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Abstract 

A Dualized Standard Model recently proposed affords a natural ex- 
planation for the existence of Higgs fields and of exactly 3 generations 
of fermions, while giving at the same time the observed fermion mass 
hierarchy together with a tree-level CKM matrix equal to the identity 
matrix. It further suggests a method for generating from loop cor- 
rections the lower generation masses and nondiagonal CKM matrix 
elements. In this paper, the proposed calculation is carried out to 1- 
loop. It is found first that with the method suggested one can account 
readily for the masses of the second generation fermions as a ‘leakage’ 
from the highest generation. Then, with the Yukawa couplings fixed 
by fitting the masses of the 2 higher generations, one is left with only 
2 free parameters to evaluate the CKM matrix and the masses in the 



lowest generation. One obtains a very good fit to the CKM matrix 
and sensible values for the masses of d and e, though, for a valid rea- 
son, not of U. In addition, the fitted values of the Yukawa couplings 
and vacuum expectation values of the dual colour Higgs fields show 
remarkable features perhaps indicative of a deeper significance. 
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1 Introduction 
Up to  the present, the Standard Model has worked exceptionally well, there 
being no experimental fact we know which is demonstrably contradictory to  
its predictions. Nevertheless, the Standard Model contains in itself a number 
of unsatisfactory features, which are widely recognized as such. For example, 
at the more fundamental level, Higgs fields are introduced to break the elec- 
troweak symmetry and fermions are assumed to exist in three generations 
or families to fit observation without theoretical reasons being given for why 
it should be so. Compared with the intrinsic gauge structure and the exist- 
ence of the gauge bosons in the theory, both of which have deep geometric 
significance, the assumptions about Higgs fields and fermion generations ap- 
pear ad hoc. At the more practical level, this situation is reflected in the 
large number of independent parameters which have to be determined by 
experiment. Besides, these parameters exhibit some quite startling patterns 
which are still unexplained. In particular, there is first the so-called fermion 
hierarchy puzzle, namely that fermions of the same type but different gen- 
erations have widely different masses. Take, for example, the three U-type 
quarks; the experimental values quoted in the latest data booklet [l] for the 
masses of t , ~ ,  and U respectively are 176 f 5 GeV, 1.0 - 1.6 GeV, and 2 - 
8 MeV, dropping by more than two orders of magnitude from generation to  
generation. Then secondly, there is the mixing problem, say, between the 
U-type and D-type quarks through the CKM matrix [2, 31, which though 
tantalisingly close to  the identity matrix is yet not the identity, with its off- 
diagonal elements varying in magnitude from about 20 percent to  about 3 
permille [l]. These empirical facts, of course, are all of the greatest phe- 
nomenological significance and cry out for a theoretical explanation but are 
not given one in the Standard Model as usually formulated. 

In the literature, answers to these questions are often sought for from bey- 
ond the Standard Model, but with, to our minds, no obvious great success. 
The difficulty is that ,  there being more freedom working outside the Stand- 
ard Model framework, one often ends up by putting in more than one gets 
out. Recently, however, a suggestion was made for a solution of the above 
problems from within the framework of the Standard Model itself which, if 
at all possible, would at least have the advantage of economy and restraint. 
In this suggestion [4], one first made use of a newly discovered generalized 
electric-magnetic duality for Yang-Mills fields [5] together with a well-known 
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result of ’t Hooft on confinement [6] to  give a natural place to  both Higgs 
fields and fermion generations, with Higgs fields appearing as frame vectors 
in internal symmetry space and fermion generations appearing as dual colour. 
As an immediate consequence, one then deduced that fermions will occur in 
exactly three generations and that the generation symmetry will be broken, 
as experimentally observed. Moreover, with one more simple assumption 
about the dual hypercharges of the dual Higgs fields, i t  was shown that  there 
will be a fermion mass hierarchy and that the CKM matrix would be the 
identity at tree level, but that  loop corrections would lift the above tree-level 
degeneracy to  give small but nonzero values both to the lower generation 
fermion masses and to the off-diagonal CKM matrix elements. 

The purpose of the present paper is to  push further in this direction to  
make a first attempt at actually evaluating quark masses and CKM matrix 
elements for comparison with experiment. The calculation is here carried out 
to  1-loop level. Out of the many 1-loop diagrams we have examined, it turns 
out first that  some, which affect only the normalization of the fermion mass 
matrix but not its orientation, are large due to  the large dual gauge coupling 
and cannot be evaluated perturbatively. Since it is only the orientation in 
flavour space which is of the most interest to  us as far as the CKM matrix 
is concerned, it is profitable at present to abandon calculating the normal- 
ization of the mass matrix and concentrate solely on its orientation. This 
has the benefit of allowing us to ignore those diagrams affecting only the 
normalization, reducing thus the number of free parameters in the problem. 
Secondly, i t  happens that of the remaining diagrams affecting the orientation 
of the fermion mass matrix, most are negligible if we put in the estimate for 
the dual gauge boson mass obtained from the absence of flavour-changing 
neutral decays. As pointed out already in [4], the exchange of the dual gauge 
bosons would give rise to FCNC effects, and experimental constraints put a 
lower bound on the lowest dual gauge boson mass of several 100 TeV. 

What remains then is basically just the Higgs loop diagram which matters 
for our present investigation. This depends on a Yukawa coupling strength 
p, one for each fermion type, a mass scale n ~ -  which may be identified as 
the highest generation mass, again one for each fermion type, and lastly the 
3 vacuum expectation values ( z , y , z )  of the dual colour Higgs fields which 
are common to  all fermion types. We ascertain first that  the masses of the 
second generation fermions can indeed be obtained as a ‘leakage’ from the 
highest generation, as suggested in [4], with a Yukawa coupling strength p 
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of order unity for each fermion type. We then fixed their values by fitting 
these p’s to the empirical values of the masses of the second generation. 
Next, of the remaining parameters (z, y, z),  it was shown that the calulation 
is independent of their normalization to a high accuracy. With then only 
2 free parameters, we had to calculate the CKM matrix and the fermion 
masses of the lowest generation. A very good fit to  the absolute values of 
all CKM elements was obtained together with some ratios and products of 
these elements measured independently. In addition, in spite of the lack of 
knowledge on the scale-dependence of the normalization of the mass matrix, 
sensible estimates were obtained for all the lowest generation fermions except 
for the u-quark. 

The result of the fit reveals also 2 intriguing features, namely (a) a close 
proximity of the normalized vector (z, y, z )  to one of its fixed points (1,0,0) 
to  an accuracy of about one part in ten thousand, and (b) the near equality 
to a few percent accuracy of the fitted values of the p’s for all 3 fitted fermion 
types (i.e. U, D and the charge leptons L). We think these may be indicative 
of a hidden symmetry which we have not yet understood. 

2 The Framework 
We begin with a resum6 of the dual framework on which the calculations are 
based, the details of which can be found in [4]. Generalized electric-magnetic 
duality as obtained in [5] implies that  dual to colour in the Standard Model, 
there is also an %(3) symmetry for dual colour. The charges of this dual 
symmetry are colour monopoles and its monopoles are colour charges. Us- 
ing then the well-known result of ’t Hooft [6], one concludes from the fact 
that  colour is confined that dual colour E ( 3 )  is spontaneously broken and 
Higgsed. The proposal was that this broken dual colour symmetry be iden- 
tified with what is sometimes referred to in the literature as the “horizontal 
symmetry” relating the generations [7, 81. 

Now it so happens that in the dual framework of [4] there are scalar 
fields occurring which have the right properties to play the role of Higgs 
fields, these being the frame vectors in the S ( 3 )  internal space. They 
constitute altogether 3 dual colour triplets, which we denote by $PI, with 
zi = 1,2,3 representing the dual colour which labels the 3 components of a 
triplet and (a) = 1,2,3 being just a label distinguishing the 3 triplets. We 
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want the vacuum expectation values of $f) to  form an orthogonal triad, as 
is appropriate for the 3 vectors which make up an m ( 3 )  frame. We need 
therefore a Higgs potential which gives these vacuum expectation values as 
minima. The following was suggested [4]: 

V[$] = - p c  I $ ( a y  + x (2.1) 
(a) 

with p , A  and IE all positive. The minimum of V occurs when the are 
mutually orthogonal and Qa) 1 $ ( a ) 1 2  = p/2A, independently of the individual 
lengths of the different $(a)’s. Thus, a vacuum can be chosen as: 

with 

and 
c = I/w, 

x2 + y2 + z2 = 1, 
which will in general break both the m ( 3 )  symmetry and the permutation 
symmetry between the different In our calculation here we shall use 
explicitly this potential although we recognize that i t  has no claim for unique- 
ness. We shall show, however, that  the result will not depend much on its 
detailed properties. 

