
Technical Report
RAL-TR-97-063

CLRC

lnteroperating Database Systems:
Issues and Architectures

S Hamill M Dixon B J Read and J R Kalmus

November 1997

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

0 Council for the Central Laboratory of the Research Councils 1997

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory of the Research Councils
Library and Information Services
Rutherford Appleton Laboratory
Chilton
Didcot
Oxfordshire
OX1 1 OQX
Tel: 01 235 445384
E-mail library@rl.ac.uk

Fax: 01 235 446403

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

INTEROPERATING DATABASE SYSTEMS:
ISSUES AND ARCHITECTURES

Sean Hamill

School of Computing,
Leeds Metropolitan University, Beckett Park, LEEDS LS6 3QS, UK.

Maurice Dixon

Department of Computing, Information Systems and Mathematics,
London Guildhall University, 100 Minories, LONDON EC3N 1 JY, UK.

Brian J Read &John R Kalmus

Department for Computation and Information,
Rutherford Appleton Laboratory, Chilton, DIDCOT, Oxon, OX1 1 OQX, UK.

CONTENTS

PREFACE
ACKNOWLEDGEMENTS
ABSTRACT

1 INTRODUCTION

2 ISSUES OF MULTIDATABASE SYSTEMS
2.1 Distribution
2.2 Autonomy
2.3 Heterogeneity

3 A TAXONOMY OF INTEROPERABLE DATABASE SYSTEMS
3.1 Distributed Database Systems
3.2 Global Schema Multidatabases
3.3 Federated Database Systems

4 FEDERAL DATABASE SYSTEMS FOR AUTONOMOUS DATA SHARING

4.1 The Tightly Coupled Approach
4.1.1 Architecture
4.1.2 Schema Integration
4.1.3 Canonical Data Models
4.1.4 The Problem of Schema Evolution
4.1.5 IRO-DB An Example Tightly Coupled Federal Architecture

4.2 The Loosely Coupled Approach
4.2.1 Architecture
4.2.2 Multidatabase Language Features
4.2.3 The Problem of Schema Evolution
4.2.4 MDSL - An Example Multidatabase Language

4.3 A Comparison of Loosely Coupled and Tightly Coupled Architectures

5 CONCLUDING REMARKS

Appendix 1 INTEROPERABLE RELATIONAL AND OBJECT DATABASES

Appendix 2 MDSL - AN EXAMPLE MULTIDATABASE LANGUAGE

3
3
4

5

11
12
13
14

15

15
15
17
18
19
20

21
21
23
25
25

26

26

28

32

REFERENCES

2

37

PREFACE

This report is based on a working paper produced in partial fulfilment of the Degree of Doctor of
Philosophy of Leeds Metropolitan University. The purpose of the survey was ‘To Understand the
Issues in Architectures for Database Federations” and to highlight areas where further work is
required.

ACKNOWLEDGEMENTS

We are grateful to Professor Keith Jeffery of the RAL Information Systems Engineering Division
for encouraging us to undertake research in the field of heterogeneity ih database systems. Leeds
Metropolitan University provided a research bursary under which this work was undertaken.
Rajesh Kaurhal of Bradford University provided access to a range of reprints.

3

ABSTRACT

Information systems have been developed in recent years to meet particular local
business needs. The information residing in those local systems represents a major
business asset. However business needs change during the lifetime of an information
system. The changes can arise either through the discovery of new business needs or
through the restructuring of business departments. In many cases this leads to the need
for several information systems to be used in a collaborative way.

The outcome is that business has to contend with information systems which are
distributed, autonorrwus and heterogeneous. The systems are distributed in the sense
that they are physically residing on different computers, possibly separated by
substantial distances. The systems are autonomous because they have been acquired
and operated independently; indeed even when they are required to co-operate
operational independence may still be required. The systems are heterogeneous
because they have been designed separately, implemented on different hardware and
software platforms, and used by operations staff with different world views.

This report considers the architectures proposed to allow these distributed,
autonomous, and heterogeneous systems to interoperate. Specifically we consider:

1. Distributed Database Systems: These systems are tightly coupled and assume a
top-down design and implementation. The distributed database management
systems are available as proprietary products. These systems are not appropriate
where there is design autonomy and are not readily applicable to platform
heterogeneity due to restrictions in the available gateways to different DBMSs.

2. Global Schema Multidatabases: These systems attempt to provide an overarching
global schema for the set of databases. They are tightly coupled. The global schema
itself may represent only a subset of the local schema definitions. A particular
problem is lack of resilience to local changes to local schema. More generally the
heterogeneity makes this architecture unsuitable for all but very simple cases.

3. Federated Database Systems: These systems attempt to provide interoperation by
tailoring different shared elements of the schema to specific classes of user. The
sharing can be either tightly coupled or loosely coupled.

We then discuss the tightly and loosely coupled approaches to federation by
considering in detail two important research projects, viz:

1. The IRO-DB project [BFHK94] as an example of tightly coupled federal
architecture applied to the interoperation of object oriented and relational databases.

2. The MDSL project [LMR90] as an example of a loosely coupled federal architecture
created using a multidatabase language.

The specific problems associated with heterogeneities in schema and semantics are
considered in a parallel report [HDR97].

In the early 196Os, database systems were proposed as a solution to the problem of shared
access to heterogeneous data fdes created by multiple applications in a centrahsed
environment. These data fdes were difficult to manage; they frequently contained
duplications, inconsistencies, redundancies, and various types of heterogeneity at both
structural and data levels. To overcome these problems, the autonomous fdes were replaced
with a centrally defined database which was under the centrahsed control of a database
management system (DBMS). The DBMS acted as a layer of abstraction between the
centrally defined model of the relevant organisation’s data requirements, and the applications
which used or manipulated the data.

Today, many independent databases exist, particularly in large organisations andor those
which may have undergone substantial commercial or structural changes such as mergers and
take-overs. It is often the case that different business units within the same organisational
context capture and store the same data, related data, or even the same data viewed from
different perspectives. These databases often serve critical functions and embody significant
resource investments within their business units. Thus, in many cases the preservation of the
environments of these databases is essential, whilst on the other hand, as the information
requirements and sophistication of the users evolve, a clear need to share or integrate data at a
global level can be identified. The above scenario demonstrates the need to facilitate database
interoperation within the context of an organisation. There is also a need to provide
interoperation on an inter-organisational basis, particularly in the domain of public information
systems. An example is databases specifically intended to market an organisation’s products
or services to the public.

Consider, for example, the case where airline companies provide public information systems
documenting their schedules, ticket costs, flight departure airports and so on. In the absence
of interoperation a prospective ticket buyer looking for the best deal would have to query each
airline’s database separately, and then manually compare the individual results. What this
situation requires is a facility to execute database queries which involve the access to data
from more than one independent database system, or in short, queries which involve database
interoperation.

In this paper we discuss the major issues in the field of multidatabase systems. A taxonomy of
interoperable database systems is presented along with a brief discussion of each of the
solutions identified. Federated database systems, which offer the most promising solution to
the problem of providing interoperation without sacrificing component database autonomy,
are examined in some detail along with appropriate examples. Finally, we identlfy some of the
problems which will form the basis of future research in this area.

2 ISSUES OF MULTIDATABASE SYSTEMS

In this section we consider the three major issues which raise themselves in multidatabase
systems, namely: distribution, autonomy and heterogeneity [SLgO]. We present these issues in

5

general terms here and then present their specific impact on the various categories of
multidatabase systems in the subsequent sections of this paper.

2.1 Distribution

The most obvious issue concerning multidatabase systems is that the data are physically
distributed over a number of component databases. The reason for this distribution may be
due to the component databases being legacy (or pre-existing) systems, or because the data
have been deliberately distributed, fragmented or replicated over a number of component
databases. The reason for deliberately distributing data may be to increase system
performance andor model naturally the decentralised nature of the organisation concerned.
Whatever the reason, designers of systems which facilitate database interoperation attempt to
hide from the global user the physical location of data to some extent. This is referred to as
distribution transparency.

A second issue worth considering when dealing with distributed data is that of how to spec@
and enforce inter-database constraints. At the local DBMS level, the ideal is that constraints
are specified as part of the database schema, but more often than not they are specified as part
of the application code. When used correctly, these constraints provide the local user with a
consistent view of data. In environments which consist of a number of independent databases
which manage related data, the extension of this facility to provide constraints across the
boundaries of database systems is often desirable, or in some cases even imperative. The
problem is how to extend the technique from the local to the global level. Leaving the task of
specifying inter-database constraints to the developers of global applications is unacceptable in
many cases for two reasons: (i) the task of specifying constraints as part of the application
code at the local level is a burden on the developer. Expecting the developer to be aware of,
and maintain all the constraints at the global level is liable to introduce mistakes and omissions,
and (ii) each independent database should have control over its own data, and therefore the
inter-database constraints associated with that data. Relinquishing the enforcement of
constraints to third party application developers at the global level is not likely to be
acceptable. Specifying the inter-database constraints as part of the database schema at the
local level directly is also not an option due to the requirement that global activities should not
interfere with local ones. However, it is possible to augment the local schema with a separate
schema for inter-database constraints which is maintained at the global level, and is therefore
invisible to local users and applications. This is the approach advocated by Rusinkiewicz et al
[RSK91] where dependencies are specified in a declarative fashion and are treated as separate
to the local schemas. They employ a five-tuple ‘data dependency descriptor’ which, in
addition to specifj4ng the source and target data objects in the relationship, also includes a
predicate for testing consistency, the time boundaries by which the constraint must be
satisfied, and a procedure for restoring the consistency of the relevant data objects.

