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Abstract 

The Dualized Standard Model which has a number of very interest- 
ing physical consequences is itself based on the concept of a nonabelian 
generalization to electric-magnetic duality. This paper explains first 
the reasons why the ordinary (Hodge) * does not give duality for 
the nonabelian theory and then reviews the steps by which these dif- 
ficulties are surmounted, leading to a generalized duality transform 
formulated in loop space. The significance of this in relation to the 
Dualized Standard Model is explained, and possibly also to some other 
areas. 

'Review talk given by the second author at the Cracow Summer School on Theoretical 
Physics held in May-June 1997 at Zakopane, Poland, to appear in Acta Physica Polonica. 



1 Introduction 
From the standpoint of our present understanding and observation, the Stan- 
dard Model seems to encapsulate the major points of our knowledge in parti- 
cle physics but yet leaves many of its own ingredients unexplained. Of these, 
the most striking are the origins of Higgs fields and fermion generations. 
Nor are details such as the fermion mass hierarchy or the CKM (Cabibbo- 
Kobayashi-Maskawa) mixing matrix [l] given any theoretical explanations. 
A way to further our understanding is perhaps to study more closely Yang- 
Mills theory itself, on which the Standard Model is based. Indeed, it was 
shown that by combining a recently derived generalized electric-magnetic 
duality for Yang-Mills theory with a well-known result of ’t Hooft’s on con- 
finement [2] one obtains a scheme - the Dualized Standard Model - which 
purports to answer some of these puzzling questions [3]. 

This paper reviews the theoretical basis for the scheme, while our other 
paper [4] in the same volume reviews its physical consequences. 

2 A first look at duality 
It is well-known that electromagnetism is invariant under the interchange 
E + H, H + -E, which can be expressed equivalently as a symmetry 
under the Hodge star operation on the field tensor 

(1) *FPy = - ~ c ~ ~ ~ F ~ ~ .  1 

When there are charges present, then this duality interchanges electric and 
magnetic charges. 

Let us take one of the Maxwell equations: 

d,*Fpu = 0. (2) 
Using Gauss’ theorem, it is easy to see that (2) is equivalent to the absence of 
magnetic monopoles. This is the physical content of (2). Using the Poincard 
lemma2, it is also easy to see that (2) is equivalent to the existence of a gauge 
potential A, such that Fpy is its curl: 

FPu = &A, - a,A,. (3) 
2This particularly simple example of PoincarC lemma can easily be seen by a direct 

construction of the gauge potential A,. 
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This is the geometric content of (2). Notice that both conditions are neces- 
sary and sufficient. This situation can be schematically represented as: 

Po‘nc rk A,, exists &$ d,%” = 0 no magnetic monopoles (4) - * 
geometry physics 

The dual of eq. (2) is: 
a,F’”” = 0, ( 5 )  

which is satisfied where there are no electric sources. By the same line of 
argument as for (4) we deduce that where ( 5 )  is satisfied, there exists also a 
dual potential A,, such that: 

*F,, = &A,, - a,A,,, (6) 

so that a symmetry is established under the * operation, that is 

A,, exists e a,FI” = 0 e po electrF sources, ( 7 )  
physics 

- 
geometry 

This is the celebrated electric-mangetic duality. 
For nonabelian gauge theories, however, the picture is totally different. 

Using the covariant derivative D, = d, - ig[A,, 1, we still have the analogue 
of (2): 

D,*F’” = 0 ,  (8) 
which is usually known as the Bianchi identity. However, since there is no 
nonabelian analogue to Gauss’ theorem, i.e. in this case there is no satis- 
factory way of converting a volume integral into a surface integral, (8) has 
nothing to say about the existence or otherwise of the nonabelian analogue 
of the magnetic monopoles. In fact, even the concept of flux is lost so that 
one has to give an entirely new kind of definition to a nonabelian monopole. 
Furthermore, although (8) holds identically for any tensor F,,, which is the 
covariant curl of a potential A,, the converse is false. In fact, on can hardly 
formulate the converse given that the covariant derivative D, has to involve 
the potential A,. This means that the above diagram (4), so significant in 
the abelian case, has hardly any content in the nonabelian case: 

? A, exists a D,*FP” = 0 . . ? 
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Further, there need not exist a dual potential related to *F,,,, in the same way 
as A,, is related to FPy. In fact, Gu and Yang [5] constructed some explicit 
counter-examples of potentials A,, which satisfy D,,F”” = 0 (and of course 
D,*FP” = 0) but no A, exists for which *FPV is its covariant curl. So we have 
also the ‘would-be’ analogue of (7): 

A,, exists 
G u -Yang + D,,F”” = 0 yaneMills no electric sources 

Hence we see clearly that the nonabelian theory is not symmetric under the 
Hodge star, as the abelian theory is. 

