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ABSTRACT 
In this paper we consider the definition of new efficient linesearch algorithms for solving large 
scale unconstrained optimization problems which exploit the local nonconvexity of the objective 
function. Existing algorithms of  this class compute, at each iteration, two search directions: a 
Newton-type direction which ensures a global and fast convergence, and a negative curvature 
direction which enables the iterates to escape from the region of local nonconvexity. A new point 
is then generated by performing a movement along a curve obtained by combining these two 
directions. However, the respective scaling of the directions is typically ignored. We propose 
a new algorithm which aims to avoid the scaling problem by selecting the more promising of 
the two directions, and then performs a step along this direction. The selection is based on a 
test on the rate of decrease of the quadratic model of the objective function. We prove global 
convergence to second-order critical points for the new algorithm, and report some preliminary 
numerical results. 
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1 Introduction 

We consider the unconstrained minimization problem 

where f is a real valued function on Etn. We assume throughout that both the gradient g(z) = 
V,f(z) and the Hessian matrix H ( z )  = Vx,f(z) o f f  exist and are continuous. Our aim is to 
define a robust and efficient algorithm able to handle large scale problems. 

Many algorithms have been proposed for solving this class of problems. In this paper we 
intend to concentrate on a particular aspect which we believe to play an important role in de- 
signing efficient algorithms, namely the effective use of the second order information contained 
in the Hessian matrix. It is now accepted that computing second derivatives for a large class 
of optimization problems is not only feasible but relatively inexpensive. As a result, more in- 
formation about the problem is available than simply from the gradient, and one would like to 
exploit it. To these ends, we intend to exploit negative curvature directions, (i.e. directions d 
such that drH(z)d  < 0), when they exist. In these directions, the quadratic model of the ob- 
jective function is unbounded below, which shows potential for a large reduction of the objective 
function. Moreover, it is well-known that algorithms using such directions may be proved to 
converge to second-order critical points (see McCormick, 1977, More and Sorensen, 1979, and 
Shultz, Schnabel and Byrd, 1985). 

In what follows, we focus our attention on Newton-type algorithms because of their good 
asymptotic convergence properties. Such algorithms can be made globally convergent using one 
of two basic approaches, the linesearch and the trust region approach. We shall concentrate on 
linesearch algorithms in the spirit of McCormick (1977) and Mork and Sorensen (1979). The 
key idea is to determine, at each iteration, a pair of descent directions, ( s k , d k )  where, loosely 
speaking, s k  represents a direction calculated from positive curvature information given by the 
Hessian matrix, and dk is a negative curvature direction. This pair of directions is then used in 
a search along the trajectory 

.(a) = zk + a2sk + a d k  (1.2) 

and the new point is obtained by a curvilinear linesearch along this path. Ferris, Lucidi and Roma 
(1996) embedded the approach proposed by McCormick (1977) and Mork and Sorensen (1979) 
within a nonmonotone framework and the importance of using negative curvature directions in 
solving small and medium problems was emphasized. Subsequently, Lucidi, Rochetich and Roma 
(1998), and Lucidi and Roma (1997) proposed a new algorithmic framework, using the Lanczos 
method to determine both search directions, in order to extend this approach to the solution of 
large scale problems. Numerical experience has shown the effectiveness of the combined use of 
the nonmonotone strategy and the negative curvature directions. 

All these methods are characterized by a common feature, namely that the new point zk+l 
is found by a curvilinear search along the path (1.2). Note that the relative scaling of s k  and dk 
is not taken into account in the definition of the path. This may be a serious drawback because, 
for instance, too little weight may be given to the direction of negative curvature, although this 
direction might be the most significant for the minimization process. Indeed, the two directions 
s k  and dk should ideally be exploited in different ways. A unit step along the Newton-type s k  is 
usually to be preferred, while the step along dk typically requires a more sophisticated linesearch. 

The aim of this paper is to propose a new algorithmic framework which tries to overcome the 
previous drawbacks while still ensuring global convergence towards second order critical points. 
It is based on the simple idea of separating the contribution of the two directions by performing, 
at each iteration, a step along one of sk  or dk. The crucial issue is then which direction to use at 



2 N. I. M. Gould, S. Lucidi, M. Roma and Ph. L. Toint 

each iteration. It is evident that an efficient strategy should be based on the attempt to determine 
which is the most promising direction or, equivalently, to guess whether the positive curvature 
information are more significative than the negative curvature information or vice versa. The 
rule we adopt is based on the rate of decrease of the quadratic model of the objective function. In 
particular we compare the decrease of the quadratic model along the negative curvature direction 
by performing a unit steplength along a normalized d k ,  with the decrease that we would obtain 
by performing a unit steplength along the normalized truncated Newton direction. 

