command. This gives a number of
options as to the number of levels of condensation to be used and how vertices are to be clustered at
each level. The set of methods that can be used to partition the smallest graph is as follows:

Graph bisection (graph)

Dual graph variation of graph bisection (dgraph)

Malone bandwidth minimisation algorithm (on vertices) (malone)

Greedy algorithm of Farhat (greedy)

Cost optimised version of Greedy algorithm (glutton)

4

Random partitioning (rand)

Spectral method (spec)

All these methods can be combined with KL refinement at just the lowest graph level or at all levels.
In addition the methods can be used in three different ways:

Recursive bisection: splitting the graph in half each time (bisect)

Recursive section: splitting one subdomain at a time from the remaining graph (recsect)

Linear section: where the method is applied just once to get a single ordering of the vertices. This is
then split into the required number of subdomains. (linsect)

In the current release KL refinement can not be used with linear sections.
The mlpart command allows an additional parameters to control the KL refinement process.

6 Modelling parallel system performance

For a given algorithm and data distribution it is often possible to specify how much data needs to be
exchanged and between which processors this has to occur. The time to send n bytes between two
processors in a parallel machine can often be approximated by the equation

t = tstart + ntsend (2)

where tstart is the time to initialise communications and tsend is the time to send one byte. This
formula ignores many factors, such as contention (due to other messages in the system), multihop
costs, message length dependent buffering strategies and so on. However it is a reasonable first
approximation and the parameters have been measured for most parallel systems in common use.

If the knowledge of the algorithm communication requirements is combined with the data distri-
bution of a given partition and a communication cost model, like (2), then it is possible to estimate the
actual communication time.

As a first step in this direction, two simple cost modelling schemes have been built into ralpar.
There are two commands associated with these:

� Machine - this command allows machine communication parameters to be stored and viewed.
The parameters used are the tstart and tsend values defined above, expressed in units of mi-
croseconds. R

1
and N1=2, the maximum communication rate and half performance message

length respectively, are calculated from tstart and tsend . The machine command also selects
which machine type is to be used by the next table calculation.

� Table - this command calculates or displays the results for a given mesh using a range of
partitioning methods. Results can also be written to file using this command.

The cost models currently implemented assume a simple contribution assembly calculation where
each processor will have to transmit or receive data proportional to the number of interface nodes
that it has. We assume that one 8 byte value will be associated with every interface node and must
be swapped with a neighbouring subdomain. For the first model we assume communications on a
bus type architecture, such as a network of workstations connected via Ethernet. This is referred to

5

as SEQCOMM as in this case only one message can be active at a time and the total time spent in
communication is just the sum of all the communication times for individual subdomains. Thus we
calculate the communication time Tcomm as,

Tcomm =
pX

i=1

(Nitstart + 8tsendIi)

= NT tstart + 8tsend
pX

i=1

Ii (3)

where Ii is the number of interface nodes associated with subdomain i and Ni is the number of
neighbour subdomains for i. NT is the total number of neighbours, given by summing Ni. Clearly,
there are a number of variations one could make in this formula, depending on the number of variables
to be evaluated and which processors need to know the result. However, (3) is one possible form and
we can make comparisons between methods using it, as long as we accept the results are qualitative
rather than quantitative.

The second model that has been implemented is referred to as PARACOMM. This model assumes
that all processors can perform their communication in parallel. It is again assumed that each processor
will have to send or receive 8 bytes of data for each interface node that belongs to its domain and
also to start communication with as many other processors as it has neighbours. Hence the total
communication time for one processor is just

Tcomm(i) = 8tsendIi +Nitstart (4)

Thus communication tasks within a single processor will be done sequentially, but each processor will
do this in parallel with all the others. On some systems, such as the Intel iPSC/860, it is possible to
have concurrent communication on one processor using all the links available at once, though this may
result in increased network contention. Such contention is ignored in the PARACOMM model. Note
that in this model we use the Ii to represent all the interface nodes on subdomain i, where as in the
sequential model interface nodes were assigned to the first subdomain they appeared in. Hence we
have a larger amount of data interchange in this case.

Assuming that all the processors can operate in parallel without any contention, then the total
communication time will be given by the largest value of Tcomm(i). The PARACOMM model reports
both the maximum and average values of Tcomm(i). Details of how the Machine and Table

commands can be found in the Command Appenix.

7 Using ralpar

7.1 Starting execution

To start the standard version of ralpar, you need to be in a directory that contains the command
definition file ralpar.cmd. If this file is not present, ralpar will stop and issue an error message.

The partitioner is started by issuing the executable name, if it has been placed in your search path,
or the full pathname otherwise, e.g. ../ralpar. This will cause a short introductory message to
be printed followed by the prompt Ralpar:. Any valid command can than be issued and these
commands are fully described in Appendix A.

6

7.2 Ralpar Commands

Ralpar has a comprehensive set of commands to control partition creation, method selection and
information output. To get an online list of command names you just type help. The commands
currently defined are:

Applications Commands

INPUT - to read in mesh file

PARTITION - to partition the data

DISPLAY - to display partition results

PLIST - to list element numbers in a partition

OUTPUT - to write output file with partition numbers
WEIGHT - Define element weight

MACHINE - to specify machine constants

TABLE - to evaluate or display table of costs

INFORMATION - control message output
QUIT - to quit program

VIEW - to change viewing angle for current plot

HALO - to construct element halo regions

LOADPAR - to read in partition data

MLPART - multilevel partitioning

Internal Commands

CHANGE - to change working directory

RENAME - to rename a file
COPY - to copy a file

DELETE - to delete (remove) a file

LIST - to provide directory listing

WRITE - to provide monitoring of a session

READ - to redirect the input stream to read from a file
SYNTAX - to provide the syntax of a command

HELP - to access HELP system

For further information type: HELP <command name> [<option>],

where <option> is BRIEF or FULL

All the commands can be typed in upper or lower case. The syntax of each command can be obtained
by using the syntax command. For example

syntax partition

produces

Partition [Processors=<integer>] [,Method=<choice>] [,LEvel=<integer>]

[,CGraph=<choice>] [,KLBISC=<choice>] [,KLREF=<choice>]
[,PWeight=<real_list>] [,FIlepw=<string>]

To get full details on a command and its parameters, such as the PARTITION command, you can
use HELP PARTITION.

7

Name : PARTITION

Purpose : to partition the data

Syntax : Partition [Processors=<integer>] [,Method=<choice>]

[,LEvel=<integer>] [,CGraph=<choice>]
[,KLBISC=<choice>] [,KLREF=<choice>]

[,PWeight=<real_list>] [,FIlepw=<string>]

Keyword Type Status Current Value

--

PROCESSORS integer retained 4

METHOD choice retained GEO-BIS,costgeo,greedy,glutton,

bandwdt,profile,inertia,r-iner,

kl-greedy,kl-rand,spec,graph,
kl-rgb,

LEVEL integer retained 5

CGRAPH choice retained EDGE,truecomm

KLBISC choice retained TRUE,false

KLREF choice retained FALSE,true
PWEIGHT real_list reset 0

FILEPW string reset

A command can be abbreviated, the shortest value being indicated by the uppercase letters in the
syntax section, e.g. the Partition command may be shortened to just p. The system is reasonably
simple to use and working through one or two of the examples below should enable one to get to grips
with it.

