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Abstract 

The Dualized Standard Model offers a natural place both to  Higgs 
fields and to fermion generations with Higgs fields appearing as frame 
vectors in internal symmetry space and generation appearing as dual 
colour. If they are assigned those niches, it follows that there are ex- 
actly 3 generations of fermions, and that at the tree-level, only one 
generation has  a mass (fermion mass hierarchy) while the CKM matrix 
is the identity. However, loop corrections lift this degeneracy giving 
nonzero CKM mixing and masses to fermions of the two lower gener- 
ations. A recent calculation to  l-loop level, with just a few parame- 
ters, yields a very good fit to  the empirical CKM matrix and sensible 
values also to the lower generation masses. In addition, predictions 
are obtained, in areas ranging from low energy flavour-changing neu- 
tral current decays to  extremely high energy cosmic rays, which are 
testable in experiments now being planned. 

'Review talk given by the first author at the Krakow Summer School held in May-June 
1997 at Zapopane, Poland, to appear in Acta Physica Polonica. 



As is well-known, the Standard Model works very well in reproducing 
experimental results. However, it contains within itself also a number of 
widely-recognized shortcomings. For instance, at the more fundamental level, 
Higgs fields and fermion generations are introduced into the model as phe- 
nomenological requirements to fit experimental facts without any theoretical 
reason being given for why they should be there in the first place. At the 
more practical level, this basic lack of understanding is reflected in the large 
number of empirical parameters. And even more disturbingly, the values of 
these parameters are seen to reveal some startling patterns of the greatest 
physical significance, and yet no theoretical explanation is given for their 
existence. For example, there is first the so-called fermion mass hierarchy 
puzzle. The masses of the U-type quarks, for example, are quoted in the 
latest databook [l] as mt = 176 f 5 GeV, m, = 4.1 - 4.5 GeV, mu = 3 - 8 
MeV, dropping by more than two orders of magnitude from generation to 
generation. The mass patterns of the D-type quarks and charged leptons 
are similar, although the drop from generation to generation is there a little 
less dramatic. Then secondly, there is the peculiarity in the mixing pattern, 
say for example between the U-type and D-types quarks as parametrized 
by the CKM matrix [2]. This matrix is found experimentally to be close to 
unity but yet differs significantly from it, with off-diagonal elements ranging 
in magnitude from about 22 percent to a few parts permille. Now these, the 
fermion masses and CKM matrix elements, are all parameters on which the 
properties of our whole physical world crucially depend. It would surely be 
disappointing if we can find no undestanding at all why they should take the 
values they take or fall into the noted patterns as they do. 

Answers to these questions are often sought for from beyond the Standard 
Model but with, to our minds, no obvious great success. The difficulty is that 
in going beyond the Standard Model, one opens up a wide range of freedom 
for theoretical constructions and so often ends up by putting in more than 
one gets out. In this paper, we wish to describe an approach we have recently 
suggested [3], in which we attempt to find answers for these same questions 
from within the framework of the Standard Model itself. This would have 
at least the advantage of economy and restraint, if it proves at all possible. 
The Standard Model, however, has already been closely studied, and it is 
not obvious that one can still find room enough in it to accommodate the 
structures of present interest. On the other hand, gauge theory is extremely 
rich in structure, and there are areas in it which are still largely unexplored. 

1 



Our new proposal, indeed, is based on a nonabelian generalization of 
electric-magnetic duality which was discovered only recently [4]. When com- 
bined with 't Hooft's famous result [5] on confinement of 1978, which we shall 
refer to here as the 't Hooft Theorem, this generalized electric-magnetic dual- 
ity becomes extremely powerful, and when interpreted in a certain way, leads 
to the following results. First, it gives rise to a new quantum number which 
shares some properties with the fermion generation index, and to certain 
scalar fields which can play the role of Higgs fields. Secondly, if these two ab- 
stract quantities occuring naturally in the theory are identified respectively 
with the physical objects that they resemble, then one predicts straightfor- 
wardly ( i )  that there exist 3 and only 3 generations of fermions of each type, 
(ii) that there is a fermion mass hierarchy with one generation of fermions 
much heavier than the other 2, and (iii) that the CKM matrix is close to 
the identity matrix. All these features are qualitatively as experimentally 
observed. 

