
Technical Report
RAL-TR-96-014

L " "

CLRC

A Blocked Implementation of Level 3 BIAS
for RlSC Processors

M J Daydb and I S Duff

March 1996

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

0 Council for the Central laboratory of the Research Councils 1995

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory of the Research Councils
Library and Information Services
Rutherford Appleton Laboratory
Chilton
Didcot
Oxfordshire
OX1 1 OQX
Tel: 01 235 445384
E-mail library@rl.ac.uk

Fax: 01 235 446403

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising From the use of information contained in any of their
reports o r in any communication about their tests or investigations.

RAL-TR-96-0 14

A Blocked Implementation of Level 3 BLAS for
RISC Processors’

Michel J. Daydd2 and Iain S. Duff3

ABSTRACT
We describe a version of the Level 3 BLAS which is designed to be efficient on RISC
processors. This is an extension of previous studies by the same authors (see Amestoy,
Daydd, Duff & Morkre (1995), Dayd6, Duff & Petitet (1994), and Dayd6 & Duff (1995))
where they describe a similar approach for efficient serial and parallel implementations of
Level 3 BLAS on shared and virtual shared memory multiprocessors.
All our codes are written in Fortran and use loop-unrolling, blocking, and copying to
improve the performance. A blocking technique is used to express the BLAS in terms
of operations involving triangular blocks and calls to the matrix-matrix multiplication
kernel (GEMM). No manufacturer-supplied or assembler code is used. This blocked
implementation uses the same blocking ideas as in Daydd et al. (1994) except that the
ordering of loops is designed for efficient reuse of data held in cache and not necessarily
for parallelization. A parameter which controls the blocking allows efficient exploitation
of the memory hierarchy on the various target computers.
We present results on a range of RISC-based workstations and multiprocessors, viz. DEC
3000/400 AXP, DEC 8400 5/300, HP 715/64, IBM RS/6000-750, MEIKO CSZHA, SGI
Power Challenge L , and SUN SPARC 20/50.

Keywords: Level 3 BLAS, matrix-matrix kernels, lUSC processors, loop-unrolling, blocking.
AMS(M0S) subject classifications: 65F05, 65F50.

‘Part of this study was funded by Conseil Rkgional Midi-Pyrknkes under project
DAEl/RECH/9308020.
2Email: dayde@enseeiht.fr. ENSEEIHT-IRIT, 2 rue Camichel, 31071 Toulouse CEDEX, France.
3Email: isd@letterbox.rl.ac.uk. Also at CERFACS, 42 av. G. Coriolis, 31057 Toulouse Cedex,
France.
Current reports available by anonymous ftp from seamus.cc.rl.ac.uk (internet 130.246.8.32)
in the directory “pub/reports” . This report is in file daduRAL96014.ps.g~.

Computing and Information Systems Department
Atlas Centre
Rutherford Appleton Laboratory
Oxon OX11 OQX

February 26, 1996.

Contents

1 Introduction 1

2 Blocked implementation of Level 3 BLAS for RISC processors

2.1 RISCprocessors . 2

2.2 Efficient exploitation of the memory hierarchy 3

2

3 Blocked implementation of GEMM 4

3.1 Description of the blocked GEMM . 4

3.2 Single precision implementation on the IBM RS/SOOO 9

3.3 Numerical experiments . 10

4 Blocked implementation of TRSM 12

5 Blocked implementation of SYMM 16

6 Blocked implementation of TRMM 20

7 Blocked implementation of SYRK 23

8 Blocked implementation of SYR2K 26

9 Conclusion 29

10 Availability of codes 29

11 Acknowledgments 30

A Appendix

1

31

1 Introduction

This report describes a version of single and double precision Level 3 BLAS computational
kernels (Dongarra, Du Croz, Duff & Hammarling (1990b),Dongarra, Du Croz, DUE &
Hammarling (1 9 9 0 ~)) called the blocked BLAS, designed to be efficient on RISC processors.
It is based on the use of the matrix-matrix multiplication kernel GEMM. We show that
this implementation is portable and efficient on a range of RISC-based computers.

This version of the Level 3 BLAS is an evolution of the one described by Dayd6 et al.
(1994) by the same authors for MIMD vector multiprocessors. They report on experiments
on a range of computers (ALLIANT, CONVEX, IBM and CRAY) and demonstrate the
efficiency of their approach whenever a tuned version of the matrix-matrix multiplication
is available. They conclude by saying that similar ideas could be used to design a tuned
uniprocessor Level 3 BLAS for computers where the processor accesses data through a
cache since blocking would also be beneficial.

The availability of powerful RISC processors is of major importance in today’s market since
they are used both in workstations and in the most recent parallel computers. Because
of the success of RISC-based architectures, we have decided to study the design of a
version of the Level 3 BLAS that is efficient on RISC processors. This tuned version of
the Level 3 BLAS uses the same blocking ideas as in Dayd6 et al. (1994), except that the
ordering of loops is designed for efficient reuse of data held in cache.

Our basic idea for designing the Level 3 BLAS is to partition the computations across
submatrices so that the calculations can be expressed in terms of calls to GEMM and
operations involving triangular matrices. All the codes we are using are written in Fortran
and tuned using blocking, copying and loop-unrolling. We believe that these codes provide
an efficient implementation of the Level 3 BLAS on computers where a highly tuned
version is not available. In this paper, the timings for the non-GEMM blocked kernels
are for versions using our own blocked GEMM code. We note that, in cases when the
vendor supplies a more efficient version of GEMM, it is trivial for us to use this in these
other kernels. By doing so, we can often do far better than the vendor-supplied versions
of these other kernels. At this time, we are very concerned with portability and so have
made no attempt to include specific tuning techniques that are crucial on some computers.
Additionally, our experiments often use non-ideal matrix orders (for example, orders of
powers of two). While this is good for portability and robustness, on some machines the
times would be better for other matrix orders. Additionally, most machines have more
than one-level of cache. In our present work, we only allow one level of blocking and
choose a block size based on the largest on-chip cache. Further optimization for particular
machines might be obtained by multi-level blocking. We would be happy to discuss with
users and vendors the possibility of designing more highly-tuned, but less portable, kernels
for specific machines. We also hope to receive input and comments from users to improve
this software.

The implementation of the kernels using both blocking and loop unrolling is described in
Sections 3 to 8 (examples of codes are included), more details on this implementation are
reported by Qrichi Aniba (1994). We only consider the implementation of the real and the

1

double precision Level 3 BLAS kernels. We report results from. uniprocessor executions
on a range of RISC-based computers (in practice we have proceeded to experiments on a
larger set of machines) :

Computer

1. DEC 3000/400 AXP
2. DEC 8400 5/300
3. HP 715/64
4. IBM RS/6000-750
5. MEIKO CS2-HA (using a HyperSparc processor)
6. SGI Power Challenge L
7. SUN SPARC 20/50

LINPACK LINPACK
100*100 1000*1000

2 Blocked implementation of Level 3 BLAS for RISC
processors

1 DEC 8400 5/300

2.1 RISC processors

140

Vector processors are commonly used in supercomputers. Recently very fast RISC
processors, which can also process vectors efficiently, have come on to the market. They are
usually more efficient than vector processors on scalar applications. The main reason for
their success in the marketplace is their very good cost to performance ratio. They are used
as a CPU both in workstations and in most of the current MPPs (DEC Alpha on CRAY
T3D, SPARC on CM5 and PCI CS2, HP PA on CONVEX EXEMPLAR, and RS/6000 on
IBM SP1 and SP2). Table 2.1.1 gives the uniprocessor performance of some current RISC
processors on the double precision 100-by-100 and 1000-by- 1000 LINPACK benchmarks
(Dongarra 1995), together with the clock speed and the nominal peak performance. We
include all of our target machines in this table and note that, for some of them, there are
no LINPACK figures.