7.3 Internal Commands

Ralpar provides a number of internal commands. These commands, such as HELP and COPY, provide
standard information and file handling from within ralpar. As with all commands, details of their
usage can be obtained through the HELP command. A summary of these commands is given in the
Command Appendix.

Those commands that access the file store do so by invoking the appropriate system command
of the operating system being used. This means that in general if an report or error on an action is
produced, these will be those of the host operating system.

For example, on UNIX systems, theRENAME command will use the UNIX commandmv. Similarly
LIST uses the UNIX command ls. Although the parameter types for these commands is string, the
appropriate host systems file expression can be used. An example of this is:

LIST *.MSH

On a UNIX system this command will list all files with extension .MSH in the current working
directory.

7.4 Data Input and Output

Ralpar currently supports three main formats for data input and output. These are:

RALBIC - A formal format defined for finite element meshes, full details of which are given in [10].

8

ASCII - A simple format which should be easier to use than the RALBIC one.

BINARY - A binary version of the ASCII format, mainly used to save and restore results quickly.

A full mesh is required as input, including the nodal coordinates and the element topology. There are
three commands related to input and output operations. Input is used to read a mesh in one of the
above formats. The output command will, by default, write a file with the mapping of elements to
partitions in the selected format. Finally, loadpar can be used to read in the results of a previously
saved partitioning operation. This requires that the mesh has already been read via input. The
details of these formats is given in Appendix B.

7.5 Partitioning a two dimensional mesh

The file CMPLX1.MSH contains the RALBIC neutral file description of a two dimensional mesh with
165 quadrilateral elements and 200 nodes. Note that all RALBIC mesh files have the extension.MSH
and that the filename is in uppercase. The input command will automatically add the extension and
convert the name to upper case. Thus to read in this file we can use the command

Ralpar: input cmplx1

which is the same as

Ralpar: input file=cmplx1 type=ralbic

since the last parameter is optional and defaults to ralbic.
You can than view the mesh using the command

Ralpar: display

This should give a plot of the mesh similar to that shown in Figure 1.
To partition the mesh use either the partition or the mlpart commands. Thus, after having

read the mesh with the input command, one can type

Ralpar: partition 4 geo

Ralpar: display

Ralpar: part 4 band

Ralpar: disp

Ralpar: mlpart 4 spec maxlvl=1 klref=full

Ralpar: disp

to compare the results of three different methods for the case of dividing the mesh into four parts.
Typical results are shown in Figures 2, 3 and 4.

Note that after each partition command has been completed, the tool provides some informa-
tion on the number of interface nodes that have been generated, such as:

Inform: Interface node cost= 45

Neighbour domains: Ave.= 2.500 Max.= 3 Min.= 2

Inform: CPU time = 0.010 s

Also reported are the average number of domains about a domain and the minimum and maximum
value of this quantity. For methods which are graph based, we also give the number of cut edges
generated:

9

Mesh plot of CMPLX1.MSH

Figure 1: The mesh CMPLX1.MSH as displayed using the display command.

Mesh plot of CMPLX1.MSH using GEO-BIS method

Number of partitions= 4 Cost= 39

Figure 2: The mesh CMPLX1.MSH partitioned into 4 using the geometric bisection method.

10

Mesh plot of CMPLX1.MSH using BANWDT method

Number of partitions= 4 Cost= 48

Figure 3: The mesh CMPLX1.MSH partitioned into 4 using the bandwidth (Malone) method.

Mesh plot of CMPLX1.MSH using MULTILEVEL method

Number of partitions= 4 Cost= 28

Figure 4: The mesh CMPLX1.MSH partitioned into 4 using a multi-level method.

11

Ralpar: part 4 kl-gre

Inform: Edge cut cost= 26 for 4 domains

Inform: Interface node cost= 29

Neighbour domains: Ave.= 2.500 Max.= 3 Min.= 2

Inform: CPU time = 0.080 s

Note that the cut edge cost depends on the definition of the communication graph that is used. The
default is to use the edge communication graph (described in the section on methods). Using the true
communication graph with the same method, we get:

Ralpar: part 4 kl-gre cg=true

Inform: Edge cut cost= 62 for 4 domains

Inform: Interface node cost= 28

Neighbour domains: Ave.= 2.500 Max.= 3 Min.= 2

Inform: CPU time = 0.130 s

It should be noted that most optional parameters are retained, that is if you change the value in one
command, it will become the new default. So for example, if the command part 5 was issued after
the above partition command, it would use the kl-gre method with the true communication graph.

Having made a partition of the mesh, the results can be written out to a file using the output

command. By default this command will create a RALBIC file with the extension “.PAR”. This will
contain just a list of the mapping of element numbers to the partition they have been assigned to.
ASCII or BINARY formats can be selected if required. If the parameter FULLMESH is set to TRUE,
then the complete mesh will be written as well as the partition information. In this case the “.MSH”
extension will be added to the file in the RALBIC case. For example, to write just the partition data
to the file CMPLX2.PAR, one could issue the command:

Ralpar: output cmplx2

This partition could then be read back in at a later time with the command:

Ralpar: loadpar cmplx2

Appendix C gives details of the RALBIC and ASCII formats. This should allow conversion of
existing data to a form that can be read by ralpar.

7.6 Partitioning a three dimensional mesh

All the same commands used for two dimensional meshes can be used the three dimensional ones. A
simple three dimensional mesh, just consisting of one plane of hexahedral elements in the form of a
“T”, is given in the neutral file T.MSH which is provided with the standard ralpar release. Figure 5
shows the basic mesh.

The first method used is geocost and the result is shown in Figure 6. Other methods shown in
Figures 7-9 are: kl-rgb, profile and mlp with a spectral bisection root.

The commands used to generate these partitions are:

Ralpar: input t

Inform: Data file read: Nodes= 3402 Elements= 1600 Periodic nodes= 0

Ralpar: display sty=line

12

Mesh plot of T.MSH using PROFILE method

Number of Partitions = 0 Cost = 440

Figure 5: The mesh T.MSH as displayed using the display command.

Mesh plot of T.MSH using COSTGEO method

Number of Partitions = 8 Cost = 282

Figure 6: The mesh T.MSH partitioned into 4 using the cost variation of the geometric bisection

method.

13

Mesh plot of T.MSH using PROFILE method

Number of Partitions = 8 Cost = 440

Figure 7: The mesh T.MSH partitioned into 4 using Malone’s method.

Mesh plot of T.MSH using KL-RGB method

Number of Partitions = 8 Cost = 282

Figure 8: The mesh T.MSH partitioned into 4 using a Kernighan and Lin method with a rgb start.

14

Mesh plot of T.MSH using MULTILEVEL method

Number of Partitions = 8 Cost = 350

Figure 9: The mesh T.MSH partitioned into 4 using a multi-level method.