However, this does not mean necessarily that there is no nonabelian gen- 
eralization to duality. Indeed, it was shown in [6,7] that there is a generalized 
dual transform under which nonabelian theory is invariant. This generalized 
transform (A) reduces to the usual star operation (1) in the abelian case, but 
(B) does not do so in general in the nonabelian case, as it must not because 
of the Gu-Yang counter-examples (51. 

3 Nonabelian monopoles and loop space 
Nonabelian duality is closely connected to the concept of nonabelian monopoles, 
which in turn is best expressed in the language of loop space. We shall there- 
fore first recall, in this section, some old results [8, 91 on these topics, partly 
to introduce the notation. 

Let us first recall the general definition of a monopole in a gauge theory 
whether abelian or not. Let G be the gauge group. Then a (magnetic) 
monopole is defined as the class of closed curves in G [lO]. Two curves are 
in the same class if they can be continuously deformed into each other. For 
example, if G = U(1), then the monopole charge is given by an integer-this 
is the original magnetic case. If G = S0(3), then the monopole charge is a 
sign: fl. For the gauge group of the Standard Model, which is our main 
conern, and which is strictly speaking SU(3) x SU(2) x U(l)/ZG and not 
SU(3) x SU(2)  x U(1) as usually written, the monopole charge is again an 
integer n. In this case, a monopole of charge n carries (a) a dual colour 
charge C = e2=”;I3, (b) a dual weak isospin charge r]  = (-l)”, and (c) a dual 
weak hypercharge Y = 2, where g1 is the weak hypercharge coupling [ll]. 
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The monopole charge thus defined is quantized and conserved. But how 
does one express it in an equation? We found that we can do so using 
Polyakov’s loop space formulation of gauge theory [12, 81. 

Let tP(s), s = 0 + 27r, be a closed curve in spacetime beginning and 
ending in a fixed point f”(0) = t”(27~) = zg. Then the phase factor or 
Wilson loop or holonomy [13] is the following loop-dependent but gauge- 
invariant element of the gauge group G: 

where P, means path-ordering with respect to s. From this we can define 
the ‘loop space connection’ 

and the corresponding ‘loop space curvature’ 

where S,(s) denotes the loop derivative at the point s on the loop. 

monopole of charge -1: 
With this apparatus, one can first of all write down for example an SO(3) 

G,,[[ls] = K ,  expi7rtc = -1. (14) 

Secondly, what is more important, one can prove the so-called extended 
PoincarC lemma [8], which states that, apart from some minor technical con- 
ditions, the vanishing of the loop curvature is equivalent to the existence of 
a local gauge potential A ,  giving rise to GP,[[Is] in the above manner. 

Thus we can now replace the contentless (9) with the true nonabelian 
analogue of (4) : 

A ,  exists G,, = 0 t--4 no magnetic monopoles (15) - \ * / 

geometry physics 

once again linking geometry to physics via a simple condition. 
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4 Nonabelian duality 
Just as we sought a nonabelian version (15) of (4), we now seek to generalize 
the notion of duality suitable for the nonabelian case. We recall that the 
abelian duality transformation * satisfies the following two conditions: 

(I) It is its own inverse apart from a sign: *(*F,,,) = -F,,,, 

(11) It interchanges electricity and magnetism: e H C. 

We thus look for a generalized duality transformation for a nonabelian gauge 
theory which satisfies (I) and (11), requring that it (A) reduces to * in the 
abelian case but (B) does not do so in general in the nonabelian case. 

First, we need to make clear what is meant by (11) in a nonabelian theory. 
We recall that for the abelian theory, in the ‘electric’ description in terms of 
A,,, an electric charge is a source represented by a nonvanishing current on 
the right-hand side of ( 5 ) ,  while a magnetic charge is a monopole which in 
terms of A,, is topological in origin but also representable by a nonvanishing 
dual current on the right-hand side of (2). Hence, for a nonabelian theory, 
in the ‘electric’ description in terms of A,,, an electric charge should also be 
a source represented by nonvanishing current on the left of: 

D,,Fw” = j ” ,  (16) 

while a magnetic charge should be a monopole represented, by virtue of (15), 
by a nonvanishing loop curvature G,,,,. 