2.2 Autono’my

As indicated above, not only is there a need to interoperate independent database systems, but
there is also a primary need in many circumstances to achieve interoperation without
sacrificing the independence of the component database systems. This need for independence

6

is termed component autonomy. The autonomy property allows each component database
system to control the access to its data by foreign systems, and allows the Database
Administrators (DBAs), users and applications at the local level to proceed in a manner
unaffected by any activities which are taking place at the global level. Local database systems
may exhibit four different types of autonomy (Sheth & Larson [SL90]). These are:

Design Autonomy. This is often regarded as the most critical category of component
autonomy because it refers to the ability of the developers and administrators of
component database systems to make their own design choice in any situation. In
particular:

(i) how the real world is perceived and what real world entities are to be modelled
in the database,

(ii)the choice of data model, query language, transaction management policies and
concurrency control policies,

(iii)the semantic interpretation of the data objects, i.e. what assumptions are made
by the users and applications of the database when ‘casting’ a model world data
object to the concept it is intended to represent in the real world,

(iv)what database constraints are specified (e.g. uniqueness, inclusion and
semantic integrity constraints),

(v)what operations the database system supports, and

(vi)what low level implementation strategies are adopted (e.g. file structures and
indexing mechanisms).

Communication Autonomy. This refers to the ability of a component DBMS to
decide whether or not, and to what extent, to respond to a request from a foreign
DBMS.

Execution Autonomy. This refers to the ability of a component DBMS to execute
local commands or transactions without any interference from operations initiated at
the global level. This means that a component DBMS with execution autonomy can
abort any operation which fails to meet its constraints criteria. With respect to the
ordering of database operations, execution autonomy implies that the DBMS may not
have an ordering imposed on it by the global level and also, need not inform the global
level of any execution ordering it decides upon.

Association Autonomy. This refers to the ability of a component DBMS to decide
whether, and to what extent, to share its operations and data with foreign DBMSs.
This category of autonomy also includes the ability of a DBMS to disassociate itself
from the multidatabase system at any time, and the ability to participate in any number
of other interoperable systems.

7

Design and association autonomy are static properties of a component database system
(Schaller et al [SBEL93]); they concern static issues which are considered and decided upon
prior to interoperation. On the other hand, communication and execution autonomy are
dynamic properties which enable the component to exercise run-time decisions. In the general
case, the static aspects of component autonomy must be fully preserved; although it may be
the case that in specific situations the members of the interoperable system may negotiate
agreements which relax some requirements to facilitate better interoperation. In contrast, due
to the dynamic nature of communication and execution autonomy, there are run-time
situations in which it is desirable that they are compromised. For instance, relaxing execution
autonomy in the sense that components are required to inform the global system o f their
operation ordering would ease somewhat the difficult problem of global transaction
management.

2.3 Heterogeneity

The problem of heterogeneity in interoperable database systems is a consequence of design
autonomy due to the diverse design choices available to system designers at all levels. We
classify four drfferent categories of heterogeneity which occur during database interoperation,
namely:

(i) systems heterogeneity,

(ii) syntactic heterogeneity,

(iii) schematic heterogeneity,

(iv) semantic heterogeneity

0 Systems Heterogeneity concerns the differences in the low level architectural
platforms component database that systems employ, such as hardware configuration,
operating systems and communications facilities. For example, one database system
may be implemented upon a Unix platform, whilst a second system may be
implemented on top of the VMS operating system. Also at this level are
heterogeneities which are a consequence of the different systems techniques used by
different DBMSs such as query processing strategies, concurrency control mechanisms
and transaction management facilities. Past research in the area of systems
heterogeneity has dealt with the problem successfully by providing an adapter for each
type of component configuration which enables the component to converse with the
multidatabase system software.

Syntactic Heterogeneity is due to the syntactical differences between data models
(or in other words, differences in the facilities available to express and manipulate data)
which are provided by the component DBMSs. Examples of heterogeneities which
exist at the syntactic level are:

(i) differences in the data structure primitives provided by the data models (e.g.
relations versus record types versus classes),

8

(ii) differences in the mechanisms used to express database constraints,

(iii) differences in the query languages provided by the DBMSs.

The issues of syntactical heterogeneity have been resolved by providing a canonical (or
common) data model at the global level. Each component is then augmented with a
translating process (Sheth & Larson [SL90]) which serves the purpose of translating
between the data model at the local level and the canonical data model at the global
level.

Schematic Heterogeneity is the next level of heterogeneity in interoperable database
systems. Each database system wishing to participate in a multidatabase environment
must translate its schema into an equivalent schema expressed in the elected canonical
data model (as discussed above). The canonical data model must be rich enough to be
able to model all possible local database schemas. Recent research has advocated the
adoption of semantically richer, object oriented data models for this pu rpse (Saltor et
a1 [SCGS91]). Because the canonical data model must be rich enough to model all
eventualities, there will often be a number of ways to model some single concept. As
an example consider two schemas which model a many-to-many relationship between
two types using an object data model. The relationship may be captured directly by the
two types in the first schema (i.e. each type explicitly models a set containing a pointer
to each related instance of the other type). Alternatively, the relationship may be
modelled h a second schema by explicitly using a third type (in a similar manner that
an explicit relation is used to model a many-to-many relationship in the relational data
model). Both these alternatives model the same real world concept in a structurally
different manner. Schematic heterogeneity concerns this situation where equivalent or
related data concepts are present in different database systems and have conflicting
structural representations.

Resolving schematic heterogeneities does not present too much of a problem:
integrated schemas which model every data concept once and once only may be
formed by restructuring and merging component schemas (Batini et al [BLN86]). The
major problem here is one of detecting which structurally conflicting data concepts
actually represent the same real world concept. What is required in this situation is an
ability explicitly to capture and reason with data semantics independently of the data’s
structural properties. Data semantics, in this context, refers to the rneanhg,
interpretation and usage of data concepts, not their schematic properties.
Unfortunately, current database schemas model mainly the structural attributes of data,
the semantics for a signifcant part being embedded in the database applications and the
user’s perception of the database. It should also be noted that it will often be the case
that equivalent or related concepts will be modelled structurally equivalently, or as is
more likely to be the case, structurally similar enough, to be recognised. There has
been much research to date in this area of recognising data concepts based on their
structural resemblance (Larson et a1 [LNE89]), and there has also been work on
providing some degree of automated support for this process (Sheth et a1 [SLCN88];
Sheth et a2 [SGN93]).

9

0 Semantic Heterogeneity is the final level of heterogeneity in interoperable database
systems. Semantic conflicts arise between related data concepts due to differences in
their meaning, interpretation or use. For example, consider two stock market
databases, each of which records the price of shares, the first of which is situated in
London, whilst the second is operated by a company sited in New York. It is
reasonable to expect that the London database records its share prices in Sterling and
the New York database in US Dollars. But these facts are not represented as part of
the database schemas: they are merely how the users interpret the data. The structural
properties of both data items may be similar, but clearly any query which compares the
prices of both databases will be erroneous. This example is not particularly difficult to
resolve - a conversion function may be employed to translate between currencies. The
difficult problem lies in actually detecting the conflict.

Semantic heterogeneity in interoperable database systems presents a difficult problem.
The reason for this is the implicit nature of data semantics, i.e. the meanings,
interpretations and uses reside in implicit assumptions made by the users and
applications of database concerned. An example o f a resolvable semantic conflict was
presented above. Unfortunately many semantic conflicts exist whose nature does not
permit such a simple resolution strategy.

Consider two travel agency database systems which record the prices of holiday
packages. One system may update the holiday prices as changes occur in the real
world whilst the other updates all prices at the close of the day. A query involving
both of these database systems to discover the cheaper price offered for the same
holiday package will return an answer consistent with the current database states.
However, due to the different semantics of the two price attributes this answer may not
be what the user thinks s/he has obtained. There is no simple conversion function that
may be applied here, but it may be argued that at least some attempt should be made to
explain the conflicting semantics. Thus, the system would still provide the same query
answer but with a caveat that the price attributes o f the two databases have different
semantics.

We argue that the general solution to the problem of semantic heterogeneity lies in the
explicit capture and representation of data semantics as part of database schemas. This
itself presents a problem because, to date, there is no model which sufficiently captures
the extent and nature of the issues concerning semantic heterogeneity. Thus, we
further argue that the most promising path to solving this problem lies in understanding
and modelling the real world problems first.

The categories of heterogeneity we presented above explicitly separated schematic
heterogeneity and semantic heterogeneity. Much of the research work in this area to date has
used either of the two terms to include both concepts (Sheth & Larson [SLgO]; Kim & Seo
[KS91]). We believe that the way forward in this field lies in this separation. The main
advantage of this separation lies in the ability to reason about data semantics regardless of
possibly conflicting implementation structures [HDR97].