Ralpar: part 8 costgeo

Inform: Interface node cost= 282

Neighbour domains: Ave.= 3.250 Max.= 5 Min.= 2

Inform: CPU time = 0.672 s

Ralpar: display exp=0.25 sty=line

Ralpar: part 8 kl-rgb

Inform: Edge cut cost= 432 for 8 domains

Inform: Interface node cost= 326

Neighbour domains: Ave.= 2.500 Max.= 4 Min.= 1

Inform: CPU time = 1.920 s

Ralpar: disp

Ralpar: part 8 profile

Inform: Interface node cost= 440

Neighbour domains: Ave.= 1.750 Max.= 2 Min.= 1

Inform: CPU time = 1.515 s

Ralpar: mlp 8 spec

Inform: CPU time ML part = 5.884 secs

Cut edges= 466

Worst balance factor = 0.000000

MINCON= 84 MAXCON= 166 AVECON= 116.500

MINNEI= 2 MAXNEI= 5 AVENEI= 3.000

Interface node cost = 350

Inform: Interface nodes= 350 Cut edges= 0 Imbalance= 0.000000

CPU time (secs)= 5.884

15

Ralpar: displ

Ralpar:

For this highly regular case the cost-geometric method happens to give the best result in terms of
interface nodes.

7.7 Partitioning Elements of Different Weights

If we wish to assign non-uniform weights to each element we can do this with theweight command.
In the mesh T.MSH all the elements are of the same type, so using the weighting on number of nodes
(weight nodal) will have no effect. Instead we can use a file to specify the weights. This can be
a normal text file with one number to a line which gives the weights in sequence for each element. If
we assume such a file (wfile) has been written, then it can be used in the following way:

Ralpar: weight file wfile

Using element weights from file:wfile

Ralpar: info high

Ralpar: part 2 glutton

Inform: Target weight per partition = 0.120025E+04

Min. weight = 0.119931E+04 Max. weight = 0.120119E+04

Ratio (max. weight)/(ave. weight) = 0.100078E+01

Inform: Using ISTART= 5

Inform: Interface node cost= 100

Neighbour domains: Ave.= 1.000 Max.= 1 Min.= 1

Inform: Workspace used 26210 out of 2800000 I*4 words

Minimum value of RALPAR_MEMORY_SF = 15

Inform: CPU time = 0.730 s

Note that we have used the information command to increase the amount of detail that is reported
in this case. Much of the extra detail is not usually wanted, though in this case is allows us to see how
well the load balance has worked in the case with weighting. If highly non-uniform weighting are
used it is possible to get poor load balancing results. An element weight is a real value greater than
zero.

7.8 Partition Halos

In many computational methods the partition halo is required to enable a subdomain iteration process.
Often this involves the iterative update of an overlap region. The ralpar command HALO generates a
single depth element halo on all partition interfaces.

Those elements contained in the halo are all those that are connected to the interface nodes. Other
types of halo or overlap are possible but a single level halo of this type seems currently the most used.

Figure 10 and Figure 11 show two examples of the halos generated by ralpar.

7.9 Comparing methods using the table command

The machine and table commands can be used to compare partitioning methods. Currently the
table command implements the simple model for bus type communication architectures and the

16

Mesh plot of T2.MSH using GEO-BIS method

Number of partitions= 4 Cost= 103

Figure 10: The halo generate for the T.MSH mesh.

Mesh plot of COUDE.MSH using GEO-BIS method

Number of Partitions = 4 Cost = 144

Figure 11: The halo generate for the COUDE.MSH mesh.

17

parallel model, as described in the previous section. This command may be extended in future versions
of ralpar.

Having read in a mesh file, such as T.MSH, it is necessary to first select the machine parameters
to be used in the calculation. This is done with the machine command. To see what machines are
available you can use the command:

Ralpar: machine action=display

Machine Tstart Tsend n-half R-inf

i860 175.000 0.360 486.000 2.800

ipsc/2 612.000 0.360 1750.000 2.800

SuperNode 1200.000 1.340 895.000 0.710

Transputer 8.730 1.130 7.844 0.898

This gives names and parameters of the available machines.
It is possible to extend this list within the current run of ralpar. For example to add the parameters

for PVM running over a Ethernet at RAL the commands would be:

Ralpar: mach add new 1500 1.5 name=pvm

This will cause pvm to be added to the list of available machines. Times are in microseconds and
communication rate in Mbytes/s. New machine names and parameters are not automatically saved
between runs of ralpar, though it is possible to use the write option of the machine command to
save the data and reload it in another run with the read option.

To compare selected methods over a range of partition numbers, one can then use the select
option of the machine command followed by the table command, e.g.

Ralpar: mach select pvm

Ralpar: table compute methods=(kl-rgb,prof) part=(2,4,8)

....

Ralpar: table disp data=seqcomm

Table for: Sequ. Comm. model

2 4 8

kl-rgb 3.984000E+03 1.646400E+04 4.838400E+04

prof 4.104000E+03 1.111200E+04 2.628000E+04

The table gives the total time in microseconds for communication of one value per interface node,
based on the models discussed previously. In this case the high cost of the start up times means that
the profile method, which minimises the number of neighbour domains, gives better results than the
kl-rgb method which gives fewer interface nodes, when for 4 or 8 processors are used.

18

References

[1] HA Schwarz: “Uber einige Abbildungsauf-gaben”, Ges. Math. Abh. 11 65–83 (1869).

[2] YF Hu and R Blake, “Numerical experiences with partitioning unstructured grids”, Daresbury
Laboratory Report, DL/SCI/P865T, March 1993.

[3] C Farhat, W Wilson and G Powell: “Solution of Finite Element Systems on Concurrent Processing
Computers” Engineering with Computers, 2, 157–165, (1987).

[4] RF Fowler, BW Henderson, and C Greenough, “Initial Experiences in Porting a Three-
Dimensional Semiconductor Device Modelling Program to the Intel iPSC/860”, Rutherford
Appleton Laboratory Report, RAL-92-090 (1992).

[5] YF Hu and RJ Blake: “Numerical Experiences with Partitioning Unstructured Meshes”, Dares-
bury Laboratory Report, DL/SCI/P865T, March 1993.

[6] B Kernighan and S Lin: “An efficient heuristic procedure for partitioning graphs”, Bell System
Technical Journal, 29 (1970), pp. 291-307.

[7] JG Malone: “Automatic Mesh Decomposition and Concurrent Finite Element Analysis for
Hypercube Multiprocessor Computer”, Comp. Meth. in Applied Mechanical Eng., 70, 27–58
(1988).

[8] Algorithm 582, Collected algorithms from ACM, ACM-Trans. Math. Software, Vol. 8, No. 2, p.
190, June 1982.

[9] C Greenough and RF Fowler: “Partitioning Methods for Unstructured Finite Element Meshes”,
Rutherford Appleton Laboratory Report, RAL-94-092.

[10] CRI Emson, C Greenough, NJ Diserens and KP Duffy, “RALBIC - A Simple Neutral File for
Finite Element Data: File Definition”, RAL Report RAL-87-102, 1987.

[11] C Greenough and RF Fowler: “A Review of Partitioning Methods for Unstructured Finite
Element Meshes”, Rutherford Appleton Laboratory Report, (To be published).

[12] ST Barnard and HD Simon, “A fast multilevel implementation of recursive spectral bisection for
partitioning unstructured problems”, Proceedings of the 6th SIAM conf. on parallel processing
for scientific computing”, p711-718, 1993.

19

A The ralpar Command Summary

This Appendix provides a summary of all the commands available within ralpar. These commands
are listed below in alphabetic order, with full details of each in the corresponding section.