DEC 3000/400 AXP

IBM RS/6000-750
HP 9000/755
HP 715/64

SGI POWER Challenge
SUN SPARC 20/50

IBM POWER2-990

MEIKO CS2-HA

26
140

41
-

-
-

104
-

41 1
90

254

120
-

-

-
261
-

Clock

300
133

71.5
62.5

99
64

100
75
50

(MH4
Peak

performance
600
133
286
125
198
128
100
300

50

Table 2.1.1: Performance in Mflop/s of RISC computers on the double precision LINPACK
benchmarks

2

2.2 Efficient exploitation of the memory hierarchy

The ability of the memory to supply data to the processors at a sufficient rate is crucial
on most modern computers. This necessitates complex memory organizations, where the
memory is usually arranged in a hierarchical manner. The minimization of data transfers
between the levels of the memory hierarchy is a key issue for performance (Gallivan, Jalby
& Meier (1987), Gallivan, Jalby, Meier & A. (1988)).

Most of the FUSC-based architectures have a memory hierarchy involving a cache. The
cache memory is used to mask the memory latency (typically the cache latency is around
1-2 clocks while it is often 10 times higher for the memory). The code performance is high
so long as the cache hit ratio is close to 100%. This may happen if the data involved in
the calculations can fit in cache or if the calculations can be organized so that data can
be kept in cache and efficiently reused. One of the most commonly used techniques for
that purpose is called blocking and examples of this are reported in the following sections.
Blocking enhances spatial and temporal locality in computations. Unfortunately blocking
is not always sufficient since the cache miss ratio can be dramatically increased in quite an
unpredictable way by memory accesses using a stride greater than 1 (see Bodin & Seznec
(1994)).

Some strides are often called critical because they generate a very high cache miss ratio
(i.e. when referencing cache lines that are mapped into the same physical location of the
cache). These critical strides obviously depend on the cache management strategy. For
example, in the execution of the following loop :

do i=l,n,4

enddo
temp = temp + a (i)

each read of a(i) causes a cache miss, assuming that a(i) is one word and that the cache
line length is equal to four words (assuming that the cache is initially empty).

Copying blocks of data (submatrices for example) that are heavily reused may help to
improve memory and cache accesses (by avoiding critical strides for example). Since it
may induce a large overhead, it is, however, not always a viable technique. We illustrate
this in our blocked implementation of the BLAS.

Note that blocking and copying are also very useful in limiting the effect of T L B
(Translation Lookaside Buffer) misses or memory paging.

Our basic idea for efficient implementation of the BLAS on RISC processors is to
express all the Level 3 BLAS kernels in terms of subkernels that either deal with
NB x NB submatrices that involve GEMM operations or operations involving triangular
submatrices. Additionally, all the calculations on blocks are performed using tuned Fortran
codes with loop-unrolling. Copying is occasionally used. Of course, the relative efficiency of
this approach depends on the availability of a highly tuned GEMM kernel. This approach

3

is relatively independent of the computer : only the NB parameter, corresponding to
the block size, and the loop-unrolling depth in some cases should be tuned according
to the characteristics of the target machine. NB is determined by the size of the cache
(see Section 3.1) and the loop-unrolling depth from the number of scalar registers. Note
that KBgstrom, Ling & Loan (1993)) use similar ideas. Their GEMM-based BLAS only
requires the availability of a highly tuned matrix-matrix multiplication and Level 1 and
Level 2-based operations.

In the following sections, we describe the blocked implementation of the real and double
precision Level 3 BLAS : GEMM, SYMM, TRSM, TRMM, SYRK, SYR2K (all these
names are prefixed by S or D depending on whether the routine is single or double
precision).

For each kernel there are a number of options, for example whether the matrix is transposed
or not. For the sake of clarity, we comment only on one of these variants of the kernels
and we illustrate our blocking strategy on matrices that are only partitioned into four
blocks. In practice, the matrices are partitioned into NB x NB blocks where NB is chosen
according to the machine characteristics.

3 Blocked implementation of GEMM

3.1 Description of the blocked GEMM

GEMM performs one of the matrix-matrix operations :

C=a op(A) op(B)+PC

where a and j? are scalars, A and B are rectangular matrices of dimensions m x k and
k x n , respectively, C is a m x n matrix, and op(A) is A or At.

We consider the following case (corresponding to op equal to “NO transpose” in both
cases) :

(a , 1 c 1 , 2) = ~ (A l , 1 4 2) (B 1 , l B1,2) + p (C 1 , l c 1 , 2)
c 2 , 2 c 2 , 2 A 2 , l A2,2 B 2 , l B2,2 C 2 , l c 2 , 2

DGEMM can obviously be organized in terms of a succession of matrix-matrix
multiplication on submatrices as follows :

(DGEMM)

4

(DGEMM)

(DGEMM)

(DGEMM)

(DGEMM)

(DGEMM)

(DGEMM)

The ordering of these eight computational steps is determined by considerations on efficient
reutilization of data held in cache. We have decided to reuse the submatrices of A as much
as possible and we perform all operations involving a submatrix before moving to another
one (see Figure 3.1.1). For our simple example, it means that we perform the calculations
as follows : Step 1 , Step 3, Step 5 , Step 7, Step 2, Step 4, Step 6, and Step 8. This approach
is similar to that used by Dongarra, Mayes & Radicati di Brozolo (1991). In practice, NB
is chosen so that all the submatrices of A, B, and C required for each submultiplication
fit in the largest on-chip cache, except for the MEIKO CS2-HA because the HyperSparc
only possesses an external cache on that computer. On some machines, access to off-chip
caches has so low latency that we can improve performance by using a larger block size.
This is true, for example, on the SGI Power Challenge. The most efficient use of multi-
level cache machines is outwith the scope of this paper since we wish to keep our codes
portable. Since all the computational kernels call GEMM, the block size NB is always
determined as the most appropriate block size for GEMM, i.e. the largest even integer (to
enhance loop-unrolling) such that :

3(NB)2prec < cs

where prec is the number of bytes corresponding the precision used (4 bytes for single
precision and 8 bytes for double precision in IEEE format) and CS is the cache size in
bytes. For example with a 64Kbytes cache, NB is set to 52 using 64-bit arithmetic.

We report in Table 3.1.1 the block sizes used in our experiments. We also include the
cache organization (direct mapped or set associative). Note that the DEC processor (DEC
21164) used on the DEC 8400 5/300 possesses 2 levels of internal cache of size equal to
8KB and 96KB respectively, and an external cache of from 1 M B up to 64 MB. We have
tuned our codes with respect to the second level of cache since our experiments show this
is the most efficient.

The blocked code is reported in Figure 3.1.1. Its main features are the following :

0 The multiplication of C by P is performed before all other calculations.

5

Computer Block size
S i i l e 1 D o i l e

140 100
36 24
36 24

DEC 3000/400-AXP
DEC 8400 5/300
HP 715/64
IBM RS/6000-750
MEIKO CS2-HA
SGI Power Challenge
SUN SPARC 20/50

Organization
of operations
TRIADIC
TRIADIC
TRIADIC
TRIADIC
NOTRIADIC
TRIADIC
NOTRIADIC

Size
8 KB

96 K B
64 K B
32 KB

256 KB
16 KB
16 KB

Organization
Direct
3-way
Direct
4-way
4-way
Direct
4-way

Table 3.1.1: Block size used in the blocked BLAS on the target computers.

0 The submatrix of A is multiplied by (Y and transposed into AA to avoid non-unit
strides because of access by rows in the innermost loops of the calculations. These
are organized in such a way that AA is kept in cache as long as required.

We use two tuned Fortran codes to perform calculations on submatrices (see Figure 3.1.2) :

0 DGEMML2X2 is a tuned code for performing matrix-matrix multiplication on square
matrices of even order.

0 DGEMML is a tuned code that includes additional tests over DGEMML2X2 to
It is occasionally slightly less efficient than handle matrices with odd order.

DGEMML2X2.

We have used two versions for all the tuned codes :

0 the TRIADIC option for computers where triadic operations are either supported in
the hardware (for example the floating-point multiply-and-add on IBM RS/6000) or
efficiently compiled

0 The NOTRIADIC option for other computers

The use of triadic operations should not normally degrade the performance severely
on processors that do not support these operations since efficient code generation can
transform them into dyadic operations. However, in early versions of SPARC compilers,
we saw that there was sometimes such a degradation. Thus we prefer to offer both options.

The tuned code DGEMML2X2 using the TRIADIC options is reported in Figure 3.1.2.
The code corresponding to the NOTRIADIC option follows in Figure 3.1.3. The selection
between the options is effected using the C preprocessor. All the tuned codes described
in the rest of this paper offer both options.