Since we are interested in solving large scale problems and thus cannot rely on matrix factor- 
izations, we concentrate on iterative methods to compute the search directions. In particular, we 
consider the preconditioned conjugate gradient and Lanczos methods, and exploit the fact that 
they are closely related. Preliminary numerical testing shows that the approach proposed in this 
paper is promising. 

The paper is organized as follows. In Section 2 we describe the details of the algorithm we 
propose, and we prove the convergence of the iterates to second order points in Section 3. In 
Section 4 we describe how we compute the search directions used in our algorithm and finally 
report in Section 5 the results of our numerical experiments. 

2 The adaptive linesearch algorithm 

In this section we describe our new algorithmic framework, and state the conditions required on 
the search directions in order to ensure the global convergence of the algorithm to second-order 
critical points, that is points where the gradient of the objective function is zero and where 
its Hessian matrix is positive semidefinite. We first state the required conditions on the search 
directions used in our algorithm. 

Let s k  be a gradient-related descent direction, that is a direction for which the following 
conditions are satisfied. 

Condition 1. There exist positive numbers c1 and c2 such that 

T 2 
S k 9 k  L -c1 llgkll 7 

I lSkl l  L C2119klL 

where gk = g(zk) and 11-11 is the Euclidean norm. Furthermore, let dk be a direction of suficient 
negative curvature, that is a direction for which the following conditions are satisfied. 

Condition 2. The directions {dk}  are such that, for some 0 E (0,  l), 

where q + 0 as Qk + 0 and X,in(Hk)  is the leftmost eigenvalue of the Hessian matrix Hk = 

Condition 1 is standard condition on the Newton-type directions. The last inequality of 
Condition 2 is needed to ensure the second-order global convergence of the algorithm and, roughly 
speaking, it requires that the direction dk has some resemblance to an eigenvector of the Hessian 
matrix corresponding to its leftmost eigenvalue. This requirement was introduced by Lucidi et al. 
(1998), and is an extension of the assumption usually required to obtain second order convergence 
(see Mor6 and Sorensen, 1979). It indicates that the contribution of a direction dk which has a 
strict connection with an eigenvector of the Hessian matrix corresponding to the most negative 
eigenvalue is essential only when the gradient is small. 

We now describe the details of our algorithm. We denote the quadratic model of the function 
f (z) - f ( ~ k )  by W I ( Z ~  + W) = ~ w ~ H ~ w  + $W. 

H(xk) .  
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Adaptive linesearch algorithm 

Step 0. Initialisation 
The initial point 20 E IR" and the constants p E (0, l), T > 0 and p E (0 , ; )  are given. 
Set k = 0. 

Step 1. Test for convergence 
Compute g ( 2 k ) .  If 11g(Zk)\l = 0 stop. 

Step 2. Computation and choice of the search direction 
Compute the search directions Sk and dk. 
If dk = 0, execute Step 9. Otherwise, rescale dk such that lldkll = 1. If 

then execute Step 3, otherwise execute Step 4.  

Step 3. Linesearch in a gradient-related direction 
Set p k  = Sk and compute a k  = De where ! is the smallest nonnegative integer such 

compute CYk = peUk,  where i? is the largest non-positive integer such that 

and 

Otherwise compute a k  = peak, where ! is the smallest positive integer such that (2.4) 
holds. 

Following Ferris et al. (1996), Lucidi et al. (1998), McCormick (1977) and Mor6 and Sorensen 
(1979), at each iteration we compute a pair of descent directions (sk,dk).  The distinguishing 
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feature of our new approach is that, instead of using a curvilinear search to produce a new trial 
point of the form 

Z k + 1  = 21, -k a i s k  -k a k d k ,  (2.6) 

we select only one of the two directions (see Step 2) ,  and the new point is chosen as 

where p k  is the direction S k  or d k / l l d k l l .  w e  aim to select the best of these two directions by 
considering the rate of decrease of the model along both directions. In other words, we intend to 
choose S k  whenever 

If we assume that S k  minimizes the model in the direction S k / l l S k l l ,  then we know that 

On the other hand, the scaling of the problem along d k  is unknown, and we may as well choose 
to normalize d k ,  as in Step 2. Using this normalization, and substituting (2.8) in (2.7), we obtain 
our test (2.1) with 7 = 2. 