Application commands

A.1 DISPLAY - to display partition results
A.2 HALO - to construct element halo regions
A.3 INFORMATION - to control message output
A.4 INPUT - to read in a mesh file
A.5 LOADPAR - to read in partition data
A.6 MACHINE - to specify machine constants
A.7 MLPART - to partition using a multilevel method
A.8 OUTPUT - to write out partition data
A.9 PARTITION - to partition the mesh
A.10 PLIST - to list element numbers in a partition
A.11 QUIT - to quit program
A.12 TABLE - to evaluate or display table of costs
A.13 VIEW - to set viewing angle for the next plot
A.14 WEIGHT - to define element weights

Internal commands

A.15 CHANGE - to change working directory
A.16 COPY - to copy a file
A.17 DELETE - to delete a file
A.18 HELP - to access HELP system
A.19 LIST - to provide directory listing
A.20 READ - to redirect the input stream to read from a file
A.21 RENAME - to rename a file
A.22 SYNTAX - to provide the syntax of a command
A.23 WRITE - to provide monitoring of a session

20

A.1 DISPLAY (Application) - to display partition results

Syntax

Display [Boundary=<choice>] [,Mesh=<choice>] [,Label=<choice>]
[,DEvice = <choice>] [, STyle = <choice>] [,SHrink = <real>]
[,EXplode = <real>] [,DOmain =<integer>]

Description

The DISPLAY command plots the current mesh and partition on the selected output
device. The finite elements in the mesh can be shrunk to help see the partition boundaries.
The partitions are shown in different colours and the partition boundaries in heavy lines
(2D only). The command provides parameters to control the style of graphical output.

Parameters

BOUNDARY retained choice : initial = YES

The BOUNDARY parameter controls the display of the partition boundaries.
Its values are: NO (no boundaries) and YES (partition boundaries are dis-
played). Only applies to 2D meshes.

MESH retained choice : initial = YES

The MESH parameter controls the display of the mesh. Its values are: NO (no
mesh) and YES (mesh displayed). Only applies to 2D meshes.

LABEL retained choice : initial = NO

The LABEL parameter controls the display of the node and element numbers.Its
values are: NO (no labels) and YES (node and element numbers displayed).
Only applies to 2D meshes.

DEVICE retained choice : initial = SCREEN

The DEVICE parameter controls the destination of the graphical output. This
can be either to the screen or to a file (e.g. if a PostScript driver is available).
Its values are: SCREEN (output to screen) and FILE. Note: the the action of
option FILE is dependent of the host graphics system.

STYLE retained choice : initial = SOLID

The STYLE parameter controls how elements are drawn, either as a SOLID
(filled area) or LINE (outline only).

COLMAP retained string : initial = ’ ’

The COLMAP parameter allows the user to control the colours used by display.
COLMAP should be a valid file name in which the RGB values of the colour
defined.

21

The file structure is:

n - the number of colours defined in the file
m r-val g-val b-val - the colour number followed by RGB values
. . . .
. . . .

The RGB values are given in the range [0-1].

SHRINK retained real : initial = 1.0

The SHRINK parameter controls the size of elements. A value of 1.0 gives
full size while smaller values shrink each element.

EXPLODE retained real : initial = 0.0

The explode factor only applies to 3D meshes. If a value greater than zero is
given, domains are moved apart to reveal internal interfaces.

DOMAIN retained integer : initial = 0

If greater than zero this selects a single domain to be displayed. Otherwise all
domains are shown. Applies to 3D meshes only.

Examples

Ralpar: DISPLAY

Ralpar: dis yes yes yes

Ralpar: Disp shrink=.6 explod=.5

22

A.2 HALO (Application) - to construct element halo regions

Syntax

HALo [DOMAIN=<integer>]

Description

The HALO command allows the user to control the generation of halo information by the
program. A halo is defined to be a region along the boundary of a partition which has
a one-element thickness. These elements are indicated by negative partition numbers in
output lists and darker shading in DISPLAY.

Parameters

DOMAIN retained integer : initial = 0

If greater than 0, this parameter is the single domain in which the halo elements
should be marked.

Examples

Ralpar: HALO

Ralpar: hal 3

23

A.3 INFORMATION (Application) - control message output

Syntax

INFormation [LEvel=<choice>]

Description

The INFORMATION command allows the user to control the amount of information
provided by the program during its execution.

Parameters

LEVEL retained choice : initial = QUIET

The LEVEL parameter controls the level of information output. Its values are:
QUIET, MEDIUM, HIGH and VERBOSE.

Examples

Ralpar: INFORMATION VERBOSE

Ralpar: info q

24

A.4 INPUT (Application) - to read in mesh file

Syntax

Input [File=<string>] [,Type=<choice>] [,Access=<choice>]

Description

The INPUT commands reads a complete mesh from the specified file. The description
contains the nodal positions and the element topologies. The command allows for the a
number of input formats: RALBIC, ASCII, BINARY, TEST. If the file was generated by
a previous OUTPUT command from RALPAR with partition information, this data will
also be read.

Parameters

FILE required string

The FILE parameter specifies the file name in which the data is held.

TYPE retained choice : initial = RALBIC

The TYPE parameter specifies the type of format in which the data is stored.
It has values: RALBIC, ASCII, BINARY and TEST.

TESTSIZE retained integer list : initial = ()

This parameter is only used when generating test meshes, (TYPE=TEST). Test
meshes are regular hexahedral grids and the integer list must give the number
of nodes in X, Y and Z directions. If only one node plane is specified in Z, a
2D mesh results.

Examples

Ralpar: INPUT FILE=DATA, TYPE=FELIB, ACCESS=FORMATTED

Ralpar: i data

Ralpar: Inp type=test testsize=(9 17 1)

25

A.5 LOADPAR (Application) - to read in partition data

Syntax

LOadpar [File=<string>] [,Type=<choice>]

Description

The LOADPAR command reads a file containing a previously calculated partition for the
current mesh. It checks that a mesh has been read and that the number of elements in it and
the data file are consistent. A number of different file formats are allowed, as described for
the OUTPUT command. To read a file that has been written with OUT FULLMESH=T,
the INPUT command must be used instead.

Parameters

FILE required string

The FILE parameter specifies the file name in which the data is held. For
RALBIC files, do not include the “.PAR” extension, and note that these file
names are automatically converted to uppercase.

TYPE retained choice : initial = RALBIC

The TYPE parameter specifies the type of format in which the data is stored.
It has values: RALBIC, ASCII, BINARY or BERTIN.

Examples

Ralpar: LOADPAR FILE=DATA, TYPE=ASCII

Ralpar: load oldpart

26

A.6 MACHINE (Application) - to specify machine constants

Syntax

MAChine [ACtion=<choice>] [,Type=<choice>] [,TSTART=<real>]
[,TSEND=<real>] [,NAme=<string>] [,FILename=<string>]

Description

The MACHINE command allows the user to select and modify the machine constant
table. These constants are used by the TABLE command for simple estimates of parallel
communication times. New machines can be added into the list of names along with
known values of communication parameters. The list of machine details can be saved to
(or restored from) a file.

Parameters

ACTION retained choice : initial = SELECT

The ACTION parameter control the process of the command. The current
actions are:

SELECT - To select a particular set of machine values.
READ - To read a table of values from FILENAME.
WRITE - To write the machine constant table to FILENAME.
DISPLAY - To display the current table values.
ADD - To add a new machine to the table.

