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ABSTRACT 
We describe a version of the Level 3 BLAS which is designed to be efficient on RISC 
processors. This is an extension of previous studies by the same authors (see Amestoy, 
Daydd, Duff & Morkre (1995), Dayd6, Duff & Petitet (1994), and Dayd6 & Duff (1995)) 
where they describe a similar approach for efficient serial and parallel implementations of 
Level 3 BLAS on shared and virtual shared memory multiprocessors. 
All our codes are written in Fortran and use loop-unrolling, blocking, and copying to 
improve the performance. A blocking technique is used to express the BLAS in terms 
of operations involving triangular blocks and calls to the matrix-matrix multiplication 
kernel (GEMM). No manufacturer-supplied or assembler code is used. This blocked 
implementation uses the same blocking ideas as in Daydd et al. (1994) except that the 
ordering of loops is designed for efficient reuse of data held in cache and not necessarily 
for parallelization. A parameter which controls the blocking allows efficient exploitation 
of the memory hierarchy on the various target computers. 
We present results on a range of RISC-based workstations and multiprocessors, viz. DEC 
3000/400 AXP, DEC 8400 5/300, HP 715/64, IBM RS/6000-750, MEIKO CSZHA, SGI 
Power Challenge L ,  and SUN SPARC 20/50. 
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1 Introduction 

This report describes a version of single and double precision Level 3 BLAS computational 
kernels (Dongarra, Du Croz, Duff & Hammarling (1990b),Dongarra, Du Croz, DUE & 
Hammarling ( 1 9 9 0 ~ ) )  called the blocked BLAS, designed to be efficient on RISC processors. 
It is based on the use of the matrix-matrix multiplication kernel GEMM. We show that 
this implementation is portable and efficient on a range of RISC-based computers. 

This version of the Level 3 BLAS is an evolution of the one described by Dayd6 et al. 
(1994) by the same authors for MIMD vector multiprocessors. They report on experiments 
on a range of computers (ALLIANT, CONVEX, IBM and CRAY) and demonstrate the 
efficiency of their approach whenever a tuned version of the matrix-matrix multiplication 
is available. They conclude by saying that similar ideas could be used to design a tuned 
uniprocessor Level 3 BLAS for computers where the processor accesses data through a 
cache since blocking would also be beneficial. 

The availability of powerful RISC processors is of major importance in today’s market since 
they are used both in workstations and in the most recent parallel computers. Because 
of the success of RISC-based architectures, we have decided to study the design of a 
version of the Level 3 BLAS that is efficient on RISC processors. This tuned version of 
the Level 3 BLAS uses the same blocking ideas as in Dayd6 et al. (1994), except that the 
ordering of loops is designed for efficient reuse of data held in cache. 

Our basic idea for designing the Level 3 BLAS is to partition the computations across 
submatrices so that the calculations can be expressed in terms of calls to GEMM and 
operations involving triangular matrices. All the codes we are using are written in Fortran 
and tuned using blocking, copying and loop-unrolling. We believe that these codes provide 
an efficient implementation of the Level 3 BLAS on computers where a highly tuned 
version is not available. In this paper, the timings for the non-GEMM blocked kernels 
are for versions using our own blocked GEMM code. We note that, in cases when the 
vendor supplies a more efficient version of GEMM, it is trivial for us to use this in these 
other kernels. By doing so, we can often do far better than the vendor-supplied versions 
of these other kernels. At this time, we are very concerned with portability and so have 
made no attempt to include specific tuning techniques that are crucial on some computers. 
Additionally, our experiments often use non-ideal matrix orders (for example, orders of 
powers of two). While this is good for portability and robustness, on some machines the 
times would be better for other matrix orders. Additionally, most machines have more 
than one-level of cache. In our present work, we only allow one level of blocking and 
choose a block size based on the largest on-chip cache. Further optimization for particular 
machines might be obtained by multi-level blocking. We would be happy to discuss with 
users and vendors the possibility of designing more highly-tuned, but less portable, kernels 
for specific machines. We also hope to receive input and comments from users to improve 
this software. 

The implementation of the kernels using both blocking and loop unrolling is described in 
Sections 3 to 8 (examples of codes are included), more details on this implementation are 
reported by Qrichi Aniba (1994). We only consider the implementation of the real and the 
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double precision Level 3 BLAS kernels. We report results from. uniprocessor executions 
on a range of RISC-based computers (in practice we have proceeded to experiments on a 
larger set of machines) : 

Computer 

1. DEC 3000/400 AXP 
2. DEC 8400 5/300 
3. HP 715/64 
4. IBM RS/6000-750 
5. MEIKO CS2-HA (using a HyperSparc processor) 
6. SGI Power Challenge L 
7. SUN SPARC 20/50 