However, the distinction between what constitutes structure and what constitutes semantics is
often not clear. One reason for this is that current data modelling tools have an ability to
capture a degree of data semantics as part of database schemas. One way of dealing with this

10

is to adopt a policy where all conflicts between concepts which arise due to a diversity in the
schema modelling primitives provided are considered schematic conflicts, and anything which
is not,covered by schema primitives is considered a semantic conflict. Clearly, this leads to a
situation where there is not a clear separation between structure and semantics, and therefore a
reduction in the advantage of being able to reason with data semantics independently of
structure.

A second method of dealing with this problem is to represent all the semantic issues covered
by the database schema again at some semantic level. This will result in a redundancy of a
portion of the database schema, but will avoid the problem of an unclear separation between
structure and semantics and will also retain the full advantage of being able to reason about
semantics independently of structure. A full discussion of the issues of schematic and semantic
heterogeneity may be found in our report that was prepared in parallel with this [HDR97].

3 A TAXONOMY OF INTEROPERABLE DATABASE SYSTEMS

In this section we present a taxonomy of interoperable database systems and discuss each
category in terms of the issues presented previously. The taxonomy is presented below in
Figure 1.

Interoperable Database Systems

Tightly Coupled Loosely Coupled
Federation Federation

ImportlExpon Multidatabase Language
System System

-
Figure 1: A Taxonomy of Interoperable Database Systems

11

Past research has introduced a wide range of solutions for sharing information in database
systems at a global level. All of these solutions include a global software component which
maintains global information and provides some means of access to multiple, physically
distributed, local components. The distinguishing element between these systems is in the
structure of the global component and how it interacts with the local database systems.

The term tightly coupled system is used to indicate a system where global functions have
access to the low level internal functions of the local DBMS, whilst on the other hand, the
term loosely coupled system indicates that the global functions access local functionality only
through the local DBMS’s external interface (Bright et al [BHP92]). However, these are two
extremes and it is often more practical to class@ systems as being more/less tightly coupled
than other (classes of) systems. Systems oriented towards the tightly coupled approach
facilitate increased efficiency in global processing with the disadvantage that the local
component may not have full control over its resources, i.e. the local system may not be fully
autonomous.

3.1 Distributed Database Systems

The distributed database system approach is usually implemented in a top-down manner, with
the choices for distribution being based on software engineering criteria. Local and global
functionality are implemented simultaneously leading to a system which is very tightly coupled.
The local nodes are often homogeneous and present the same interfaces at all levels. Data
may be deliberately fragmented or replicated over local nodes in the design stage to give
optimal global performance along with the other benefits of decentralisation. With regard to
the distribution aspect of interoperable database systems, these types of system provide the
global user with distribution transparency by means of a global schema. Global queries are
submitted over this schema and the global query processing system maps the appropriate sub-
queries to the local levels, and then subsequently combines the local responses to form the
global query result. The global system has full control over local functionality. This results in
very little autonomy at the local nodes, and in systems that are often optimised towards the
needs of the global user. Heterogeneity does not present a problem in distributed database
systems for two simple reasons: (i) the local nodes are not autonomous, and (ii) the global
system is designed as a whole entity rather than being comprised of a collection of pre-existing
sys tems.

So far in this paper the terms ‘multidatabase systems’ and ‘interoperable database systems’
have been used interchangeably. We will now be more precise and exclude distributed
database systems from the defrnition of multidatabase systems due to the non-autonomy of
local nodes and the fact that both local and global functionality are so tightly coupled it is
often difficult to distinguish between the two. Multidatabase systems are now defined as
distributed systems which act as interfaces to, or are structured as global layers on top of,
multiple autonomous database systems. Although the local layers must perform some limited
support for global functionality, the interface between the two levels is at the external interface
provided by the local DBMS. With the exception of distributed database systems, the systems
presented in the taxonomy (Figure 1) are classified under the term multidatabase system.

12

3.2 Global Schema Multidatabases

This class of systems attempts to integrate pre-existing database systems whilst largely
maintaining their autonomy. As indicated above, thrs is achieved by interfacing the local and
global systems through the external interface of the local level. The distribution aspect is
handled by providing a global database schema. However in this case the global schema is
much more difficult to produce and maintain due to the pre-existing, autonomous nature of the
components, especially when the number of local databases becomes large. The local
databases may exhibit all of the four classes autonomy discussed in the previous chapter,
although there may be certain situations where it may be desirable to relax some of these
requirements. Each of the four levels of heterogeneity is likely to raise a problem in global
schema multidatabases, i.e. the systems may be implemented on different hardware and
software platforms, they may employ different data models, there may be structural conflicts
between equivalent or similar concepts, and there also may be semantic conflicts between
related data concepts. Research has found global schema multidatabases lacking as a solution
to the problem of providing global access to multiple database systems because the
autonomous, heterogeneous nature of the component systems makes the task of producing
and maintaining a single, all-encompassing global schema too difficult in all but trivial cases.
Examples of global schema multidatabase projects are Preci* (Deen et a1 [DAOTU]) and
Multibase (Landers and Rosenberg [LR82]).

3.3 Federated Database Systems

More recent research has focused on the federal database systems approach (Sheth & Larson
[SLgO]), which attempts to provide controlled and co-ordinated manipulation of a collection
(the federation) of co-operating heterogeneous database systems. These co-operating
database systems are autonomous and the global system has only a small knowledge of their
operations. There is a clear distinction between users and transactions at the local level and
users and transactions at the global level. Local users interact directly with the component
system and are therefore unaware of the existence of the federation. On the other hand, global
users issue global transactions at the federal level and these transactions are then mapped onto
possibly multiple components by the global query processing system. However, the
component database system itself does not distinguish between local and global operations; the
issue is that there are two ways these operations may be generated - either directly from a
local user or application or by the federal system. Federal database systems can be broadly
divided into two architectural categories: tightly coupled and loosely coupled architectures.

A federation represents database co-operation with a purpose: a tightly coupled architecture
attempts to integrate the data concepts present in the component database systems which are
pertinent to the identified co-operation. These integrated units are termed federal schemas
(Sheth & Larson [SLgO]), and most systems of this type are likely to support multiple
federations, each of which can be applicable to a particular set of users. Some authors (Sheth
& Larson [SLgO]; Schaller et a1 [SBEL93]) make a distinction between multiple federation
and single federation architectures. In this case the idea is a single federation architecture is
equivalent to global schema multidatabases in the above taxonomy. We believe distinguishing
between federal and global schema systems is helpful because of the different philosophies
surrounding the two approaches: global schema systems attempted to provide sharing by

13

providing a single all-encompassing schema, whilst federal systems recognised that this is not
likely to be possible and instead concentrated on providing multiple integrated units
specifically tailored to the needs of a class of user/application. Federal systems therefore
overcome the schema complexity problems associated with the global schema multidatabase
approach simply because a federal schema is intended to integrate narrow domains of data
rather than being an all-encompassing model of the data accessible from the global level. The
appropriate database administrators co-operate to generate the federal schemas which are then
considered static entities in the sense that the individual users are not allowed to customise
their content. Users are again provided with distribution transparency due to the presence of
possibly multiple integrated schemas. An important issue concerning this class o f system is the
schema integration process because this is where the problems of schematic and semantic
heterogeneity require addressing; this will be examined in more detail in a later section of this
paper.

In contrast to tightly coupled architectures, the distinguishing characteristic of loosely coupled
architectures is that it is the individual user’s responsibility to create and maintain a federation
and no control is enforced by the administrators of the federal system. Thus, by default a
loosely coupled architecture supports multiple federations. Two well-known loosely coupled
approaches are documented in the literature: Multidatabase language systems (Litwin et a2
[LMR90]) and ImportExport schema systems (Heimbignor and McLeod [85]) . Both of these
approaches are discussed below.

Multidatabase language systems view a federation as a named collection of autonomous
databases. A central feature to this approach is a data language that supports the declaration
and manipulation of the constituent databases (Litwin & Abdellatif [LA87]). Consequently,
this approach has a somewhat different mechanism for dealing with distribution from the one
described above. The user is directly aware of the existence of a number of databases, but
their exact physical locations remain transparent. (This is sometimes referred to as location
transparency.) The autonomous nature of the component databases again raises the problems
of heterogeneity. Furthermore, this category of architecture provides the user with no
shielding from schematic and semantic conflicts whatsoever, the onus is entirely on the user to
recognise these conflicts and then take some action accordingly. However, the multidatabase
language is specifically augmented with extensions designed to help the user resolve these
conflicts, although no support is provided by the system to actually detect conflicts in the first
instance. Again these issues will be discussed in the following section.

An impodexport schema system allows a user to produce integrated schemas by importing
a foreign data concept which some other component has exported. The system provides some
in-built functionality to facilitate the import and export activities of a user. In addition, a set of
derivation operations is provided to aid the user in performing the task of unrfylng an imported
data concept with the existing local schema. There are two levels of support for the
distribution aspect. Firstly, the user is provided with location transparency similar to the
situation above during the importation process, i.e. the user is aware of foreign data objects
but need not be concerned with their physical locations. Secondly, once a data concept has
been unified into the local schema full distribution transparency is provided as any attempts to
access instances of the data concepts are automatically mapped back to the concept’s source
(the source being the component that originally exported the data concept) by the system.
Again, the onus is on the user to recognise and resolve schematic and semantic conflict, in this
case during the unification stage.