At the tree-level, the 2 lower generation fermions of each type have van- 
ishing masses and the CKM matrix equals the identity matrix. Loop cor- 
rections, however, lift this tree-level degeneracy and give small but nonzero 
values both to the masses of the 2 lower generation fermions and to the off- 
diagonal CKM matrix elements. What is more, these corrections are found 
to be calculable perturbatively. A calculation to 1-loop has already been 
carried out. It is found that with just a few parameters one is able to obtain 
a very good fit to the empirical CKM matrix as well as sensible values to the 
fermion masses, a result which we shall summarize later. 

Further, as a consequence to the approach, new Higgs and gauge bosons 
carrying generation indices are predicted at masses in the 100 TeV range. 
Their direct detection i s  probably out of reach even for LHC, but their ex- 
change will lead to new effects which may be detectable by some experiments 
now being planned. Of these effects, we shall consider 2, namely (a) flavour- 
changing neutral current decays and (b) cosmic ray air showers at ultra-high 
energies. As we shall see, interesting results are obtained for both. 

In this paper, we shall deal only with the general framework and the 
physical consequences. For the theoretical basis of the approach, the reader 
is referred to our companion paper [6] in the same volume. 

To set up the framework for our discussion, let us first recall the basic 
tenets of electric-magnetic duality. As is well-known, electromagnetism is 
dual symmetric in the sense that in addition to the Maxwell potential AP(z)  
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with which the theory is usually described there exists also (under certain 
conditions) a dual potential &(z) which is to magnetism what A,(z)  is to 
electricity. Thus, for example, while in the description in terms of A,(z) ,  
the electric charge e is a source and the magnetic charge is a monopole, 
so in the description in terms of A,(z), the electric charge will appear as a 
monopole while the magnetic charge will appear as a source. Further, since 
the theory possesses a local U( 1) gauge symmetry, it will possess also a local 
gauge symmetry under the dual gauge group 0(1), so that the theory is 
invariant in all under the doubled gauge symmetry U ( l )  x 0(1), where o(l) 
is the same group as U ( l )  but has the opposite parity. Notice, however, that 
although the gauge symmetry is doubled so that there seems to be twice the 
usually acknowledged number of gauge degrees of freedom, the number of 
physical degrees of freedom remains the same. This can be seen as follows. 
In electromagnetism, the dual transform is an operation by the usual Hodge 
star: 

1 
2 

which means in electromagnetism essentially just interchanging E and H. Eq. 
(1) is an algebraic relation giving *F explicitly in terms of F so that obviously 
no new physical degrees of freedom have been introduced. Nevertheless, with 
F derivable from a potential A,  thus: 

(1) *F,”(Z) = - - f , v p o F P o ( Z ) ,  

F,”(Z) = &Ap(z) - d,A, (z )  (2) 

and *F  given by a similar expression in terms of 2, one sees that one can 
perform independent gauge transformations on A and A without changing 
either the physically measurable quantities F and *F  or the dual relation 
between them. In spite of the doubled gauge degree of freedom, therefore, 
there is only one photon, not two. 

Given the importance of nonabelian gauge theories to particle physics, 
a natural question to ask is whether the above dual symmetry known in 
electromagnetism extends to Yang-Mills fields. If duality is defined by the 
Hodge star in (1) as in the abelian theory, then the answer has long been 
known to be no [7] .  There is in general no guarantee in the nonabelian 
theory for the existence of the dual potential &(z) having the same relation 
to *FPv(z) as A,(z)  has to F,,,(z). However, it was shown in [4] that if one 
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defines the dual transform differently, thus: 

which reduces to (1) for the abelian but not for the nonabelian theory, then 
the dual symmetry is restored, meaning that there is a dual potential &(z) 
bearing the same relationship to k,, as the ordinary Yang-Mills potential 
A,(z) to E,. Here the field is given in terms of some loop-dependent quantity 
E, instead of the usual local field tensor FPv(z), and the integral in (3) is also 
a loop integral, so that the generalized dual transform is not as simple as it 
looks. However, for the discussion in this paper of the physical consequences 
of the approach, we shall not need to know much of the details involved. In 
the companion paper [6] ,  we shall summarize for the theoretically-minded 
reader the rather intricate arguments leading to the above conclusion. Here, 
we need to note only in (3) the quantity w ( z )  which is a local transformation 
matrix transforming from the local frame in which E, is measured to the 
dual frame in which E, is measured. For what follows, this w will play an 
important role. 