LINPACK LINPACK 
100*100 1000*1000 

2 Blocked implementation of Level 3 BLAS for RISC 
processors 

1 DEC 8400 5/300 

2.1 RISC processors 

140 

Vector processors are commonly used in supercomputers. Recently very fast RISC 
processors, which can also process vectors efficiently, have come on to the market. They are 
usually more efficient than vector processors on scalar applications. The main reason for 
their success in the marketplace is their very good cost to performance ratio. They are used 
as a CPU both in workstations and in most of the current MPPs (DEC Alpha on CRAY 
T3D, SPARC on CM5 and PCI  CS2, HP PA on CONVEX EXEMPLAR, and RS/6000 on 
IBM SP1 and SP2). Table 2.1.1 gives the uniprocessor performance of some current RISC 
processors on the double precision 100-by-100 and 1000-by- 1000 LINPACK benchmarks 
(Dongarra 1995), together with the clock speed and the nominal peak performance. We 
include all of our target machines in this table and note that, for some of them, there are 
no LINPACK figures. 

DEC 3000/400 AXP 

IBM RS/6000-750 
HP 9000/755 
HP 715/64 

SGI POWER Challenge 
SUN SPARC 20/50 

IBM POWER2-990 

MEIKO CS2-HA 

26 
140 

41 
- 

- 
- 

104 
- 

41 1 
90 

254 

120 
- 

- 

- 
261 
- 

Clock 

300 
133 

71.5 
62.5 

99 
64 

100 
75 
50 

(MH4 
Peak 

performance 
600 
133 
286 
125 
198 
128 
100 
300 

50 

Table 2.1.1: Performance in Mflop/s of RISC computers on the double precision LINPACK 
benchmarks 
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2.2 Efficient exploitation of the memory hierarchy 

The ability of the memory to supply data to the processors at a sufficient rate is crucial 
on most modern computers. This necessitates complex memory organizations, where the 
memory is usually arranged in a hierarchical manner. The minimization of data transfers 
between the levels of the memory hierarchy is a key issue for performance (Gallivan, Jalby 
& Meier (1987), Gallivan, Jalby, Meier & A. (1988)). 

Most of the FUSC-based architectures have a memory hierarchy involving a cache. The 
cache memory is used to mask the memory latency (typically the cache latency is around 
1-2 clocks while it is often 10 times higher for the memory). The code performance is high 
so long as the cache hit ratio is close to 100%. This may happen if the data involved in 
the calculations can fit in cache or if the calculations can be organized so that data can 
be kept in cache and efficiently reused. One of the most commonly used techniques for 
that purpose is called blocking and examples of this are reported in the following sections. 
Blocking enhances spatial and temporal locality in computations. Unfortunately blocking 
is not always sufficient since the cache miss ratio can be dramatically increased in quite an 
unpredictable way by memory accesses using a stride greater than 1 (see Bodin & Seznec 
(1994)). 

Some strides are often called critical because they generate a very high cache miss ratio 
(i.e. when referencing cache lines that are mapped into the same physical location of the 
cache). These critical strides obviously depend on the cache management strategy. For 
example, in the execution of the following loop : 

do i=l,n,4 

enddo 
temp = temp + a ( i )  

each read of a(i) causes a cache miss, assuming that a(i) is one word and that the cache 
line length is equal to four words (assuming that the cache is initially empty). 

Copying blocks of data (submatrices for example) that are heavily reused may help to 
improve memory and cache accesses (by avoiding critical strides for example). Since it 
may induce a large overhead, it is, however, not always a viable technique. We illustrate 
this in our blocked implementation of the BLAS. 

Note that blocking and copying are also very useful in limiting the effect of T L B  
(Translation Lookaside Buffer) misses or memory paging. 

Our basic idea for efficient implementation of the BLAS on RISC processors is to 
express all the Level 3 BLAS kernels in terms of subkernels that either deal with 
NB x NB submatrices that involve GEMM operations or operations involving triangular 
submatrices. Additionally, all the calculations on blocks are performed using tuned Fortran 
codes with loop-unrolling. Copying is occasionally used. Of course, the relative efficiency of 
this approach depends on the availability of a highly tuned GEMM kernel. This approach 
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is relatively independent of the computer : only the NB parameter, corresponding to 
the block size, and the loop-unrolling depth in some cases should be tuned according 
to the characteristics of the target machine. NB is determined by the size of the cache 
(see Section 3.1) and the loop-unrolling depth from the number of scalar registers. Note 
that KBgstrom, Ling & Loan (1993)) use similar ideas. Their GEMM-based BLAS only 
requires the availability of a highly tuned matrix-matrix multiplication and Level 1 and 
Level 2-based operations. 

In the following sections, we describe the blocked implementation of the real and double 
precision Level 3 BLAS : GEMM, SYMM, TRSM, TRMM, SYRK,  SYR2K (all these 
names are prefixed by S or D depending on whether the routine is single or double 
precision). 