As in [4], left-handed fermions are assigned to  dual colour triplets and 
right-handed fermions to dual colour singlets. We have thus the Yukawa 

where we have suppressed both colour and weak isospin indices which are 
irrelevant for our discussion here. Inserting then the vacuum expectation 
values given in (2.2) for the Higgs fields, we have at tree-level the following 
factorized fermion mass matrix: 
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where we have abbreviated the Yukawa couplings yll = a, V21 = b, = c. 
The matrix being of rank 1, it follows that mmt has only one non-zero 
eigenvalue [9], namely p2C2, with 

implying thus immediately a mass hierarchy with one fermion state much 
higher in mass than the other two. Furthermore, the first factor in m being 
given in terms just of the Higgs vacuum expectation values 5 ,  y ,  z,  is inde- 
pendent of the fermion type, i.e. of whether it is U-type or D-type quarks or 
leptons that we are dealing with, although the second factor, given in terms 
of the Yukawa couplings a , b  and c, does depend on the fermion type. As 
a consequence, one obtains that the CKM matrix, which depends only on 
the relative orientation of the first (left-handed) factors of respectively the 
U-type and D-type quarks, is at tree-level just the identity matrix. This was 
already discussed in detail in [4]. 

What we need to do now is to go beyond the tree level and look at loop 
corrections. As pointed out in [4], because of the special manner in which 
the fermions here are coupled to  the dual gauge and Higgs bosons, loop 
corrections do not destroy the factorizability property of the tree-level mass 
matrix.' Nevertheless, they will modify the first (left-handed) factor in (2.6) 
and hence give rise to  a nontrivial CKM matrix and nonzero masses to  the 
lower generations fermions as explained in [4]. This is what we wish now to 
examine in detail. 

3 One-Loop Diagrams 
Our fermions carry in fact weak isospin and in the case of quarks also colour, 
so that in principle there will be loop corrections coming from colour gluon 
and electroweak boson loops. However, as far as the CKM matrix, or the 
lower generation fermion masses, are concerned, only those diagrams which 
rotate the mass matrix with respect to dual colour (i.e. the generation index) 
will matter. Since neither the colour gluons nor the gauge and Higgs bosons in 
the electroweak sector carry dual colour, they cannot rotate the generation 

'As a result, the mass matrix has two zero eigenvalues so that any &vacuum can be 
rotated away and the strong CP problem is avoided. [lO] 
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index, and hence will leave both factors (2.6) of the mass matrix intact, 
affecting at most its normalization. As we shall see, there are other reasons 
why we cannot in any case concern ourselves with the normalization of the 
mass matrix. There is thus no point for us to consider gluon and electroweak 
boson loops any further. There remain then only those diagrams with dual 
gauge and Higgs boson loops, of which all those of 1-loop order are listed in 
Figure 1. 

* .  

. ,  
.___I 0 0 

Figure 1: One loop corrections to  the fermion mass matrix, where solid lines 
represent fermions, wavy lines dual gauge bosons and dotted lines dual colour 
Higgs fields. 

Let us first write down the explicit expressions for the corrections t o  the 
fermion mass matrix arising from the diagrams in Figure 1. This has been 
done already in a general framework by Weinberg [12] who expressed the 
answer as a sum of five terms: 

( 3 4  Jm = -C(A1) - p 4 )  - p T )  - c(4') - -p) 
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where: 

As they are written, these formulae depend on the energy scale, the signific- 
ance of which will be elucidated later. 

The above formulae depend also on the following quantities, the explicit 
forms for which have yet to  be specified: the fermion mass matrix m, the 
eigenvalues p ~ ,  N = 0, ..., 8 of the dual gauge boson mass matrix, the Higgs 
boson mass matrix Mij and its eigenvalues MK, K = 1, ..., 9, the fermion 
couplings to the dual gauge bosons f~ and to the Higgs bosons ri or r ~ ,  and 
then the Higgs bosons' couplings to themselves f k l j  and to the dual gauge 
bosons ($&A)j. We proceed to do so now. 

The fermion mass matrix Weinberg defined somewhat differently from 
that given above in (2 .6) .  Writing the Yukawa coupling in terms of the full 
fermion field $, thus: 

(3 .3)  

instead of the left- and right-handed components as in (2.5), one obtains a 
mass matrix of the following form: 

(3.4) 
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containing factors in 75. However, since the labels on the right-handed com- 
ponents have actually no physical significance, one can relabel them such as 
to  make m hermitian and hence obtain the mass matrix in the form: 

which has no 75 in it, and is essentially just the square root of mmt in terms 
of the m previously defined. We notice that mw remains a factorized matrix, 
which property is crucial for our discussion later. In the calculations which 
follow, when no confusion is likely to occur, we shall drop the subscript W 
from the Weinberg mass matrix. 

Next, the mass matrix for the dual gauge bosons has already been worked 
out in [4]. This 9 x 9 matrix is diagonal for cy = N = 1 ,2 ,4 ,5 ,6 ,7 ,  as labelled 
by the Gell-Mann matrices A, of s?cu(3), with eigenvalues: 

The remaining 3 x 3 nondiagonal block in p2 as labelled by X3, As and A0 = :I 
reads as: 

I & ( y x 2  - y2)  - u C 2 ( $  - y2)  q y x 2  + y 2 )  4 4 3  3 

3 L ( 2 ( x 2  - y') q 2 ( x 2  12 + y 2  + 4 2 )  -$$(2(z2 + y2 - 2z2) , 
a < 2 ( x 2  + y 2  + 2) - u ( 2 ( 2 2  - y 2 )  - u C 2 ( 2 2  + y2 - &2) 

i.; 
3 3 d 3  9 

(3.7) 

(3-8) 

the eigenvalues of which we label by &, N = 3 ,8 ,0  with eigenvectors C a N  

such that: 
2 

C a N 1 p $ c p N  = P N b N N ' .  
a,P=3,8,0 

The diagonalization of this matrix we shall perform only with explicit values 
for the parameters. 
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The Higgs fields $t) represent 9 complex degrees of freedom, which we 
write, following Weinberg’s convention, as 18 real fields, thus: 

(3.9) $6 (a) - - cpal y + i$g). 

From these and the potential V[$]  in (2.1), the Higgs boson mass matrix is 
given by: 

82V 
(3.10) 

which breaks up into 8 diagonal blocks as follows. First, there is a 3 x 3 block 
(1) (2) (3). labelled by $1,1,$2,11$3,1. 

Second, there is a 2 x 2 block labelled by $2,1, (3) $3,1: (2) 

Third, there is a 2 x 2 block labelled by &j, $fj: 

4KC2 ( y2 -y ) .  
-ZY 

Fourth, there is a 2 x 2 block labelled by $A:!, &!: 

Fifth, there is a 2 x 2 block labelled by $$:A,$:;: 

-xz 

Sixth, there is a 2 x 2 block labelled by $1,1, (2) $2,1.  (1). 

YX Y 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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Seventh, there is a 2 x 2 block labelled by 41,2, (2) 42,2. (1). 

46C2 ( x2 -”” ) 
-YX Y 

(3.17) 

Finally, there is a 3 x 3 block labelled by 41,2, (1) 42,2, (2) 43,2 (3) the entries of which 
are all zero. All the first seven blocks are of rank 1 and have each only one 
nonzero eigenvalue, giving thus for M2 altogether 11 zero modes, 9 of which, 
namely one each from each block except the first and last and all 3 from the 
last, are eaten up by the dual gauge bosom, leaving 2 from the first block. 
These 2 remaining zero modes come from an “accidental symmetry” of the 
vacuum, not from a symmetry of the potential (2.1), as explained in [4], and 
are therefore not eaten up by the gauge bosons. We are then left with 7 
Higgs bosons coming one from each of the first seven blocks which we label 
in that order with their eigenvalues and eigenvectors each in its own block 
as follows: 

K = 1 : 8XC2(x2 + y2 + z2) (x,y,z), 
K = 2 : 4 ~ c  (y  + z2) ( y , z ) ,  

K = 3 : 
K = 4 : 46C2(z2 + x2) ( z ,  x), 

K = 6 : 46C2(x2 + y2) (x, y), 
K = 7 : 46C2(x2 + y2) (2, -y), (3.18) 

while the two remaining zero (pseudo-Goldstone) modes coming from the 
first block will be assigned the following eigenvectors in the original basis of 
that  block: 