The TABLE command will use the machine parameters that have been SE-
LECT’ed.

TYPE retained choice : initial = ipsc/860

The TYPE parameter specifies which set of machine parameters are to be used.
Parameters are included for iPSC/860, iPSC/2, SUPERNODE and TRANS-
PUTER systems, but this list can easily be extended.

TSTART retained real : initial = 175.0

The TSTART parameter specifies the communication start-up time in micro-
seconds. This parameter is used with ACTION=ADD.

TSEND retained real : initial = 0.36

The TSEND parameter specifies the communication rate in Mbytes per second.
This parameter is used with ACTION=ADD.

NAME reset string : initial =

The NAME parameter specifies the name of the new machine to be added to
the machine constants table. This parameter is used with ACTION=ADD.

27

FILENAME retained string : initial = machine.cst

The FILENAME parameter specifies the filename where the machine constants
table is stored (ACTION=WRITE) or read from (ACTION=READ).

Examples

Ralpar: MACHINE TYPE=SUPERNODE ACTION=SELECT

Ralpar: mach add new 1500 1.5 pvm

Ralpar: machine action=dis

Machine Tstart Tsend n-half R-inf

ipsc/860 175.000 0.360 486.000 2.800

ipsc/2 612.000 0.360 1750.000 2.800

SuperNode 1200.000 1.340 895.000 0.710

Transputer 8.730 1.130 7.844 0.898

paragon 175.000 0.360 486.000 2.800

28

A.7 MLPART (Application) - to use a multilevel partitioning method

Syntax

MLPart [NPart=<integer>] [,METHod=<choice>]
[,SECtion=<choice>] [,CGraph=<choice>]
[,CLUst=<choice>] [,MAXLvl=<integer>]
[,MINSiz=<integer>] [,KLRef=<choice>]
[,KLLim=<integer>] [,PWeight=<real list>]
[,FILEPW=<string>]

Description

The MLPART command provides access to a set of partitioning routines that can make
use of multilevel techniques. These methods include some of those available in the
PARTITION command, but with greater flexibility.

Parameters

NPART retained integer : initial = 4

The NPART parameter specifies the number of partitions into which the mesh
is to be partitioned. The number of partitions must be less than the number of
elements in the mesh.

METHOD retained choice : initial = SPECT

This parameter specifies the partitioning method to be used. The current
methods are:

MALONE - Element re-ordering for minimum profile width.
SPEC - Spectral bisection.
GRAPH - Graph bisection.
RAND - Random partitioning.
DGRAPH - Variation on graph bisection.
GREED - Greedy algorithm based on that of Farhat.
GLUT - Extended Greedy algorithm.

SECTION retained choice : initial = BISECT

The SECTION parameter specifies the way in which the chosen method should
be applied to partition the mesh.

LINSEC - The selected method is called once to get a single ordering
of the elements. This list is then split into the required number of
partitions.
BISECT - The selected method is used recursively to split the mesh
into two parts until the required number of partitions is generated.
RECSECT - Each required partition is split away from the remaining
mesh, one at a time.

29

CGRAPH retained choice : initial = EDGE

This value controls how edges in the communication graph will be generated
from the mesh. Possible values are:

EDGE - Any two elements with a common edge (2D) or face (3D)
will be connected.
TRUE - Any elements with one or more nodes in common are con-
nected.
WEIGHT - Any elements with one or more nodes in common are
connected, and the connection is weighted by the number of such
common nodes.

CLUST retained choice : initial = A

This parameter controls how clusters are formed. At each level of graph
reduction, vertices are joined together. The default method (CLUST=A) is
a greedy one where non-clustered vertices are joined to all neighbours that
are not already in a cluster. CLUST=B merges each free vertex to the free
neighbour with greatest edge weight.

MAXLVL retained integer : initial = 1

This parameter controls how many levels the graph will be condensed through
before being partitioned.

MINSIZ retained integer : initial = 20

When a graph contains less than MINSIZ vertices it will not be reduced any
further, even in the value of MAXLVL would allow this.

KLREF retained choice : initial = NONE

Any of the partitioning methods available to MLPART can be combined with
Kernighan and Lin style refinement. This can be applied to either just the lowest
graph level (KLREF=MINLVL) or at all levels of the graph (KLREF=FULL).
The latter gives better results but is slower. Currently, refinement can not be
used with LINSECT option.

KLLIM retained integer : initial = 0

The Kernighan and Lin refinement process involves repeated passes through
all vertices, searching for a better configuration. When set to a value greater
than zero, KLLIM causes these loops to terminate early if the reduction in
cut edges falls below the current best value less KLLIM. This speeds up the
method, at the cost of sometimes giving poorer results. Typical values to try
are 100 to 5000 depending on mesh size.

30

PWEIGHT reset real list : initial = 0

The weights of each partition may be set by the PWEIGHT parameter. All
weights must be positive. If neither PWEIGHT or FILEPW are specified, all
partitions will have the same weight.

FILEPW reset string : initial = “”

Partition weights will be read from the file named FILEPW if this parameter
is set. The file is read in free format and should contain one number per line
giving the weight of each partition in sequence. All values must be greater
than 0.

Examples

Ralpar: MLPART 2 SPEC BIS MAXLVL=2

Ralpar: mlp 32 klref=full

Ralpar: mlp 20 spec lin klref=none

Ralpar: MLP 6 mal pweight=(4,2,2,1,1,1)

31

A.8 OUTPUT (Application) - to write neutral file with partition numbers

Syntax

Output [FIle=<string>] [,Type=<choice>] [,FULLmesh==<choice>]

Description

The OUTPUT command writes the current partition data to a file in one of the available
formats. With the FULLMESH=TRUE option the whole mesh can be written to output
file as well as the partition data.

Parameters

FILE retained string : initial = RALPAR

The FILE parameter specifies the file name in which the data is held.

TYPE retained choice : initial = RALBIC

The TYPE parameter specifies the format in which the data is to be stored. It
can take the values: RALBIC, ASCII or BINARY. RALBIC files will have the
extension “.PAR” appended to the name for partition information, or “.MSH” if
the full mesh is written. RALBIC filenames are always translated to uppercase.

FULLMESH retained choice : initial = FALSE

The FULLMESH parameter specifies whether the whole mesh should be writ-
ten to the file, or just the partition data (the default).

Examples

Ralpar: OUTPUT FILE=PART01 TYPE=RALBIC

Ralpar: out data900 ascii true

32

A.9 PARTITION (Application) - to partition the data

Syntax

Partition [Processors=<integer>] [,Method=<choice>]
[,LEvel=<integer>] [,CGraph=<choice>]
[,KLBISC=<choice>] [,PWeight=<real list>]
[,FIlepw=<string>]

Description

The PARTITION command controls the partitioning of the meshes read into the program.
The command specifies the number of partitions, the method to be used and the values of
some control parameters. For multilevel methods, see the MLPART command.

Parameters

PROCESSORS retained integer : initial = 4

The PROCESSORS parameter specifies the number of partitions into which
the mesh is to be split. The number of partitions must be compatible with the
method being used.