If there is no negative curvature direction or if the gradient-related direction looks more 
profitable, we perform a backtracking linesearch (Step 3). This linesearch is of the Armijo variety, 
but includes a second-order term to encourage convergence to second-order critical points. On 
the other hand, if the negative curvature direction appears more attractive, then we perform a 
specialized linesearch (Step 4) that allows forward ( e  5 0) or backward (e  > 0) stepping, starting 
from a guess U k .  w e  allow forward steps because our guess U k  may not reflect the local scaling 
of the problem, and because of the potential for a large decrease of the objective function along 
negative curvature directions. For future reference, we note from (2.4), (2.5) and (2.2) that, in 
all cases, we obtain a steplength CYk for which 

The flexibility in choosing U k  may be exploited for improving numerical performance. For in- 
stance, we may choose U k  as the steplength aj that was computed at the previous linesearch 
along a negative curvature direction, in the hope that, in the mean time, the problem’s scaling 
has not significantly changed. 

We also emphasize that the test (2.1) is scale invariant, that is it does not depend on the 
actual length of S k  (nor d k ,  since this latter direction is normalized before the test). 

We now prove that the linesearch procedures are well defined. 

Lemma 2.1 Assume that S k  is a descent direction and that d k  is a normalized descent negative 
curvature direction. Suppose furthermore that f is bounded below on the level set Clo = { x  E 

Then there exists an CYk > 0 such that (2.9) is satisfied. 

p k  = S k  we distinguish two cases: 
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In case (i), (2.9) becomes 

which is the standard Armijo rule, while in case (ii) (2.9) becomes 

f ( Z k  + W k )  I f b k )  + P k 9 k T S k  (2.10) 

f ( Z k  + (.YkSk) I f b k )  + p [akgkTsk + ?a:sTHkSk] . 

f ( Z k  + ajsk) - f b k )  > P [ a j g h -  + +ajzS;Hksk] . 

9kT(Zk + 6ajsk)sk > CL [ S h k  + fQj@ksk]  , 

S , T ( Z k  + 6 c r j S k ) S k  - $Sk > ( p  - 1)g;Sk + ;pajs;Hksk 

( p  - l )&k < 0 

(2.11) 

In order to show that there exists an ak > 0 satisfying (2.11) we proceed by contradiction; if this 
inequality (2.11) were never satisfied, then there exists a sequence aj converging to 0 as j + 00 

such that 
(2.12) 

Using the mean-value theorem, and dividing both sides by aj (2.12) can be rewritten as 

where 6 E (0 , l ) .  Therefore we have 

which, for j + 00, yields 

contradicting the fact that p E (0, 3) and gTsk < 0. 
Whenever pk = dk, (2.9) becomes 

f ( Z k  + Q k d k )  I f b k )  + P [QkSkTdk + t.:dTHkdk] . (2.13) 

If test (2.3) is satisfied, the existence of a finite -t is implied by (2.13) and the assumption that 
f is bounded below. Assume now that (2.3) fails. In order to show that there exists an a k  > 0 
satisfying (2.13), we again proceed by contradiction. If the inequality (2.13) is never satisfied, 
then there exists a sequence crj converging to 0 as j + 00 such that 

f ( Z k  + - f b k )  > P [ a j g z d k  + folj2dTHkdkI . (2.14) 

By the mean-value theorem, (2.14) can be rewritten as 

ajg,Tdk + +a;d;H(Zk + 6 a j d k ) d k  > p [ajg,Tdk + ;cr;d;Hkdk] 

where 6 E (0 , l ) .  Dividing both sides by aj we obtain 

g;cTdk + + a j d ; ~ ( Z k  + 6ajdk)dk - + a j d ; ~ k d k  > p [g;dk + + a j d T ~ k d k ]  - + a j d T ~ k d k .  

Therefore we have that 

where crj + 0 as j + 00. This contradicts the fact that the left hand side of (2.15) is positive, 
0 since p E (0, +) and dkHkdk < 0. 
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3 Convergence analysis 

In this section we study the convergence properties of our algorithm. In particular we prove that, 
under Conditions 1 and 2 the iterates converge to second-order critical points. 