2 2  

46C 2 2  (y  + z2) (y,  -z), 

K = 5 : kC2(z2 4- Z2) ( Z ,  -X), 

(3.19) 
Y - z  

X - Y  

1 - x(x + y + 2) 
1 - z(x + y + 2) 1%) =-P(  .-.) ; I  v 9 > = P  ( l - Y ( X + Y + z )  

with 
p-2 = 3 - (x + y + z)2. (3.20) 

Next, the couplings of the dual gauge bosons to the fermions are in Wein- 
berg’s convention: 

f~ = t N ,  N = 1,2,4,5,6,7,  

11 



where: 

9 3  1 
--&-(l - 75) .  tff = Q = 1, ..., 8, 2 2  

(3.22) 291 1 to = --(1 -75). 
3 2  

The coefficients C ~ N ,  C ~ N ,  CON are as defined in (3.8). 
The couplings of the Higgs bosons to the fermions as extracted from the 

Yukawa couplings (3.3). expressed in terms of the real Higgs fields (3.9), and 
rotated to  the basis where m is hermitian or where mw has no y5, are: 

which are independent of the superscript (a). Notice that the three indices 
(a) = 1,2,3; 6 = 1,2 ,3 ;  T = 1 , 2  here are to play together the role of the index 
i = 1, ..., 18 in the formula for CT1 in (3.2). Alternatively, when expressed 
in terms of the basis formed by the eigenstates of the Higgs mass matrix A4 
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as listed in (3.18) and (3.19), we have the same couplings in the form to be 
used in Edl of (3.2): 

where: 

and: 

(3.26) 

while Ius) and lug) are already given in (3.19). 
There remains then for us to specify only the couplings (#LX)j of the 

gauge fields to the Higgs fields and the couplings f k l j  of the Higgs fields to 
themselves, both occurring in the tadpole term ET' in (3.2). The calculations 
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for these are somewhat tedious, especially f k l j  which has altogether 18 x 18 x 
18 entries, most of which are zero. Since the calculation is straightforward 
and their actual values will not be needed for our calculation later, here we 
shall give only those results which are relevant for our considerations. For 
instance, one does not need to include in the sum over K the zero modes 
(3.19) [12]. For the rest, it is easier to  state the result in terms of the basis 
formed by the eigenstates (3.18) of the Higgs mass matrix than in terms of 
the original basis labelled by the three indices (a) = 1 , 2 , 3 , 6  = 1,2 ,3 ,  T = 1 ,2  
corresponding together to the index i in Weinberg’s formulae. In that case, 
the couplings (6LX)K for K = 2, ..., 7 all vanish, leaving only: 

with 

and, for N = 3,8,0:  

(3.28) 

(3.29) 

Finally, in the same basis of eigenstates, of the Higgs fields self-couplings 
~ I J K  we need only those with I = J and these are found to  vanish except 
when K = 1, where: 
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Z2X2 

z2 + 2 2  
f55l = 8XC+161cC ( ) 
f66i = 8XC + 8 4 ( x 2  + y2), 

f k  = 8XC+ 1 6 ~ C  ( x2y2 ) . 
x2 + y2 

(3.30) 

With these, the specification of quantities entering in the expressions for the 
l-loop diagrams in (3.2) is complete. 

4 The Relevant Terms 
Although the l-loop diagrams detailed in the preceding section were all re- 
ferred to  formally as corrections, they need not all be small. In particular, 
the coupling of the dual gluon is given in terms of that  of the usual colour 
gluon by the Dirac quantization condition [ll]: 

which means that for the usual colour coupling g having the observed value 
of around 1.18 at the 2 mass, the dual colour coupling ij is of order 10. Thus, 
loop diagrams such as Figure l(a) and (d), in which the integrated momenta 
need not be low so that the propagator suppression by a high dual gluon 
mass is inoperative, can in fact take on very large values. They cannot then 
be treated perturbatively. 

However, not all the diagrams in Figure 1 rotate the fermion mass matrix 
with respect to  dual colour, which rotation is needed to  give a nontrivial 
CKM matrix and nonzero masses to the two lower generations. Indeed, as 
we shall see, i t  turns out that  the large contributions from Figure 1 will all 
affect only the normalisation of the mass matrix but not its orientation in 
dual colour, so that as far as the effects we seek are concerned, there are only 
small corrections to  be considered. This is very fortunate, for otherwise one 
would not be able to  calculate the lower generation quark masses and the 
CKM matrix perturbatively as we set out to  do. 
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To see that this fortunate situation does indeed arise, consider first the 
last term in ET' in (3.2) which represents the dual gauge boson tadpole 
diagram exhibited in Figure l(d). This term is huge, being proportional 
to ij;p%ln&, where 33 ,  as already mentioned above, is of order 10, and 
the dual gauge bosons, in order for their exchanges not to  violate the very 
stringent experimental bounds on flavour-changing neutral current decays, 
have to have masses p~ of the order of 100 TeV [13, 151. However, in terms 
of the basis of Higgs mass eigenstates, this term appears as: 

Now, according to our previous result stated in (3.27), only the Higgs state 
K = 1 has nonvanishing coupling to the dual gauge bosons so that the sum 
over K in (4.2) has only the K = 1 term. By (3.24)-(3.26), however, rl 
is itself proportional to the tree-level mass matrix mw in (3.5), so that the 
whole diagram has the effect only of changing the normalization of the tree- 
level mass matrix as anticipated. 

A similar conclusion is reached for the other terms CA1, CA$ and CAT 
in (3.2), coming from the dual gauge boson loop. In contrast to the dual 
gauge boson tadpole studied in the above paragraph, these terms do rotate 
the fermion mass matrix but do so only through the mass matrix m itself 
on which these terms depend. Suppose then we expand these expressions in 
powers of rn, then the leading term of order rn will be just a scalar times the 
original tree-level mass matrix and can therefore only affect its normalization, 
not its orientation. The other terms in the expansion which rotate the mass 
matrix will be of order m2/& times the mass matrix and hence much smaller, 
in fact even negligible, as we shall see later. 

The fact that  the normalization of the fermion mass matrix is affected 
by large loop corrections means of course that we cannot hope to  calculate 
its value perturbatively but have to  treat it as a parameter to be determined 
experimentally. It means in particular that  the one nonzero eigenvalue of m 
corresponding to the mass of the highest generation which started at tree- 
level as pC can now no longer be given in terms of p, the Yukawa coupling, 
and < the vacuum expectation value of the Higgs fields, but has to  be treated 
as a separate parameter, say m~ (where T labels the type of fermions under 
consideration, namely U or D for quarks and L for leptons), thus reducing 
the predictive power of the present calculation. On the other hand, since 
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the normalization cannot be predicted in any case, there is now no sense in 
calculating those diagrams which affect the normalization only. Hence, as 
mentioned already in the beginning of this section, one may safely ignore 
all those diagrams with loops of the ordinary colour gluons and the usual 
electroweak Higgs bosons. 

A similar conclusion applies also to the dual Higgs tadpole diagram in 
Figure l (c)  representing the first term in CT' of (3.2). In the diagonal basis 
for the Higgs mass matrix M ,  this term appears as: 

where since, according to  (3.30), ~ L L K  vanish except for K = 1, there re- 
mains only one term in the sum proportional to  the matrix rl, which is itself 
proportional to  the tree-level mass matrix m. It will therefore affect only 
the normalization of m, not its orientation, and thus, by the logic above, can 
also be ignored. Given that in Figure 1, only the diagram (c) depends on the 
Higgs self-couplings f i j k ,  this means that we can henceforth eliminate this 
coupling from our considerations. 

The remaining terms in Figure 1, namely the terms of order m2/& or 
higher in CA1, CA', and CAT,  the term C4', and the second term in CT1 
corresponding to the fermion-loop tadpole of Figure l(e), the explicit ex- 
pressions for which are given in (3.2), all rotate the mass matrix. However, 
as explained in ref. [4], they will leave the mass matrix in a factorized form 
with only the left-handed factor rotated. In other words, the correction C 
from these terms can each be written in the form: 

(4.4) 
Added to  the tree-level mass matrix and symmetrized with respect to  left 
and right this gives: 

1 where x' = x - ?x1+ - ix1- etc. Again, as in the tree-level mass matrix, the 
y5 terms in (4.5) can be rotated away by redefining the right-handed fermions 
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to give: 

Hence, in order to specify the effect of the loop corrections, we need only 
give for each the corresponding $1 = ;XI+ + ;XI- etc. 