14

4 FEDERAL DATABASE SYSTEMS FOR AUTONOMOUS DATA
SHARING

The federal database system approach to global data sharing amongst pre-existing systems is
widely regarded as the most promising approach for two reasons:

(i) the autonomy of the component systems is supported.

(@it avoids the problems associated with a single, all-encompassing global schema.

We now present the two federal approaches in more detail, followed by a comparison.

4.1 The Tightly Coupled Approach

4.1.1 Architecture

Figure 2 depicts a general architecture for tightly coupled federal database systems (Sheth &
Larson [SLgO]). The following schema components are identified on the five level schema
architecture:

Local Schema. A local schema is the conceptual schema of the component DBMS.
It is expressed in the data model native to the local system. Thus, syntactic
heterogeneity exists at the local level. The federal system need not make any special
requirements of, or need not have to make any changes to, the content of the local
schema. This means that design autonomy is preserved in the component systems.

Component Schema. A component schema represents the local schema of the
component DBMS translated into the chosen canonical data model of the federal
system. This level eliminates the problem of syntactic heterogeneity amongst the
component DBMSs. Also, any augmentations needed at the local level to better
facilitate interoperation can be included in the component schema, thus enriching the
local level without sacrificing design autonomy. As part of the schema translation
process, mappings from the component schema to the local schema are generated by
the federal system. This is essential because any sub-queries submitted to the
component schema must be translated to equivalent queries expressed in the local data
language, and then mapped onto the local schemas.

Export Schema. The association autonomy property of the local database systems
requires that the component should be able to decide to what extent to share its data
resources with the other members of a federation. The contents of an export schema
represent the subset of the contents of the component schema which the component
wishes to share. As the federal system can support multiple federations, a component
system can make available multiple export schemas. Each export schema will in this
case contain the subset of data which the local database is willing to share with a
particular federation. This facility provides the local level with powerful control and
management of association autonomy.

15

Component DBMS ...

Federated Schema. A federated schema represents an integration of multiple export
schemas. It is also possible to include information managed at the global level in
federated schemas. The integration process performed at this level is a key issue
within this architecture because schematic and semantic conflicts must be detected and
resolved here to permit efficient interoperation. The users/applications of a particular
federation define their queries in terms of the associated federal schema. It is then the
responsibility of the federal system to map these queries to the local level and merge
any sub-query results accordingly.

-

Component DBMS

0 External Schema. External schemas in a tightly coupled federal system perform the
same sort of function as external views in a centralised database system. The reason
for this is that the federal schemas can be relatively complex and cannot be customised
by individual users. An external schema can be used to spec@ a subset of a federated
schema which is pertinent to, and is customised towards, the needs of a particular user
and/or application. Furthermore, the external schema can be translated into the native
data model of the user/application, thereby preventing the user from having to learn the

16

canonical data model of the federal system. An external schema can also be used to
include additional global information, additional integrity constraints, and to enforce
additional security.

4.1.2 Schema Integration

As indicated above, the task of integrating export schcxas to generate federal schemas is an
issue of crucial importance in tightly coupled federal systems. Many methodologies for
schema integration have been proposed by researchers, some of which have been specifically
developed for integrating sdiemas of independent database systems, whilst others were
developed for the task of view integration in centralised database design. Both of these types
of methodology can be applied to database integration with some success. In their survey
paper, Batini et al [BLN86] compare 12 of these methodologies. They identrfy five distinct
phases that may be present in a schema integration methodology. Each of the methodologies
they review perform some, but not necessarily all, of the five identified stages. These stages
are:

(i) Pre-integration. The component schemas are analysed to decide upon some policy
which will govern the integration process. This may include an assignment of
preferences to schemas, an order of integration, and adoption of an integration
strategy. (For example, a binary strategy integrates two schemas at a time, a one-shot
strategy integrates all the schemas in one step, and an iterative strategy attempts to
identrfy closely related sub-schemas and integrate these in a single step.) Additional
decisions which may be made at this stage include choosing naming conventions and
speclfylng global constraints. In the context of federd systems, pre-integration also
involves the choice of the federal canonical data model.

(ii) Schema Comparison. This step involves two stages: (a) the schemas are analysed
and compared to detect possible schematic and semantic conflicts, and (b) speclfylng
interrelationships among the concepts in the schemas. The first stage is where
problems exist in federal systems because of the autonomous, heterogeneous nature of
the component databases. Performing a manual schema comparison stage becomes
fraught with difficulties because firstly, the number of input export schemas could be
relatively large and of a complex nature, and secondly, as discussed previously the full
semantics of a database are unlikely to be captured in the database schemas - additional
semantics may be contained in implicit solutions made by the userdapplications of the
component. The person carrying out the comparison stage is unlikely to have access
to all of these semantics; mistakes and misunderstandings may therefore be present in a
resulting federal schema.

Because of these reasons, attempts have been made to provide automated tool support
for schema comparison or develop theories which may be used as a basis for such
tools. The first generation of tools and theories for detecting relationships and
conflicts between data concepts defined in independent schemas were based on the
structural properties of the data. The main idea being that if structural relationships
can be established between the attributes of two entities, then some relationship may
hold between the entities themselves. The structural properties of attributes which are
analysed are their uniqueness constraints, cardinality, domain, integrity constraints,

17

security constraints, allowable operations and scale factors (Larson et al [LNE89]).
The methodologies for establishing relationships between attributes are very formal in
nature and typically lead to assertions of the form x is equivalent to y , x includesh
included in y , and x is disjoint from y . Attribute equivalence theories are only subject
to semi-automation because it is possible that two unrelated concepts may have
equivalent structural properties. In this case the person carrying out the integration
process has to reject the relationship proposed by the integration tool and perhaps
declare some different relationship to hold.

The major drawback of attribute/entity equivalence is that only structural properties
are considered. It is often the case that semantic relationships hold between
structurally incompatible data concepts. Thus, more recent research (Sheth & Kashyap
[SK92]; Liu & Bukhres [LB93]) has attempted to relate data concepts according to
their ‘semantic proximity’ to one another (or how close they are in some semantic
space). This work relies on capturing and representing the real world semantics
(RWS) of data objects. An
interesting aspect of this work is the recognition that two data concepts can have a
closer semantic proximity in one context than another. For instance, the data concepts
CARGO-SHIP and SPEEDBOAT are likely to have a closer semantic proximity in the
context of an application wishing to discover the average number of engines fitted on
boats, than in the context of an application wishing to discover the average size of
cargo holds. This work is still very much in the early research stages and a key
question yet to be addressed is how to represent and reason with the RWS of data
concepts.

The primary vehicle for defining RWS is context.

(iii) Schema Conforming.
detected in the previous stage. Schematic heterogeneities may be resolved by
restructuring one or all of the concepts involved. Semantic heterogeneities often have
to be resolved by negotiation between the component DBAs and federal system
designers.

This step involves attempting to resolve any conflicts -

(iv) Schema Merging. The component schemas are now in a form which allows
relatively easy merging to form an integrated schema.

(v) Schema Restructuring. It may be necessary to restructure the schema derived in
the previous stage until it meets certain criteria satisfactorily. These criteria are: (a) the
integration should be complete in the sense that it models all of the concepts present in
the export schemas correctly, (b) if the same concept is represented in multiple export
schemas it should be represented only once in the integrated schema, and (c) the
integrated schema should be sufficiently easy for the users to understand.

4.1.3 Canonical Data Models

An important issue to be considered during the design of a tightly coupled federal database
system is the choice of canonical data model. Associated with any data model is a measure of
its ‘representational ability’ (Saltoret al [SCG9 l]), this being composed of two factors:

(i) the expressiveness of the data model and
18

(ii) the semantic relativism of the data model.

Briefly, the expressiveness factor of a data model relates to the degree to which the model can
naturally capture any real world conceptualisation. The semantic relativism relates to the
extent to which the model can accommodate different conceptualisations of the same real
world. (For example, the relational model supports the derivation of external views to
accommodate different perceptions of the same schema.)

Saltor et al [SCG91] class@ the requirements a model needs to demonstrate in its
representational ability for it to be an appropriate canonical data model for a federal system.
With regard to the expressiveness factor, the model needs to be sufficiently rich enough to
represent naturally all of the existing versions and any future anticipated, enriched versions of
component database schemas. It is important to note that the local schemas may undergo an
enrichment process prior to being integrated into the federation to capture additional
semantics, and this knowledge acquisition process prior to data model translation must be
taken into account. With these considerations in mind, Saltor et al [SCG91] recommend that
-a-sufficiently expressive canonical data model should support the following abstractions:
classification , me tac lasses, generahsa t io dspecialisa t io n , mu1 tip le inheritance, different classes
of specialisation - e.g. disjoint, aggregation, association, and the definition of new behaviour.

With regard to semantic relativism, a candidate data model must support the implementation
of integration operators such as meet, fold and gen. These operators can be used to construct
super-views of component schemas during the integration process. Also to facilitate the
integration process, the model should offer only a single basic structural primitive. (For
example, an object model will support one single structuring primitive, the ‘object’, whilst the
entity-relationship model supports two, entities and relationships.) The model must also
include facilities for defining views with multiple semantics. This is important in the context of
federal systems because users need to be able to define their own interpretations of federal
schemas (external schemas in the five-level architecture shown in Figure 2).

