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1 Introduction 

In this paper, we are concerned with trust-region methods for the unconstrained minimiza- 
tion of a function f ( x )  of n real variables x.  At the k-th iteration of such a method, a 
model qk(s) of f(xk + s) is approximately minimized within a trust region llsll 5 Ak with 
the aim of improving upon the current estimate of the minimizer xk. The approximate 
solution s k  of this trust-region subproblem yields the improved estimate xk+l = xk + s k  if 
the reduction in f predicted by this model translates into an significant actual reduction 
of f(xk + s k ) .  If such a reduction is not realized, the trust-region radius Ak is reduced, and 
the model resolved. If there is a good agreement between model and function, the radius 
may be increased. The method is blessed with a powerful convergence theory regardless of 
which norm defines the trust region, provided that the chosen norm is is uniformly related 
to the &-norm. Little attention has been given to the appropriate choice of norm consider- 
ing how strongly this choice affects the computation at every iteration of the algorithm. In 
this paper, we suggest that there is a particular norm which has computational advantages 
over the l 2 -  or l,-norms which are commonly considered. 

2 The subproblem 

We consider the quadratic model 

d s )  = (9 , s )  + 3(s, Hs) ,  (2.1) 

where g and H are approximations of the gradient and Hessian of f ( x ) ,  and (., .) denotes 
the Euclidean inner product - for brevity, we have dropped the dependence of these 
quantities on k. We shall be concerned with elliptical trust regions of the form 

JISI IN 5 A, where 11~11;  = (s ,Ns)  (2.2) 

and N is a real symmetric positive-definite matrix. A global solution to the trust-region 
subproblem is characterized by the following result. 

Theorem 2.1 (Gay, 1981, Sorensen, 1982) Any global minimizer s* of q(s)  subject 
to llsllN 5 A satisfies the equation 

H(A*)s* = -9, (2.3) 

where H(A,) = H + AN is positive semi-definite, A, 2 0 and A,(~/s* I IN - A) = 0. If 
H(A,) is positive definite, s* is unique. 
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2.1 Notation 

Suppose that G is any real symmetric, possibly indefinite, matrix, and that G has a spectral 
decomposition 

G = UAUT, 

where A is a diagonal matrix of eigenvalues, and U is an orthonormal matrix whose columns 
are the corresponding eigenvectors. Then we say that the absolute value of G is the matrix 

IGI = UIAIUT, 

where [AI is the diagonal matrix of absolute values of the eigenvalues of G. 
We shall denote the (appropriately dimensioned) identity matrix by I. The square root 

Di of a diagonal matrix D is simply the diagonal matrix whose entries are a, while the 
generalized inverse D+ is the diagonal matrix whose entries are l/dii if dii # 0 and 0 if 
dii = 0. 

3 The trust-region norm 

We suppose, for now, that H is nonsingular. We will relax this assumption in Section 3.4. 

3.1 The spectral trust region 

We believe that the shape of an ideal trust region should reflect the geometry of the model, 
and not give undeserved weight to certain directions. Indeed, perhaps the ideal trust region 
would be in the [HI norm, for which 

This norm reflects the scaling of the underlying problem - directions for which the model 
is changing fastest, and thus those for which the model may differ most from the true 
function, are restricted more than those directions for which the curvature is small. It has 
a further interesting property, namely, that a single matrix factorization 

H = UAUT (3.2) 

is needed to solve the problem. For, on writing 

s D = u T s  and gD = UTg, 

and using the orthonormality of U, the solution of the trust-region subproblem may be 
expressed as s = UsD, where sD solves the diagonal trust-region subproblem 

minimize (90, so) + 3(sD, AS,) subject to (so, I A l s D )  5 A2. (3.3) 
SDER" 
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The diagonal trust-region subproblem is, as we shall see, extremely inexpensive to solve. 
The major drawback of such an approach is, of course, the cost of the spectral factorization 
(3.2). For problems involving a large number of variables, this decomposition is likely out 
of the question. 