The results of our calculation are as follows. From the sum of CA1 and 
CAT in (3.2), we obtain: 

where TN are just the dual gluon couplings EN listed in (3.21) without the 

1 
2(1 1 - 75) factor: 

f N  = T N S ( 1  - 7 5 ) ~  (4.8) 

and f ~ ( m ~ )  is the integral: 

(4.9) 

From CA# (3.2), we have: 

(4.10) 
with: 

From in (3.2) we obtain: 

(4.12) 
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where IvK) are as listed in (3.26) and (3.19). The first term with: 

A K  = -p2(uKIFK(m2)1uK) (4.13) 

need not bother us, being proportional to Iv1) which is the same as for the 
tree-level mass matrix. For the second term, we have: 

and 
(4.16) 

Lastly, from the fermion-loop tadpole term of Figure l (e)  as given in the 
second term of CT1 in (3.2), we obtain: 

with 7~ as given in (3.25). The sum here is to be taken only over the Higgs 
bosons with nonzero masses, namely over only K = 1, ..., 7 with MK given 
in (3.18). 

Although the terms listed in the preceding paragraph all rotate the mass 
matrix and hence could contribute to the present calculation of the CKM 
matrix and lower generation masses, they are widely different in size. Thus, 
the terms (4.7) and (4.10) are both of order m2/& where m is about 176 
GeV for U-type quarks and 4.3 GeV for D-type quarks, while, as already 
mentioned before, the dual gauge bosons are bounded by experiment to  have 
masses larger than 100 TeV, a bound that we shall be able to  check later 
within the present framework for consistency. That  being the case, the cor- 
rections due to  these two terms are only of the order of 1 O W 6  or less and are 
thus seen to  be entirely negligible for calculating the lower generation quark 
masses or the CKM matrix to  the present experimental accuracy. A similar 
conclusion is reached also for the term (4.17) which is of order (m2 In m)/Mi ,  
with Higgs boson masses MK being estimated to  be of order some tens of 
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TeV, again an estimate that we shall be able to  check for consistency within 
the present framework. Hence, the end result of our analysis is that  of all the 
1-loop corrections we have evaluated, only the term (4.12) from the Higgs 
boson loop in Figure l (b)  is potentially large enough to give the right orders 
of magnitude for the lower generation quark masses or for the off-diagonal 
CKM matrix elements, and it is therefore to this term that we shall now 
direct our attention. 

5 The Rotating Mass Matrix 
The Higgs boson loop C4l in (3.2) of Figure l (b)  not only rotates the fermion 
mass matrix but rotates it in a manner which depends on the renormalization 
scale. To see this, let us write the logarithm in (4.15) and (4.16) at any scale 
,!i as a sum of its value at some given scale p plus a scale-dependent 
thus: 

term, 

( 5 4  

If we change the scale from p to F, then 
amount: 

in (3.2) will change by the 

Recalling (3.24), we can rewrite the first term within the curly brackets as: 

and the second term as: 

On substituting 7~ from (3.25) and summing over K we obtain for the first 
term: 
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and for the second term: 

with: - x(x2 - y2) x(x2 - z2) , cyclic, 
2 2  + 22 

51 = + 
x2 + y2 (5.7) 

where we have kept only the contributions from K = 3,5 ,7  since those from 
K = 1 and the sum of K = 2,4,6 affect only the normalization of rn, while 
those from K = 8 ,9  both vanish. In principle, of course, a change in the 
normalization of m will get reflected also in its orientation, but this is of 
second order in smallness if the change in scale is small and can therefore be 
neglected. 

The scale-dependent corrections (5.5) and (5.6) leave the mass matrix 
factorized, as expected from the arguments given in ref [4], but no longer 
hermitian. However, following the convention introduced above in (4.5) and 
(4.6), one can redefine the right-handed fermion fields again so as to  make 
the corrected mass matrix m‘ hermitian. The net result then is that ,  apart 
from changes in the normalization which may be ignored, one obtains from 
these terms a rotation to the mass matrix which may be represented as a 
rotation to  the vector ( x ,  y, z ) ,  thus: 

which depends on the change in scale. 
By iterating the formula (5.8) in small steps, one can evaluate the rotation 

in (x ’ ,  y’, z‘)  over finite changes of scales. One arrives then at a picture similar 
to the familiar one of running coupling constants, except that  here i t  is a 
normalized vector ( X I ,  y’, z’) that  ‘runs’. From (5.7), it is readily seen that  
for (x ‘ ,  y‘,  z’) equal to  (1,0,0) or $(l, 1, 1), the increment due to  a change 
of scale vanishes. These 2 vectors are thus fixed points in the usual sense 
under changes of scales. It can also be seen from (5.7) that  for other values 
of ( x ’ , y ‘ , z ’ )  (where we have adopted the convention x‘ > y‘ > t’), and for 
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decreasing energy scales, the increment satisfies the following inequalities: 

2 x’ y’ y‘ 
y’ y ’ .  z’ z” 
7 < - ;  7 < -  (5.9) 

which mean that for decreasing scales, the vector (x ’ ,  y’, z’) will ‘run’ away 
from the fixed point (1,0,0) towards, in general, the fixed point $(1,1, l), 
tracing out a tracjectory as the scale decreases. These assertions are con- 
firmed by the numerical calculation presented in Figure 2, where the spacing 
between points on a trajectory denotes the speed (in arbitray units) at which 
the vector (x’ ,  y’, 2’) runs as a function of In p. Since (x’ ,  y’, z’) is normalized 
by definition, only the values of x‘ and y‘ need be presented and the traject- 
ories are bounded by the circle xI2 + yI2 = 1, while the convention adopted 
above, of x‘ > y‘ > z’, restricts the trajectories to within the line x‘ = y’ and 
the ellipse yI2 = (1 - xI2 - y”). This figure gives us a very useful picture to 
which we shall often refer. 

We recall that the vector (x ‘ ,  y‘, z’) represents actually the two identical 
factors of the factorized mass matrix (4.6) at the 1-loop level, so that a ro- 
tating (x’ ,  y’, z’) implies a mass matrix with a scale-dependent orientation. 
Now, for such a case, it is not so obvious how the mass and state vector of 
each individual state ought to be defined. This ambiguity is not a peculiarity 
of the dualized standard model alone but arises already in the ordinary (i.e. 
nondualized) standard model where a mass matrix with scale-dependent ori- 
entation occurs by virtue of the non-diagonal CKM matrix in the renormlaiz- 
ation group equation [4]; only there, the effect being small, its consequences 
can be neglected. The point is the following. At any scale, the mass matrix 
can of course be diagonalized and, being hermitian, its eigenvalues will be 
real and, if nondegenerate, their eigenvectors are orthogonal to one another 
so that the transformation matrix, say S, from the original basis to the new 
basis formed by the eigenvectors will be unitary. However, these eigenvalues 
are scale dependent, and cannot as yet be identified as the mass of the indi- 
vidual states. Usually, the actual mass of a state is defined as the value of the 
scale-dependent mass evaluated at the scale equal to its value at that scale: 
m(p )  = p. Here, however, since the eigenvalues are different by assumption, 
there is no scale for which this criterion can be satisfied simultaneously for 
all of them. One can, of course, take each eigenvalue and evaluate it at the 
scale equal to its value, and hence define at this scale the corresponding ei- 
genvector as the state vector of the particle with this value as its mass. But 
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Figure 2: The ‘running’ of the vector (z’, y’, 2) 

since the orientation of the mass matrix is itself supposed to depend also on 
the scale, the state vectors so defined for the various particles at different 
scales will in general not be orthogonal to one another, so that the trans- 
formation S from the original basis to this new basis of state vectors will 
not in general be unitary. In fact, we do not know of a general prescription 
which can define, from a rotating mass matrix, the masses and state vectors 
of the individual particle states by the normal criterion which yet leaves the 
transformation matrix S unitary. 

However, for a mass matrix which remains factorizable at all scales as the 
one considered here, i t  turns out that  there is a way [4] in which masses and 

23 



state vectors can be defined in accordance to the normal criterion and which 
gives a unitary S matrix. To be specific, let us take first the U-type quarks 
as example. The mass matrix being factorizable, there is only one non-zero 
eigenvalue at any scale. Suppose we evaluate this nonzero eigenvalue at the 
scale equal to  its value. Then, in accordance with the standard criterion 
above, we can define this value unambiguously as the mass of the top quark. 
The state vector of the top quark is thereby also defined uniquely as that  
eigenvector with the nonzero eigenvalue at the scale of the top mass, which 
in the present framework is just the vector (x’, y’, 2’) taken at the top mass. 
At this scale, the other two eigenvalues are zero, but they should not be 
regarded as the masses of the two lower generations for they are evaluated 
at the wrong scale. Furthermore, one does not know at this stage which 
two vectors should correspond to the 2 lower generations. However, being 
physically independent states, the 2 lower generations ought to  have state 
vectors lying in the 2-dimensional subspace orthogonal to  the top state vector, 
namely in the space spanned by two vectors with zero eigenvalues which we 
may choose as: 

(5.10) 
y‘ - 2’ 

x’ - y’ 

1 - X’(d + y’ + 2’) 
1 - yyz‘ + y’ + 2‘) 
1 - z‘(x’ + y’ + 2’) 

with 
p = 1 / 4 3  - ( X I  + y’ + z ’ ) ~ ,  (5.11) 

although at this stage one does not know which linear combinations of these 
two vectors should represent the c quark and which the U quark. 