For each kernel there are a number of options, for example whether the matrix is transposed 
or not. For the sake of clarity, we comment only on one of these variants of the kernels 
and we illustrate our blocking strategy on matrices that are only partitioned into four 
blocks. In practice, the matrices are partitioned into NB x NB blocks where NB is chosen 
according to the machine characteristics. 

3 Blocked implementation of GEMM 

3.1 Description of the blocked GEMM 

GEMM performs one of the matrix-matrix operations : 

C=a op(A) op(B)+PC 

where a and j? are scalars, A and B are rectangular matrices of dimensions m x k  and 
k x n ,  respectively, C is a m x n matrix, and op(A) is A or At.  

We consider the following case (corresponding to op equal to “NO transpose” in both 
cases) : 

( a , 1  c 1 , 2  ) = ~ ( A l , 1  4 2  ) ( B 1 , l  B1,2 ) + p ( C 1 , l  c 1 , 2  ) 
c 2 , 2  c 2 , 2  A 2 , l  A2,2 B 2 , l  B2,2 C 2 , l  c 2 , 2  

DGEMM can obviously be organized in terms of a succession of matrix-matrix 
multiplication on submatrices as follows : 

(DGEMM) 
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(DGEMM) 

(DGEMM) 

(DGEMM) 

(DGEMM) 

(DGEMM) 

(DGEMM) 

The ordering of these eight computational steps is determined by considerations on efficient 
reutilization of data held in cache. We have decided to reuse the submatrices of A as much 
as possible and we perform all operations involving a submatrix before moving to another 
one (see Figure 3.1.1). For our simple example, it means that we perform the calculations 
as follows : Step 1 ,  Step 3, Step 5 ,  Step 7,  Step 2, Step 4,  Step 6,  and Step 8. This approach 
is similar to that used by Dongarra, Mayes & Radicati di Brozolo (1991). In practice, NB 
is chosen so that all the submatrices of A,  B, and C required for each submultiplication 
fit in the largest on-chip cache, except for the MEIKO CS2-HA because the HyperSparc 
only possesses an external cache on that computer. On some machines, access to off-chip 
caches has so low latency that we can improve performance by using a larger block size. 
This is true, for example, on the SGI Power Challenge. The most efficient use of multi- 
level cache machines is outwith the scope of this paper since we wish to keep our codes 
portable. Since all the computational kernels call GEMM, the block size NB is always 
determined as the most appropriate block size for GEMM, i.e. the largest even integer (to 
enhance loop-unrolling) such that : 

3(NB)2prec < cs 

where prec is the number of bytes corresponding the precision used (4 bytes for single 
precision and 8 bytes for double precision in IEEE format) and CS is the cache size in 
bytes. For example with a 64Kbytes cache, NB is set to 52 using 64-bit arithmetic. 

We report in Table 3.1.1 the block sizes used in our experiments. We also include the 
cache organization (direct mapped or set associative). Note that the DEC processor (DEC 
21164) used on the DEC 8400 5/300 possesses 2 levels of internal cache of size equal to 
8KB and 96KB respectively, and an external cache of from 1 M B  up to 64 MB. We have 
tuned our codes with respect to the second level of cache since our experiments show this 
is the most efficient. 

The blocked code is reported in Figure 3.1.1. Its main features are the following : 

0 The multiplication of C by P is performed before all other calculations. 
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Computer Block size 
S i i l e  1 D o i l e  

140 100 
36 24 
36 24 

DEC 3000/400-AXP 
DEC 8400 5/300 
HP 715/64 
IBM RS/6000-750 
MEIKO CS2-HA 
SGI Power Challenge 
SUN SPARC 20/50 

Organization 
of operations 
TRIADIC 
TRIADIC 
TRIADIC 
TRIADIC 
NOTRIADIC 
TRIADIC 
NOTRIADIC 

Size 
8 KB 

96 K B  
64 K B  
32 KB 

256 KB 
16 KB 
16 KB 

Organization 
Direct 
3-way 
Direct 
4-way 
4-way 
Direct 
4-way 

Table 3.1.1: Block size used in the blocked BLAS on the target computers. 

0 The submatrix of A is multiplied by (Y and transposed into AA to avoid non-unit 
strides because of access by rows in the innermost loops of the calculations. These 
are organized in such a way that AA is kept in cache as long as required. 

We use two tuned Fortran codes to perform calculations on submatrices (see Figure 3.1.2) : 

0 DGEMML2X2 is a tuned code for performing matrix-matrix multiplication on square 
matrices of even order. 

0 DGEMML is a tuned code that includes additional tests over DGEMML2X2 to 
It is occasionally slightly less efficient than handle matrices with odd order. 

DGEMML2X2. 