As a consequence of the generalized dual symmetry derived in [4], one 
recovers the analogy with the abelian theory desired. Take for example the 
standard chromodynamics with an SU(3) gauge symmetry. In the descrip- 
tion in terms of A,(z) ,  a colour electric charge g is a source while a colour 
magnetic charge &! is a monopole, but in a description in terms of a,(,), g 
will appear as a monopole while &! will appear as a source. And the theory 
will have in all the parity-doubled local gauge symmetry SU(3) x m(3), 
in close parallel to the U(1) x o(1) symmetry of electromagnetism noted 
above. Again, however, as in electromagnetism, this doubling of the gauge 
symmetry implies no increase in the number of physical degrees of freedom. 

Next, let us turn to what we call here the ’t Hooft Theorem [ 5 ] .  This says 
that in a theory with gauge symmetry SU( N )  (which we call here generically 
“colour”), if colour is confined, then dual colour is Higgsed, and conversely, 
if colour is Higgsed, then dual colour is confined. By duality here, however, 
one means a certain commutation relationship between two loop-dependent 
operators, called by ’t Hooft the order-disorder parameters A(C) and B(C),  
the former being the Wilson phase factor: 

A(C) = TrP exp{ig (4) 
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A priori, this need not mean the same thing as the duality discussed in the 
preceding paragraph as defined in (3). However, we were able to show in a 
recent paper [8] that the operator B ( C )  constructed in the same way as (4) 
above, but with instead of A,(z) the dual potential ,&(z) as given by (3), 
and instead of g a dual coupling ij related to g by the Dirac quantization 
condition: 

g i  = 47r, (5) 
does satisfy the 't Hooft commutation relation, so that the two usages of the 
term duality are in fact interchangeable and that the results can be combined. 

If that is the case, then the combination would be extremely powerful, 
leading to some very interesting consequences. In particular, suppose we ap- 
ply it to the Standard Model with the gauge symmetry SU(3) x SU(2) x U(1). 
Then according to [4], the theory would also have a dual gauge symmetry 
m(3) x m(2) x o(1). Further, since in the usual interpretation of the Stan- 
dard Model SU(3)  colour is confined while the electroweak SU(2)  symmetry 
is broken and Higgsed, the 't Hooft theorem [5] implies that the dual colour 
symmetry E(3Jwould be broken while dual weak isospin, corresponding to 
the symmetry SU(2) ,  would be confined. In other words, the roles of the two 
dual groups would be interchanged. 

How would these dual symmetries, if they exist, manifest themselves in 
the physical world? Consider first dual colour. Presumably, as in other sym- 
metries, particles will form representations of this dual group. In particular, 
we expect that there will be fermions in the fundamental representation of 
m(3) forming triplets of dual colour. However, the symmetry being broken, 
the members of a triplet will behave somewhat differently, having for exam- 
ple possibly different masses. They would thus be rather like the members 
of different generations of any particular fermion type, say the U- or D-type 
quarks or the charged leptons or neutrinos. In other words, dual colour, 
necessarily broken, would seem to offer a natural niche for the generation 
index to fit into. The beauty is that if the generation index is assigned that 
niche, then it follows that there will naturally be 3 and only 3 generations of 
fermions, a fact which seems to be strongly supported by present experiment. 

Would such an assignment work? To answer this question, we have first 
to understand a little about the symmetry-breaking pattern of dual colour. 
As for other gauge symmetries, such as weak isospin, we expect the dual 
colour group also to be broken spontaneously via the Higgs mechanism. But 
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are there scalar fields around in the theory to play the role of Higgs fields 
for breaking this symmetry, or do they have to be introduced ad hoc as in 
the usual formulation of the electroweak theory? An interesting feature of 
the dual framework is that there indeed are scalar fields occuring naturally 
in the theory which have the potential for being Higgs fields. Recall the 
transformation matrix w introduced in the dual transform (3) above. For 
colour, this is a 3 x 3 space-time dependent unitary matrix transforming from 
the colour frame to the dual colour frame. Its columns therefore transform 
as a 3 of dual colour, i.e. as the fundamental representation of %(3), while 
its rows transfrom as a 3 of colour SU(3). Under Lorentz transformations, 
however, they are space-time scalars. Moreover, the matrix w being unitary, 
its rows and columns have unit (nonvanishing) lengths. They share therefore 
many properties that one would want for the vacuum expectation values of 
Higgs fields. Indeed, if one repeats the same arguments for the electroweak 
theory, one finds that they would work very well as the Higgs fields normally 
required for symmetry-breaking in that theory. 