Slight modifications (Dongarra et al. 1991) would allow further improvement in
performance on the IBM RS/6000.

6

Form C := beta*C

IF(BETA.Eq.ZER0)THEN
DO 20 J = 1, N

DO 10 I = 1, M
C(I, J 1 = ZERO

10 CONTINUE
20 CONTINUE

ELSE
DO 40 J = 1, N

DO 30 I = 1, M
C(I, J = BETA*C(I, J

30 CONTINUE
40 CONTINUE

END IF

Form C := alpha*A*B + beta*C.

DO 70 L = 1, K. NB
LB = MIN(K - L + 1, NB)
DO 60 I = 1, M, NB

IB = MIN(M - I + 1, NB)
DO I1 = I, I + IB - 1

DO LL = L, L + LB - 1

ENDDO
AA(LL-L+l,II-I+l)=ALPHA*A(II,LL)

ENDDO
DO 50 J = 1, N, NB

JB = MIN(N - J + 1, NB)

Perform multiplication on submatrices

IF ((MOD(IB,2) .EQ.O) .AND. (MOD(JB,2) .EQ.O)) THEN

ELSE

END IF

CALL DGEMML2X2(IB, JB,LB,AA,NB,B(L, J) ,LDB,C(I,J) ,LDC)

CALL DGEMML(IB, JB,LB,AA,NB,B(L, J) ,LDB,C(I,J) ,LDC)

50 CONTINUE
60 CONTINUE

Figure 3.1.1: Blocked code for GEMM

7

*
* C := alpha*A*B + C.
*

DO 70 J = 1, N, 2
DO 60 I = 1, M, 2

T11 = C(I,J)
T21 = C(I+l,J)
T12 = C(I,J+I)
T22 = C(I+I,J+l)
DO 50 L = 1, K

B1 = B(L,J)
B2 = B(L,J+I)
A1 = A(L,I)
A2 = A(L,I+I)
T11 = TII + BI*Al
T21 = T21 + BI*A2
T12 = T12 + B2*A1
T22 = T22 + B2*A2

50 CONTINUE
C(1,J) = Tll
C(I+I,J) = T21
C(I,J+I) = T12
C(I+I,J+l) = T22

60 CONTINUE

Figure 3.1.2: Tuned code for GEMM (TRIADIC option)
3

*
*

C := alpha*A*B + C

DO 70 J = I, N, 2
DO 60 I = 1, M, 2

T11 = C(1,J)
T21 = C(I+I,J)
T12 = C(I,J+I)
T22 = C(I+l,J+l)
DO 50 L = 1, K

B1 = B(L,J)
B2 = B(L,J+I)
A I = A(L,I
A2 = A(L,I+I)
T1 = Bl*AI
T2 = B1*A2
U1 = B2*A1
U2 = B2*A2
T11 = T11 + TI
T21 = T21 + T2
T12 = T12 + U1
T22 = T22 + U2

50 CONTINUE
C(1,J) = Tll
C(I+I,J) = T21
C(I,J+I) = T12
C(I+I,J+I) = T22

60 CONTINUE

Figure 3.1.3: Tuned code for EMM (NOTRIADIC option) !?

3.2 Single precision implementation on the IBM RS/SOOO

The IBM RS/SOOO FPU performs its arithmetic using 64bi t operands. As a consequence,
single precision operations are performed in the following way :

1. Convert operands from single to double precision.

2. Perform double precision computation.

3. Convert double precision result into single precision.

These conversions can be very costly and explain why the IBM RS/SOOO is slower in single
precision than in double precision. Therefore, we have slightly modified the tuned code
SGEMML2X2 to convert operands within the innermost loop only once. The matrix A
is copied into a double precision working array in the blocked code. The code is shown in
Figure 3.2.1, where the array A refers to this double precision copy.

*
* C := A*B + C.
*

DO 70 J = 1, N, 2
DO 60 I = 1, M , 2

T11 = DBLE(C(1 ,J))
T21 = DBLE(C(I+l, J))
T12 = DBLE(C(1 ,J+1))
T22 = DBLE(C(I+l,J+l))
DO 50 L = 1, K

B1 = DBLE(B(L,J 1)
B2 = DBLE(B(L,J+l))
A1 = A(L,I)
A2 = A(L,I+l)
T11 = Tll + Bl*Al
T21 = T21 + Bl*A2
T12 = T12 + B2*A1
T22 = T22 + B2*A2

C(1 ,J) = REAL(T11)
C(I+l,J) = REAL(T21)
C(1 ,J+l) = REAL(Tl2)
C(I+l, J+1) = REAL(T22)

50 CONTINUE

60 CONTINUE

Figure 3.2.1: Tuned code for SGEMM on IBM

As we can see in Table 3.2.1, the performance of the blocked implementation of SGEMM
without conversion is much worse than the double precision one (as soon as matrices are
bigger than the block size). This performance decrease is due to the large number of
unnecessary single precision to double precision conversions. Our modification allows a

9

significant reduction in the number of operand conversions. Thus, the single precision
performance is much improved and slightly better than the double precision one as on
the other computers. We have not used this data conversion in the other single precision
kernels on the IBM, but they should be designed in the same way. Since IBM provides a
tuned BLAS implementation in its scientific library, we have decided not to expend too
much effort on tuning our code for the IBM, and certainly not to use machine dependent
tricks for optimizing on that machine.

SGEMM
m=n=k Standard B lo cked

no conv. conv
32 17 68 68
64 22 53 89
96 23 54 94

128 23 54 92

DGEMM
Blocked

34
67
81
a5

Table 3.2.1: Performance in Mflop/s of the blocked implementation of SGEMM on the
IBM RS/6000-750 with and without explicit conversion for single to double precision.

3.3 Numerical experiments

We show in Tables 3.3.1 and 3.3.2 the performance achieved on DEC 3000/400 AXP, DEC
8400 5/300, IBM RS/6000-750, HP 715, MEIKO CSZHA, SGI POWER Challenge, and
SUN SPARC 20/50 workstations. We also include the performance of the manufacturer-
supplied library version when available (we use -1blas on the IBM, the SGI, and the HP,
and -1dxml on the DEC 8400). Although a tuned BLAS is also available on the IBM using
the ESSL Library, we do not use it because it is sometimes slower than using -1blas and is
not available without extra payment. “Standard” in column 2 of the tables refers to the
standard Fortran version. The performance reported is the average performance achieved
on a set of 4 matrix-matrix multiplications where all matrices are square of order 32, 64,
96, and 128.

The blocked implementation of GEMM usually provides a gain of more than 2 over
the standard Fortran code when the matrices exceed the cache size. Note that better
performance can be achieved if the matrices are already located (preloaded) in the cache,
which is not the case in our experiments. On the MEIKO CSZHA, the KAP preprocessor
that we use performs extremely efficient optimizations (using loop-unrolling) and, since
the matrices are relatively small and fit in cache (the size of the external cache is 256KB),
the standard version of DGEMM when arrays are not transposed is the same as our tuned
version (optimization performed by KAP and by hand are equivalent since blocking has no
effect). On the DEC 8400, the vendor-supplied library routines perform significantly better
than our blocked code, in both single and double precision, probably because better use is
made of the multi-level cache. For possibly the same reason, the vendor-supplied library
GEMM routines on the SGI usually perform better than our blocked code, particularly in
double precision. However, if we increase the block size, we can improve the performance

10

Processor

DEC3000/400-AXP

DEC 8400 5/300

IBM RS/6000-750

HP 715/64

MEIKO CS2-HA

SGI Power Challenge

SUN SPARC 20/50

11

DGEMM OP(A), OP(B)
CN’,CN> CN>,CT> CT1,CNl CT>,CT’

standard 26 26 21 15
blocked 47 51 47 45
standard 95 98 76 61
blocked 216 208 215 211
library 335 327 345 318
standard 29 29 38 26
blocked 79 65 82 82
library 89 81 87 85
standard 15 16 20 22
blocked 29 30 30 34
library 52 47 46 51
standard 39 36 30 27
blocked 38 45 39 43
standard 74 73 107 74
blocked 131 121 132 131
library 212 204 204 196
standard 11 11 14 8
blocked 26 24 26 27

Processor

DEC3000/400-AXP

DEC 8400 5/300

IBM RS/6000-750

HP 715/64

MEIKO CS2-HA

SGI Power Challenge

SUN SPARC 20/50

SGEMM OP(A)> OP(B)
CN>,CNl CNj,CTl CT1,CNI CT1,CTl

standard 32 33 24 18
blocked 67 70 68 69
standard 105 108 77 65
blocked 246 267 239 258

standard 27 27 22 20
blocked 87 85 83 91
library 96 96 104 95
standard 18 18 22 24
blocked 55 59 55 56

standard 28 33 33 36
blocked 60 58 69 78
standard 74 73 82 70
blocked 203 164 207 204
library 218 210 209 194
standard 23 22 23 18
blocked 42 39 42 41

library 412 388 416 395

library 81 63 71 81

of the blocked codes by up to 15% even though the submatrices do not then fit in the
on-chip caches.