Saltor et al [SCG91] review current data models against their requirements and find that
object models offer the best alternative due to their rich range of modelling abstractions,
extensibility and support of a single modelling structure. The major drawback with the
relational model is its poor natural support for the more powerful modelling abstractions such
as generalisation. Extensions to the basic entity-relationship model offer a wide range of
modelling abstractions, however a disadvantage is the fact that the model supports more than
one structuring primitive. Also, extended ER models offer no support for modelling
behavioural aspects. Functional data models perform well in the semantic relativism aspect,
and offer all of the necessary expressiveness characteristics.

4.1.4 The Problem of Schema Evolution

Schema evolution in interoperable databases refers to the ability of the local database schemas
to evolve over time. This is a major problem in federal architectures due to the high degree of
design autonomy exhibited by the component database systems. The schema integration
process in tightly coupled architectures produces integrated federal schemas along with the
appropriate mappings from the integrated schema elements to the local schema elements. The

19

problem is this: as local schemas evolve the mappings between the integrated schemas and
local schemas are likely to become inconsistent. Also it may not be possible in some situations
to reflect any changes to local schema elements in the integrated schemas. Schema evolution
in multidatabase systems is one of the prominent present day and future research issues.

4.1.5 IRO-DB - An Example Tightly Coupled Federal Architecture

The IRO-DB project (Busse et al [BFHK94]; Gardarin et al [GGF&al95]) is concerned with
developing a federation of relational and object oriented DBMSs. IRO-DB supports both
loosely coupled and tightly coupled federated architectures, although here we are interested in
the tightly coupled case. The IRO-DB system architecture is presented in Figure 3 (Busse et
al [BFHK94]). As can be seen, the architecture comprises three layers: the interuperable,
communication and local layer. The key features and functionalities of these layers are
presented below with a more extended summary in Appendix 1.

INTEROPERABLE LAYER

C++ API Global QP Global TM

OML/C++ Interface

I Home DBMS (ONTOS) I
I

I Open Storage Manager I

I O E A - Object-Oriented Remote Database Access

Figure 3: IRO-DB Architecture

20

The local layer is intended to provide homogeneous access to the component database
systems, thus alleviating the problems of syntactic and systems heterogeneity. The local
database schema is (partially) translated into a schema expressed in the canonical data model,
which in this case is the ODMG-93 (Cattell [C93]) object model for databases (see later).
This export schema, together with the appropriate mappings, is used as the basis for
translating OQL queries into the appropriate local operations. The communication layer
realtses the transfer of objects, OQL queries, and query results to and from client and server
sites. The communication layer is also responsible for the transfer of export schemas between
the local and interoperable layers. The interoperable layer provides the facilities needed to
create and manage federated schema, and therefore support for tightly coupled federations.

4.2 The Loosely Coupled Approach

4.2.1 Architecture

Figure 4 presents a reference architecture for loosely coupled federal database systems (Litwin
et al [LMNgO]).

Key -
ES External Schema
CS Conceptual Schema
DS Dependency Schema
IS Internal Logical Schema
PS Physical Schema

Figure 4: A Loosely Coupled Federation Reference Architecture (Litwin et al[LMN90])

21

The following layers are shown on the loosely coupled reference architecture:

0 Internal Level. The internal level consists of the component DBMS and its physical
schema.

0 Conceptual Multidatabase Level. The internal level presents a conceptual schema to
the conceptual multidatabase level. As can be seen from Figure 4, DBMS 1 presents
this conceptual schema directly. In this case the conceptual schema at the
multidatabase level is the actual conceptual schema of the component database, i.e. the
component shares its entire data resources with the other users of the federation. To
handle the situation where a component only wishes to share a subset of its schema,
this subset becomes the content of the conceptual schema at the multidatabase level
and the actual conceptual schema of the component is represented by an internal
schema at the internal level. (See DBMS 2 and DBMS n in Figure 4.) If a canonical
data model is required at the conceptual multidatabase level, as is usually the case, it is
the responsibility of the component DBMS to ensure that the conceptual schema it
presents to the multidatabase level respects this requirement. In this case, the
component must also maintain the translation mappings from the conceptual schema to
its local schema.

The multidatabase level also includes a facility to define dependencies between
collections of databases. These are expressed in dependency schemas (Figure 4), and
their purpose is to allow the federation administrators to specify inter-database
constraints which provide the ability to enforce some element of consistency in the
absence of integrated schemas. Typical inter-database dependencies which may be
specified in the dependency schema are equivalence of attributes or domains (Litwin et
al [LMNgO]).

External Level. A user may construct external schemas at the external level, external
schemas being views of collections of conceptual schemas. Collections of databases
may be presented as a single integrated database in an external schema, but this should
not be confused with integrated schemas in the tightly coupled federal database
approach. In the loosely coupled approach, external schemas are the user’s
responsibility to create and maintain. No consistency can be guaranteed if conflicts are
not resolved or the proper inter-database constraints are not enforced.

It should be noted that architecture presented above is one of a specific multidatabase
language system (Litwin et al [LMN90]) rather than an explicit attempt to capture the general
case. However, we feel that this architecture does capture the general case for loosely
coupled federations with some degree of success. For instance, the above architecture and the
import/export schema architecture proposed by Heimbigner and Mcbod [HMI351 are very
similar, the major differences being in the tools available to the global user for creating and
managing federations, rather than in the schema architecture. Also, in the previous section it
was stated that the local layer and the communication layer of the IRO-DB architecture
(Figure 3) realised a loosely couple federation. Here the local layers present ODMG export
schemas to the communication layer in a similar manner to the way local databases present
conceptual schemas to the conceptual multidatabase level in the reference architecture above.
A user placed above the communication layer can, with appropriate tools, name and query

22

collections of databases and even construct integrated views which serve the same purpose as
the external schemas in Figure 4.

In Section 3 of this paper we presented a taxonomy of interoperable database systems in which
we classified two categories of loosely coupled federal database systems: import/export
schema systems and multidatabase language systems. Henceforth we consider multidatabase
language systems only, as this is by far the more prominent paradigm.

To return to Figure 4, a user at the global level has two methods of access to the
multidatabase system: (i) directly at the conceptual multidatabase level using the multidatabase
language, and (ii) through an external view using either the multidatabase language or a usual
database query language if the external schema defines a single integrated database (Litwin et
a1 [LMNgO]). It should also be noted that the tools which can be used to define external
schema are embedded in the multidatabase language themselves (in a similar manner to how
SQL provides facilities for creating views). Thus, the key element in these systems is the
multidatabase language tool. The features of these languages are presented in the following
section.

4.2.2 Multidatabase Language Features

The basic function of a multidatabase language is to allow users to define and manipulate a
collection of autonomous databases. Traditionally, these languages have been relationally
oriented due to the non-procedural nature of relational query languages, the predominance of
relational database systems, and the formal origins of the relational model. However, recent
research has focused on the use of object oriented query languages for this purpose (e.g. IRO-
DB presents users with an OQL interface to remote databases). Whatever paradigm is
adopted, there are a number of essential functional requirements a multidatabase language
must provide to be suitable for the task at hand. These are (Litwin et al [LMNgO]):

The ability explicitly to name collections of databases as multidatabases. These
multidatabase names can then be used as the scope for data manipulations which range
over the collection of databases.

The ability to execute, within the context of a single statement, data definition
statements at the multidatabase level such as the creation, alteration and removal of
data types (relations or objects) in different databases. Also, the language should allow
the import of data definitions from remote databases.

The defrnition of units, scales and precisions of data values in local schemas. This
feature enables the system automatically to make conversions between heterogeneous
representations of related data.

The execution of data retrieval and update operations which access data types in
different databases. These are termed elementary queries and are similar in nature to
SQL queries, the difference being that elementary queries are qualified with database
names to permit the query to access multiple databases. The use of these designators

23

to quahfy data type names with database names is important because it will often be the
case that data types defined in different databases will share the same name.

The execution of multidatabase queries. Multidatabase queries provide the user with
the ability to perform in a single statement, an operation which acts on possibly
heterogeneous data types present in a named collection of separate databases. The
difference between elementary queries and multidatabase queries is as follows:
elementary queries are designed to be used in situations where a single query involves
access to data defined in different databases; multidatabase queries, on the other hand,
are intended for situations where separate databases model the same real world
concepts. The user can then use a multidatabase query to ‘broadcast’ the same
intention to several databases. The ability to define a multidatabase as a named
collection of databases was described above. One of the primary functions of these
multidatabases is to act as the scope for multidatabase queries. Examples of both
elementary and multidatabase queries are presented in Appendix 2.

In relational systems, the provision of’implicit joins for manipulations of different
databases with similar data which is expressed in relations with different vertical
decompositions. This facility allows the same query formulation to be ‘broadcast’ to
databases in which the same information is modelled by different relational structures,
by implicitly constructing a common relational structure from each of the different
decompositions.

The provision of dynamic attributes which allow a user to transform heterogeneous
data values within the scope of a query. They are dynamic in the sense that they are
defined within a query, and are therefore attributes that are not defined in any schema.
With the exception of updates, they may be manipulated in the scope of the query like
any ordinary attribute. Dynamic attributes are likely to be used often in a
multidatabase system because users often wish to place their own interpretation upon
data, or transform related data items to a common format/unit for the purpose of
comparing or joining. This feature will be illustrated in Appendix 2.