Theorem 3.1 Let f be twice continuously differentiable, let 20 be given and suppose that the 
level set Cl0 = {z E RnIf(x) 5 f (xo)}  is compact. Assume that the directions sk  and dk satisfy 
Conditions 1 and 2. Let {xk} be the points produced by the Algorithm. Then, every limit point 
z* of {xk} belongs to Ro and satisfy g ( z * )  = 0. Moreover H(z, )  is positive semidefinite. 

Proof Because of the compactness of Ro, we know that the sequence of iterates {zk} admits 
at least one limit point, and that all limit points belong to Ro. Suppose now that x* is a limit 
point. Let K, and Kd be index sets of two subsequences of iterates converging to z* such that 

(i) for all k E K,, (2.1) holds and hence 

f ( 2 k  + Q k S k )  I f b k )  + P (QkSTSk + hQ2k min [o, S T H k S k ] )  1 ( 3 4  

and 

(ii) for all k E Kd, (2.1) fails and hence 

Note that one of these index sets may be empty, but not both. 

k E Ks U K d .  
In order to prove that g ( z * )  = 0 we proceed by contradiction. Suppose that 11gkll > E for all 

Suppose first that K, is not empty. Then we have 

f ( Z k  + W k )  I f b k )  + P ( W 5 k  + aQ2 min [o, S ; H k s k ] )  I f b k )  + PQk95k 

l f b k + l )  - f ( 4  2 PQk I9kTSkI ' 

for each k E K,, and hence that 

It follows that ak gk s k  + 0,  as k + 00,k E K,. Therefore either ak + 0 or g k s k  + 0 as 
lc + w , k  E K,. 

I T  I I T  I 
Suppose first that ~k + 0 as k + 00, k E K,. Since 

then by the mean-value theorem we have, for k E K,, 

for some 6 E (0 , l ) .  Dividing by ak/P and by IIskll, we obtain 
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for k E K,. Now, we can extract a subsequence whose indices lie in the set KL K, such that 

for k E KL. From (3.3), taking the limit as k + 00, k E KL we obtain that 

and, using Condition 1, it follows that g(x*) = 0, which contradicts the fact that 11gkll > E.  Hence 
Qk cannot tend to zero for k E K,. This implies that there exists a subsequence KY K, such 
that gzsk + 0 as k + 00, k E KY. Condition 1 and the continuity of the gradient imply that 
g(x,) = 0, which again contradicts the assumption that 11gkll > E.  Hence this latter assumption 
is itself impossible and we conclude that g(z*) = 0 whenever K, is not empty. 

Now, suppose that Kd is not empty. In this case, it follows from (3.2) that 

I I  

for k E K d ,  and hence that 

which, by the mean-value theorem, can be rewritten as 

for k E Kd. By (3.6) we have that, for k E Kd, grdk + 0 and by (3.7) we have 4Hkdk + 0, as 
k -+ 00, k E Kd. Therefore, we can conclude that (3.4) holds even when a k  + 0. But, as k E Kd 

, and therefore that igrSk/llSkII 7m(Xk + dk), we have, from Condition 1, that 

which contradicts (3.4). Thus our assumption that 11gkll > E is again impossible and we conclude 
that g(x*) = 0 whenever Kd is not empty. 
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Hence, since Ks U K d  # 8, we have proved that any limit point of the sequence is a stationary 
point. In order to complete the proof we proceed again by contradiction and assume that there 
exists z, limit point of { z k }  such that g(z,) = 0 and H ( z , )  is not positive semidefinite. If we 
define K, to be the set of indices of a subsequence of iterates { z k }  a subsequence converging to 
z,, we have, by Condition 2, that G H k d k  < --E for sufficiently large k E K,. As g k  converges to 
zero, we have that both $Sk/llSkll  and g l d k  tend to zero when k + c q k  E K,, and hence that 

for k E K, sufficiently large. Therefore for k E K, sufficiently large, condition (2.1) fails and 
the points Z k  are generated by the algorithm by using the direction d k .  By repeating the same 
argument used before for the case where Kd # 8, we obtain (3.4) again, which together with the 
fact that g k  -+ 0 and Condition 2 yields 

This contradicts the fact that limk,, H ( z k )  = H ( z , )  and H ( z , )  not positive semidefinite. Hence 
0 this latter assumption is false, which concludes the proof. 