The absolute-value factorization was originally proposed by Greenstadt (1967) in con- 
junction with linesearch methods for unconstrained minimization. 

3.2 The absolute-value trust region 

With this in mind, we consider a symmetric, indefinite factorization of the form 

H = PLBLTPT, (3-4) 

where P is a permutation matrix, L unit lower triangular and B block diagonal, with 
blocks of size at most two. We shall refer to the blocks as 1 by 1 and 2 by 2 pivots. Notice 
that the inertia of H - the numbers of positive, negative and zero eigenvalues of H - 
is trivially obtained by summing the inertia of the pivots. Such a factorization was first 
proposed by Bunch and Parlett (1971) and later improved by Bunch and Kaufman (1977) 
and Fletcher (1976) in the dense case and Duff, Reid, Munksgaard and Neilsen (1979) and 
Duff and Reid (1983) in the sparse case. More recently, Ashcraft, Grimes and Lewis (1995) 
and Higham (1995) have exposed a potentially serious flaw in the approach in that the 
norm of the generated factor L may be unbounded relative to IlHll. While, as Higham 
(1995) has shown that this does not always lead to instability, a more restricted form of 
pivoting, as typified by the proposal of Ashcraft et al. (1995), may be required to ensure 
that IlLll stays bounded. Interestingly, the sparse method proposed by Duff and Reid 
(1983) and implemented within the Harwell Subroutine Library (1995) code MA27 already 
provided a suitably bounded IlLll and will be suitable for our purposes. 

We suggest that a good choice for the trust-region norm is 

where 

M = P L I B I L ~ P ~ .  

Observe that IBI is simply computed by taking the absolute values of the 1 by 1 pivots, 
and by forming an independent spectral decomposition of each of the 2 by 2 pivots and 
reversing the signs of any resulting negative eigenvalues. By analogy with the Spectral 
method, writing 

(3.7) T T  1 T  sB = L P s and gB = L- P g, 
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the solution of the trust-region subproblem may be expressed as s = P L - T ~ B ,  where sB 
solves the block-diagonal trust-region subproblem 

minimize (gB, sB) + i (sB,  Bs,) subject to (sB, (BIsB) 5 A2. (3.8) 
SBER" 

Once again, a single factorization suffices, but this time the factorization may be affordable 
even when n is large. Note that Gill, Murray, Poncelbon and Saunders (1992) proposed this 
modified factorization as a preconditioner for iterative methods, while Cheng and Higham 
(1996) suggest it as an alternative to the modified Cholesky factorizations of Gill and 
Murray (1974), Gill, Murray and Wright (1981) and Schnabel and Eskow (1991) within 
linesearch-based methods. 

We note, in passing, that others have used the factorization (3.4) to define trust-region 
norms. Goldfarb (1980) suggests using (3.5), but where (3.6) is replaced by 

(3.9) 
T T  M = P L L  P .  

Following the change of variables (3.7), the resulting block-diagonal trust-region is then of 
the form 

minimize (gB, s,) + +(sB, Bs,) subject to 1 1 ~ ~ 1 1  5 A 
SBER" 

and its solution is again straightforward to obtain. This idea has recently been further 
explored by Xu and Zhang (1997). However, we believe that using (3.9) rather than (3.6) 
does not reflect the proper scaling of the underlying problem. Indeed, if H were a diagonal 
matrix, (3.5) remains as the & norm regardless of how ill-conditioned H might be. 

3.3 Solving the diagonal and block-diagonal trust region sub- 
problems 

As the diagonal trust-region subproblem is a special (but not very special) case of the 
block-diagonal case, here we shall concentrate on the latter. One could simply apply a 
standard trust-region solver like GQTPAR of Mor6 and Sorensen (1983) to (3.8), but we 
prefer not to do this as this would, to some extent, ignore the structure in hand. 