Processor

DEC3000/400-AXP

We also report in Table 3.3.3 the average performance of DGEMM when the inner
dimension of the matrix-matrix product is small (k equals 8 and 16) since it is of special
interest for sparse matrix calculations (Amestoy et al. (1995), Amestoy & Duff (1989),
and Puglisi (1993)). We only consider the case where A and B are not transposed.

DGEMM k
8 16

standard 32 29
blocked 32 38

MEIKO CS2-HA

SUN SPARC 20/50

Table 3.3.3: Average performance in Mflop/s of the blocked implementation of DGEMM
on RISC workstations (where C is a square matrix of order 32, 64, 96, and 128 and inner
dimension of the product, k, equal to 8 and 16).

standard 33 37
blocked 32 35
standard 16 15
blocked 19 21

We show in Table 3.3.4 the performance of the best available version of DGEMM and
SGEMM to us, that is we use either our implementation or a tuned manufacturer-supplied
version, when both A and B are not transposed on square matrices of order 500 and 1000
in order to study whether we can get close to the theoretical peak performance.

The performance achieved by the tuned versions of GEMM is relatively far from the peak
performance for all the RISC processors except the IBM RS/6000-750 and the SGI Power
Challenge. On the IBM RS/6000-750 and the IBM Power2, it is possible to reach peak
performance by changing the leading dimensions of the matrices (Agarwal, Gustavson &
Zubair 1994).

4 Blocked implementation of TRSM

TRSM solves one of the matrix equations :

AX=aB, AtX=aB, XA=aB, or XAt =aB

12

HP 715/64

Processor
DEC3000/400-AXP

DEC 8200 5/300

IBM RS/6000-750

MEIKO CS2-HA

SGI Power Challenge

SUN SPARC 20/50

Size
Version Kernel 500 1000
blocked DGEMM 47 45

SGEMM 71 70
library DGEMM 334 313

SGEMM 431 418
library DGEMM 98 94

SGEMM 111 110
xzj-lmmx
T x a - y m x

l-iEJz library DGEMM

‘Peak
133

240

600

125

128

100

300

50

Table 3.3.4: Performance in Mflop/s of the best available implementation of DGEMM and
SGEMM on RISC workstations (A and B are not transposed).

where a is a scalar, X and B are m x n matrices and A is a unit, or non-unit, upper or
lower triangular matrix. B is overwritten by X.

We consider the following case (corresponding to the parameters “Left”, “No transpose”,
and “Upper”, i.e. we solve for AX = cuB where A is not transposed, and upper triangular):

1. Solution of A2,2X2,1=cuB2,1 and B ~ , J is overwritten by X2,1 (TRSM)

2. Solution of A2,2X2,2=aB2,2 and By2 is overwritten by X2,2 (TRSM)

3. B1,l + aB1,1-A1,2B2,1 (GEMM)

4. B1,2 + 0Bl,241,2B2,2 (GEMM)

5. Solution of A1,1X1,1=B1,1 and B ~ , J is overwritten by X1,1 (TRSM)

6. Solution of A1,1X1,2=B1,2 and Bl,2 is overwritten by X1,2 (TRSM)

Therefore, TRSM can be computed as a sequence of triangular solutions (TRSM) and
matrix-matrix multiplications (GEMM). The ordering of computational steps is chosen so
that each submatrix Ai,i on the diagonal of A, involved in each solution step, is kept in

e

13

the cache for as long as it can be used. As for GEMM, we use two distinct versions of the
tuned Fortran code for the solution step : TRSML2X2 when the order of B is even and
TRSML otherwise. The blocked code is shown in Figure 4.1. The DGEMM subroutine
is the one we described in Section 3. The tuned Fortran code (TRIADIC option) for
TRSML2X2 is shown in Figure A. l in the Appendix.

*
*

30
35

45
50

B := alpha*inv(A)*B.

IF(UPPER)THEN
IF(ALPHA.NE.ONE)THEN
DO 35, J = I, N

DO 30, I = 1, M

CONTINUE
B(I, J = ALPHA*B(I, J)

CONTINUE
END IF

DO 50 I= M,l,-NB
IB=MIN(NB,I)
DO 45 J=I,N,NB

JB= MIN (NB , N- J+1)

IF ((MOD(IB,2) .EQ.O) .AND. (MOD(JB,2) .EQ.O)) THEN
CALL DTRSML2X2_LUN(DIAG,

$ IB,JB,ONE, A(1-IB+l,I-IB+I),
$ LDA, B(1-IB+I,J), LDB)

ELSE
CALL DTRSML-LUN(DIAG,

$ IB,JB,ONE, A(1-IB+l,I-IB+l),
$ LDA, B(1-IB+l,J), LDB)

END IF

CALL DGEMM (‘No transpose’, ‘No transpose’,
$ I-IB,JB,IB,-ONE, A(1,I-IB+l),
$ LDA,B(I-IB+I,J) ,LDB,ONE,B(I,J) ,LDB)

CONTINUE
CONTINUE

Figure 4.1: Blocked code for TRSM

We report in Tables 4.1 and 4.2 the performance achieved on our range of RISC
workstations for all variants when A is unit (the performance is similar when A is non-
unit). We are not using explicit conversions from single to double precision for the tuned
code on the IBM workstation.

The performance gain provided by the blocked implementation of DTRSM compared with
the standard Fortran version is close to a factor of 3 and is more impressive than that
obtained for DGEMM. The double precision results for our blocked version on the SGI can
be much improved (by up to 30%) by using a larger block size although for some options
our single precision blocked code already outperforms the library version. In both single
and double precision, our blocked code outperforms the vendor code on the DEC 8400,

14

DEC3000/400-AXP

DTRSM

DEC 8400 5/300 I
HP 715/64

Variant
‘Left’ I ‘Right’

standard
blocked
standard
blocked
library
standard
blocked
standard
blocked

standard
blocked
library
standard
blocked
library
standard
blocked

library

IU1,lNl IL1,lNl <Ul,<T’ IL1,lTl <U>,lNl IL1,lNl

13 13 21 21 15 15
39 39 38 38 40 40
40 73 70 72 97 97

204 187 199 231 184 175
184 182 176 183 179 203
13 12 31 30 12 12
50 47 43 42 48 49
12 12 20 19 13 15
30 28 31 31 31 31
33 34 34 31 36 43
23 24 41 40 27 27
64 67 58 67 71 77
79 84 77 77 83 72
21 47 76 73 73 73

106 105 108 107 106 110
139 132 179 180 162 165

7 7 15 14 9 9
22 21 25 22 22 21

‘U’,‘T’
15
39
93

186
181
11
47
13
30
42
27
58
76
73
98

168
9

i 19

Processor

DEC3000/400-AXP

DEC 8400 5/300

HP 715/64

MEIKO CS2-HA

IBM RS/6000-750

SGI Power Challenge

SUN SPARC 20/50

‘L’,‘T’
15
39
96

191
177
12
44
13
28
37
26
66
71
72
94

170
9

20

STRSM Variant
‘Left’ ‘Right’

<Ul,lNl IL1,lNl <Ul,lT> lL>,<Tl CUl,<Nl IL1,lNl lU1,ITl IL1,lTl

standard 14 14 23 24 16 16 16 17
blocked 56 57 58 74 60 61 57 58
standard 41 80 71 78 113 105 102 106
blocked 259 250 252 212 218 230 213 228
library 212 229 194 199 204 201 201 195
standard 13 12 25 23 17 18 15 15
blocked 48 46 46 48 53 51 47 46
library 51 48 49 48 62 58 80 69
standard 18 18 46 42 43 42 43 41
blocked 74 81 76 69 61 58 60 56
standard 27 24 25 24 28 35 29 29
blocked 56 67 56 59 64 61 53 56
library 79 78 85 82 80 80 73 72
standard 21 46 64 63 71 72 71 71
blocked 168 167 151 149 169 166 143 145
library 141 141 169 168 159 160 164 164
standard 11 12 24 23 13 14 13 13
blocked 40 45 36 34 38 42 33 38

Table 4.1: Average performance in Mflop/s of the blocked implementation of DTRSM on
FUSC processors (using square matrices of order 32, 64, 96, and 128).