To write down the generalized duality transform, introduce the following 
set of variables [7] :  

where 

@&l, s2) = ps exp (igJ” 51 A,,(E(s))i‘(s)ds) * (18) 

We see immediately that the E variables are the F variables parallely trans- 
ported by (18). It is clear that E,,[[Is] depends only on a segment of the loop 
[(s) around s, and is therefore a ‘segmental’ variable rather than a full ‘loop) - 
variable. In the limit that the segment shrinks to a 

E,,[tlSl ---$ F , , ” ( l ( S ) ) Q ” ( S ) .  
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However, the limit (19) must not be taken before other loop operations such 
as loop differentiation are performed, as these loop operations do require at 
least a segment of loop on which to operate. 

It is not too difficult to show that the variables E,[tls] constitute an 
equivalent set of variables to F,[(ls]. Using these, we can now define the 
duality transform by 

At first sight, this is quite unlike (1). However, if we regard the loop 
dependence of EP[[Is] as a continuous index, then the loop integral on the 
right is nothing but saturating indices, just like the summation on the right 
hand side of (1). By (19) we see that it is reasonable that the tangents 
p ( s )  and +"(t)  should occur. The factor N is an (infinite) normalization 
constant inherent in doing the functional integral. One novel ingredient is 
the local quantities w ( z )  on the left hand side. For concreteness, let us take 
G = SU(3). Then w is a 3 x 3 unitary matrix which represents the change 
from the frame in internal colour space with respect to which E, is defined to 
the frame in internal dual colour space with respect to which E, is defined. 
Such a change in frame is necessary to balance the two sides of eq. (20) since 
E, is 'electrically' charged but 'magnetically' neutral, transforming thus only 
under SU(3), not under its dual %(3) (see the last section for a discussion 
of dual gauge symmetries), while for E,, the reverse holds. In the abelian 
case, the factors w-' and w commute through and cancel, so that there we 
do not see this feature. Moreover, we do not always have the freedom by 
gauge transformations to set w = 1 everywhere, because in the presence of 
charges either E or E (or both) has to be patched3, so that w may have to be 
patched also. It thus takes on some dynamical properties and, as can be seen 
in our companion paper [4], the rows or columns of the matrix w can even be 
interpreted as the vacuum expectation values of Higgs fields. As such, they 
play a crucial role in the Dualized Standard Model. 

Coming back to the duality transform (20), we note that it has been 
constructed specifically in such a way as to satisfy the condition (I) above 

3This is similar to the case of the electric potential A,  in the presence of a magnetic 
monopole, requiring either patching or equivalently the Dirac string. 
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and (A) to reduce to the Hodge * in the abelian case yet (B) without doing 
so for the general nonabelian case [7]. Furthermore, it was shown there 
that it satisfies also the condition (11) by the following chain of arguments. 
As known already to Polyakov [12], a source in the ‘electric’ description in 
terms of A ,  can be represented in his loop notation of (12) as nonvanishing 
loop divergence P(s)F,[[ ls]  # 0, which by the relation (17) can also be 
expressed as nonvanishing loop divergence of E,[(ls], namely SpE,[(ls] # 0. 
The duality transform (20)) however, is so constructed that a nonvanishing 
loop divergence for E, gives a nonvanishing ‘loop curl’ for the dual variable 
E,, i.e. 6,(t)E,[qlt] - G,(t)k,u[qlt] # 0. Further, using (17) again, but 
now for e,, it is I seen that a nonvanishing ‘curl’ for E, means nonvanishing 
loop curvature G,”, or in other words, by the dual of (15), a monopole in 
the ‘magnetic’ description. Hence, we have that a source in the ‘electric’ 
description is a monopole in the magnetic description. Moreover, because of 
(I), the converse is also true, namely that a ‘magnetic’ source is the same as 
an ‘electric’ monopole. This then is the nonabelian generalization of (11) as 
desired. 

For a pure Yang-Mills theory with neither sources nor monopoles, then it 
follows by (15) that both the potential A, and the dual potential A, exist, 
substantiating thus the claim that the pure theory is symmetric under the 
dual transform (20). For the situation with sources and monopoles around, 
however, some more tools are needed. 

5 Dynamics and the Wu-Yang criterion 
In abelian theory, the equations of motion governing the dynamics of a 
charge, whether electric or magnetic, can be derived from its topological 
definition as a monopole by the Wu-Yang criterion [14]. For concreteness, 
consider first a magnetic charge regarded as a monopole in the electric de- 
scription in terms of A,. Instead of the usual minimally coupled action, one 
starts with the free field plus free particle action, which one varies under the 
constraint that there exists a magnetic monopole. Introducing a Lagrange 
multiplier A, for the constraint, we have 
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where the magnetic current jp is given by 

and e“ is the magnetic coupling related to the usual electric coupling e by the 
Dirac quantization condition 

ee“ = 27r. (23) 
Here we have assumed the monopole to be a Dirac particle, but we could 
equally have formulated the procedure classically. Varying with respect to 
F,, we get 

which is equivalent by (4) and duality to the existence of a dual potential 
A,. In fact we have 

apFpu = 0, (24) 

a, = 47rx,, (25) 
with 

Varying with respect to $ we get 

* F ~ .  = auAp - ap&. 