The language must be extensible in the sense that new in-built functions can be
defined as needed. Again, this feature will be illustrated in Appendix 2.

The provision of multidatabase view definition and multidatabase external schema
definition facilities. Multidatabase views are virtual data types which are derived from
multiple databases and may be employed by users to place their own semantics on data
which are of interest to them. A multidatabase external schema defines a virtual
database as a collection of virtual relations. These can be oriented towards the needs
of a particular class of user/application and, as discussed above, can be used to provide
the abstraction of a single integrated database. This can sometimes be of great benefit
because they can allow less experienced users to query multiple databases using
standard query tools (i.e. query tools designed for single databases).

Support for ‘inter-database queries’ which are used to import and export data
between multiple databases in a single statement. This facility needs to provide a
means of dealing with key conflicts between incoming and existing data instances.

24

The language also needs to provide support for defrning auxllrary objects such as
inter-database constraints and dependencies which exist between data types in different
databases.

4.2.3 The Problem of Schema Evolution

In general, users can use loosely coupled federal architectures from two perspectives: (i) as an
occasional user wishing to discover some mformation which is relevant only at the time of the
query session, e.g. as in the case of the user trying to find the cheapest price for the same
holiday, and (ii) a frequent user who will wish to submit the same multidatabase queries at
different times, e.g. in the case of a federation of databases containing mformation about
stocks and shares where a user may wish to submit a query which retrieves the latest prices of
his/her various shares every week. In the first situation, schema evolution does not present a
problem because the user will typically find out what information is avidable in the local
databases and build the appropriate multidatabase query within the session. However, instead
of constructing the same query time after time, users querymg the multidatabase frequently
will store their queries in compiled form and run them when required. Schema evolution in the
local database systems is then likely to make these compiled queries inconsistent. It may be
the case that in some circumstances the global system can monitor simple changes to local
schemas such as the renaming of attributes. Any compiled queries which reference data
objects which have been subject to these simple changes can then be recompiled prior to
execution, and the global system can then amend inconsistencies during the compilation phase.
However, in the case of more drastic changes to local schemas the compiled queries will
simply fail and the user will have to first discover what local changes have been made, and
then either amend or re-formulate the query.

4.2.4 MDSL - An Example Multidatabase Language

In Appendix 2 we present a brief overview of the features of the MDSL multidatabase
language [LA871 which is the language developed in conjunction with the MRDSM (Multics
Relational Data Store Multidatabase) prototype. It must be stressed that this system does not
exhibit some of the language characteristics presented in the previous section. In particular,
the language does not support the specification of explicitly named multidatabases, does not
facilitate the derivation of views or external schemas, and does not provide support for
defrning inter-database constraints or dependencies. However there are many useful features
in the language such as the ability to:

i) open several databases with one command

ii) provide aliases for databases and tables

iii) introduce domains that range over semantically equivalent types in different

iv) identify the name of the database of a successfully retrieved row

v) define attributes dynamically using lists, formulae, and code

databases

25

4.3 A Comparison of Loosely Coupled and Tightly Coupled Architectures

In tightly coupled architectures, the federations are created and managed by the administrators
of the .system according to some pre-determined policy. For this reason tightly coupled
systems are referred to as static federal database systems. On the other hand, loosely coupled
systems are referred to as dynamic federal database systems because the individual users are
provided with the tools dynamically to create and manage their own federations in the absence
of any pre-determined policies. Although the two approaches presented above may appear to
have quite different strategies for realising interoperation, they actually perform similar
functions. The difference is in when these functions are performed rather than what they are.

In the tightly coupled approach a local database schema is converted to an equivalent
representation in the canonical data model, and a subset of this is exported for the use of the
federation. Sets of export schemas are then statically integrated to form the federal schemas.
These federal schemas are then made available for the use of the multidatabase users. In the
loosely coupled approach export schemas contain the subset of a local schema that a
component database system is willing to share. (The local schemas may also be converted into
a canonical model if necessary.) These export schemas are then made available to the
federation users who can dynamically create their own federations using the tools provided
which in most cases are multidatabase languages. The difference is that the tightly coupled
approach statically integrates schemus prior to interoperation, whilst the loosely coupled
approach dynamically integrates data during interoperation, in the form of a multidatabase
manipulation expressed in the multidatabase language.

Sheth lk Larson [SL90] report that the loosely coupled approach is better suited for
interoperation between large numbers of very autonomous read-only databases such as public
information systems, whilst the tightly coupled approach is better suited for corporate
interoperation where the extra control provided by the tightly coupled nature of the approach
is desirable.

5 CONCLUDING REMARKS

Research has proposed a number of solutions to the problem of providing interoperation
amongst independent database systems, and most of these solutions have met with some
degree of success. Federal database system architectures are the most promising solutions to
date because they cater for high degrees of component database system autonomy. However,
there are still many key problems in this area which have failed to be successfully addressed.

Neither federal architecture deals successfully with the problem of schematic heterogeneity. In
the case of loosely coupled architectures the tools provided to the user for resolving schematic
conflicts are complex. It is unreasonable to expect that a non-expert user who has some
familiarity with a single database query language will easily come to terms with the MDSL
language discussed in section 4.2. Also, the user of a loosely coupled system is offered poor
support for detecting data of interest, particularly if the number of databases participating in
the federation is large. Tools may be used to detect data items based on structural
resemblance, but related concepts which have diverse schematic representations will be
difficult to detect. Tightly coupled architectures rely on a schema integration stage which is

26

largely manual and dependent on the administrators’ knowledge of the schemas. Again, tools
are available which detect structural relationships among data items only.

Current federal database architectures offer little support for resolving semantic
heterogeneities. The onus is on the user or administrator to detect and resolve semantic
conflicts when creating federations. As indicated in section 2.3, a degree of the semantics of a
database reside in the implicit assumptions made by the users and administrators. These
assumptions are unlikely to extend to the multidatabase level. It is therefore possible that
subtle semantic conflicts will be undetected because data items have been interpreted
incorrectly during the federation creation stage.

We argue that the solution to both these issues lies in the explicit capture and representation of
database semantics. The problem associated with schematic heterogeneity is not one of
resolving schematic discrepancies, but rather one of detecting them. The ability to reason
about data semantics independently of structure will aid in detecting semantically related data
items which have conflicting structural representations. Similarly, the ability to reason with
explicitly represented data semantics will facilitate the detection, and resolution in some cases,
of semantic heterogeneities. We discuss the issues of schematic and semantic heterogeneity in
a subsequent report [HDR97].

27

APPENDIX 1

INTEROPERABLE RELATIONAL AND OBJECT DATABASES

This appendix contains an extended discussion of that in section 4.1.5 of IRO-DB, an example
of a tightly coupled federal architecture based on the object database model.

The IRO-DB project (Busse et a1 [BFHK94]; Gardarin et a1 [GGF&al95]) is concerned with
developing a federation of relational and object oriented DBMSs. IRO-DB supports both
loosely coupled and tightly coupled federated architectures, although here we are interested in
the tightly coupled case. The IRO-DB system architecture was presented in Figure 3 (Busse
et a1 [BFHK94]). As can be seen, the architecture comprises three layers: the interoperable,
communication and local layer. The key features and functionalities of these layers are
presented below in more detail.

The local layer is intended to provide homogeneous access to the component database
systems, thus alleviating the problems of syntactic and systems heterogeneity. The local
database schema is (partially) translated into a schema expressed in the canonical data model,
which in this case is the ODMG-93 (Cattell [C93]) object model for databases (see later).
This export schema, together with the appropriate mappings, is used as the basis for
translating OQL queries into the appropriate local operations. This functionality is supported
through providing the local level with a local database udupter (LDA). These adapters
consist of two major levels: a generic part which is common to all adapters and a specific part
which is designed for each particular DBMS. The key advantage of this approach is that the
local layer provides a ‘standard local access point’ (Busse et a1 [BFHK94]) where each local
database can be accessed in an ODMG compliant manner. This means that the users at the
local level are able to issue their queries in the OQC data language as an alternative to the data
language of the local DBMS. The generic functionality of each LDA consists of the
following:

The provision of an ‘export schema repository’ which serves as a data dictionary for
the ODMG representation of the shared portion of the local database schema.

The provision of a ‘generic mapping repository’ which contains the information
required to convert between the local schema and the ODMG compliant export
schema. Note that this repository contains only a generic description of the mappings,
the actual implementations being provided by the specific part of the LDA.

An ‘export schema manager’ is provided which is responsible for the management of
both of the above repositories.

0 An OQL parser which provides the external interface to the LDA and, with the aid of
the above repositories, translates OQL into a syntactic query tree.

The specific functionality pro’vided by each LDA is as follows:

A ‘mapping toolbox’ is used to implement the routines for converting between local
data types and ODMG data types.

28

A ‘local mapping adapter’ is used to transform the syntactic query trees provided by
the OQL parser into local queries expressed in the query language of the local
database.