Table 4.2: Average performance in Mflop/s of the blocked implementation of STRSM on
RISC processors (using square matrices of order 32, 64, 96, and 128).

15

and would be even faster if we used calls to the vendor-supplied GEMM routines from
within our blocked code.

5 Blocked implementation of SYMM

SYMM performs one of the matrix-matrix operations :

where a and /3 are scalars, A is an m x m symmetric matrix (only the upper or lower
triangular parts are used) and B and C are m x n matrices.

We consider the following case (corresponding to the parameters “Left”, “Upper”, i.e.
C=aAB+PC where only the upper part of A is referenced):

(SYMM)

(SYMM)

(GEMM)

(GEMM)

(SYMM)

(SYMM)

(GEMM)

Therefore, SYMM can be expressed as a sequence of SYMM and GEMM operations.
The SYMM operations are used for the matrix-matrix multiplication involving the blocks
Ai,i (only the upper triangular part is stored since the submatrices are symmetric). A
straightforward way of avoiding the multiplication step by a triangular matrix consists
of copying the submatrices Ai,i into a working array AA where both the upper and
the lower triangular part are stored. Therefore, instead of using a SYMM operation
for multiplications using the submatrices Ai,i, we can use a GEMM operation involving

16

AA. The additional operations that we make are compensated by the performance gain
due to the use of GEMM.

Therefore, SYMM is expressed as a sequence of GEMM operations :

1. Copy A1,l into AA

2. C1,l + PC1,l + aAA.B1,1

3. Cl,2 + PCl,2 + aAA.B1,2

(GEMM)

(GEMM)

(GEMM)

(GEMM)

(GEMM)

(GEMM)

(GEMM)

(GEMM)

The GEMM operations on block rows of C can be combined. This allows us to perform
GEMM operations on longer vectors and decreases the overhead due to subroutine calls.
The corresponding blocked code is reported in Figure 5.1.

We present in Tables 5.1 and 5.2 the performance of the blocked version of SYMM and we
compare it to the performance of the standard Fortran version. We see a big improvement
over standard Fortran BLAS when using our blocked version, usually a factor of two
but occasionally as much as a factor of nearly eight. On the SGI, we can improve the
performance of our blocked code by up to about 20% by using larger blocks and so would
outperform the vendor code both in single and double precision. It seems clear that DEC
have used a similar trick to ours on the DEC 8400 since the performance of their library
code for SYMM is close to their GEMM performance.

17

DU 70 1 1 N , ,NB - -
NB-COL-A MIN(M-I+I,NB)

C
C

C
C upper triangular.

. . Copy diagonal block of A into full array AA.
Diagonal block of A is NB-COL-A-by-NB-COL-A and

C
DO 42 JJ = I, NB-COL-A

DO 41 I1 = 1, JJ
AA(II,JJ) = A(II+I-I,JJ+I-I)

41 CONTINUE
42 CONTINUE

DO 44 JJ = 1, NB-COL-A
DO 43 I1 = 1, JJ

AA(JJ,II) = A(II+I-I,JJ+I-I)
43 CONTINUE
44 CONTINUE

C . . Multiply diagonal blocks of A.
C

C
DO 45 K=I,N,NB

NB-COL-B=MIN (N-K+l, NB)
CALL DCEMM('N','N',NB_COL-A,NB-COL-B,

$ NB-COL-A, ALPHA, AA, NNB,
$ B(I,K), LDB ,BETA,C(I,K) ,LDC)

45 CONTINUE

C .. Update block row of C.
C

C
DO 60 J=l,I-NB,NB

NB-COL,B=N
CALL DGEMM('T','N',NB-COL-A,NB-COL-B,

NB-LIG-A=MIN(M-J+I ,NB)

$ NB-LIG-A, ALPHA, A(J,I) ,LDA,
$

$
$ B(1,I) ,LDB,ONE,C(J,l) ,LDC)

B(J, 1) ,LDB, ONE,C(I , I) ,LDC)

NB-COL-A , ALPHA, A (J , I) , LDA ,
CALL DGEMM('N','N',NB-LIC-A,NB-COL-B,

60 CONTINUE
70

Figure 5.1: Blocked code for SYMM

18

Processor

DEC3000/400-AXP

DEC 8400 5/300

HP 715/64

MEIKO CS2-HA

IBM RS/6000-750

SGI Power Challenge

SUN SPARC 20/50

DSYMM Variant

standard 24 19 19 18
blocked 42 42 43 44
standard 87 96 91 90
blocked 188 183 180 183
library 315 310 300 300
standard 4 4 16 16
blocked 28 28 30 31
library 44 45 45 46
standard 15 15 40 38
blocked 37 36 40 42
standard 21 18 31 30
blocked 69 71 71 70
library 75 81 85 76
standard 82 76 80 80
blocked 116 116 113 114
library 81 79 134 134
standard 16 17 11 11
blocked 23 24 23 23

CLY,tU7 CL9,CL’ tR7,CUY CR’,CL7

Table 5.2: Average performance in Mflop/s of the blocked implementation of SSYMM for
RISC processors (using square matrices of order 32, 64, 96, and 128).

DEC3000/400-AXP

DEC 8400 5/300

HP 715/64

MEIKO CS2-HA

IBM RS/6000-750

SGI Power Challenge

SUN SPARC 20/50

19

tL>,CUY tLY,CL> CR?,tU’

standard 24.1 21.1 30.4
blocked 65.1 65.3 66.7
standard 93 96 99
blocked 233 228 231
library 381 377 360
standard 4 4 18
blocked 48 48 54
library 89 84 88
standard 6 6 40
blocked 60 62 75
standard 13 12 28
blocked 88 84 84

standard 89 87 77
blocked 189 189 158
library 87 83 133
standard 26 27 22
blocked 42 38 39

library 90 93 93

6 Blocked implementation of TRMM

TRMM performs one of the matrix-matrix operations :

B=aAB, B=aAtB, or B=aBA, B=aBAt

where Q is a scalar, B is an m x n matrix, A is a unit, or non-unit, upper or lower
triangular matrix.

We consider the following case (corresponding to the parameters “Left”, “No transpose”,
and “Upper”, i.e. B=aAB where A is upper triangular):

1. B1,l + aA1,1B1,1 (TRMM)

(GEMM)

(TRMM)

(GEMM)

(TRMM)

(TRMM)

TRMM is expressed as a sequence of GEMM and TRMM operations. The computations of
the submatrices of B within the same block row are independent. The GEMM operations
can be combined. We use a tuned Fortran code called DTRMML2X2 for performing the
multiplication of diagonal blocks of A.

The blocked code is reported in Figure 6.1. The code for DTRMML2X2 (TRIADIC
option) is reported in Figure A.2 in Appendix.

We report in Tables 6.1 and 6.2 the performance of the blocked version of TRMM in
the case where A is unit. Our blocked code can be seen to be usually more than twice
as efficient as standard BLAS. Although larger blocking on the SGI does not help much
on this kernel, we notice that, for most options in single precision, the blocked code
outperforms the vendor code. On the DEC 8400, our blocked code performs consistently
better than the vendor code, particularly in single precision. The blocked code would be
even faster if we used the vendor-supplied GEMM routines.