METHOD retained choice : initial = GEO-BIS

The METHOD parameter specifies the partitioning method to be used. The
current methods are:

GEO-BIS - geometric bisection
COSTGEO - geometric bisection using lowest cost directions
GREEDY - greedy algorithm due to Farhat
GLUTTON - greedy algorithm with multiple seed point searching
for minimum cost
BANDWTH - nodal re-ordering for minimum bandwidth (Malone)
PROFILE - nodal re-ordering for minimum profile width
INERTIA - bisection based on axes of inertia
R-INER - recursive inertial bisection
KL-GREEDY - Kernighan & Lin with GREEDY starting point
KL-RAND - Kernighan & Lin with random starting point
SPEC - recursive spectral bisection
GRAPH - recursive graph bisection
KL-RGB - Kernighan & Lin with RGB starting point

LEVEL retained integer : initial = 5

The LEVEL parameter specifies the number of levels to be searched in the
GLUTTON algorithm.

CGRAPH retained choice : initial = EDGE

33

The CGRAPH parameter specifies the type of communication to be used in
generating the communication graph. Possible values are EDGE or TRUE.

KLBISC retained choice : initial = TRUE

The KLBISC parameter specifies whether the Kernighan & Lin methods are
to be recursive bisection methods. If FALSE, then one subdomain at a time
is split from the remaining mesh. This can be expensive for large numbers of
partitions.

KLREF retained choice : initial = FALSE

The KLREF parameter specifies whether Kernighan & Lin refinement should
be used with the SPECTRAL method. All other methods are unaffected by
this parameter.

PWEIGHT reset real list : initial = 0

The weights of each partition may be set by the PWEIGHT parameter. All
weights must be positive. If neither PWEIGHT or PFILE are specified, all
partitions will have the same weight.

FILEPW reset string : initial =

Partition weights will be read from the file named FILEPW if this parameter
is set. The file is read in free format and should contain one number per line
giving the weight of each partition in sequence. All values must be greater
than 0.

Examples

Ralpar: PARTITION PROC=16 METHOD=KL-RAND CGRAPH=TRUE

Ralpar: par 32 geo

Ralpar: part 6 prof pweight=(4,2,2,1,1,1)

34

A.10 PLIST (Application) - to list element numbers in a partition

Syntax

PList [Partition=<integer>] [,Limit=<integer>]

Description

The PLIST command allows the user to list the elements allocated to one or all partitions.
A limit on the number of element listed per partition is useful for large meshes.

Parameters

PARTITION retained integer : initial = 0

The PARTITION parameter specifies which partition is to be listed. If this is
set to zero, all partitions will be listed.

LIMIT retained integer : initial = 50

No more than LIMIT elements will be listed for each subdomain.

Examples

Ralpar: PLIST PARTITION=2 LIMIT=10

Ralpar: pl 0 50

Ralpar: plist

35

A.11 QUIT (Application) - to quit program

Syntax

Quit

Description

The QUIT command closes all files and terminates the program.

Parameters

This command has no parameters.

Examples

Ralpar: quit

36

A.12 TABLE (Application) - to evaluate or display table of costs

Syntax

TABle [ACtion=<choice>] [,MEthods=<string>]
[,PARtitions=<string list >] [,FILename=<integer list >]
[,DAta=<choice>]

Description

The TABLE command allows the user to compare a range of methods over a number of
partitions. The user has to define the methods to be used, and the number of partitions
which are used in the COMPUTE action. Results can then be viewed with the DISPLAY
action or written to file with WRITE.

Parameters

ACTION retained choice : initial = COMPUTE

The ACTION parameter specifies the action to be taken by the TABLE com-
mand. Currently values are:

COMPUTE - to perform the cost table calculations

DISPLAY - to display the calculated cost table

WRITE - to write a calculated cost table to file

FILE retained string : initial = ralpar.ctab

The FILE parameter specifies the file name to write the cost table to, if AC-
TION=WRITE.

METHODS retained string list : initial = (GEO-BIS,INERTIA)

The METHODS parameter specifies the methods to be used in the table cal-
culations. Available methods are: GEO-BIS, COSTGEO, GREEDY, GLUT-
TON, BANDWDT, PROFILE, INERTIA, R-INER, KL-GREEDY, KL-RAND,
SPEC, GRAPH and KL-RGB. Used when ACTION=COMPUTE.

PARTITIONS retained integer list : initial = (2,4)

The PARTITIONS parameter specifies the partitions that are to be used for
each method in calculating the cost table. Used when ACTION=COMPUTE.

DATA retained choice : initial = SEQCOMM

The DATA parameter specifies which results are to be shown when AC-
TION=DISPLAY or WRITE is used. Options available are: ALL, SEQ-
COMM, PARACOMM, INTERFACE, NEIGHBOURS. Note that all the data
is calculated when ACTION=COMPUTE, irrespective of the setting of this
option.

37

Examples

Ralpar: table methods=(geo-bis,costgeo,greedy) part=(2,4,8,16)

Ralpar: TABLE ACTION=WRITE FILE=COST-TABLE data=all

Ralpar: TABLE display data=seqcomm

38

A.13 VIEW (Application) - to set viewing angle for the next plot

Syntax

VEIw [XROT=<real>] [, YROT=<real>] [,ZROT=<real>]
[,SCALE=<real> >]

Description

The VIEW command allows the user to change the orientation of 3D meshes and set the
scaling. 2D meshes are not altered by this command. The effect of the new view is only
seen in subsequent display commands.

Parameters

XROT retained real : initial = 30

The XROT parameter specifies the rotation about the x axis in degrees.

YROT retained real : initial = 20

The YROT parameter specifies the rotation about the y axis in degrees.

ZROT retained real : initial = 0

The ZROT parameter specifies the rotation about the z axis in degrees.

SCALE retained real : initial = 1

The SCALE parameter specifies a scaling factor to be applied to the display.
Not currently implemented.

Examples

Ralpar: VIEW XROT=30 YROT=30

Ralpar: view 40 0 10

39

A.14 WEIGHT (Application) - to define element weights

Syntax

WEight [MEthod=<choice>] [,File=<string>]

Description

The WEIGHT command allows the user to give weighting to the elements of a mesh
being partitioned. The weight of elements can be used to improve load balance in
applications where mixed element types are present, or other factors are known to alter
the computational work per element. Weighting can be set to the number of nodes in each
element or to values read from a file.

Parameters

METHOD retained choice : initial = UNIFORM

The METHOD parameter specifies the weighting method to be used. Possible
values are:

UNIFORM - all elements have the same weight

NODAL - elements are weighted according to the number of nodes they
contain

FILE - the weighting information is to be read from a file

FILE retained string : initial = ”

The FILE parameter specifies the file from which weighting information is to
be taken. Only used if ACTION=FILE. If use, the file must exist and be a text
file.

Examples

Ralpar: WEIGHT METHOD=UNIFORM

Ralpar: we file weighting-info

Ralpar: weight nodal

40

A.15 CHANGE (Internal) - to change working directory

Syntax

CHAnge [DIRectory=<string>]

Description

The CHANGE command allows the user to change the current working directory without
leaving the program.

Note that the CHANGE command is an INTERNAL command and is system dependent.

Parameters

DIRECTORY reset string : initial = ’.’

DIRECTORY specifies the directory name to which the context should be
changed. This must be a valid name for the host system.