Together with the constraint 

equations (24) and (27) constitute the equations of motion for the field- 
monopole system [ 141. 

The argument can be repeated for electric charges by regarding them as 
monopoles in the magnetic description in terms of A,. The constraint is then 
given by 

yielding instead the usual Maxwell and Dirac equations, i.e. exactly the duals 
of (24) and (27). One concludes therefore that electromagnetism is dual 
symmetric even in the presence of charges. 

d,,Fp” = -47rjp, (29) 
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6 Dynamics of nonabelian charges 

We wish next to extend the argument to nonabelian Yang-Mills theory using 
the formalism developed above. Again we shall use the Wu-Yang criterion 
to study the dynamics of nonabelian charges, regarding them as monopoles. 
In loop variables, the free field action is 

(30) dF = -- / 6(dsTr( E,,Ep)i-2. 
4nN 

The free (Dirac) particle action is as before 

dM = / $(ia,y’ - m)$. 

The constraint that there is a monopole is 

where the magnetic current JPu has the form 

J,u[51s] = G € , , p u ( $ W y P t i j o W - l $ ) t i ,  (33) 

and t;  is a generator in the relevant representation of G. The monopole 
charge is originally given as a nonvanishing loop curvature G,,, which is the 
loop covariant curl of F,. However, as already mentioned above, it can be 
shown that by going over to the variables E, by (17), the loop covariant curl 
becomes simply the loop curl; hence the constraint (32). 

The full action 

d = dF + dM + / 6[dsTr(Wp”(d,E, - a,E, + 4nJ,,)) (34) 

is then varied with respect to the variables E,[(Is] and $(x) ,  giving respec- 
t i vel y 

~p”(s)~,[51sl = 0 (35) 
- m)lCl(s) = -G&7p$(4, (36) 

where the dual potential A, is given by the Lagrange multiplier WPu, in 
analogy to (25): 
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As already noted above, (35) is equivalent to the usual Yang-Mills source-free 
equation 

D’F,,, = 0. (38) 

To study the dynamics of nonabelian electric charges, we start from Yang- 
Mills equation (38) with a nonvanishing right hand side. This implies that 

which in turn implies 
&E, - a,E, # 0. 

But this is the condition that signals the occurrence of a monopole of the h, 
field (cf. (32)). Since the free field action (30) can equally be expressed in 
terms of the dual variables: 

we can easily derive, by imposing the appropriate constraint 

&,E,, - a,E ,  = -47rJ,, (42) 

with an expression for the current similar to (33), the equations of motion of 
nonabelian electric charges as: 

a’(s)B,[tls] = 0 (43) 
(%YP - 4+(4 = -9A,yP+(4.  (44) 

We see that the equations of motion for the nonabelian electric charge are 
exactly the duals of those given above for the nonabelian magnetic charge, 
namely (35) and (36). Hence we conclude that, as claimed, the dynamics is 
indeed symmetric under the generalized duality transform (20) even in the 
presence of charges, just as in the abelian case. 

7 Remarks and conclusion 
We have presented the salient features of nonabelian duality, without sup- 
plying many details. A few remarks, therefore, are in order. 
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Firstly, since both the potentials A,(z) and A,,(.) are local spacetime 
variables, it may be tempting to speculate that the duality transform (20) 
itself could perhaps be formulated entirely in terms of local spacetime vari- 
ables rather than loop variables. At present, we certainly do not know a way 
of doing that. Suppose we start with the variables A,(z) ,  then by (15) we de- 
duce that in the presence of monopoles A,(z) cannot be everywhere defined. 
If at the same time there are no sources, then &(z) is everywhere defined. 
By duality the existence of sources, while allowing A,(z) to be everywhere 
defined, forces Ap(z)  to be undefined in certain regions of spacetime. This 
means that if there is only one type of charges present (whether monopole 
or source), we may, by choosing our variables, stick to spacetime variables 
only. However, if both charges, or dyons, are present, then it seems that loop 
space variables are inevitable. Unfortunately, the rigorous mathematics of 
loop space analysis remains largely unexplored [15]. For the work reported 
above, we have devised certain operational rules which seem to us consistent 
at least for the use we put them to, but the lack for a general loop calculus 
is often acutely felt. For more details, we refer the interested reader to (71 
and earlier work cited therein. Nevertheless, the existing operational rules 
already allows one to explore Feynman diagram techniques using loop space 
variables [16], which can be a first step towards building a full quantum field 
theory in these variables. 