20

I

* Form B := alpha*A*B.
*

DO 50 K=l,N,NB
NB-COL-B=MIN(N-K+~,NB)
DO 40 I = l,M,NB

NB-LIG-A = MIN(M-I+l,NB)

IF ((MOD(NB-LIG-A,2) .EQ.O)
. AND. (MOD (NB-COL-B , 2) . EQ . 0)
CALL DTRMML2X2-LUN(DIAG9

THEN

NB-LIG-A,NB-COL-B,ALPHA, A(I,I) ,
LDA,B(I,K), LDB)

ELSE

CALL DTRMML-LUN(DIAG,
NB-LIG-A,NB-COL-B,ALPHA, A(1,I) ,
LDA,B(I,K), LDB)

END IF

CALL DGEMM(’No transpose’,’No transpose’,
NB-LIG-A,NB-COL-B,M-I-NB-LIG-A+l,
ALPHA , A (I , I+NB-LIG-A) , LDA ,
B (I+NB-LIG-A, K) , LDB, ONE, B (I , K) , LDB)

CONTINUE

Figure 6.1: Blocked code for TRMM

21

Processor DTRMM

DEC3000/400-AXP standard
blocked

blocked
library

blocked
library

DEC 8400 5/300 standard

HP 715/64 standard

MEIKO CS2-HA standard

Variant
‘Left’ ‘Right’

‘U9,‘Nl ‘L’,lN’ lU>,lT’ LL1,LTI ‘U’,tNl lLl,lN’ tU’,‘T7 ‘Ll,‘T?

23 22 20 20 15 15 15 15
46 45 45 45 45 44 44 45
84 81 74 70 104 101 93 94

194 180 183 184 190 182 175 184
175 174 178 175 180 174 172 171
16 15 21 20 14 15 14 15
30 29 33 31 34 33 32 30
41 41 41 39 40 39 39 38
13 12 31 30 11 11 11 12

IBM RS/6000-750

Table 6.1: Average performance in Mflop/s of the blocked implementation of DTRMM
for RISC processors (using square matrices of order 32, 64, 96, and 128).

blocked 50 47 43 42 49 49 47 44
standard 30 28 40 41 32 33 33 32

SGI Power Challenge

SUN SPARC 20/50

Table 6.2: Average performance in Mflop/s of the blocked implementation of STRMM for
RISC processors (using square matrices of order 32, 64, 96, and 128).

blocked 49 69 75 56 72 50 48 63
library 72 80 80 77 79 84 76 76
standard 54 53 77 76 73 73 72 72
blocked 123 122 124 124 116 114 108 109
library 171 168 183 141 177 168 174 175
standard 11 11 14 14 9 9 9 9
blocked 22 22 23 24 22 22 19 20

22

Processor

DEC3000/400-AXP

DEC 8400 5/300

HP 715/64

MEIKO CS2-HA

IBM RS/6000-750

SGI Power Challenge

SUN SPARC 20/50

STRMM Variant
‘Left’ ‘Right’

tU’,INY CJ,>,tN> <U’,&T> <L’,‘T’ CUl,<N> ‘L?,‘N9 ‘U9,&TY ‘Ll,<T?

standard 28 28 21 20 16 12 12 12
blocked 71 73 70 70 72 70 69 71
standard 91 88 70 70 107 105 97 108
blocked 261 233 225 242 236 225 224 232
library 206 213 206 211 209 206 205 206
standard 20 17 26 24 15 13 13 14
blocked 49 49 53 51 56 66 56 53
library 72 71 69 63 75 72 77 71
standard 18 18 46 42 43 42 43 41
blocked 74 81 76 69 61 58 60 56
standard 28 27 24 23 32 20 19 21
blocked 60 59 58 61 57 56 58 52
library 87 80 85 80 84 79 76 84
standard 50 52 56 54 71 64 63 63
blocked 193 195 160 160 179 180 166 165
library 151 151 180 131 176 161 175 174
standard 22 21 19 20 13 9 9 9
blocked 37 42 39 39 38 39 36 36

7 Blocked implementation of SYRK

SYFtK performs one of the symmetric rank-k operations :

c = ~ A A ~ + ~ c , or C=QA~A+PC

where a! and p are scalars, C is an n x n symmetric matrix (only the upper or lower
triangular parts are updated), and A is a n x k matrix in the first case and a k x n
matrix in the second case.

We consider the following case (corresponding to “Upper”, and “NO transpose)’, i.e. we
perform C=aAAt+PC where only upper triangular part of C is updated):

The symmetric rank-k update is expressed as a sequence of SYRK for updating the
submatrices Ci,i and GEMM for the other blocks. The updates of the submatrices of
C can be performed independently. The GEMM updates of off-diagonal blocks can be
combined. Note that, at the price of extra operations, we could perform the update of the
diagonal blocks of C using GEMM instead of SYRK.

The corresponding blocked code is shown in Figure 7.1. Note that it is more efficient to
perform the multiplication of matrix C by P before calling GEMM rather than performing
this multiplication within GEMM. The code for SYRKL2X2 (TRIADIC option) is reported
in Figure A.3 in Appendix. In Tables 7.1, and 7.2 the performance of the standard
Fortran code and of the blocked implementation are compared for all the variants. For
this kernel, our gains over using standard BLAS are significant, usually by a factor of close
to two. Although using a larger block size on the SGI improves performance by usually less
than lO%, we consistently outperform .the vendor code by a significant amount in single
precision, even at the lower block size. Our blocked code is substantially better than the
vendor kernel on the DEC 8400 and would be even faster if we used the vendor-supplied
GEMM.

23

NB-LIG-C=MIN(NB,N-I+l)
*
*
*

90

Multiplication of diagonal block of C

IF (BETA. Eq . ZERO) THEN
DO J = 1, NB-LIG-C

DO I1 = I, J

ENDDO
C(II+I-I,J+I-I) = ZERO

ENDDO

DO J = I, NB-LIG-C
DO I1 = 1, J

ENDDO

ELSE

C(II+I-I,J+I-I) = BETA*C(II+I-1,J+I-1)

ENDDO
END IF

DO 90, L=I,K,NB

NB-COL-A=MIN(NB,K-L+I)

IF ((MOD(NB-LIG-C,2) .Eq.O) .AND. (MOD(NB-COL-A,2) .EQ.O))THEN
CALL DSYRKL2X2(NB-LIG-C,NB-COL-A,ALPHA,

$ A (I , L) , LDA , ONE, C(I , I) , LDC)
ELSE

CALL DSYRKL(NB-LIG-C,NB-COL-A,ALPHA,
$ A(I ,L) ,LDA , ONE ,C(I, I) ,LDC)

END IF

CONTINUE

NB-COL-C=N-NB-LIG-C-I+l
NB-COL-A=K

CALL DGEMM(‘N’ , ‘T’ ,NB-LIG-C,NB-COL-C,NB-COL-A,
$ ALPHA,A(I,I) ,LDA,A(I+NB-LIG-C,l) ,LDA,
$ BETA, C (I, I+NB-LIG-C) , LDC)

Figure 7.1: Blocked code for SYRK

24

Processor

DEC3000/400-AXP

DEC 8400 5/300

HP 715/64

MEIKO CS2-HA

IBM RS/6000-750

SGI Power Challenge

SUN SPARC 20/50

25

DSYRK Variant

standard 21 21 22 22
blocked 42 42 48 49
standard 81 82 74 78
blocked 172 162 182 189
library 82 86 100 85
standard 17 15 24 24
blocked 26 23 32 31
library 16 16 28 27
standard 20 20 37 36
blocked 44 44 40 40
standard 29 28 46 47
blocked 55 54 70 69
library 88 83 83 85
standard 56 55 105 105
blocked 115 114 135 137
library 111 111 114 114
standard 11 11 15 15
blocked 18 18 23 24

CU9,CN’ CLY,CN! CU1,CT’ CL9,CT’

4

Processor

DEC3000/400-AXP

DEC 8400 5/300

HP 715-64

MEIKO CS2-HA

IBM RS/6000-750

SGI Power Challenge

SUN SPARC 20/50

SSYRK Variant

standard 27 27 25 24
blocked 62 60 70 65
standard 87 89 75 79
blocked 224 215 24 1 247

standard 21 19 28 26
blocked 56 47 68 62
library 19 19 29 30
standard 32 29 48 47
blocked 66 57 70 65
standard 28 26 23 24
blocked 50 45 50 49
library 90 95 95 103
standard 51 54 79 80
blocked 165 162 166 168
library 99 98 100 99
standard 21 21 25 23
blocked 33 32 39 38

CU’,CN1 CL9,CN’ CU1,CT’ CL?,CT’

library 87 94 106 90

8 Blocked implementation of SYR2K

SYR2K performs one of the symmetric rank-2k operations:

where a and p are scalars, C is an n x n symmetric matrix (only the upper or lower
triangular parts are updated) and A and B are n x k matrices in the first case and k x n
matrices in the second case.