Examples

Some examples on UNIX systems are:

Ralpar: change /u/cg/ralpar/tests

Ralpar: CHA ../tests

41

A.16 COPY (Internal) - to copy a file

Syntax

COPy [FILe1=<string>] [,FILe2=<string>]

Description

The COPY command allows the user to copy one file to another without leaving the
program.

Note that the COPY command is an INTERNAL command and is system dependent.

Parameters

FILE1 required string

The FILE1 parameter specifies the source file. FILE1 must be a valid file name
or expression on the host system.

FILE2 required string

The FILE2 parameter specifies the target file or directory. FILE2 must be a
valid file name or expression on the host system.

Examples

Some examples on UNIX systems are:

Ralpar: COPY /u/cg/ralpar/tests/test1 data

Ralpar: cop ../tests/example .

42

A.17 DELETE (Internal) - to delete (remove) a file

Syntax

DELete [FILe=<string>]

Description

The DELETE command allows the user to delete files from the file system without leaving
the program.

Note that the DELETE command is an INTERNAL command and is system dependent.

Parameters

FILE required string

FILE specifies the file(s) to be deleted. FILE must be a valid file name or
expression on the host system.

Examples

Some examples on UNIX systems are:

Ralpar: DELETE data

Ralpar: del ../tests/example

43

A.18 HELP (Internal) - to access HELP system

Syntax

Help [KEY=<string>] [,OPTion=<choice>]

Description

Gives access to the inbuilt HELP system within the command decoder. HELP is one of the
internal commands of the command processor and has a companion command SYNTAX.

HELP has two parameters allowing the selection of help on a specific command and
the level of help required (SUMMARY, BRIEF and SYNTAX). If no command name is
given summary help is given on all the commands currently defined.

If an ambiguous or invalid command name is given a warning or error message is
given.

BRIEF help gives information on the purpose, syntax and the current state of the
selected command. A table of command keywords, their type, status and current value (if
applicable) is printed.

Parameters

KEY reset string : initial =

Either the global command name SUMMARY, or the specific command name
on which help is sought.

OPTION reset choice : initial = BRIEF

The level of help required. This can be SUMMARY, BRIEF or SYNTAX.

Examples

Ralpar: help plist

Name : PLIST

Purpose : to list element numbers in a partition

Syntax : PList [Partition=<integer>] [,Limit=<integer>]

Keyword Type Status Current Value

PARTITION integer retained 0

LIMIT integer retained 50

44

A.19 LIST (Internal) - to provide directory listing

Syntax

LISt [FILe=<string>]

Description

The LIST allows the user to list the files available in the in the system file store.

Note that the LIST command is an INTERNAL command and is system dependent.

Parameters

FILE reset string : initial =

The FILE parameter specifies a file name or file mask over which the listing is
to search. (The file mask will be system dependent).

Examples

Some examples on UNIX systems are:

Ralpar: LIST FILE=data

Ralpar: lis "*.f*"

45

A.20 READ (Internal) - to redirect the input stream to read from a file

Syntax

REad [FIle=<string>] [,ECHO=<choice>]

Description

The READ allows the user to execute a set of commands that have placed in a file. Lines is
the file are processed as normal commands and information and error reports are directed
to the terminal.

Note that the READ command is an INTERNAL command and is system dependent.

Parameters

FILE required string

Input file name containing program commands.

ECHO reset choice : initial = OFF

Echo control option. If set to OFF, then commands read from the file are not
echoed to the terminal. Echo is enabled by the value ON.

Examples

Ralpar: READ FILE=script, ECHO=ON

Ralpar: read long-run off

46

A.21 RENAME (Internal) - to rename a file

Syntax

REName [FILe1=<string>] [,FILe2=<string>]

Description

The RENAME command allows the user to rename files from the file system without
leaving the program.

Note that the RENAME command is an INTERNAL command and is system dependent.

Parameters

FILE1 required string

The FILE1 parameter specifies the file to be renamed. FILE1 must be a valid
file name or expression on the host system.

FILE2 required string

The FILE parameter specifies the target file. FILE2 must be a valid file name
or expression on the host system.

Examples

Ralpar: rename xyz.msh XYZ.MSH

47

A.22 SYNTAX (Internal) - to provide the syntax of a command

Syntax

SYNtax [COMmand=<string>]

Description

Displays the formal syntax of all the currently defined commands. If the syntax of a specific
command name is required then that name is given as a parameter to the command.

Parameters

COMMAND retained string : initial = ALL

Specifies the commands name for which the syntax is required. If the syntax
of all the currently defined commands is required, then the special command
name ALL should be used.

Examples

Ralpar: syntax machine

MAChine [ACtion=<choice>] [,Type=<choice>] [,TSTART=<real>]

[,TSEND=<real>] [,FILename=<string>] [,NAme=<string>]

48

A.23 WRITE (Internal) - to provide monitoring of a session

Syntax

WRIte [STAte=<choice>] [,FIle=<string>] [,PROmpt=<choice>]

Description

Redirects the command decoder echo output to the file specified by the FILE parameter.
The information flow is controlled by the STATE parameter. This command can enable
the constructions of command files to drive the program in a background mode.

The echoing of the command prompt can be controlled using the PROMPT parameter.

Parameters

STATE required choice

Controls the flow of information to the monitoring file It has values ON, OFF
or CLOSE. ON switches on monitoring. OFF suspends it but does not close
the file and CLOSE ends monitoring and closes the file.

FILE retained string : initial = MONITOR

Output file name to receive the monitoring stream.

PROMPT reset choice : initial = OFF

Allows you to select whether the command prompt is echoed in the monitoring
file. It has values ON or OFF.

Examples

In this example commands are written to the file MONITOR without the prompt:

Ralpar: WRITE STATE=ON FILE=MONITOR PROMPT=OFF

49

B File formats

B.1 RALBIC file format

The RALBIC neutral file format [10] is a text file format for storing details of finite element meshes
and results. This file format permits many different data fields to be stored in a single file, but for
ralpar only the element topology and nodal coordinates of the mesh are required.

By convention all RALBIC file names are in upper case and the extension.MSH is used. A simple
example of the RALBIC neutral file for a two dimensional mesh with just two elements is shown
below:

$HEAD

VER_03_87

$CASE

Ralpar
$NODE

6 2

1 0.0000000D+00 0.0000000D+00

2 0.5000000D+00 0.0000000D+00

3 0.0000000D+00 0.5000000D+00
4 0.5000000D+00 0.5000000D+00

5 0.0000000D+00 0.1000000D+01

6 0.5000000D+00 0.1000000D+01

$END-NODE

$ELEM
2 8

1 QU04 AIR 4 1 2 4 3

2 QU04 AIR 4 3 4 6 5

$END-ELEM

$END-CASE
$END-HEAD

The node section of the file is quite simple and just contains x and y coordinates for each node. The
element topology section ($ELEM) contains one record for each element. This gives the element
number, the element type, the material type, the number of nodes in the element and then the node
numbers. The material type field is ignored on input into ralpar. On output, an integer is written into
this field indicating the subdomain to which this element has been assigned, if the FULLMESH option
is set to true. If just the partition data is required, the OUTPUT command will produce a file with the
extension “.PAR”. For the above mesh split into 2 the file would look like this:

$HEAD

VER_03_87
$CASE

Ralpar

$ETYP

2

1 2 2 1
$END-ETYP

$END-CASE

$END-HEAD

The partitioning of each element is given in the section labelled ETYP. The first number here is the
number of elements in the mesh. Then each element number is listed along with the partition it has

50

been assigned to. In this case element 1 is in partition 2 and element 2 in partition 1.
To actually create such files from another format, two example programs are provided with the

standard release of ralpar. The first is loc2ral.f which reads a mesh file in a simple format and
writes out a corresponding RALBIC neutral file. The source code for this program is provided along
with the RALBIC library so that it may be easily modified to read the data according to the preferred
format of the user. This will then provide a tool to convert from any desired format to RALBIC format.