Secondly, because of dual symmetry, a nonabelian gauge theory is not 
invariant just under the usual gauge group G but rather two copies of it: 
G x G. Here we denote the group under which A, transforms as G, although 
as a group it is identical to G. This makes it easier notationally and also 
underlines the fact that G has parity opposite to that of G, because of the 
€-symbol in the transform (20). This extra symmetry is a direct consequence 
of duality, which in turn is inherent in any gauge theory. That this symmetry 
has interesting physical consequences will be shown in detail in our compan- 
ion article [4]. We note further that although the gauge symmetry is found 
to be doubled, the number of degrees of freedom remains the same. In a way 
not yet fully explored, the potentials A,(z) and &(z) represent the same 
degrees of freedom, since the duality transform (20) is an equation relating 
E,[[Is] and E,[[Is]. The situation is even more immediately evident in the 
abelian case. Under a U(1) transformation A(z), 

11 



44~) e u4; - 
while under a U(1) transformation i(z), 

(45) 

444 I+ AP(4 
A&) I+ A&) + ap i ( z ) .  (46) 

The two phases X(z) and i(z) are entirely independent. Similarly the wave 
function $(z) of an electric charge and the wave function $(z) of a magnetic 
monopole will transform under X(z) 

and under i(z) 

(47) 

However, the variables AIL(z) and &(z) clearly do not represent different 
degrees of freedom, because their field tensors Fpv(z) and *FPv(z) are related 
by the following algebraic equation 

*F&) = -+BvpoFPu(z). (49) 

That A, and A, should correspond to two gauge symmetries but yet repre- 
sent the same physical degree of freedom can have very interesting physical 
consequences [4, 3, 23, 211. 

Thirdly, since &(z) is a local field, we can construct its phase factor: 
2 r  

&[El = P.expii j1  A,(E(s))i'(s)ds (50) 

in complete analogy to the familiar @[E] in (11). Now, in the famous work 
of 't Hooft [2] on confinement the trace of @[t] has a very important role to 
play as an order parameter which he called A(C), depending on the loop C. 
Hence, by the duality discussed above, one expects that the trace of 6[t] in 
(50) will play the role of 't Hooft's disorder parameters B(C)  [2]. This turns 
out to be indeed the case. Using Dirac's quantization condition 

gij = 47r (51) 
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it was shown [17] that the traces of 
tation relation 

and 6 does indeed satisfy the commu- 

A(C)B(C') = B(C')A(C) exp(27rinlN) 

for G = S U ( N ) ,  as required by 't Hooft for his order-disorder parameters 
[2]. It follows then that we can apply 't Hooft's confinement result [2] to our 
situation, namely that if the G symmetry is confined then the 6 symmetry 
as defined above is broken and Higgsed, and vice versa. As can be seen in 
our companion paper [4], this plays a crucial role in the Dualized Standard 
Model [3]. When applied, for example, to the confined colour group SU(3), 
it implies a completely broken dual colour symmetry m(3) which may be 
identified with generations. The explicit form (50) for the 't Hooft disorder 
parameter B(C) ,  which up to quite recently was known only by a somewhat 
abstract definition, is likely to be useful also in the problem of confinement 

Apart from giving rise to the physical consequences reviewed in [4], rang- 
ing from masses of fermions and their mixing [19] to flavour-changing neutral 
current decays [20, 21, 221 and very high energy cosmoc rays [20, 23, 21) the 
considerations above raise also some intriguing theoretical questions that are 
beginning to be asked. For example, throughout this lecture so far we have 
been concerned only with the nonabelian genralization of electric-magnetic 
duality in a strictly non-supersymmetric context and in exactly 4 spacetime 
dimensions. We have not touched upon the possible extension to supersym- 
metry and/or higher spacetime dimensions. This could be interesting, given 
the vast amount of exciting work [24] which has been done in recent years 
following the seminal papers of Seiberg and Witten [25] on supersymmetric 
duality. In a completely different direction, the doubling of the symmetry 
is reminiscent of complexification in geometry and particularly general rel- 
ativity. One would like to know how this generalized duality relates to the 
vast literature of self-dual fields, both in geometric Yang-Mills theory and 
in general relativity, especially in the twistor description [26, 271. The vistas 
that are being opened up are truly fascinating. 

Previous collaborations with Peter Scharbach and Jacqueline Faridani are 
gratefully acknowledged. 
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