4 Computation of the search directions 

We are interested in solving large scale problems. Therefore we focus our attention on iterative 
methods, and in particular on the preconditioned conjugate gradient (CG) and Lanczos methods. 
The CG algorithm is the most popular method for computing Newton-type directions. It is most 
effective when truncated, that is the iteration is terminated short of optimality (see Dembo and 
Steihaug, 1983, and Toint, 1981). If the Hessian is indefinite, the CG procedure may fail or may 
prove to be unstable, and the equivalent Lanczos process is to be preferred (see Stoer, 1983). 
Recently Lucidi et al. (1998) and Lucidi and Roma (1997) have used the Lanczos method in 
conjunction with a curvilinear linesearch. In practice, this produces both a good Newton-type 
direction and an efficient negative curvature direction after few iterations. We prefer the CG 
method here since, despite the drawbacks mentioned above, it is slightly less expensive. 

In our algorithm, the negative curvature direction is computed via the strict connections 
between the CG and Lanczos methods (see Section 2 of Stoer, 1983, and Gould, Lucidi, Roma 
and Toint, 1997). To be more precise, we recall that after m iterations, the Lanczos algorithm 
generates m vectors 4 1 , .  . . , qm, the Lanczos vectors, and the scalars 71,. . . , ym and SI,. . . ,Sm-l .  
If we define the m x n matrix Qm whose columns are the Lanczos vectors that is 

Qm = [a1 q2 am] 

and the m x m tridiagonal symmetric matrix Tm given by 

the fundamental Lanczos relationship (see Cullum and Willoughby, 1985, and Golub and Van Loan, 
1989) can be written as 

(4.3) 
T 

HkQm - QmTm = dmqm+lem* 
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Therefore, if (Am, v,) is an eigenvalue-eigenvector (Ritz) pair of T’, we have that 

(4.4) T 
H k Q m V m  - AmQmvm = 6memvmqm+1. 

As a consequence ( A m , Q m v m )  can be used as approximate eigenvalue-eigenvector pair of H k  

whenever the right-hand side of (4.4) is small. As the tridiagonal matrix Tm and the Lanczos 
vectors can be easily recovered from the CG method (see Gould et al., 1997, and Stoer, 1983), 
so long as this iteration does not break down, the eigenvalue-eigenvector pair of the Hessian 
matrix H k  may be estimated directly from the CG iteration. However, as the vectors qk are 
normally discarded after use, a second pass may be needed to regenerate them when computing 
the approximate eigenvector, Q m v m .  Note that if CG iteration breaks down, it is easy to continue 
the process by using the Lanczos method itself, as all the vectors required to continue the Lanczos 
iteration are available. 

To compute the required negative curvature direction d k ,  we therefore use the leftmost eigen- 
value Amin of the tridiagonal matrix Tm as an approximation of the leftmost eigenvalue of H k  

and Q m v m i n  (i.e. the eigenvector of the matrix Tm corresponding to Amin pre-multiplied by Q m )  

as an approximation of the corresponding eigenvector. If Amin is negative, we select d k  as 

where d k  = Q m v m i n ,  and choose d k  = 0 otherwise. One drawback of the Lanczos process is 
that it is impossible to guarantee the last part of Condition 2, simply because the Krylov space 
investigated may not contain any eigenvector corresponding to the leftmost eigenvalue. However 
this happens with probability zero in exact arithmetic, and we don’t expect it to happen in 
presence of rounding. The leftmost Ritz value found is determined to within l O % ,  and thus 8 in 
Condition 2 is effectively 0.1. 

Turning now to the required gradient-related direction, we may again use the CG/Lanczos 
algorithm. If ci are the conjugate directions generated by this algorithm, a truncated Newton 
direction is given by 

s k  = - 

whenever H k  is positive definite. The stopping (truncation) rule is to stop at iteration m which 
is the first iteration for which the gradient of the model falls below min($llgkll, 11gk1I2) if k I 5 
and below min( $ IIgkll, 11gk [ I 2 )  otherwise. This choice allows the iterates to “settle down” for a 
few iterations before one really starts to require more accuracy. It is a compromise between a 
conceptually preferable strategy totally independent of k, and the observably 
used by Dembo and Steihaug (1983) and Grippo, Lampariello and Lucidi 
required accuracy increases linearly with k. 