As B and IBI share eigenvectors, we may write 

B = Q@QT and IBI = &[@IQT, 

where each column of Q is nonzero in at most two positions, with entries corresponding to 
the eigenvectors of the diagonal blocks, and the entries of the diagonal matrix 0 are the 
corresponding eigenvalues. On defining 
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we may solve (3.8) by finding ss to 

minimize (g,, s,) + i(ss, Ds,) subject to  IIssl12 5 A,  (3.10) 

[@[-i@l@l-i is diagonal 

ssER" 

and then recover sB = QIOI-~S,. Significantly, the matrix D 
with entries Al.  The required solution must then satisfy 

(D  + XI)s, = -g,, (3.11) 

where the nonnegative Lagrange multiplier X is sufficiently large to  ensure that D + XI is 
positive semi-definite, and is zero if ss lies within the trust region llss(12 I A.  

There are two cases to consider. Firstly, if D = I, the solution to  (3.11) is 

1 ss = -- 
1 + ASS* 

If 119,112 < A, the solution to (3.10) is given by ss = -gB and X = 0. 
to  the unconstrained minimizer of the model lying interior to  the trust 
other hand, 119,112 2 A,  the solution to (3.10) is obtained by finding the 
which 

1 

This corresponds 
region. If, on the 
value of X 2 0 for 

This is a linear equation in A and thus the solution is trivial to obtain; the required ss is 

A ~ ss = -- 
I 19s I I2 gs. 

This corresponds to  the case where the model is convex, but the trust region excludes 
the unconstrained minimizer of the model. Notice, also, in this case, a reduction in the 
trust region radius following an unsuccessful step merely reduces the length of the step 
in the direction -gB. Such a strategy is identical in its effect (if not in its motivation) 
to a backtracking linesearch along the quasi-Newton direction -H-'g, and thus there is 
a strong similarity between trust-region and linesearch methods with this choice of trust 
region. 

Secondly, if H has negative eigenvalues, D will have some diagonal entries of -1. 
Suppose Ps is a permutation matrix which arranges that all the positive diagonals (+1) of 
D precede its negative diagonals (-1). Then it is easy to  show that 

PS9,. ) p: ( 0 ( A +  1)1 
( A -  1)I 0 1 ss = -- 

A2 - 1 
(3.12) 

As H is indefinite, the solution must lie on the trust-region boundary. Thus, we may 
obtain X as the root larger than 1 of the quartic equation 

Psgs) = (A2 - 1)2A2 
0 

(A + 1)21 
(PS9S 1 
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Although in principle this root may be found explicitly by Ferrari’s method (see, for in- 
stance, Turnbull, 1939, and Salzer, 1960), Newton’s method is equally suitable here. A 
slight complication may occur when all of the components of P,g, corresponding to  the 
negative diagonals of D are zero. For then (3.12) yields 

1 I 0  
ss = ( o )  Psgs, 

and it may be that there is no root larger than 1 of the resulting feasibility equation 

This case corresponds to the “hard” case of Mor6 and Sorensen (1983), and here, as there, 
the solution includes a contribution from a suitable eigenvector. In our case, it is of the 
form 

where U is any nonzero vector, and Q is chosen as a root of the quadratic equation 
(%(a), %(a)) = A2. 

3.4 Coping with singularity 

Clearly, it is important to deal with any matrix H including those which are, or are close 
to being, singular. Cheng and Higham (1996) suggest that it suffices to compute the 
factorization (3.6) and to replace each eigenvalue 8 of the block diagonal B with the value 

if 0 2 6 or 
otherwise 

(3.13) 

for some small 6 > 0. An alternative, which is closer in spirit both to the absolute value 
perturbation and to Greenstadt’s (1967) perturbation, is to replace each eigenvalue by 

8 i f O > b o r  

S otherwise. 
.=( -8 if 8 5  -6 or (3.14) 

In any event, this does not significantly affect our previous discussion. For, if we let C 
denote the (possibly) modified block diagonal matrix B, we now use the trust-region norm 
(3.5) with M defined as 

M = P L C L ~ P ~ .  (3.15) 
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We shall refer to  (3.15) its the modzjied absolute-value factorization. If we make the change 
of variables (3.7), we must solve the block-diagonal trust-region subproblem 

minimize (gB, sB) + 3(sB, Bs,) subject to (sB, CsB) 5 A2. (3.16) 

It is of little consequence that BC-l no longer necessarily has eigenvalues f l ,  for, as we 
shall now see, solving the problem (3.16) is also straightforward. 