We consider the following case (corresponding to "Upper", and "NO transpose", i.e
C=aABt+aBAt+PC where only the upper triangular part of C is updated):

(SYR2K)

(SYR2K)

(GEMM)

(GEMM)

(GEMM)

(GEMM)

(SYR2K)

(SYR2K)

SYR2K is expressed as a sequence of SYR2K for updating the triangular submatrices Ci,i,
and GEMM on the other blocks. The update of the submatrices of C can be effected
simultaneously. There is no need to compute both *ABt and *BAt (since it is the same
matrix but transposed). Thus, only one of the two operations is performed and the result
is stored into a working array called CC. This can be done using GEMM.

Using these remarks SYR2K is computed in the following way :

26

2. CC t CC+ aAi,2.B4,2

3. C1,l t PClJ + cc + CCt

4. c1,2 + P G , 2 + "AlJB;,,

5. c1,2 t c1,2 + aB1,lA;J

8. CC t C Y A ~ , ~ . B ~ , ~

(GEMM)

(GEMM)

(GEMM)

(GEMM)

(GEMM)

(GEMM)

(GEMM)

(GEMM)

As for SYRK, with a larger number of blocks, the GEMM updates of the off-diagonal
blocks can be combined. The corresponding blocked code is given in Figure 8.1. We
report in Tables 8.1 and 8.2 the results obtained using the blocked implementation of
SYR2K. We note that SYR2K is the one kernel where the ESSL Library on the IBM has
significantly better performance than the standard vendor-supplied BLAS. Although using
a larger block size on the SGI improves performance by between 10% and 20%, even at
the lower block size we consistently outperform the vendor code, by a significant amount
in single precision. Our blocked code is substantially better than the vendor kernel on the
DEC 8400 and would be even faster if we used the vendor-supplied GEMM.

DO 130 9 1 - 1 9 , N N B -
NB-LIG-C=MIN(NB,N-I+l)
CALL DGEMM('N','T',NB-LIG-C,NB-LIG-C,K,

DO JJ=l,NB-LIG-C
DO II=l,JJ

$ ALPHA, A(1,l) , LDA ,B (I, 1) , LDB , ZERO ,CC ,NB)

C(I+II-l,I+JJ-l) = BETA*C(I+II-l,I+JJ-l)
C(I+II-l,I+JJ-1) = C(I+II-1,I+JJ-1)+CC(II,JJ)
C(I+II-l,I+JJ-1) = C(I+II-1,I+JJ-1)+CC(JJ,II)

ENDDO
ENDDO
J=I+NB-LIG-C
NB-COL_C=MAX(N-J+l,O)
CALL DGEMM('N','T',NB-LIG-C,NB-COL-C,K,

CALL DGEMM('N', 'T',NB-LIG-C,NB-COL-C,K,
$ ALPHA,A(I,l) ,LDA,B(J,l) ,LDB,BETA,C(I,J) ,LDC)

$ ALPHA,B(I, 1) ,LDB,A(J, 1) ,LDA,ONE,C(I, J) ,LDC)
130

Figure 8.1: Blocked code for SYR2K

27

Processor

DEC3000/400-AXP

DEC 8400 5/300

HP 715/64

MEIKO CS2-HA

IBM RS/6000-750

SGI Power Challenge

SUN SPARC 20/50

Table 8.2: Average performance in Mflop/s of the blocked implementation of SSYR2K for
RISC processors (using square matrices of order 32, 64, 96, and 128).

DSYR2K Variant

standard 23 20 14 14
blocked 50 49 47 48
standard 83 89 82 82
blocked 187 181 191 198
library 106 103 130 127
standard 5 5 2 2
blocked 33 31 34 35
library 5 5 3 3
standard 15 17 10 10
blocked 44 44 46 46
standard 18 15 39 35
blocked 70 66 81 82
library 19 15 36 36
standard 87 87 89 88
blocked 115 113 126 128
library 112 113 116 115
standard 13 13 15 15
blocked 23 22 24 25

tUl,tN? <Ll,tN? iU7,<T7 tL,,tT?

28

Processor SSYR2K

DEC3000/400-AXP standard

DEC 8400 5/300 standard
blocked

blocked
library

blocked
library

blocked

blocked

HP 715/64 standard

MEIKO CS2-HA standard

IBM RS/6000-750 standard

library

blocked
library

SGI Power Challenge standard

SUN SPARC 20/50 standard
blocked

Variant
tU’,tN7 tL?,<N7 tU?,tT? tL7,tT’

25 23 14 14
69 70 67 67
92 97 87 88

254 251 241 240
127 126 139 136

5 5 2 2
60 59 61 59

5 5 2 2
7 7 3 3

64 64 75 79
14 11 38 38
81 79 90 87
14 11 35 35
76 76 78 77

159 158 199 200
102 100 101 100
23 23 30 28
39 38 40 40

9 Conclusion

The Level 3 BLAS are a set of computational kernels targeted at matrix-matrix operations
with the aim of providing efficient and portable implementations of algorithms on
high-performance computers. The linear algebra package LAPACK (Anderson, Bai,
Bischof, Demmel, Dongarra, DuCroz, Greenbaum, Hammarling, McKenney, Ostrouchov &
Sorensen 1995), for example, makes extensive use of the Level 3 BLAS. We have described
an efficient and portable implementation of the Level 3 BLAS for RISC processors.

The Level 3 BLAS are expressed as a sequence of matrix-matrix multiplications (GEMM)
and operations involving triangular blocks. The combination of blocking, copying, and
loop unrolling allows efficient exploitation of the memory hierarchy and only the blocking
parameter and the loop unrolling depth are machine dependent. Both the performance of
GEMM and performance of the kernel dealing with triangular matrices are crucial.

We have shown here that significant Megaflop rates can be achieved, only using tuned
Fortran kernels. Although our primary aim is not to outperform the vendor-supplied
libraries, our portable implementation compares reasonably well with the manufacturer-
supplied libraries on the IBM RS/6000, the HP 715/64, the DEC 8400 5/300, and the SGI
Power Challenge. It is interesting that, although the vendor-supplied GEMM routines are
better than our blocked version of GEMM on the DEC 8400 5/300 and the SGI Power
Challenge, many of our blocked versions of the other kernels are better than the vendor-
supplied equivalents, sometimes by a large margin. Note also that the availability of a
highly tuned version of the matrix-matrix multiplication kernel GEMM would improve
the performance figures of our blocked code substantially. For example, when using the
manufacturer-supplied version of DGEMM within our blocked version of DTRSM, we
achieve a close or marginally better performance than that of the DTRSM kernel available
in the vendor-supplied library on the HP 715/64 and the IBM RS/6000-750. We would
suggest that some vendors could easily increase the performance of their non-GEMM Level
3 BLAS kernels by using the techniques described in this paper. Finally, for some machines,
perfomance could be enhanced by judiciously selecting appropriate leading dimensions of
the matrices although we do not consider this because it is dependent on the machine
architecture and cache management strategy.

We demonstrated in Dayd6 et al. (1994) how this blocked version could be used to
parallelize the Level 3 BLAS. A preliminary version was successfully used for developing
both serial and parallel tuned versions of the Level 3 BLAS for a 30-node BBN-TC2000
(Amestoy et al. 1995, Dayd6 & Duff 1995). We are currently experimenting on other
shared and virtual shared memory machines in order to develop tuned serial and parallel
implementations for them.

10 Availability of codes

The codes described in the present paper are available using ftp anonymous at
ftp.enseeiht.fr. The software is located in pub/numerique/BLAS/RISC. A compressed

29

tarfile called blas-risc.tar.2 contains the following codes :

0 A set of test routines that check the correct execution and compute the Megaflop
rates of the blocked implementation compared with the standard version of the
Level 3 BLAS.