Here we allow for the possibility that H k  is indefinite by including only 
sponding to directions of positive curvature. That is if 

we pick the direction 

efficient technique 
(1989), where the 

those terms corre- 

If 11 = 8 or if this direction is not gradient-related, we simply take the negative gradient. When 
negative curvature is encountered, the stopping test is uniquely determined by the quality of the 
approximation of the Ritz values, as explained above. 
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We also considered the choice 

where 
12 = { i  E (1,. . . ,m}  : C T H k c i  < o}  

(see Grippo et al., 1989)) but this alternative did not prove to be globally as effective in practice. 

5 Numerical Experience 

In order to evaluate the behaviour of our new algorithm, we tested it on the set of all large- 
scale unconstrained test problems from the CUTE collection of Bongartz, Conn, Gould and Toint 
(1995) where negative curvature has been reported. All the test were performed on an IBM 
RISC System/6000 375. The codes are double precision Fortran 90 compiled under xlf90 with 
the optimization compiling option. We used the settings 

20 c1 =nemach, c2 = 10 , ,B= i, T = 2  and p =  1 0 - ~ .  

As indicated above, we chose the initial step for the linesearch along negative curvature directions 
as C7k = aJ, where j < k is the index of the last iteration at which the test (2.1) fails. The function 
~ ( g k )  in Condition 2 is chosen to be identically zero. All tests reported below are performed 
without preconditioning the CG/Lanczos algorithm, but of course preconditioning is possible 
(and may well be essential for more difficult examples). 

We compare the new algorithm with an algorithm which uses the curvilinear path (2.6) in 
which s k  and d k  are computed as in our algorithm, and the stepsize (Yk is determined by a simple 
backtracking strategy along the arc (1.2), starting from an initial step of one (see Lucidi et al., 
1998, Lucidi and Roma, 1997, and McCormick, 1977). Note that taking (l)k > 1 is unnatural in 
this context since the step d k  would then likely be dominated by its gradient-related component, 
for which a stepsize larger than one is not expected to provide a good reduction in the objective 
function. Also note that the two algorithms are identical when no negative curvature is found. 

The results are reported in Tables 1 and 2 in terms of the numbers of gradient and function 
evaluations, the number of CG iterations, the CPU time (in seconds), the final objective function 
value, the number of directions of negative curvature used (that is along which a linesearch is 
performed), and the number of negative curvature directions found. These two last numbers 
are identical for the curvilinear variant because the curvilinear arc is used whenever negative 
curvature is detected. 

Although our tests are far from exhaustive, the results obtained indicate that the new algo- 
rithm is normally more efficient than the curvilinear variant when negative curvature is found- 
the performance on BROYDN7D, CHAINWOO, FREUROTH, NONCVXUN, NONCVXU2 and SPMSRTLS are not 
directly comparable as the two methods converge to different local minima. The main reason for 
this improvement appears to be that forward stepping in such directions is very effective. Re- 
markably, the difference in performance does not appear to be linked to the number of negative 
curvature directions found or used, but substantial differences in numerical efficiency and reliabil- 
ity may result from the use of a few, presumably highly significant, negative curvature directions 
(see GENHUMPS, MSQRTALS and SPMRTLS). We also note that the new algorithm use most of the 
negative curvature directions found, which confirms our intuition that these directions should be 
exploited when present. We finally note that other tests using values of T other than 2 did not 
prove to be numerically as effective. 
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Problem 
BROYDN7D 
BRYBND 
CHAINWOO 
COSINE 
CRAGGLVY 
CURLYlO 
CURLY20 
CURLY30 
DIXMAANA 
DIXMAANE 
DQRTIC 
EIGENALS 
FREUROTH 
GENHUMPS 
GENROSE 
MANCINO 
MSQRTALS 
NCB2OB 
NONCVXUN 
NONCVXU2 
SINQUAD 
SPARSINE 
SPMSRTLS 

Problem 
BROYDN7D 
BRYBND 
CHAINWOO 
COSINE 
CRAGGLVY 
CURLYlO 
CURLY 20 
CURLY30 
DIXMAANA 
DIXMAANE 
DQRTIC 
EIGENALS 
FREUROTH 
GENHUMPS 
GENROSE 
MANCINO 
MSQRTALS 
NCB2OB 
NONCVXUN 
NONCVXU2 
SINQUAD 
SPARSINE 
SPMSRTLS 

n 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1500 
1500 
1000 
930 
1000 
1000 
1000 
100 