SBER" 

As before, B and C share eigenvectors. We may thus write 

B = QOQT and C = QrQT, 

where Q is as before, and the entries of the diagonal matrices 0 and 
the values 8 and y considered in (3.13) or (3.14). Using the transformation 

are, respectively, 

1 
Ss = riQTSB and 9, = r - F Q T g B ,  

we may recover the solution to (3.16) from sB = Qr-is,, where ss is found to 

minimize qs(ss) (g , ,~ , )  + i(ss, Ds,) subject to (Jss112 5 A, (3.17) 

and where D = r-30r-i is diagonal. Once again, one could simply apply the Mor6 and 
Sorensen (1983) algorithm to this problem, but this ignores the facts that  the diagonal 
systems involved are trivial to solve, and that the leftmost eigenvalue of D and a corre- 
sponding eigenvector are trivial to  obtain. We therefore prefer the following simplification. 

If D merely has entries f l ,  the procedure outlined in Section 3.3 is appropriate. So, 
now suppose that D has a more complicated distribution of values. Then we may apply 
Algorithm 3.1. 

ssER" 

The iteration in Steps 3 to 5 is simply Newton's method to find the appropriate root of 
the secular equation 

1 
A 

- _  - 1 
II - (D  + W+9Sll2 

(see Hebden, 1973, or Mor6 and Sorensen, 1983, for details). Step 1 caters for the case 
where the model is strictly convex, while step 2 is for the more general case where the 
solution must lie on the trust-region boundary. The precaution in Step l a  is simply to 
detect the solution when it  lies interior to the trust region, while that  in Step 2a(i) is 
to  compute the solution in the "hard case" of Mor6 and Sorensen (1983). The iteration 
is globally linearly and asymptotically quadratically convergent from the starting values 
given in Steps 1 and 2. The tolerance E should be set at the level of the machine precision, 
6 ~ .  We stress that ,  while this algorithm is appropriate even if D is simply a diagonal 
matrix with entries f l ,  the procedure outlined in Section 3.3 is more appropriate in this 
case. 
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E i t h m  3.1: Newton iteration to solve (3.17) I 

Let 6 E ( O , 1 ) .  
1. If D is positive definite, set X = 0 and ss = -D-lg,. 

la. If I(ss112 5 A, stop. 

2. Otherwise, compute the leftmost eigenvalue, 8 of D, set X = -8 and define 9,” 
so that 

(gs)i if (D)ii + X = O 

2a. If g; = 0, set ss = -(D + XI)+g,. 

i. If IIssl12 5 A, compute an eigenvector U corresponding to 13, find 
the root a of the equation \Iss + ( ~ ~ 1 1 1 2  = A which makes the 
model qs(ss + cm) smallest, replace ss by ss + au, and stop. 

2b. Otherwise, replace X by X + 11g,”112/A, and set ss = -(D + XI)-’g,. 

stop. 

4. Replace X by X + 

5. Set ss = -(D + XI)+g, and go to step 3. 

3.5 The suitability of the norm 

It remains for us to show that the norms defined by the modified absolute-value factoriza- 
tion (3.15) are uniformly related to the &-norm, and thus are suitable within a trust-region 
method. Thus we need to show that there are constants 0 < y1 < 7 2 ,  independent of the 
iteration, for which 

Ylllsll; L (S. M s )  5 r2llsll;. 

Equivalently, we need to show that the smallest and largest eigenvalues, Amin(&!) and 
Xm,(M), of M are bounded, and bounded away from zero. The analysis here is based 
upon that given by Higham (1995). 