Suppose we now lower the scale p by some small amount Ap. Then we 
know from (5.8) that the mass matrix will be rotated via a rotation of the 
vector (x‘ ,  y’, 2’) by a small amount proportional to ln(p2/m:). Hence, by 
repeated application of this procedure, one can evaluate the loop-corrected 
mass matrix &‘ at a scale some finite amount lower than the top mass. At the 
lower scale, because of the rotation, the vectors [vi) are no longer eigenvectors 
of e‘, so that in particular the mass submatrix: 

(Vil%’Ivj), i ,  j = 2,3, (5.12) 

which was zero at the top mass scale is here no longer the null matrix. 
However, being a submatrix of a rank 1 matrix, i t  is still of at most rank 
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1 and hence has at most one nonzero eigenvalue, the value of which will 
depend on the scale where the expression is evaluated. Applying then the 
same reasoning as for the top quark, we now vary the scale until the nonzero 
eigenvalue of (5.12) comes out equal to  the scale itself, which value we shall 
call the charm mass for consistency. At the same time, the eigenvector Iv;) 
corresponding to  this eigenvalue at this scale we define as the state vector of 
the c quark, which is, of course, by definition orthogonal to  the state vector 
Ivl) defined above for the t quark, as i t  should be. Furthermore, the state 
vector of the U quark is now also automatically given as the vector Ivi) which 
is orthogonal to  both the top quark state vector Ivl) and the charm quark 
state vector Ivb) already defined. At this stage, then, the state vectors of the 
3 generations are all specified which we were unable to  do before. 

Finally, to find the mass of the U quark, we lower the scale again in small 
steps, applying repeatedly (5.8), to some scale. This scale we then vary until 
the value of 

(v;Im‘lv;) (5.13) 

becomes equal to the scale itself, and this we define as the mass of the U 
quark, again in conformity to  the procedure above. So now the masses of all 
three physical states are also defined, and they will all in general be nonzero. 

We- notice that the masses of all three generations t ,  c, U here are each 
defined using the normal criterion of evaluating the appropriate eigenvalue 
of the mass matrix at the scale equal to its value. Moreover, the three state 
vectors corresponding to the three generations so defined are also mutually 
orthogonal so that the matrix S transforming from the original “gauge basis” 
to  the “physical basis” of state vectors is unitary as it ought to  be. The actual 
values o f t  he masses and state vectors so defined depend on the manner that  
the mass matrix rotates as a function of the energy scale, which in our present 
scheme depends in turn on the vacuum expectation values 2, y,  z of the (dual 
colour) Higgs fields and on the strength pu of their Yukawa couplings to the 
U-type quarks, the values of which parameters have yet to be specified. 

A similar procedure applied to the D-type quarks defines in turn the 
masses and state vectors of the b,s ,  and d quarks. The actual values of 
these quantities in the present scheme will depend on the same Higgs fields 
vacuum expectation values z,y,z as for the U-type quarks but in general a 
different Yukawa coupling strength p ~ .  Together with mT, the normalization 
of the mass matrix for each quark type T ,  which may be identified with the 
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highest generation mass, there are altogether then 6 parameters, namely mu, 
mD, pu, p ~ ,  and the vector ( x ,  y, z )  which, being normalized to unit length, 
counts only as 2 parameters. With the remaining 4 parameters then, one is 
required to evaluate the 4 masses of the 2 lower generations mc, mu, m,, md 

by the method described above, as well as the 4 relevant parameters of the 
CKM matrix in the manner outlined below. 

By definition, the CKM matrix is the matrix giving the relative orient- 
ation of the physical state vectors of the 3 U-type quarks to those of the 3 
D-type quarks. In terms of the notation introduced above, it is given as the 
matrix: 

K j  = (Vl i Idj ) ,  (5.14) 

where i ( j )  = 1 , 2 , 3  denote respectively t(b), c(s), u(d), which in usual con- 
vention are arranged in the reversed order. Now, in the literature, the CKM 
matrix is often defined also as the overlap UDt between the matrix U which 
diagonalizes the mass matrix of the U-type quarks and the matrix D which 
diagonalizes the mass matrix of the D-type quarks. This definition is equi- 
valent to that adopted above in terms of the physical states when the mass 
matrices do not rotate with the energy scale. When the mass matrices have 
scale-dependent orientations, however, the 2 definitions differ, since the vec- 
tors which diagonalize the mass matrices, as explained above, need no longer 
represent the physical states. Indeed, since the mass matrices are scale- 
dependent so will be their diagonalizing matrices U and D,  and so also will 
be the CKM matrix which is defined as their overlap. On the other hand, the 
physical state vectors defined in the preceding section for the 3 generations 
of both the U-type and D-type quarks are all scale-independent, so that the 
CKM matrix defined .as the transformation between the U physical basis to 
the D physical basis is also scale-independent. Here we shall evaluate the 
CKM matrix defined as the transformation matrix (5.14) between bases of 
physical states, which definition accords more with the philosophy adopted 
in this paper and seems to us also to correspond more to what is actually 
measured experimentally. 

Before we proceed to numerical work, however, let us first note a qualti- 
taive feature of the present procedure which is of relevance both to our future 
calculation and to its comparison with experiment. The empirical CKM mat- 
rix, though near identity, has off-diagonal elements differing considerably in 
size, varying from around 20 percent for V,d and Vu, through a few percent 
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for V,, and &, to  just a few permille for V,d and V,b. This variation may 
seem difficult to  explain since if the matrix is due to  some effect rotating the 
U-type mass matrix relative to the D-type mass matrix, one would expect 
the mixing elements to be of roughly the same order of magnitude. In the 
present scheme, however, there is a natural explanation for this variation. We 
recall that  the state vectors of the two lower generations are to be defined 
through the running rotation of the mass matrices, so that  these vectors get 
an extra kick in orientation in addition to  that of the frames at the top and 
bottom mass. And it  is this effect, having strictly to do with the special 
way that the physical states of the lower generations are here defined, which 
gives the Cabibbo angle a sort of special status among CKM matrix elements 
and hence, as we shall see, a particularly large value in comparison with the 
others as experimentally observed. 

6 Numerical Results 

To perform the calculation outlined in the preceding section, given any vector 
( x ,  y ,  z )  for the Higgs fields vacuum expectation values which also doubles as 
the factor of the zeroth order fermion mass matrix, we face as our first task 
the evaluation of the 1-loop corrected vector: 

(properly normalized), for xl, y1, z1 evaluated at the energy scale, respect- 
ively for the U- and D-type quark, of the top and bottom mass. This cannot 
be done by applying directly the formula (4.12) derived above for the follow- 
ing reason. The expression (4.12) depends on the masses of the Higgs bosons 
M K ,  which in turn depend on the strength [ of the Higgs vacuum expecta- 
tion values and the Higgs self-couplings K, and A. Of these parameters, X is 
irrelevant since it occurs only in M1 entering in Al and B1 of (4.12) which 
are seen to affect only the normalization of (xl,  y l ,  zl), not its orientation, 
while the other two occur only together in the combination rcC2, as seen in 
(3.18). From the lower bound on the dual gauge boson mass of around 400 
TeV deduced from the absence of flavour-changing neutral currents effects 
in meson decays, one obtains from (3.7) an estimate of about 20 TeV for a 
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lower bound on C. Assuming the coupling K, to be of order unity, this gives an 
estimate for a lower bound on MK also of around 20 TeV. Now the formula 
for ( X I ,  y1,zl) involves In M i ,  which when evaluated directly at the top and 
bottom mass scales as we desired would be very large and violate the spirit 
of our present perturbative calculation. However, there is no real problem in 
this, for we can always evaluate first the correction ( z l , y l , z l )  at the scale 
of the Higgs mass, say 20 TeV, and then use the formula (5.8) to  ‘run’ the 
corrected vector by steps down to the scales of the top and bottom mass. At 
every step, then, the calculation would be perturbative for the correction is 
kept always small. This is in the spirit of the original Gell-Mann-Low idea 
[ 141 which led to  the renormalization group equation. 