A similar program to convert the output RALBIC file from ralpar into a local format is also
supplied as ral2loc.f. This can be modified to write the specific information that will be required
for the separate subdomains. The element types that are supported by the RALBIC interface include
those listed in Table 1.

Element No. of nodes Name Type No.

Hexahedra 8 BR08 1
Prism 6 WG06 2
Tetrahedra 4 TE04 3
Hexahedra 20 BR20 4
Prism 15 WG15 5
Tetrahedra 10 TE10 6
Triangle 3 TR03 7
Triangle 6 TR06 8
Quadrilateral 4 QU04 9
Quadrilateral 8 QU08 10
Line 2 LI02 11
Line 3 LI03 12
Pyramid 5 PY05 13
Hexahedra 16 BR16 14

Table 1: Some RALBIC element types.

For partitioning the ordering of nodes within an element is not important, even though the RALBIC
format does specify the required order. The display command does require the correct ordering of
nodes to enable the results to be viewed. The assumed scheme is to number the nodes anti-clockwise.
For 3D elements, the lower plane is numbered first, then the subsequent planes, starting at the same
point as the first plane. Details of the numbering for more complex elements is given in [10].

B.2 ASCII file format

The ASCII file format is another text format, similar to that used in the RALBIC format, though
slightly simpler. This format may be easier to write directly from an existing program since it does
not make use of an interface library as is the case with the RALBIC neutral files. For the same two
element mesh that was discussed in the previous section, the ASCII format file would look like this:

6 2 1 Nodal coordinates
1 0.0000000E+00 0.0000000E+00

2 5.0000000E-01 0.0000000E+00

3 0.0000000E+00 5.0000000E-01

4 5.0000000E-01 5.0000000E-01

51

5 0.0000000E+00 1.0000000E+00
6 5.0000000E-01 1.0000000E+00

2 4 Element topology

1 9 4 1 2 4 3

2 9 4 3 4 6 5

As before, the nodal coordinates are listed first. The initial line gives the number of nodes, the
dimension of the mesh (2 or 3) and a version number of the format (=1). Then the x and y coordinates
of each node are given. The exact formats used can be seen in the routine wrasci.f in the directory
dataio. The first line of the element topology section gives the number of elements in the mesh and
the maximum number of nodes in an element. this is followed by a list of element descriptions. This
consists of the element number, the element type (as in table 1), the number of nodes in the element
and finally the node numbers themselves.

If the ASCII format is used in the OUTPUT command then the file is of the form shown here:

2 2 1 Element partition numbers

2 1

The three values on the first line are the number of elements, the number of partitions used and a value
indicating which method was used. This is followed by the partition number each element has been
assigned to. Note that the element numbers are not listed in this section.

52

C Control of memory allocation

Ralpar is written in standard Fortran 77 as far as possible. As the standard does not allow dynamic
memory allocation, most arrays are treated as having fixed size. To allow you to adjust the memory use
according to that available on your machine (and size of mesh), dynamic allocation of work arrays is
made at the top level. By default, space is allocated for about 30000 nodes/elements. To partition larger
meshes you need to set the environment variables RALPAR NODES and/or RALPAR ELEMENTS. For
example, if you have 100000 nodes and 120000 elements you could issue the command (csh):

setenv RALPAR_ELEMENTS 130000

before running ralpar. In the Bourne shell the command would be:

RALPAR_ELEMENTS=130000

export RALPAR_ELEMENTS

Note that if you only set one of nodes or elements, the other defaults to the same value.
The maximum number of nodes in an element defaults to 8. This is sufficient for most simple

finite elements. However, if elements with greater number of nodes are needed, such as 20 noded
hexahedra, this limit can be increased by;

setenv RALPAR_NODES_PER_ELEM 20

Conversely, if a mesh only contains tetrahedra for example, setting this parameter to 4 would save
some memory.

Of course, some methods require much more memory than other methods and the partitioner
allocates enough for all methods by default (assuming “reasonable” limits on connectivity). You can
change the amount of workspace allocated by setting the environment variable RALPAR MEMORY SF

if your machine cannot allocate sufficient memory for a given number of nodes/elements. The default
value of this is 100, so to half the workspace, you could issue the command (in csh):

setenv RALPAR_MEMORY_SF 50

Note that some methods may not run with this reduced workspace, and you should only try this if
the partitioner will not run because it failed to allocate enough memory for the requested mesh size.

To find out how much of the available workspace is actually being used by each method, you can
use the command information high. Any subsequent partition commands will then also
print out some details of how much space was actually used.

53

	Abstract
	Contents
	1 Introduction
	2 Parallel processing and mesh decomposition
	3 Measuring partition quality
	4 Mesh partitioning techniques
	5 Multilevel partitioning methods
	6 Modelling parallel system performance
	7 Using ralpar
	7.1 Starting execution
	7.2 Ralpar Commands
	7.3 Internal Commands
	7.4 Data Input and Output
	7.5 Partitioning a two dimensional mesh
	7.6 Partitioning a three dimensional mesh
	7.7 Partitioning Elements of Different Weights
	7.8 Partition Halos
	7.9 Comparing methods using the table command

	References
	A The ralpar Command Summary
	A.1 DISPLAY (Application) - to display partition results
	A.2 HALO (Application) - to construct element halo regions
	A.3 INFORMATION (Application) - control message output
	A.4 INPUT (Application) - to read in mesh file
	A.5 LOADPAR (Application) - to read in partition data
	A.6 MACHINE (Application) - to specify machine constants
	A.7 MLPART (Application) - to use a multilevel partitioning method
	A.8 OUTPUT (Application) - to write neutral file with partition numbers
	A.9 PARTITION (Application) - to partition the data
	A.10 PLIST (Application) - to list element numbers in a partition
	A.11 QUIT (Application) - to quit program
	A.12 TABLE (Application) - to evaluate or display table of costs
	A.13 VIEW (Application) - to set viewing angle for the next plot
	A.14 WEIGHT (Application) - to define element weights
	A.15 CHANGE (Internal) - to change working directory
	A.16 COPY (Internal) - to copy a file
	A.17 DELETE (Internal) - to delete (remove) a file
	A.18 HELP (Internal) - to access HELP system
	A.19 LIST (Internal) - to provide directory listing
	A.20 READ (Internal) - to redirect the input stream to read from a file
	A.21 RENAME (Internal) - to rename a file
	A.22 SYNTAX (Internal) - to provide the syntax of a command
	A.23 WRITE (Internal) - to provide monitoring of a session

	B File formats
	B.1 RALBIC file format
	B.2 ASCII file format

	C Control of memory allocation