Firstly, by construction, both of (3.13) and (3.14) satisfy the bounds 
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Using Theorem 3.2 of Higham (1995), it then follows that 

and hence that 

But, as Higham then points out, if the largest entry in L is bounded by some 0, it is 
straightforward to  bound 

Thus so long as L and H are bounded, the norms defined by the modified absolute-value 
factorization (3.15) are uniformly related to  the &-norm. 

The matrix H will be bounded if, for instance, a Newton (second-order Taylor series) 
model is used, and if the iterates stay in a bounded set. But now we see the importance of 
using a factorization which bounds the growth in the elements of L. Ashcraft et  al. (1995) 
show that the original method of Bunch and Parlett (1971) and that of Fletcher (1976) both 
generate bounded L, as do the sparse methods of Duff and Reid (1983, 1996). However, 
the more popular Bunch and Kaufman (1977) method and the block version implemented 
in LAPACK may not, and thus must be viewed as untrustworthy for our application. 

4 Numerical experiments 

The algorithm sketched in Sections 3.3 and 3.4 has been implemented as a Fortran 90 
module, HSL-VFO6, within the Harwell Subroutine Library (HSL) (1998). The factorization 
(3.4) is performed using the HSL code MA27 (see, Duff and Reid, 1982). A concise summary 
of HSL-VFO6 is given as Algorithm 4.1. 
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I Algorithm 4.1: HSL-VFO6 I 

1. Factorize H = PLBLTPT, using subroutines MA27A and MA27B, and B = Q@QT. 
from (3.14) with 6 = 6, and set C = QrQT Obtain the diagonal matrix 

and D = r-Ber-4. 
2. Solve PLPTgb = g Using MA27Q. 

3. Obtain gB = r-+QTpTgb 

4. Find ss = argmin (gs,ss) + +(ss,Dss) subject to llssl12 5 A using Algo- 
rithm 3.1, with stopping tolerance E = 10n~M. 

5. Recover s, = PQris,. 

6. Solve PCLTPTs = s, using MA27R. 

In order to demonstrate the potential of our proposal, we have conducted a limited number 
of numerical tests using HSL-VFO6. We consider the standard trust-region method for the 
minimization of an objective f ( x )  of n real variables x presented as Algorithm 4.2. 

We choose the specific values cg = 0.00001, 71 = 0.01, 72 = 0.95, y1 = 0.5, and y2 = 2, 
and set an upper limit of 20n iterations. In all cases, the initial trust-region radius is 
set to IlMoI(,. The step s k  in step 2 is computed using either Algorithm 4.1, or using the 
algorithm proposed by Gould, Lucidi, Roma and Toint (1997) and implemented as the HSL 
fortran 90 module HSL-VFO5 using default settings. The latter algorithm is appropriate for 
general trust-region norms, but is not as efficient as HSL-VFO6 when the absolute-value 
norm (3.5)-(3.6) is used. 

norm, the absolute-value 
norm, and the norm defined by forming the Schnabel and Eskow (1991) modified Cholesky 
factorization of H. The latter also uses MA27, and is available as part of the LANCELOT 
nonlinear programming package (see, Conn, Gould and Toint, 1992, Chapter 3). Other 
norms have been compared by Gould et al. (1997). 

All our tests were performed on an IBM RISC System/6000 3BT workstation with 64 
Megabytes of RAM; the codes are all double precision Fortran 90, compiled under xlf90 
with -0 optimization, and IBM library BLAS are used. The test examples we consider 
are the currently available larger examples from the CUTE test set (see Bongartz, Conn, 
Gould and Toint, 1995) for which negative curvature is frequently encountered. Tests were 
terminated if more than thirty CPU minutes elapsed. 

In our tests we compare three choices of norm, namely the 
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I Algorithm 4.2: Standard Trust-Region Algorithm I 

0. An initial point zo and an initial trust-region radius A ,  are given, as are con- 
stants eg, 71, 72, 71, and 72, which are required to  satisfy the conditions 

Set k = 0. 