A calculation done in this way, however, still leaves i t  dependent explicitly 
on the masses of the Higgs bosons. This would be a little awkward but 
for a happy and quite intriguing ‘accident’ to be elucidated later, for these 
masses are known only by the tree-level formulae (3.18) which are likely to  
be strongly renormalized, like the fermion masses, by e.g. the dual gluon 
loops. Because of this ‘accident’, however, it turns out that  to  a very good 
approximation we can put all the Higgs boson masses equal, say to  a common 
scale MH, even the value of which in the end does not really matter, but which 
we take at the moment to be 20 TeV. We need then to  evaluate the formulae 
(4.12) for the common scale MH = MK for all K. This expression is almost 
the same for U- and D-type quarks, and indeed even for leptons, differing 
only in the normalization mT of the mass matrix. This difference is small, 
only of the order of m$/Mi which for MH around 20 TeV, is less than 10-4, 
as we have checked both by analytic and numerical calculations. It can thus 
be safely neglected. This means that whatever the correction due to  (4.12) 
happens to  be at the scale MH (which is in fact quite small numerically), i t  
will be the same for all the fermions. Therefore, in the present approximation 
when all MK’S are put equal, we can just start at the scale MH with the same 
values of x‘ ,  y’, x’ for all fermions, and simply ‘run’ them down to  the mass 
of the highest generation for each fermion type to  evaluate the vector Ivl) in 
(6.1) for each case. 

The ‘running’ mechanism (4.12) and the starting values at MH both being 
the same for all fermion types, the vector (d, y’, 2’) will in this approximation 
‘run’ along the same trajectory, only possibly at different speeds because 
the Yukawa coupliongs p~ may be different. In any case, since the mT’s 
are different, one would arrive at a different state vector for the highest 
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generation [VI) for the different fermion types. Starting with some input 
values for pr and some initial values for (? ,y ’ ,z ’ ) ,  say ( x ~ , y ~ , z ~ ) ,  at the 
scale MH,  and applying (4.12) repeatedly in small steps, one would arrive at 
some value for Ivl) for each fermion type. In principle, the steps should be 
infinitesimal, but in our numerical calculation we used typically about 500 
steps for each decade of energy which we found were just about sufficient for 
the 1% accuracy that we wanted. 

Having defined Ivl) for each fermion type, we can now ‘run’ further down 
in energy scale to  the second generation mass. As the mass matrix rotates in 
running, the mass will ‘leak’ into the second generation and give i t  a mass, 
as explained in the section above. The amount of leakage will depend on the 
value of the Yukawa coupling strength p~ and the range of energy run. Hence, 
the mass obtained from leakage at the mass scale of the second generation 
will in general be different for the different fermion types and different also 
from the actual input mass of the second generation. By adjusting the values 
of p ~ ,  one can adjust the amount of leakage and hence ensure that the leaked 
mass obtained for the second generation is indeed the same as the input mass 
for each fermion type. Let us call these optimized values of so obtained 
at this stage as the output p’s. 

These output p‘s, however, were determined starting from some vector 
Ivl) for the highest generation, which in turn depended on the assumed input 
values of pT used to run the initial vector (51, yI, zI) from the scale MH. down 
to the scale of the highest generation. Obviously, the input and output values 
of these p’s need not be the same. We have thus to optimize again and adjust 
the input values of p~ until the output value is in each case the same as the 
output value of p~ obtained from it. This optimzed value we now call the 
fitted p ~ .  

With these fitted values for p~ giving good second generation masses, we 
can now determine the state vectors lv’i), i = 2 ,3  both for the second and 
the lowest generations, as we explained in the preceding section. Then, with 
the physical state vectors for all three generations and both U- and D-type 
quarks all determined, the CKM matrix easily follows from (5.14). Further, 
by running down to  even lower energy scales, we can calculate the mass 
of the lowest generation by requiring that the ‘leaked’ mass in the lowest 
state in some scale be equal to the scale itself to  which it is run. One sees 
thus that given any initial value ( 5 1 ,  y ~ ,  21) at the scale MH,  our program 
automatically determines for us the values of pr which fit the masses of the 

29 



top 2 generations for each fermion type, and then gives us the CKM matrix 
and the lowest generation masses as the result. We have thus in effect just 
2 real parameters left to  adjust with which to  calculate all these physical 
quantities. 

We recall that  the present scheme does not allow us to  calculate the ab- 
solute normalization of the mass matrix, nor its variation with the energy 
scale, but only the orientation of the mass matrix. We are therefore more 
confident with our result on the CKM matrix which depends only on the ori- 
entation than on the fermion masses. The calculation of the fermion masses 
depends in principle on the scale-dependence not only of the normalization 
of the mass matrix but also of the p’s, which dependence, for lack of anything 
better, we have simply ignored. In our calculation therefore, we have con- 
centrated on getting a good fit to the CKM matrix rather than the masses 
of the lowest generation. 

With the whole calculation involving only real quantities, it is clear that  
we shall not be able to obtain any CP-violating phase in our CKM matrix. 
There are thus only 3 independent real parameters in the CKM matrix to  
calculate. We focus first our attention on the last row and column of V, 
namely that labelled by t and b. The state vectors of t and b, which in 
our notation were denoted by Ivy) Ivf) respectively, are not affected by 
the additional rotation of the physical states from the highest to  the second 
generation, which, as explained in the last paragraph of the preceding section, 
is responsible for the particularly large value of the Cabibbo angle. Their 
relative orientation therefore give the measure of the relative rotation of the 
vectors (x‘ ,  y’, 2’) when run from the starting value at MH to  the respective 
highest generation mass. One sees that the difference in orientation between 
these two states are quite small, the off-diagonal elements being only of the 
order of a few percent in magnitude. However, the distances run from the 
starting point MH to respectively the t and b mass are quite different, being 
only about 2 decades in energy for the t and nearly 4 decades for the b. 
Therefore, to end up with only a few percent difference in orientation, either 
the the Yukawa couplings a7. must be so small as to  give little running, which 
would contradict the sizeable amount of ‘leakage’ required to  give the second 
generation mass, or the vectors (z’,y‘,z‘) have to be near a fixed point so 
that  the running is rather inefficient. We explored first the ‘upper’ fixed point 
&( 1,1, l), but found no sensible solution. The ‘lower’ fixed point (1,0,0), 
however, proved productive. 
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In the input initial values of (XI, y ~ ,  z l ) ,  for XI - 1 and y~ > ZI but both 
small, it is, crudely speaking, y~ which tells us how far down we are on the 
trajectory, and the relative size of ZI to y~ which tells us which trajectory we 
are on. By adjusting y ~ ,  one can thus make the relative orientation between 
the t and b states, as exhibited in e.g. V,, and V c b ,  to be of the order of a 
few percent as required by experiment. Then, by adjusting ZI, to  which V,, 
and v c b  are quite insensitive, one can fit the Cabibbo angle Vu, and V ,  to  
the empirical value of around 20 percent. The best result we have obtained 
so far in this exercise is shown below: 

(6.2) 1 0.9755 0.2199 0.0044 

( 0.0143 0.0431 0.9990 
[VTsl = 0.2195 0.9746 0.0452 , 

This is to be compared with the result below obtained from experiment [l]: 

. (6.3) 1 0.9745 - 0.9757 0.219 - 0.224 0.002 - 0.005 
lVrsl = 0.218 - 0.224 0.9736 - 0.9750 0.036 - 0.046 i 0.004 - 0.014 0.034 - 0.046 0.9989 - 0.9993 

The agreement is seen to be good. This we find encouraging, first that  we can 
indeed adjust our parameters to obtain good values for the Cabibbo angle 
and the V,, and v,b elements, and second that once we have fitted these to 
approximately the right values, then v , b  and V,d automatically come out to 
be a few permille in magnitude as experimentally observed, which seem to  
indicate that the method we used for defining the lower generations states 
have somehow got the orientation right. We have calculated also with the 
same values of the parameters certain products and ratios of matrix elements 
which have been independently measured, obtaining: 

I X b l / l V c b l  = 0.0983, 
IV,dI/IV,sl = 0.3310, 

I&gV,dJ 1 0.0142, (6.4) 

to be compared with the values below quoted from the databook [l]: 
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The agreement is again reasonable. 

fermions in the 2 highest generations: 
These numbers were calculated with the following masses in GeV for the 

mt = 176, rnb = 4.295, ni, = 1.777, rn, = 1.327, m, = 0.173, m, = 0.106, 

where the central value was taken where such is given but otherwise the 
geometric mean of the upper and lower experimental bounds as listed in the 
databook [l]. We have included in the fit the charged leptons r and p which, 
though not entering into the CKM matrix, can be dealt with in the same 
manner as the quarks at the cost of only an extra p parameter. The initial 
values of (XI, y ~ ,  21) at the scale of MH = 20 TeV chosen to  fit the CKM 
elements were: 