At first sight, it might seem rather revolutionary to consider the rows and 
columns of w as Higgs fields, but at second look, the move is not so new as it 
appears. The rows and columns of w are basically just the frame vectors in 
internal symmetry space. Their geometrical significance is therefore not very 
different from the vierbeins in General Relativity, and in that theory one is 
used to regarding the vierbeins as dynamical variables. In making the frame 
vectors in internal space into Higgs fields, one is in a sense copying what 
is standard procedure in relativity, and at the same time giving to Higgs 
fields a geometrical significance which they otherwise lack. Conceptually, of 
course, a geometrical significance for Higgs fields would be most welcome in 
the gauge theory framwork where all the other (gauge and fermion) fields are 
known to have deep geometrical significance. 

Suppose then we accept this proposal and apply it to m(3) of dual colour. 
One obtains first 3 dual colour triplets of Higgs fields and, if one makes what 
seems the simplest assumption about the dual hypercharges they carry, the 
further result that %(3) is completely broken with no residual symmetry 

where ( a )  = 1,2,3 are just labels 
for the 3 triplets while ii = 1,2,3 denotes the dual colour or the generation 
of their components. How would they couple to the fermions? We recall 

~31. 
Let us denote these Higgs fields by 
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that the couplings of Higgs fields to fermions (Yukawa couplings) are what 
give us the tree-level fermion mass matrices. Now fermions are known to 
exist in 3 generations so that it will be natural to assign them in the present 
scheme to dual colour triplets, thus: &,& = 1,2,3. However, not both the 
left- and right-handed fermions can be assigned to dual colour triplets or 
otherwise one cannot construct a Yukawa coupling for them. Taking then a 
cue from the Weinberg-Salam electroweak theory, one proposes to make the 
left-handed fermions ~ ! J L  dual colour triplets and the right-handed fermions 
~ ! J R  dual colour singlets. In that case, one can write a Yukawa coupling in 
the form: 

(6 )  
( a )  [bl 

To obtain the tree-level fermion mass matrix, one just substitutes as usual 
for the Higgs fields their vacuum expectation values, which we may take as: 

giving: 

with x ,  y,  z real and a = I$], b = VI], c = I$] in general complex. One notes 
that the mass matrix is factorizable as indicated. 

Now a factorizable mass matrix as that in (8) leads to 2 important imme- 
diate consequences. First, as noted already by many others but particularly 
by Fritsch [9], a rank 1 matrix such as (8) has only one nonzero eigenvalue 
which may be interpreted as one generation having a much larger mass than 
the other two generations and hence a reasonable zeroth-order description of 
the observed fermion mass hierarchy mentioned at the beginning. Second, the 
first factor ( x ,  y ,  z )  in ( 8 )  depends only on the vacuum expectation values of 
the Higgs fields but not on the fermion type, so that the CKM matrix, which 
depends only on the first factor and not on the second, will automatically be 
the identity matrix at tree-level, again a reasonable zeroth-order description 
of the empirical CKM matrix as already mentioned. The interesting thing 
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is that both these features which are much desired by phenomenology here 
follow spontaneously as a natural consequence of the theoretical framework. 

The above scenario, though desirable as a zeroth-order approximation, is 
obviously not good enough as a realistic description of nature, for the 2 lower 
generation fermions, though light compared with the highest generation, are 
not actually massless, and the CKM matrix does in fact differ considerably 
from the identity. Hence, the scheme can only be considered acceptable if it is 
capable also of explaining nonzero lower generation masses and the deviations 
of the CKM matrix from the identity. Our contention, to be supported by 
the results summarized below, is that it is indeed capable of doing so via 
loop corrections. 

Within the scheme, there are of course many different types of possible 
loop diagrams exchanging gluons or dual gluons, Higgses or dual Higgses. 
However, because of the unusual properties built into the scheme, these loop 
diagrams share a common property, namely that they leave the mass matrix 
factorizable. That this is so can be seen as follows. First, ordinary colour 
gluons and the standard electroweak Higgses do not affect the generation (i.e. 
dual colour) index since they themselves carry no dual colour, and therefore 
corrections due to loops exchanging these bosons will leave a factorizable 
mass matrix still factorizable. Secondly, although the dual gluons do affect 
the generation or dual colour index they can couple only to the left-handed 
fermions. This means that they will only alter the left-handed factor of the 
factorized mass matrix but will leave it still factorized. Lastly, the dual 
colour Higgses both affect the dual colour index and couple to both left- and 
right-handed fermions and so are a potential danger to factorizability, but 
their couplings to the fermions, being closely related to the mass matrix, 
is itself factorizable. Because of this, it is not difficult to see that loops of 
dual colour Higgses will also leave the mass matrix factorizable. Thus, by 
examining each type of exchanges in turn, one easily convinces oneself that 
no 1-loop diagram of any type will modify the factorizable nature of the 
mass matrix. Indeed, we are of the opinion, though cannot claim to have 
rigorously demonstrated the fact, that even higher loops of any order will 
still leave the factorizability of the mass matrix intact. 