Notice that the elements of the local layer are covered by three schema levels in the generic
tightly coupled architecture (Sheth & Larson [SLgO]) presented above, whllst only two
schema levels are used by IRO-DB. The reason for this is that the IRO-DB architecture does
not convert the whole of the local schema into the canonical data model, but instead converts
only the portion it wishes to share into the export schema in a single step. The Sheth &
Larson [SL90] architecture uses two steps to perform this: the local schema is fully translated
into a representation in the canonical data model (a component schema), and then the sharable
portion of this is then expressed in export schemas. A second difference between the two
architectures is that the Sheth & Larson [SL90] architecture includes the ability to express
multiple different export schema, each of which contains the information the component
system wishes to share to a particular class of user/application. This facility is not present in
the IRO-DB architecture. Of course, different views may be expressed over the export schema
by different users/applications, but the difference is that what these different users/applications
have access to is no longer under the control of the component system.

The communication layer realises the transfer of objects, OQL queries, and query results to
and from client and server sites. The communication layer is also responsible for the transfer
of export schemas between the local and interoperable layers. For further detads of the
services provided by the communication layer, along with its architecture and details of the
standards embraced during its design, the reader is referred to Busse et al [BFHK94] and
Gardarin et al [GGF&a195]. It is worth noting that the local layer and communication layer
provide the ability to reahe loosely coupled federations, where the data has to be accessed
and integrated explicitly by the individual users.

The interoperable layer provides the facilities needed to create and manage federated
schema, and therefore support for tightly coupled federations. As discussed above, the
designers of IRO-DB have adopted the ODMG-93 object model for the canonical data model.
The primary reason for this is that the designers see a benefit in using this upcoming standard
because there is a foreseeable availability of ODMG compliant interfaces for many
commercially available databases (Busse et al [BFN94]). The suite of tools provided by the
interoperable layer (Figure 3) consists of two categories. One component is named the
integrator’s workbench. Its purpose is intended to assist in the design and maintenance of
interoperable schemas. These interoperable or federated schemas are formed by the
integration of numerous (partial) export schemas. The second category of tool spans the rest
of the components shown on the top-level of the interoperable layer (Figure 3). Their
intended purpose is to support the users of the federated system as outlined below:

OQL Purser. This parses a global query expressed in OQL against an interoperable
schema and generates an object expression tree (OET).

Global QP. The global query processor uses the mapping mformation in the global
data repository (the home DBMS) to break the query expressions in the OET, which
refer to an interoperable schema, into sub-expressions which refer to the export

29

schemas at the local sites. This transformed OET is optimised and passed to an
execution component that sends the OQL sub-queries through the communication
layer to the appropriate LDAs and merges the relevant query results to form a global
result.

0 Global TM. The global transaction manager implements a nested transaction control
protocol as proposed by the ODMG model. Information provided by -global
repositories and the transaction management services provided by the communication
layer are utilised to assist in the management of global transactions.

0 C++ APZ. This provides an ODMG compliant C++ application programming
interface which can be used by applications to access the interoperable schemas and
their data instances.

The integrator’s workbench is an interoperable layer tool which is used to create and maintain
integrated schema. It is able automatically to generate a federated schema using path
correspondence assertions declared by the user and algorithms which automatically detect
correspondences between schema elements. The home DBMS, which should be ODMG
compliant to guarantee portability of the interoperable layer, stores and provides: (i) access to
the copies of local database’s export schemas, (ii) access to the interoperable schemas and
associated mapping informatio’n, (iii) access to the information concerning where export
schemas originate from, and (iv) any other information which needs to be maintained at the
global level. In addition, the home DBMS is used to store intermediate query and sub-query
results which are waiting to be composed into a global result.

Busse et a1 [BFN94] class@ the different types of object classes which may appear in a
federated schema. These are:

(i) external classes which are the existing classes at the local node which are made
available to the federal system via the export schema. They are physically bound to the
local node and have no instances on the global node;

(ii) imported classes which are (partial) one-to-one copies of external classes at the
global node (i.e. they represent the copies of the export schemas at the interoperable
level). They exist on the global node, but their instances reflect only the external
instances of the corresponding external class;

(iii) derived classes that exist in integrated schema and are derived from imported
classes in one or more steps to facilitate interoperation. A single derived class may be
derived from one or more imported classes. As indicated above, the home DBMS
stores the imported class specifications, the derived class specifications (or
interoperable schemas) and the mappings between the two; and

(iv) standard classes that represent the information maintained at the global level that
is not imported from local databases, i.e. classes which. are created and have their
instances at the global node.

Classes of type (ii) and (iii) are termed virtual classes. They behave like normal classes and
consist of an interface and an implementation, but unlike ordinary classes, the implementation

30

derives its instances from the instances of other classes. It is the responsibility of the
remaining component of the IRO-DB architecture, the Open Storage Manager, to define a
virtual class on the home DBMS for every imported class passed through the communication
layer. These virtual classes are identical to the corresponding classes defined in the relevant
export schemas with the exception that the access methods are overloaded with methods
which retrieve the instances from the remote sites. Thus, the open storage manager ensures
that the userdapplications of the home DBMS can access imported classes in a distribution
transparent manner.

31

APPENDIX 2

MDSL - AN EXAMPLE MULTIDATABASE LANGUAGE

In this appendix we present a brief overview of the features of the MDSL multidatabase
language (Litwin & Abdellatif [LA87]) which is the language developed in conjunction with
the MRDSM (Multics Relational Data Store Multidatabase) prototype. It must be stressed
that thls system does not exhibit some of the language characteristics presented in Section
4.2.2. In particular, the language does not support the specifcation of explicitly named
multidatabases, does not facilitate the derivation of views or external schemas, and does not
provide support for defining inter-database constraints or dependencies. The purpose behind
its presentation here is not to introduce a language which successfully meets the above criteria,
but rather to demonstrate some of the facilities such a language would need to provide to
support multidatabase queries. Figure 5 presents the export schemas of the four databases we
will use in the examples presented in this section.

Manchester:
Book(=, Title, Author, Cost, Category, Rating)

New-York :
Books (Title, Author, E N , Price, Pub-Da’te, P#)

1 Publishers (e, Pname, Paddress)

London :
Book(=N, Author, Title, Price, Type, Date)

Glasgow:
BookItems(ISBN, Title, Price, Author, Category, Rating)

Figure 5: Export Schemas of Book Shop Databases

The schemas shown in Figure 5 represent the database export schemas of four independent
book shops. For simplicity, the actual databases are named after the cities where the book
shops are based. Thus, there is a database named ‘Manchester’ with a ‘Book’ relation, a
database named ‘New-York’, and so on. The databases store information concerning the
same universe of discourse, this in fact being the books the shops stock. Notice that some of
the relations concerning books have attributes that are missing in others. For example, the
Manchester database has an attribute Rating, which corresponds to a rating assigned to books
in accordance with their reviews. This attribute is not present in the London database. Also,
the attributes Category in the Manchester and Glasgow databases, and the attribute Type in
the London database represent the same concept, this being the subject a book may be
classified such as History, Computing or Cinema. The more subtle discrepancies between
these schemas will be presented below along with the examples that introduce the language
features which are intended to resolve them.

Example 1: what are the book categories common to both the Manchester and Glasgow
databases ?

32

The example serves two purposes: (i) to present the basic structure of a MDSL query, and (ii)
to demonstrate the concept of an 'elementary query' (discussed above). The MDSL query
formulation of this example is:

open Manchester r Glasgow r
-db (M Manchester) (G Glasgow)
-range (x M.Book) (y G.BookItems)
-select x.Category
-where x.Category = y.Category
retrieve
close M G

The open command opens the named databases for processing, the r option speclfyrng read-
only mode. The close command is only necessary if the databases opened are not needed for
further queries. The -db clause serves two purposes: (i) it can be used to spec@ aliases for
databases, thus making the rest of the query easier to express and understand, and (ii) it makes
it possible to define the set of databases the query should refer to (some databases may have
been left open by previous queries), the default being all of the databases open at the time in
question. The -range (tuple-variable relation(s)) clause is used to define explicitly semantic
variables whose range is the named relation(s). (A key element in expressing multidatabase
queries is declaring variables which range over more than one relation - see later.) The -select
and -where clauses have the same semantics have as the corresponding clauses in SQL.
Finally, the query command specifies the action to be taken; the options are retrieve, mudifi,
store, delete, copy, m v e and replace. This query is relatively simple: it opens both of the
required databases, declares an alias and a tuple variable for each, and specifies the selection
clause. The interesting aspect is the use of designators to distinguish between Book.Category
and BookItemxCategory in the context of the query. This ability to uniquely identlfy similarly
named data items defined in different databases is the defining characteristic of elementary
queries.

Example 2: from the London and Manchester databases, retrieve the books whose subject
is Modern Languages.

The fundamental purpose of t h s example is to demonstrate the technique employed in MDSL
to formulate multidatabase queries. In addition to ths , as the attribute Category in the
Manchester database models the same aspect of the real world as the attribute Type in the
London database, this query introduces a Semantic Variable. A semantic variable is a variable
whose domain is data type names, and they are typically used to resolve naming
heterogeneities such as the one above. The use of a semantic variable indicates that the query
concerns each of the data types in its domain. Consider the query formulation for example 2:

open Manchester r London r
-range (x Book)
-range-s (cat Category Type)
-select x
-where (x . cat = "Modern Languages")
retrieve

Firstly, the relation name Book in the second line of the query is known as a Multiple
Identifier because both of the databases involved in the query contain a relation with this
name. Multiple identifiers in MDSL are used to express multidatabase queries; in this case the
tuple variable x ranges over both Manchester.Book and London.Book. Secondly, the third line

33

in this query defines the semantic variable cat, whose domain is the data types
Manchester. Book. Category and London. Book. Type. The where clause in the query then refers
to x.cat, thus resolving the heterogeneous attribute names present in the two relations.
Presented below is a second multidatabase query, in this case a semantic variable is used to
resolve naming heterogeneities between the relations the query is concerned with.