0 The blocked implementation of the Level 3 BLAS.

We advise the user to check the availability of tuned serial codes (manufacturer-supplied
library) before using our blocked implementation.

11 Acknowledgments

We are grateful to Nick Hill of the Rutherford Appleton Laboratory for his advice’on the
DEC 8400, to ‘Andrew Cliffe of AEA Technology, Harwell for performing the runs on the
SGI Power Challenge, and to Gdrard Le Blanc for help in accessing the IBM RS/6000-750
at IMFT in Toulouse.

References

Agarwal, R. C., Gustavson, F. G. & Zubair, M. (1994), ‘Exploiting functional parallelism
of POWER2 to design high-performance numerical algorithms’, IBM Journal of
Research and Development 38, 563-576.

Amestoy, P. R. & Duff, I. S. (1989)) ‘Vectorization of a multiprocessor multifrontal code’,
Int. J. of Supercomputer Applics. 3, 41-59.

Amestoy, P. R., Daydd, M. J., Duff, I. S. & Morkre, P. (1995)) ‘Linear algebra calculations
on a virtual shared memory computer’, Int Journal of High Speed Computing 7(l), 21-
43.

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., DuCroz, J., Greenbaum,
A., Hammarling, S., McKenney, A., Ostrouchov, S. & Sorensen, D. (1995), LAPACK
Users’ Guide, second edition, SIAM Press.

Bodin, F. & Seznec, A. (1994), Cache organization influence on loop blocking, Technical
Report 803, IRISA, Rennes, France.

Dayd6, M. J. & Duff, I. S. (1995), ‘Porting industrial codes and developing sparse linear
solvers on parallel computers’, Computing Systems in Engineering 6(4/5), 295-305.

Daydk, M. J., Duff, I. S. & Petitet, A. (1994), ‘A parallel block implementation of Level
3 BLAS kernels for MIMD vector processors’, A CM Transactions on Mathematical
Software 20, 178-193.

30

Dongarra, J. J. (1995), Performance of various computers using standard linear algebra
software, Technical Report CS-89-85, University of Tennessee.

Dongarra, J. J., Du Croz, J., Duff, I. S. & Hammarling, S. (1 9 9 0 ~) , ‘Algorithm 679: A
set of Level 3 Basic Linear Algebra Subprograms: Model implementation and test
programs’, A CM fiansactions on Mathematical Software 16, 18-28.

Dongarra, J. J., Du Croz, J., Duff, I. S. & Hammarling, S. (1990b), ‘A set of Level 3
Basic Linear Algebra Subprograms.’, A CM fiansactions on Mathematical S O ~ ~ W Q E
16, 1-17.

Dongarra, J. J., Mayes, P. & Radicati di Brozolo, G. (1991), Lapack working note 28 : The
IBM RISC System/6000 and linear algebra operations, Technical Report CS-91-130,
University of Tennessee.

Gallivan, K. , Jalby, W. & Meier, U. (1987), ‘The use of BLAS3 in linear algebra on
a parallel processor with a hierarchical memory’, SIAM J O U ~ Q Z on Scientific and
Statistical Computing 8 , 1079-1084.

Gallivan, K., Jalby, W., Meier, U. & A., S. (1988), ‘Impact of hierarchical memory systems
on linear algebra algorithm design’, Int Journal of Supercomputer Applications
2(1), 12-48.

KAgstrom, B., Ling, P. & Loan, C. V. (1993), Portable high performance GEMM-based
Level-3 BLAS, in R. F. Sincovec et al., ed., ‘Proceedings of the Sixth SIAM Conference
on Parallel Processing for Scientific Computing’, SIAM, 339-346.

Puglisi, C. (1993), QR Factorization of Large Sparse Overdetermined and Square Matrices
using the Multifrontal Method in a Multiprocessor Environment, PhD thesis, INPT.
Technical Report TH/PA/93/33, CERFACS.

Qrichi Aniba, A. (1994), ImplCmentation performante du BLAS de niveau 3 pour les
processeurs RISC, Technical Report Rapport 3bme AnnCe, DCpartement Informatique
et MathCmatiques AppliquCes, ENSEEIHT.

A Appendix

We show here some of the tuned Fortran codes referenced in the paper.

31

70
80

*

*
*
*

30
*
*
*

40

~~ IF (ALPHA,. NE. ONE)THEN

DO 70 I = I, M

CONTINUE

DO 80 J = 1, N

B(I, J) = ALPHA*B(I, J

CONTINUE
END IF

DO 50 I = M , 1, -2
DO K = M, I+1, -1

AA2(K) = A(1-1,K)
AAI(K) = A(1,K)

ENDDO
DO 40 J = 1, N, 2

Bll = B(I ,J)
B21 = B(1-1,J)
B12 = B(I ,J+I)
B22 = B(1-1 , J+1)

Update B

DO 30 K = M, I + I, -1
BI = B(K,J)
B2 = B(K,J+l)
AI = AAI(K)
A2 = AA2(K)
BII = B11 - AI*BI
B21 = B21 - A2*BI
B12 = B12 - AI*B2
B22 = B22 - A2*B2

CONTINUE

Compute s o l u t i o n

IF (NOUNIT) THEN
T1 = ONE / A(I, I)
Bll = B11 * T1
B12 = B12 * TI
U1 = ONE / A(1-1, 1-1)

END IF
A l = A (1 - 1 , I)
B21 = B21 - B11 * AI
B22 = B22 - B12 * AI
IF (NOUNIT) THEN

B21 = B21 * U1
B22 = B22 * U1

END IF
B(I , J) = B11
B(I - 1, J = B21
B(I , J + 1) =B12
B(I - 1, J + 1) =B22

CONTINUE

Figure A. l : Tuned code for TRSM

32

uu L W I--I,n,L

DO K=I+2,M
AAl(K) = A(1,K)
AA2(K) = A(I+l,K)

ENDDO
DO 10 J=l,N,2

Tll = B(1,J)
T21 = B(I+l,J)
T12 = B(I,J+l)
T22 = B(I+l,J+l)

*
* . . Update triangular block

A1 = A(I,I+l)
T11 = T11 + Al*T21
T12 = T12 + Al*T22
DO K=I+2,M

*

A1 = AAl(K)
A2 = AA2(K)
B1 = B(K,J)
B2 = B(K,J+l)
T11 = T11 + Al*Bl
T21 = T21 + A2*B1
T12 = T12 + Al*B2
T22 = T22 + A2*B2

ENDDO
B(1,J) = T11
B(I+l,J) = T21
B(I,J+l) = T12
B(I+l,J+l) = T22

10 CONTINUE

Figure A.2: Tuned code for TRMM

33

J STAKP 1
DO 10, I=IyNy2

T11 = BETA*C(I,I)
T12 = BETA*C(I,I+I)
T22 = BETA*C(I+I,I+I)
DO L = l,K

AAI(L) = A(I,L)
AA2(L) = A(I+l,L)

ENDDO
DO 15, L = 1,K

AI = AAI(L)
A2 = AA2(L)
BI = ALPHA*AI
B2 = ALPHA*A2
T11 = TI1 + BI*AI
T12 = T12 + BI*A2
T22 = T22 + B2*A2

15 CONTINUE
C(1,I) = Tll
C(I,I+I) = T12
C(I+I,I+I) = T22
JSTART=JSTART+2
DO 20 J=JSTART,N,2

TII = BETA*C(I,J)
T21 = BETA*C(I+I,J)
T12 = BETA*C(I,J+l)
T22 = BETA*C(I+I,J+l)
DO L = 1, K

BI = ALPHA*A(J,L)
B2 = ALPHA*A(J+l,L)
AI = AAI(L)
A2 = AA2(L)
T11 = T11 + BI*AI
T21 = T21 + BI*A2
T12 = T12 + B2*A1
T22 = T22 + B2*A2

ENDDO
C(1,J) = T11
C(I+I,J) = T21
C(I,J+I) = T12
C(I+l,J+I) = T22

20 CONTINUE
10

Figure A.3: Tuned code for SYRK

34