(6.6) 

XI = 0.999998, YI = 0.002200, ZI = 0.000025. (6.7) 

The fitted p’s which emerged automatically from the requirement of consist- 
ency with the input masses (6.6) turned out then to be: 

PU = 3.4737, = 3.4693, p~ = 3.4728, 

which are encouragingly all of order unity. 
One quite amazing feature of the parameters obtained from the fit is the 

close proxity to one another of the values of the Yukawa couplings p for all 
three fermion types, the spread of which in (6.8) is only around 1 part per 
mille. The actual values listed in (6.8) depend of course on the input values 
of the masses (6.6) of the fermions of the 2 higher generations. However, 
even if we vary these input masses to the utmost extremes allowed by the 
experimental bounds, the p’s are found by calculation to  remain roughly 
equal, differing from one another always by less than 10 percent. At first 
sight, this may seem strange for the ratio of the second to  highest generation 
mass differ considerably from fermion type to fermion type. For example, 
(rn,/mt) N 0.7 percent, while (m,/mb) N 4 percent, a factor of 6 different, 
which would mean that the ‘leakage’ of mass by running from b to  s must 
be several times stronger than that from t to  c, suggesting that the coupling 
p which governs the speed of this running ought to  be several times bigger 
for the D-type than for the U-type. The reason why this does not happen 
in the present calculation is that ,  the t quark being heavier than the b, lies 
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further down the trajectory depicted in Figure 2, i.e. nearer the fixed point 
(1, 0, 0), so that  the running rotation there is much less efficient than at the b 
mass which lies much higher on the trajectory. Hence, with about the same 
value for p one can still obtain widely different ‘leakages’ in the two cases. 
However, that  the fitted values of p~ should come out so close to  one another 
for all 3 fermion types is a bit of a surprise. 

This approximate equality of the p’s for all 3 fermion types is what we 
called our “happy accident” at the beginning of this section which gives us 
a number of practical advantages in our calculation. First, we recall that  
in the calculation reported above, we had made the simplifying assumption 
that all the Higgs bosons had the same mass MH, which would be far from 
the truth if we believe the tree-level relations (3.18) given the very different 
values we need in (6.7) for z,y and z. To take Higgs mass splitting into 
account, one ought in principle to proceed as follows. One first goes up to  
the scale of the highest Higgs mass, which in the present case, according to  
(3.18) and (6.7), would be M4 - Ms - several orders of magnitude higher 
than the lowest Higgs mass MH of around 20 TeV. At this high scale, we 
have next to calculate the rotation to  the original Higgs vacuum expectation 
values (x ,y ,z)  due to  the K = 4,5 ,6 ,7  terms in the Higgs loop diagram 
(4.12), and then run the resulting (2, y‘, 2) down to  the scale of the lightest 
Higgs, namely M2 = MH. Then the result of this running has to  be added 
to  result of the rotation to the original (z, y, z )  due to  the K = 2 ,3  terms in 
(4.12), and i t  is this sum that we have in principle to use as the intitial vector 
(XI, y ~ ,  zr) for our above calculation. If the Yukawa couplings p were different 
for the 3 fermion types, then (XI, yI, zI) so obtained would be different also. 
Now, however, because of the “happy accident” of the p’s being the same, 
(and the mT-dependence of (4.12) being, as explained before, negligible), the 
resulting ( Z I , ~ I , Z I )  of the above manoeuvre would be the same for the 3 
fermion types. Hence, our ‘simplifying’ assumption made at the beginning 
of starting with the same (XI, y ~ ,  zI) for all fermion types at scale MH is now 
a posteori entirely justified. 

Further, this “happy accident” implies also that the calculation is actually 
independent of the scale MH which we have so far chosen to be 20 TeV. To 
see this, recall that  we were supposed to start with some (51, yr, Z I )  at MH 
for all fermion types and run the vector, with the appropriate p’s, down 
to respectively the t ,  b and 7 mass values. If the p’s were different, then 
starting with a different MH, one would arrive at different values at the 
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highest generation mass for the 3 fermion types. Now that the p’s are the 
same, however, there is only one value of (x ’ ,  y’, 2’) at every point of the 
trajectory. One can therefore start at any point of the trajectory with some 
(XI, y1,z1) for all 3 types of fermions and obtain the same answer. That this 
assertion holds even for approximately equal p’s has been checked numerically 
by repeating our calculation for various starting points MH. It means that 
MH can be removed altogether from our calculation as a parameter, leaving 
thus only the 2 ratios between (Z I ,Y I ,Z~ )  as the only parameters in the 
calculation, as we have claimed. 

The other intriguing feature of the fit is the proximity of the fitted values 
in (6.7) of these (z1,y1,z1) to the fixed point ( l , O , O ) .  In contrast to the 
approximate equality of the p’s discussed above, this outcome is no accident 
but, as already explained before, is required by the smallness of all other 
off-diagonal CKM matrix elements besides the Cabibbo angle. Although the 
values of (XI, y ~ ,  21) at the arbitrary starting point MH do not by themselves 
have much significance, we can deduce from them the vacuum expectation 
values (z,y,z) of the Higgs fields by running the scale backwards up to the 
highest Higgs mass and evaluating (4.12) there. Assuming the lowest Higgs 
mass 20 TeV, the tree-level formulae (3.18), and using (4.12), one obtains in 
this way for the vacuum expectation rough values of the Higgs fields: 

1, 5 x 10-~, 1 x IO-~ ,  (6.9) 

which are very close indeed to the fixed point (1,0,0) 
Though perhaps just fortuitous, the proximity of the fitted (2, y,  z) to the 

fixed point (1,0,0) and the near equality of the fitted p’s are so remarkable 
that it is tempting to consider the exciting possibility of the coincidence 
representing in fact a symmetry which is exact in some approximation and 
is only perturbed from it by an external agent. One possibility, for example, 
could be that if electroweak effects are neglected, then (z,y,z) is exactly 
(1,0,0) and the p’s are .exactly equal, and it is only the electroweak effects 
which give rise to the quantities’s departure from the equilibrium values. At 
this stage, of course, the suggestion is a pure conjecture on our part, but it 
may be a worthwhile conjecture to entertain. 

Having now determine the parameters of the problem, it is an easy matter 
to run the vector (d, y’, 2‘) further down in the energy scale and evaluate the 
masses of the lowest generation fermions following the method outlined in the 
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preceding section. Notice, however, that  this calculation depends in principle 
on the scale-dependence both of the normalization of the mass matrix and 
also of the p’s, neither of which are calculable in the present framework. In 
fact, even the earlier calculation of the CKM matrix depends to  some extent 
on these through fitting the p’s to the 2 higher generation fermion masses, but 
there, the change in scale not being too large, the change in normalization 
can be masked by adjusting the parameters in the fit, and hence not too 
noticeable. In calculating further the lowest generation masses, the effect of 
the neglect is compounded, and not too good results can be expected. Our 
calculation, using the values of the fitted parameters (6.7) and (6.8) and the 
same higher generation masses (6.6) and assuming constant p’s and mass 
matrix normalizations throughout the whole energy range of over 6 decades, 
gives: 

mu = 209 MeV, md = 15 MeV, me = 6 MeV. (6.10) 

These mass values are fairly stable with respect to variations of the input 
masses for the 2 higher generations. For variations between the ranges given 
in the databook [l], the values obtained for the lowest generation lie in the 
range: 

m, = 120 - 360 MeV, md = 12 - 22 MeV, me = 5 - 11 MeV. (6.11) 

Apart from the mass of the u-quark, we regard these result as sensible given 
the crudeness of the assumption of no scale-dependence at all for either the 
Yukawa couplings p or the normalization of the mass matrix. It is perhaps 
interesting to understand technically why the mass for the u-quark turns out 
to be so much worse than in the other two cases. As explained above, the 
approximate equality of the p’s means that all 3 fermion types lie on the same 
trajectory, only differing in where the various physical states are placed. For 
the calculation here, these positions are shown in Figure 3. We notice there 
that  the t-quark, being the heaviest fermion, lies of necesssity the lowest on 
the trajectory, while the b and T both lie higher up. For this reason, as 
already explained above, the running efficiency is much lower around the t 
mass than for the others so that even with the same value of p, the leakage 
from t to  c is much smaller than that from b to s or from T to  p. For the run 
from the second generation to the lowest, however, the U-type quark is now 
in the part of the trajectory where the running efficiency is high, while for the 
D-type quark and charged lepton, the lowest generation is already pressing 
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a little against the upper fixed point +(l, 1,l) and losing running efficiency. 
Hence, we have the unwelcome large mass for the u-quark but not so large for 
d and e. When the scale-dependence of p and the normalization of the mass 
matrix are properly accounted for, a possible scenario may be that  (2, y’, 2) 
will run faster along the trajectory so that all the lowest generation states 
will press against the upper fixed point &(l, 1,l) and give lower masses for 
all of them, in particular for the u-quark. The investigation of this possibility, 
however, is beyond the scope of the present paper. 