2. Define a second-order Taylor series model qk and a positive-definite precondi- 
tioner Mk. Compute a step s k  to  “sufficiently reduce the model” qk within the 
trust-region I I s I I M ~  5 Ak. 

4. Set 
72Ak if Pk 2 72, 

Ak+l = Ak if P k  E [71, 72), [ YlAk if P k  < 71. 

Increment k by one and go to Step 1. 

The results of our tests are given in Table 4.1. In these tables, in addition to the 
name and dimension of each example, we give the number of objective function (“#f”) 
and derivative (“#g”) values computed, and the total CPU time required in seconds. We 
indicate those cases where one or other method performs at least 10% better than its 
competitors by highlighting the relevant figure in bold. A t indicates that  convergence to 
different local minimizers occurred. 

The results may effectively be divided into three categories. Into the first category fall 
problems which appear to be relatively easy, that  is those which require few evaluations 
without a sophisticated trust-region norm. For such problems, the l 2  norm performs best, 
and the other norms add little while incurring the extra expense of the factorization. 
The excellent behaviour of the & norm on such problems has already been noted (see, 
Gould et al., 1997). The second category contains problems for which the Hessian or 
its factors are relatively dense, and the cost of forming the preconditioner dominates. 
This category includes problems EIGENALS, MSQRTALS, NONCVXU2, SPARSINE and SPMSRTLS. 
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example n 
BROYDNPD t 1000 
BRYBND 1000 
CHAINWOO t 1000 
COSINE 1000 
CRAGGLVY t 1000 
CURLY10 1000 
CURLY 20 1000 
CURLY30 1000 
DIXMAANA 1500 
DIXMAANE 1500 
DQRTIC 1000 
EIGENALS 930 
FREUROTH 1000 
GENHUMPS 1500 
CENROSE 1000 
MANCINO 100 
MSQRTALS 1024 
NCB20B 1000 
NONCVXUN 1000 
NONCVXU2 1000 
SBRYBND 1000 
SCOSINE 1000 
SCURLY 10 1000 
SCuRLY20 1000 
SCURLY30 1000 
SENSORS t 100 
SINQUAD 5000 
SPARSINE 1000 
SPMSRTLS t 1000 

110 
13 

915 
11 
19 
23 
21 
22 
13 
14 
43 
66 
17 

14474 
72 1 
24 
35 
45 

103 
13 

626 
11 
19 
21 
20 
21 
13 
14 
43 
53 
17 

13964 
665 

23 
30 
29 

7.4 
0.9 

81.8 
0.1 
0.9 

29.9 
35.8 
46.2 
0.3 
1.8 
0.3 

71.0 
0.4 

1023.0 
48.1 
20.2 

394.2 
141.1 

> 1800 secs. 

> 1800 secs. 
> 1800 secs. 
> 1800 secs. 
> 1800 secs. 
> 1800 secs. 

272 227 29.7 

21 20 8.1 
152 99 21.7 
16 16 36.5 
18 16 2.05 

modified Cholesky 
#f #9 CPU 
50 35 
15 15 

176 115 
41 25 
23 23 
57 35 
57 36 
71 42 
35 23 

150 85 
54 54 
63 47 
86 48 

4.1 
2.3 
7.9 
1.3 
1.4 
7.6 

27.7 
81.9 

1.4 
7.9 
1.3 

85.4 
3.5 

> 20n its. 
434 312 19.3 

77 58 275.9 
> 1800 secs. 

33 20 26.8 
> 20n its. 
> 20n its. 

59 28 9.7 
90 70 4.4 
61 45 10.2 
75 52 41.3 
75 52 105.4 
66 51 32.0 
14 14 100.0 

361 205 1047.5 
> 1800 secs. 

modified abs-value 
#f #g CPU 
126 81 10.0 
23 15 2.6 

175 103 9.5 
20 14 1.0 
18 16 1.3 
55 33 8.6 
8 8 6.6 

12 9 18.3 
8 8 0.7 

115 76 8.2 
33 32 1.3 
> 1800 secs. 