Example 3: from any of the databases, find the details of the book "The Stand" written by
the author Stephen King.

open Manchester r Glasgow r London r New-York r
-range-s (B Book Books BookItems)
-range (x B)
-select x.Name(.B) x
-where x.Author = "Stephen King"

re t r ieve
& x.Title = 'The Stand"

The only aspect of this query that has not been introduced before is the use of the in-built
function Name in the select clause. This tags each tuple with the name of the database from
which it originated. This is useful in contexts like the above query because the user may
decide to order the book from the shop offering the most reasonable price, and in the absence
of the name function there will be no direct means of distinguishing which database a
particular tuple originates from. This demonstrates the value of being able to extend a
multidatabase language with new in-built functions.

Example 4: from the New York database, retrieve the publishers of any books written by
the author Stephen King.

This query demonstrates how join clauses may be omitted from query formulations. These
joins are termed implicit joins and serve two purposes: (i) they facilitate simpler formulation of
queries, and (ii) they allow multidatabase queries to be expressed to databases whose relations
model the same real world, but have different vertical decompositions. These joins are then
deduced by the system from the database schemas. Consider the query formulation of
example 4:

open New-York r
-select Pname
-where (Author = "Stephen King")
retrieve

Compare this with the equivalent but more complicated query below:

open New-York r
-range (B Books) (P Publisher)
-select Pname
-where (Author = "Stephen King")

re t r ieve
& B.P# = P.P#)

We now introduce the concept of Dynamic Attributes in MDSL, which are transforms of
actual schema attributes. Their use makes it possible for a user dynamically to transform data
values into other forms. The syntax of dynamic attributes in MDSL (Litwin & Abdellatif
[LA87]) is as follows:

34

-attr-d [hold] a : C/R
-define by MT(s) = m

The a represents the name of the dynamic attribute, the hold argument is optional and if it is
specified further queries may refer to a, otherwise the scope of a is limited to the defining
query. The define by clause defines the mapping, m, of the actual schema attribute(s) s to a.
The MT represents the mapping type, which may be one of D for a dynamically defined
dictionary, F for a formula, or P for a program. The forms of the corresponding clauses are as
follows:

-define by D(s) = (a, SI) , . . . , (an, sn)
-define by F (s) = formula
-define by P (s) = Multics-Segment-Name

where si are the actual data values and ai are the corresponding dynamic values.

Example 5: from the Manchester and Glasgow databases, list the details of books that have
been assigned a *** rating.

Assume that the Manchester database uses '*', '**' and '***' as ratings to assign to books,
whilst the Glasgow database assigns 1, 2 ,3 or 4. Further assume that a Manchester '***'
rating is equivalent to a Glasgow 3 or 4, a '**' is equivalent to a 2, and a '*' is equivalent to a
1. The query formulation below uses a dynamic attribute with a dictionary mapping type to
resolve these differences:

open Glasgow r Manchester r
-range-s (B Book BookItems)
-range (x B)
-attr-d Rating : C
-define by D(BookItems.Rating) = (* * * , 4) , (* * * I 3)

-where (x.Rating = ' I ***")

(* * , 2 1 , (* , 1)
-select x

retrieve

Notice that x ranges over the tuples of both Munchester.Book and Glasgow.BookItem. The
where clause contains the predicate x.Rating = "***". When the tuple variable x is ranging
over the Book relation the actual schema attribute Book.Rating is used by the query.
However, when x is ranging over the BookItems relation the schema attribute
BookItems.Rating is not referred to, instead the query uses the dynamic attribute Rating in the
selection clause (which has previously been derived from BookItems. Rating).

Example 6: from the Manchester and New York databases, list the prices of books written
by the author Stephen King.

Assume that the New York database represents its book prices in US Dollars and the
Manchester database in Sterling. The query formulation, which employs a dynamic attribute
mapped by an arithmetic formula, is presented below:

open Manchester r New-York r
-range-s (B Book Books)
-range (x B)
-attr-d Cost : R

35

-define by F(Price) = Price * Exchange-rate
-select x
-where (x.author = Stephen King")
re t 1: ieve

Assume that Exchange-rate refers to the current Dolladsterling exchange rate and is a
schema element maintained by one of the databases or a constant fed into the query in some
manner.

36

REFERENCES

[BFHK94]

[BFN94]

[BHP921

[BLN86]

[C93]

[DAOT85]

[GGF&a195]

[HDR97]

[HM851

[KS91]

~ ~ 8 7 1

LB93]

LMR90]

LNE89]

LR821

[SBE93]

[SCG91]

[SGN93]

R. Busse, P. Fankhauser, G. Huck and W. Klas, “JRO-DB An Object Oriented Approach
Towards Federated and Interoperable DBMS’, GMD-IPSI, 1994.

R. Busse, P. Fankhauser and E. Neuhold, “Federated Schemata in ODMG’,
Proceedings of the 2nd International Easmest Database Workshop, 1994.

M. Bright, A. Hurson and S. Pakzad, “A Taxonomy and Current Issues in Multidatabase
Systems”, IEEE Computer, March 1992, pp 50 - 59.

C. Batini, M. Lenzerini and S. Navathe, “A Comparative Ana lysis of Methodologies for
Database Schema Integration”, ACM Computing Surveys, 18(4), December 1986,
pp 323 - 363.

R. Cattell, editor, The Object Database Standard: ODMG-93, Morgan Kaufmann, 1993.

S. Deen, R. Amin, G. Ofori-Dwumfuo and M. Taylor, “The Architecture of a Generalised
Distributed Database System - PRECI*”, The Computer Journal, 28(3), 1985, pp 282 - 290.

G. Gardarin, S. Gannouni, B. Fianance, P. Fanhauser, W. Klas, D. Pasrre, R. Legoff
and A. Ramfos, “IRO-DB A Distributed System Federating Object and Relational
Databases”, Object Oriented Multidatabase Systems - A Solution for Advanced Applications,
edited by 0. Bukhres and A. Elmagarmid, Prentice Hall, 1995.

S Hamill, M Dixon, and B J Read, “Classifying Schematic and Semantic Heterogeneities in
Interoperating Database Systems”, RAL Report RAL-97-xxx, 1997.

D. Heimbigner and D. McLeod, “A Federated Architecture for Information Management”,
ACM Transactions on OfJice Information Systems, 3(3), July 1985, pp 253 - 278.

W. Kim and J. Seo, “Classifying Schematic and Data Heterogeneity in Multidatabase
Systems”, IEEE Computer, December 1991, pp 12 - 17.

W. Litwin and A. Abdellatif, “An Overview of the Multi-Database Manipulation Language
MDSL”, Proceedings of the IEEE, 75(5), May 1987, pp 621 - 631.

X. Liu and 0. Bukhres, “On Object Similarity in Heterogeneous Database Integration”, CSD-
TR-93-045, Department of Computer Sciences, Purdue University, July 1993.

W. Litwin, L. Mark and N. Roussopoulos, “Interoperability of Multiple Autonomous
Databases”, ACM Computing Surveys, 22(3), September 1990, pp 267 - 293.

J. Larson, S. Navathe and R. Elmasri, “A Theory of Attribute Equivalence in Databases with
Application to Schema Integration”, IEEE Transactions on Sofhvare Engineering, 15(4),
April 1989, pp 449 - 463.

T. Landers and R. Rosenberg, “An Overview of MULTIBASE”, Distributed Databases,
edited by H. Schneider, North-Holland Publishing Company, 1982, pp 153 - 183.

T. Schaller, 0. Bukhres, A. Elmagarmid and X. Liu, “The Integration of Database Systems”,
CSD-m-93-046, Department of Computer Sciences, Purdue University, July 1993.

F. Saltor, M. Castellanos and M. Garcio-Solaco, “On Canonical Models for Federated DBs”,
SIGMOD Record, 20(4), December 1991, pp 44 - 48.

A. Sheth, S. Gala and S. Navathe, “On Automatic Reasoning for Schema Integration”,

37

International Journal on Intelligent & Co-operative Information Systems, 2(1), March 1993.

[SK92] A. Sheth and V. Kashyap, “So Far (Schematically) yet So Near (Semantically),
Proceedings of the DS-5 Semantics of Interoperable Database Systems, Lorne, Australia,
November 1992, Elsevier.

[SL90] A. Sheth and J. Larson, “Federated Database Systems for Managing Distributed,
Heterogeneous and Autonomous Databases”, ACM Computing Surveys, 22(3), September
1990, pp 183 - 236.

[SLCN88] A. Sheth, J. Larson, A. Cornelio and S. Navathe, “A Tool for Integrating Conceptual
Schemas and User Views”, Proc. of the 4th International Conference on Data Engineering,
February 1988.

[RSK911 M. Rusinkiewicz, A. Sheth and G. Karabatis, “Specifying Inter-database Dependencies in a
Multidatabase Environment”, IEEE Computer, December 1991, pp 46 - 53.

38