1024 
1000 
1000 
1000 
1000 
1000 
1000 

n 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1500 
1500 
1000 
930 
1000 
1000 
1000 
100 

1024 
1000 
1000 
1000 
1000 
1000 
1000 

NG 
55 
11 

445 
9 
15 
15 
16 
17 
8 
10 
31 
45 
13 

1128 
592 
11 
46 
20 

230 
250 
79 
19 
14 

- NF 
107 
11 

803 
19 
15 
23 
28 
22 
8 
10 
31 
60 
26 

3096 
1234 

11 
83 
35 
498 
546 
147 
34 
22 

- CG-it 
2260 
89 

19589 
44 
107 

8298 
8332 
8104 

8 
239 
30 

1037 
50 

25927 
13340 

11 
20051 
2430 
15500 
9446 
203 

5751 
325 

TIME 
18.67 
1.72 

183.42 
0.44 
1.30 

39.53 
58.37 
73.22 
0.45 
3.29 
0.43 
83.33 
0.96 

296.68 
114.79 
11.07 

2829.96 
216.77 
146.88 
99.03 
5.12 

78.05 
4.27 

F 
3.84113+02 
4.81 74E- 19 
1.65963+01 

3.36423+02 
-9.99003+02 

-1.00323+05 
- l.O032E+O5 
-1.00323+05 
l.OOOOE+OO 
1.0000E+00 
2.74463-07 

1.21473+05 

1.0000E+00 

8.10533-13 
1.67603+03 
2.33463+03 
2.31863+03 
3.49713-08 

4.41893-16 

1.6649E-14 

2.79703-1 1 

6.05903-22 

1.26683-16 

Table 1: Results for the new algorithm. 

NG 
45 
11 

327 
7 
15 
15 
17 
18 
8 
10 
31 
56 
16 

1263 
555 
11 
116 
20 
124 
145 
85 
14 

277 

- NF 
246 
11 

1435 
8 
15 
30 
46 
55 
8 
10 
31 
147 
46 

5182 
2910 

11 
881 
125 
852 
1059 
195 
19 

1116 

- CG-it 
1503 
89 

14916 
40 
107 

9013 
9080 
8438 

8 
239 
30 

1249 
96 

28468 
13351 

11 
42636 
2766 
11477 
6268 
212 

3236 
19442 

TIME 
13.33 
1.49 

141.81 
0.32 
1.18 

42.51 
66.26 
76.52 
0.32 
3.10 
0.34 
95.91 
1.45 

303.18 
117.41 
10.96 

6 134.60 
263.58 
104.62 
64.18 
4.71 
43.52 
255.21 

F 
5.43073+02 
4.81743- 19 
2.11713+02 

3.36423+02 
-9.99003+02 

-1.00323+05 
-1.00323+05 
-1.00323+05 
1.0000E+00 
l.OOOOE+OO 
2.74463-07 
4.15743-14 
1.21363+05 
1.39853-12 

6.05903-22 
4.62023-14 
1.67603+03 
2.32803+03 
2.31933+03 
3.21313-08 
4.43093-13 
3.28143+00 

1.0000E+00 

d used 
42 
0 

137 
1 
0 
3 
4 
2 
0 
0 
0 
2 
2 

1065 
411 
0 

20 
9 

212 
232 

1 
6 
3 

d used 
33 
0 

114 
1 
0 
3 
4 
5 
0 
0 
0 
16 
4 

1215 
412 

0 
79 
9 

109 
135 
9 
2 

82 

d found 
43 
0 

139 
1 
0 
3 
4 
2 
0 
0 
0 
2 
2 

1066 
411 
0 

20 
9 

215 
237 

1 
7 
3 

d found 
33 
0 

114 
1 
0 
3 
4 
5 
0 
0 
0 
16 
4 

1215 
412 

0 
79 
9 

109 
135 
9 
2 

82 

Table 2: Results for the curvilinear search algorithm. 
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6 Conclusions 

We have proposed a linesearch method that exploits negative curvature directions without ex- 
plicitly combining them with Newton-type directions to define a curvilinear path. This has the 
advantage that the relative scaling of these directions no longer matters. We have proved that all 
limit points of the sequence of iterates produced by the new algorithm are second-order critical. 
Preliminary numerical experiments indicate that the new algorithm is an improvement over the 
curvilinear search variant, particularly on harder problems. 
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