10208 9521 796.4 
1109 776 58.7 

19 10 37.5 
> 1800 secs. 

21 12 10.8 
3020 2493 490.7 

> 20n its. 
65 28 5.5 
70 14 1.7 
40 6 2.2 
41 6 6.3 
45 7 16.3 
61 39 24.05 
14 14 86.0 

132 84 7.5 

> 1800 secs. 
> 1800 secs. 

Table 4.1: A comparison of trust-region methods using the C2, modified Cholesky and 
modified absolute-value norms. See the text for a key to the data. 

These indicate the limitations of our approach, and for these problems preconditioners 
which try to mimic the structure of the Hessian without incurring the cost of the fill-in 
- such as the limited-memory incomplete Cholesky factorization proposed by Lin and 
More (1997), and the references contained therein - are likely to be preferable. The third 
category contains the harder, highly nonlinear problems CURLYxx, NONCVXUN, SBRYBND, 
SCOSINE and SCURLYxx. For these problems, the C2 norm is ineffective, and some rescaling 
is necessary. Interestingly, the modified absolute-value preconditioner outperforms the 
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other sophisticated preconditioner on all but one of these, often by a large margin. 
It is interesting to note that the number of “wasted” function evaluations (the difference 

between #g and #f in in Table 4.1) is significantly higher for the new method than for 
its competitors. There appear to be two reasons for this. Firstly, the initial trust-region 
radius, ~ ~ M ~ ~ ~ m ,  is often far too large when using the factorization preconditioners, and 
many iterations are required to cut it to a value for which progress may be made. In 
our experience, it is usually beneficial to determine a good initial radius, and, given how 
inexpensive the wasted iterations are in our case - the functions are cheap to evaluate, 
and the solution of the block-diagonal trust-region problems are, by design, trivial - the 
cost is not especially high. However, as evaluation costs may be high in general, more 
sophisticated strategies, such as that by Sartenaer (1997), may be preferred. The second 
cause of wasted function evaluations happened far less frequently, but occurs following 
a change in the shape of the trust-region as one or more eigenvalues change sign. In 
some cases, - the example SCOSINE is a point in case - a significant number of radius 
reductions were required to find a value appropriate for the new geometry. We foresee this 
as a significant problem, and are currently investigating more sophisticated schemes for 
trust-region management. 

5 Discussion and conclusions 

We believe that our results indicate that the modified absolute-value factorization provides 
a useful norm for trust-region minimization so long as as the factorization is feasible. In 
particular, for ill-conditioned problems, the norm appears to be especially effective. We 
do not pretend that (3.15) is uniformly appropriate, but suggest that, at the very least, its 
use should be considered when a problem is know to be ill-conditioned. 

We recognize some potential difficulties with our approach. The attendees at the 1981 
NATO Advanced Research Institute on “Nonlinear Optimization” (see Powell, 1982, con- 
tributions 1.31-1.35) had much to say about Goldfarb’s (1980) proposal, and the comments 
made there are equally appropriate here. In particular Roger Fletcher (Dundee) expressed 
concern that the distortion induced by (3.5) and (3.9) may be substantial. We accept that 
(3.15) may not be as desirable as (3.1), but believe that while (3.1) is out of the question for 
most large-scale problems, (3.15) is practical, and often useful, for many of them. Fletcher 
also worried that changes in the pivot ordering during the factorization of a sequence of 
problems may make it difficult to derive effective methods for adjusting the trust-region 
radius. Whilst we have observed occasions where pivot-order changes have drastically al- 
tered the geometry, and while this sometimes requires a large number of wasted iterations 
in which the trust-region radius is reduced, for the vast majority of iterations the usual, 
naive trust-region management seems to be satisfactory. However, we recognize this as a 
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possible defect, and are currently investigating more sophisticated trust-region adjustment 
strategies both in this and other contexts. 
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