Although the mass matrix remains factorized under loop corrections, this 
does not mean necessarily that the lower generation masses must remain zero 
or that the CKM matrix must remain the identity. For the CKM matrix, 
this is readily seen. For example, the dual gluon loop, as explained above, 
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though leaving factorizability intact, modifies the left-hand factor of the mass 
matrix, and this modification can depend on whether the fermion addressed 
is the U-type or the D-type quark. Hence, the CKM matrix which basically 
measures the relative orientation of these left-hand factors of respectively 
the U-type and D-type quarks need no longer be the identity when the dual 
gluon loop correction is taken into account. 

That the lower generation fermion masses also need not remain zero after 
loop corrections is not so obvious and is in fact quite intriguing. Given that 
the mass matrix is still factorizable after loop corrections and hence still of 
rank 1, it follows that it has always only one nonzero eigenvalue. However, it 
is not obvious that the 2 remaining zero eigenvalues ought to be interpreted 
as the masses of the 2 lower generations. The point is that, though still 
factorizable, the mass matrix can be rotated by the loop corrections and this 
rotation depends on the renormalization scale. And once a mass matrix has 
an orientation which is scale-dependent, it is not so obvious what ought to 
be defined as the masses and the state vectors of the physical states. Indeed, 
we believe that this question would have arisen already in the usual (i.e. 
nondualized) standard model, had the effect there not been so negligibly 
small. The ambiguity comes about as follows. Consider first a mass matrix 
with a scale-independent orientation. Then once it is diagonalized at some 
scale it will remain diagonal at any other scale. And if it is a hermitian 
matrix, then its eigenvectors will be orthogonal as physical state vectors 
ought to be. It would then be appropriate, as is usually done, to define 
the mass of each physical state as the appropriate eigenvalue evaluated at 
the scale equal to its value, as one would as if only one state is involved. 
However, if the matrix rotates as the scale changes, then the eigenvector of 
one eigenvalue at the scale equal to its value will not usually be orthogonal 
to the eigenvetor of another eigenvalue evaluated at the other scale equal to 
its own value. Hence, these two vectors can no longer be associated with two 
independent physical states. In fact, we do not know a valid criterion for 
defining the masses and physical states from a general mass matrix which 
rotates with changing scales. 

However, for the special case we have here of a factorizable mass matrix, 
it is possible to define the masses and the states in such a way that each 
mass is evaluated at the scale equal to its value and still have all the physical 
state vectors mutually orthogonal. Let us illustrate the problem with the 
U-type quarks. At any scale, the factorizable mass matrix has only one 
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nonzero eigenvalue. If one evaluates the mass matrix at the scale equal to 
this eigenvalue, then one can unambiguously define this value as the mass of 
the top quark, and the corresponding eigenvector as the physical top state 
vector. The other 2 eigenvalues at this scale are zero but they ought not 
for consistency to be identified as the masses of the lower states c and U 
for they would be evaluated at the wrong scale, Also, at this stage, we do 
not know which are the physical state vectors corresponding to respectively 
the c and U states. However, we do know that the state vectors of c and U, 
being by definition orthogonal to the state vector of the top, have to lie in 
the subspace spanned by the zero eigenvectors of the mass matrix evaluated 
at this the top-mass scale. Suppose now we run the scale to a lower energy. 
Since the mass matrix rotates with changing scales, the 2 zero eigenvectors 
at the top mass will no longer be zero eigenvectors at the new scale, so that 
the 2 x 2 mass submatrix in the subspace spanned by the 2 originally zero 
eigenvectors need no longer be zero. However, it will still be factorizable and 
of rank 1, and has therefore again only one nonzero eigenvalue, a situation 
exactly the same as that we started with for the full mass matrix. For logical 
consistency, therefore, one should again evaluate this nonzero eigenvalue of 
the submatrix at a scale equal to its value and define this value as the mass 
of the second generation, namely that of the charm quark c. It follows also 
that the corresponding eigenvector at this scale should be defined as the c 
physical state vector which, by definition, will be automatically orthogonal 
to the top state -- vector already defined. Having then defined both the t and 
c physical state vectors, one can unambiguously define (up to a sign) the 
physical U state vector as the vector orthogonal to both. Furthermore, by 
repeated the procedure once more running the scale even lower in energy, one 
can clearly define also the U mass. In this way, all masses and state vectors 
are uniquely defined, each mass is evaluated at the scale equal to its value, 
and the 3 physical state vectors are mutually orthogonal, as is appropriate. 