Finally, just as a matter of curiosity, let us apply the same sort of reason- 
ing to the neutrino masses also. Assuming the same value of p for neutrinos 
as for the charged leptons, we can then in principle calculate the masses of 
all the neutrinos given any one of them. Or else, given the experimental 
upper bound of any neutrino, we can obtain upper bounds on the others. 
The strongest bounds obtained in this way, we found, comes from inputting 
the experimental bound < 0.17 MeV for the vp mass quoted in [l]. Using 
the same fitted values of (XI, 91, t l )  in (6.7) we obtained: 

m,, < 5 eV, m, < 6 MeV, (6.12) 

both of which, interestingly, are stronger than the experimental bounds: 
mVe < 10 - 15 eV, m,, < 24 MeV given in [l]. We note that  in Figure 
3, the points representing the neutrinos all press quite tightly against the 
upper fixed point, especially for v,, which is why it gets such a stringent 
limit on its mass. These limits, however, should not be taken too seriously, 
since for the neutrinos, and indeed even for the charged leptons, there is 
much more than just the masses to be understood. 

7 Conclusion and Remarks 
In this paper, we set out to address the question whether the Dualized Stand- 
ard Model scheme suggested in [4] is capable of giving reasonable CKM 
matrix elements and quark masses. The question has now, we think, been 
answered in the affirmative. Not only has one been able to  fit the masses of 
the 2 higher generations sensibly with Yukawa coupling strengths all of order 
unity, but also with only 2 parameters then left to  fit the absolute values of 
CKM matrix elements very well and give sensible estimates as well for the 
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fermion masses of the lowest generation except for the u-quark. This may 
not mean, of course, that  the scheme is correct, but it is at least encouraging. 

The calculation was done with dual Higgs and gauge boson masses con- 
sistent with existing bounds obtained from flavour-changing neutral currents 
decays [15, 131, namely f is  = 20 TeV, meaning Higgs masses of order several 
10’s of TeV and higher and gauge boson masses of order several 100’s of TeV 
and higher. An estimate of these masses from the calculation, if available, 
would be of phenomenological significance, since it enters in FCNC decays 
[15, 161, and possibly also in understanding air showers from cosmic rays with 
energy greater than 1020 eV, namely those beyond the GZK spectral cutoff 
[17, 18, 15, 191. However, unfortunately for this purpose though fortunately 
for the calculation, it turns out that  the calculation is almost independent of 
the dual colour Higgs and gauge boson masses provided that they are large, 
so that no useful estimate for them can yet be made. 

The calculation gave also a rather intriguing picture of how CKM mixing 
and lower generation fermion masses are generated, namely in terms of ‘run- 
ning’ trajectories and fixed points. Two unexpected bonuses are the close 
proximity of the Higgs vacuum expectation values (z, y, z )  to the fixed point 
(1,0,0) and the near equality of the Yakawa coupling strengths p for the 
different fermion types. If one could find a theoretical reason why the p’s 
should be equal, or how (z, y, z )  is given that miniscule departure from the 
fixed point (1 ,0 ,0) ,  one would be approaching a fit with a single parameter 
(the common p) to all CKM mixings and fermion mass splittings, which 
would be fantastic. 

Of outstanding problems, we have identified two. One concerns the CP- 
violating phase in the CKM matrix which, as explained already, cannot be 
obtained in the present approach, at least not in first order. The other 
concerns the special properties of the mass matrix with scale-dependent ori- 
entation, also already discussed in section 5. The problem is that  there does 
not seem to  be a basis of state vectors with well-defined masses for which 
the mass matrix is exactly diagonal. In fact, this problem already figures 
in the ordinary (non-dualized) formulation of the Standard Model where a 
scale-dependent orientation is induced by the CKM matrix which cannot be 
made diagonal simultaneously with the mass matrix. The only difference is 
that  the effect there is quite small, as shown in [4], and is for that  reason of- 
ten ignored. It seems to  us that  whichever description one chooses to  adopt, 
whether in terms of the diagonal basis or the basis with definite masses, the 
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physics ought to  be equivalent. However, the relation between the two de- 
scriptions and the physical consequences this implies have not been properly 
worked out. 

Acknowledgement 

One of us (JB) acknowledges support from the Spanish Government on 
contract no. CICYT AEN 97-1718, while another (JP) is grateful to  the 
Studieristiftung d.d. Volkes and the Burton Senior Scholarship of Oriel Col- 
lege, Oxford for financial support. In addition, we all thank George Kalmus 
for some timely practical help which made this collaboration possible. 

References 
[l] Particle Physics Booklet, (1996), from R.M. Barnett et al. Phys. Rev. 

D54, 1, (1996). See also the updates on the PDG’s website. 

[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652, (1973). 

[3] For a review, see e.g. C. Jarlskog, in CP Violation, ed. C. Jarlskog, 
World Scientific, Singapore, 1989. 

[4] Chan Hong-Mo and Tsou Sheung Tsun, Rutherford Appleton Labor- 
atory preprint RAL-TR-97-005 (1997), hep-th/9701120, to  appear in 
Phys. Rev. D, (scheduled for Feb. 15, 1998). 

[5] Chan Hong-MO, Jacqueline Faridani and Tsou Sheung Tsun, Phys. Rev. 
D53, 7293, (1996). 

[6] G. ’t Hooft, Nucl. Phys. B138, 1, (1978); Acta Physica Austrica suppl. 
XXII, 531, (1980). 

[7] The idea of a possible “horizontal symmetry” linking generations is quite 
old. Examples of some early references are: F. Wilczek and A. Zee, Phys. 
Rev. Lett. 42, 421, (1979); A. Davidson and K.C. Wali, Phys. Rev. D20, 
1195, (1979), D21, 787, (1980); T. Maehara and T .  Tanagida, Prog. 
Theor. Phys. 61, 1434, (1979); T. Yanagida, Phys. Rev. D22, 1826, 
(1980). 

39 

... 



[8] For a recent review, see e.g. W.A. Ponce, L.A. Willis, and A. Zepeda, 
Z. Phys. C73, 711, (1997). 

[9] The merit of having rank 1 mass matrices for fermions have long been 
advocated. For early references see e.g. H. Fritzsch Nucl. Phys. 155B, 
189, (1978); H. Harari, H. Haut, and J .  Weyers, Phys. Lett. B78, 459, 
(1978); Y. Chikashige, G. Gelmini, R.P. Peccei, and M. Roncadelli, Phys. 
Lett. B94, 499, (1980). For a recent review see e.g. H. Fritzsch, hep- 
ph/9501316. 

[ 101 Jakov Pfaudler, Oxford University preprint OUTP-97-12P, hep- 

[ll] Chan Hong-Mo and Tsou Sheung Tsun, hep-th/9702117, Phys. Rev. D. 

t h/9703058. 

’ 56, 3646, (1997). 

[12] Steven Weinberg, Phys. Rev. D7, 2887, (1973). 

[13] e.g. Robert N. Cahn and Haim Harari, Nucl. Phys. B176, 135, (1980). 

[14] M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300, (1954); See also 
e.g. S. Weinberg, The Quantum Theory of Fields, Vol. 11, (Cambridge 
University Press, Cambridge-New York-Melbourne, 1996) p. 11 1. 

[15] Jose Bordes, Chan Hong-MO, Jacqueline Faridani, Jakov Pfaudler and 
Tsou Sheung Tsun, Rutherford Appleton Laboratory preprint RAL-TR- 
97-023, hep-ph/9705463 (unpublished); hep-ph/9711438. 

[16] Jose Bordes, Chan Hong-MO, Jacqueline Faridani, Jakov Pfaudler and 

[17] K. Greisen, Phys. Rev. Letters 16, 748, (1966); G.T. Zatsepin and V.A. 

Tsou Sheung Tsun, in preparation. 

Kuz’min, JETP Letters 4, 78, (1966). 

[18] For a brief overview, see e.g. Murat Boratav, astro-ph/9605087, to  ap- 
pear in the proceedings of the 7th International Workshop on Neutrino 
Telescopes held in Venice on Feb. 27 - Mar 1, 1996. 

[19] Jose Bordes, Chan Hong-MO, Jacqueline Faridani, Jakov Pfaudler and 
Tsou Sheung Tsun, astro-ph/9707031, to appear in astropart. Phys. 

40 