Though described above only in words, this procedure for evaluating the 
the CKM matrix and the lower generation fermion masses is not merely a 
theoretical prescription but one that can be put into actual practice. Indeed, 
a calculation in this direction to 1-loop level has already been done [lO]. The 
calculation being somewhat complicated and containing a number of quite 
intriguing details, we have space here only to give a bare outline of the main 
steps involved and to summarize the main results. 

First, among the many 1-loop diagrams calculated, some are found to 
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be large and not calculable perturbatively. They affect, however, only the 
normalization of the mass matrix, not its orientation which, as explained 
above was of the most interest. It pays, therefore, at present to abandon the 
calculation of the normalization and focus one’s attention just on the orien- 
tation. This reduction in objective then removes the necessity for evaluating 
several of the diagrams. Secondly, on putting in the estimate for the dual 
gluon mass obtained from the stringent empirical bounds on flavour-changing 
neutral current decays, one finds that most of the remaining diagrams affect 
the orientation of the mass matrix only to a negligible degree, leaving in the 
end only one diagram that really matters, namely the dual colour Higgs loop. 
Thirdly, by a rather fortunate accident, the effect of this last diagram is to a 
very good approximation independent of some parameters, such as the Higgs 
boson masses, on which it formally depends. Fourthly, by adjusting, among 
the remaining parameters, the strength of the Yukawa coupling p, one finds 
one can indeed account for the fermion mass of the second generation as a 
‘leakage’ from the highest by the procedure detailed above. Then fixing the 
mass scales and Yukawa couplings, one each for each fermion type, by fitting 
the masses of the two higher generations, one is finally left with only 2 real 
parameters, namely the 2 ratios between the 3 vacuum expectation values 
2, y,  z of the dual colour Higgs fields, with which to evaluate the CKM matrix 
and all the fermion masses of the lowest generation. 

Emphasis was put on fitting the CKM matrix, which depends only on the 
orientation, rather than on the lowest generation masses which depend also 
on the as yet incalculable normalization of the mass matrices. The following 
is a sample of the sort of fits obtained: 

(9) ) 
0.9752 0.2215 0.0048 

( 0.0136 0.0381 0.9992 
[VI = 0.2211 0.9744 0.0401 , 

which is to be compared with the following experimental values entered in 
PI: 

0.9745 - 0.9757 0.219 - 0.224 0.002 - 0.005 

( 0.004 - 0.014 0.034 - 0.046 0.9989 - 0.9993 
[VI = 0.218 - 0.224 0.9736 - 0.9750 0.036 - 0.046 ) (10) 

The agreement is seen to be good. This we find encouraging since it is not 
at all obvious that the CKM matrix can be so fitted. In particular we note 

11 



the large value of V , d  and Vu,, i.e. the Cabibbo angle, compared with the 
other elements. This comes about directly from the special way described 
above of how the lower generation states are defined by ‘running’ and can 
thus be considered as some confirmation of its validity. We note, however, 
that all CKM matrix elements in the calculation are real, so that at least 
at the 1-loop level we have worked with so far, there is no possibility of a 
CP-violating phase. 

There are two rather astounding features common to all the fits we have 
found thus far: (a) The approximate equality, to a few percent accuracy, of 
all the Yukawa coupling strengths p for the 3 fermion types that we have 
fitted, namely the U- and D-type quarks and the charged leptons. (b) The 
proximity, to within around 1 part in ten thousand, of the normalized vector 
(z, y ,  z )  representing the vacuum expectation values of the dual colour Higgs 
fields to one of its fixed points (1,0,0). These seem to us possibly indicative 
of a deeper symmetry that we do not yet understand. In particular, the fitted 
values of the p’s are so close that one could easily obtain as good a fit as 
the best by requiring all p’s to be identical. In other words, had we known a 
theoretical reason why the p’s should be the same, we could have fitted very 
well all CKM matrix elements and all masses of the second generation with 
only 3 parameters, namely one common p and the 2 ratios of (z, y,  2). 

Further, an attempt may also be made to estimate the fermion masses of 
the lowest generation by the method outlined above. However, in contrast 
to the calculation of the CKM matrix which depends only on the orientation 
of the mass matrix, the estimates for the lowest generation fermion masses 
depend also on the change with scales of the normalization, not only of the 
mass matrix but also of the Yukawa coupling strength p. If we naively just 
assume that both the normalizations of the mass matrix and p are constants 
independent of scale changes, then, using the same parameters (9) as those 
determined above in fitting the CKM matrix, one obtains: 

mu = 235 MeV, md = 17 MeV, me = 7 MeV, (11) 

which are to be compared with the experimental values quoted in [l]: 

mu = 2 - 8 MeV, md = 5 - 15 MeV, me = 0.5 MeV. 

Considering that in obtaining the values in (11) scale-dependences 
malizations have been neglected over several orders of magnitude in 
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we regard the estimates as quite sensible except perhaps for the U, for which 
a change in scale over 4 decades of energy is involved. 

Suppose we tentatively accept these results as reasonable confirmation 
that the dualized standard model is capable of explaining the mass and mix- 
ing patterns of fermions, our next question should be whether the scheme 
leads also to new predictions which can be tested against experiment. The 
most obvious to examine first is the predicted existence of a new batch of 
particles, namely the dual colour gauge and Higgs bosons. At first sight, 
it appeared that the calculation of 1-loop effects summarized above might 
give an estimate of these bosons’ masses, but unfortunately for this purpose, 
though fortunately for the calculation itself as already noted, the result is to 
a good approximation independent of these mass parameters. On the other 
hand, the stringent experimental bounds on flavour-changing neutral current 
decay give a lower limit for the dual gluon mass of around several 100 TeV, 
corresponding to a lower limit on the dual Higgs mass of several 10 TeV. 
If these limits are accepted, then it is unlikely that these particles can be 
produced even by the LHC. However, the exchange of these particles can 
lead to effects detectable in experiment. Flavour-changing neutral current 
decays, as already noted, are one such example. 

Another prediction of this sort, which at first sight looks quite alarming, 
is that of a strong interaction for neutrinos at high energy. This arises as 
follows. Identifying generation with dual colour implies that neutrinos also 
carry dual colour and hence will interact via dual gluon exchange. Now 
the coupling of the dual gluon is related to the coupling of the gluon by 
the Dirac quantization condition (5). Substituting the experimental value of 
a, = (g2/47r) - 0.120 gives a value for of order 10, which is very large. 
There is thus predicted a very strong interaction between neutrinos due to 
the dual gluon exchange. However, because the dual gluon is very heavy, 
this interaction will not be effective at energies available to present or near 
future laboratories. To search for this effect we shall have to look to cosmic 
rays. 

Now it so happens that there is indeed a long-term puzzle in cosmic 
ray physics which seems explainable as a manifestation of this phenomenon. 
Over the last 30 years or so, a small number of very high energy air shower 
events with primary energy E > 1020 eV have been observed [ l l ] .  They are 
a mystery because in theory they should not exist. High energy air showers 
are thought to be mostly due to protons, but protons at an energy beyond 
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5 x 1019 eV will quickly lose it via its interaction with the 2.7 K microwave 
background. Indeed, it was shown by Greisen [12], and by Zatsepin and 
Kuz’min [13], that protons with energy in excess of that cut-off cannot reach 
us from a distance of more than 50 Mpc. At the same time, protons at such 
energies will hardly be deflected by the magnetic fields either in the galaxy 
or in intergalactic space so that it should be easy to identify any candiate 
sources within a radius of 50 Mpc. However, searches along the direction 
of the observed events fail to reveal any likely source within that sort of 
distance. The conclusion would seem thus to be either that there are some 
rather exotic sources nearby without us knowing about them or that these 
air showers are not due to protons at all but to some other particles. 

An interesting possibility for the present scheme is that they are due to 
neutrinos having acquired strong interactions at high energy as predicted 
above. This explanation not only seems feasible but appears even capable 
of overcoming several difficulties plaguing the proton explanation. First, 
neutrinos, being neutral in charge, would not interact with the 2.7 K mi- 
crowave background as the protons would and can therefore reach us with 
energy above the Greisen-Zatsepin-Kuz’min cut-off even if they have origi- 
nated from a distant source much beyond 50 Mpc. Secondly, since they are 
strongly interacting at high energy, they can be produced copiously in high 
energy collisions, say of protons in an active galactic nucleus but, in contrast 
to protons, can escape from the strong radiation fields which are thought 
to surround active galactic nuclei. Thirdly, when they arrive on earth, their 
strong interactions with the air nuclei together with the fact that dual gluons 
and gluons, as mentioned already in the beginning, represent basically the 
same physical degree of freedom [14], can give them a sufficiently large cross 
section to initiate air showers as observed. (On this point, we disagree with 
the conclusion of a recent paper by Burdman, Halzen and Gandhi [15] which 
claims the opposite. See e.g. also [16].) Indeed, working in this direction, 
it is even possible to make a rough estimate for the high energy neutrino- 
air nucleus cross section and hence suggest direct experimental tests for the 
hypothesis that air showers above the Greisen-Zatsepin-Kuz’min cut-off are 
due to neutrinos rather than protons [14]. It seems thus that the prediction 
of a strong interaction for neutrinos at high energy not only may not prove 
to be an embarassment but may even help to resolve a long-term puzzle in 
cosmic rays physics. 

A neutrino at 1020 eV primary energy impinging on a proton at rest in 
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the atmosphere corresponds to a CM energy of 400 TeV, which we note is 
just above the lower bound imposed on the dual gluon mass by the present 
experimental bounds on flavour-changing neutral current decays. If we take 
seriously the proposal in the preceding paragraph, it would appear then that 
the mere existence of these extremely high energy air showers would imply 
also an upper bound on the mass of the dual gluon. That being the case, 
we could turn the argument around and use this estimate for the dual gluon 
mass to predict the branching ratios of various flavour-changing neutral de- 
cays which can be tested against experiment. An attempt in that direction 
has already been made [14], which gives branching ratios seemingly within 
reach of some future experiment now being planned. These predictions can 
be further sharpened [17] using the recent results from the CKM matrix 
calculation [lO] described above. 

So far, we have dealt in this review only with the dual colour symmetry 
m(3) and its interpretation as generation. However, as already mentioned 
above, within the Dualized Standard Model framework, there is also a dual 
weak isospin symmetry E(2) which is confined and might lead to further 
physical consequences. Analogy with colour confinement would suggest that 
at low energy, only m(2) singlets can exist which are analogues to hadrons 
of SU(3) colour, but deep inelastic experiments at high energy could reveal a 
substructure to these E ( 2 )  singlet states analogous to the parton substruc- 
ture of hadrons in colour SU(3) .  However, an estimate of the gauge coupling 
3 2  of m(2) via the Dirac quantization condition (5) from the empirical value 
of the ordinary weak isospin coupling g 2  gives a value many times larger than 
the coupling 93 responsible for colour confinement, suggesting thus that the 
energy scale required to reveal the E ( 2 )  substructure may be much higher 
than that required for the SU(3)  case. This might mean therefore that deep 
inelastic experiments, provided that the energy is high enough, could reveal 
a substructure to what we believe at present to be elementary particles, such 
as quarks and leptons, or the Higgs and gauge bosons. 

In any case, the Dualized Standard Model seems not only to offer tenta- 
tively viable explanations to some long-term puzzles in particle as well as in 
astroparticle physics, but can give rise to some interesting new predictions 
which may one day be testable against experiment. 

We shall conclude this brief review by a general suggestion on terminology. 
In the literature, the term ‘generation’ has been used interchangeably with 
the term ‘family’, with perhaps a slight preference for the latter because, in 
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the words of Jarlskog [18], there was no known “mother-daughter relationship 
between the copies”. However, if the explanation for fermion masses offered 
above by the Dualized Standard Model is accepted, then there is now a known 
mother-daughter relationship between the 3 copies, with the higher mass 
copies indeed giving birth, in a sense, to the masses of the lower copies, via 
the mechanism due to the rotating mass matrix. It would seem thus that the 
term ‘generation’ is most appropriate. We suggest therefore that one keeps 
the term ‘generation’ in the sense it has been used throughout this paper, but 
adopt the term ‘family’ to denote, in accordance with the biological usage 
of the term, the collection of members related by this “mother-daughter” 
relationship. In other words, the fermion types would then be labelled as 
the U-family, the D-family etc., while the t ,  c and U would be labelled as the 
members of the lst ,  2nd, and 3rd generations of the U-family. 

We wish to thank JosC Bordes, Jacqueline Faridani and Jakov Pfaudler, 
our collaboration with whom has generated most of the work reported in this 
review as well as a lot of pleasure while doing it. 
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