We have used two versions for all the tuned codes : 

0 the TRIADIC option for computers where triadic operations are either supported in 
the hardware (for example the floating-point multiply-and-add on IBM RS/6000) or 
efficiently compiled 

0 The NOTRIADIC option for other computers 

The use of triadic operations should not normally degrade the performance severely 
on processors that do not support these operations since efficient code generation can 
transform them into dyadic operations. However, in early versions of SPARC compilers, 
we saw that there was sometimes such a degradation. Thus we prefer to offer both options. 

The tuned code DGEMML2X2 using the TRIADIC options is reported in Figure 3.1.2. 
The code corresponding to the NOTRIADIC option follows in Figure 3.1.3. The selection 
between the options is effected using the C preprocessor. All the tuned codes described 
in the rest of this paper offer both options. 

Slight modifications (Dongarra et al. 1991) would allow further improvement in 
performance on the IBM RS/6000. 
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Form C := beta*C 

IF( BETA.Eq.ZER0 )THEN 
DO 20 J = 1, N 

DO 10 I = 1, M 
C( I, J 1 = ZERO 

10 CONTINUE 
20 CONTINUE 

ELSE 
DO 40 J = 1, N 

DO 30 I = 1,  M 
C( I, J = BETA*C( I, J 

30 CONTINUE 
40 CONTINUE 

END IF 

Form C := alpha*A*B + beta*C. 

DO 70 L = 1, K. NB 
LB = MIN( K - L + 1, NB ) 
DO 60 I = 1, M, NB 

IB = MIN( M - I + 1, NB ) 
DO I1 = I, I + IB - 1 

DO LL = L, L + LB - 1 

ENDDO 
AA(LL-L+l,II-I+l)=ALPHA*A(II,LL) 

ENDDO 
DO 50 J = 1, N,  NB 

JB = MIN( N - J + 1, NB ) 

Perform multiplication on submatrices 

IF ((MOD(IB,2) .EQ.O) .AND. (MOD(JB,2) .EQ.O)) THEN 

ELSE 

END IF 

CALL DGEMML2X2(IB, JB,LB,AA,NB,B(L, J) ,LDB,C(I,J) ,LDC) 

CALL DGEMML(IB, JB,LB,AA,NB,B(L, J) ,LDB,C(I,J) ,LDC) 

50 CONTINUE 
60 CONTINUE 

Figure 3.1.1: Blocked code for GEMM 
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* 
* C := alpha*A*B + C. 
* 

DO 70 J = 1, N, 2 
DO 60 I = 1, M, 2 

T11 = C(I,J) 
T21 = C(I+l,J) 
T12 = C(I,J+I) 
T22 = C(I+I,J+l) 
DO 50 L = 1, K 

B1 = B(L,J) 
B2 = B(L,J+I) 
A1 = A(L,I) 
A2 = A(L,I+I) 
T11 = TII + BI*Al 
T21 = T21 + BI*A2 
T12 = T12 + B2*A1 
T22 = T22 + B2*A2 

50 CONTINUE 
C(1,J) = Tll 
C(I+I,J) = T21 
C(I,J+I) = T12 
C(I+I,J+l) = T22 

60 CONTINUE 

Figure 3.1.2: Tuned code for GEMM (TRIADIC option) 
3 

* 
* 

C := alpha*A*B + C 

DO 70 J = I, N, 2 
DO 60 I = 1, M, 2 

T11 = C(1,J) 
T21 = C(I+I,J) 
T12 = C(I,J+I) 
T22 = C(I+l,J+l) 
DO 50 L = 1, K 

B1 = B(L,J) 
B2 = B(L,J+I) 
A I  = A(L,I 
A2 = A(L,I+I) 
T1 = Bl*AI 
T2 = B1*A2 
U1 = B2*A1 
U2 = B2*A2 
T11 = T11 + TI 
T21 = T21 + T2 
T12 = T12 + U1 
T22 = T22 + U2 

50 CONTINUE 
C(1,J) = Tll 
C(I+I,J) = T21 
C(I,J+I) = T12 
C(I+I,J+I) = T22 

60 CONTINUE 

Figure 3.1.3: Tuned code for EMM (NOTRIADIC option) !? 



3.2 Single precision implementation on the IBM RS/SOOO 

The IBM RS/SOOO FPU performs its arithmetic using 64bi t  operands. As a consequence, 
single precision operations are performed in the following way : 

1. Convert operands from single to double precision. 

2. Perform double precision computation. 

3. Convert double precision result into single precision. 

These conversions can be very costly and explain why the IBM RS/SOOO is slower in single 
precision than in double precision. Therefore, we have slightly modified the tuned code 
SGEMML2X2 to convert operands within the innermost loop only once. The matrix A 
is copied into a double precision working array in the blocked code. The code is shown in 
Figure 3.2.1, where the array A refers to this double precision copy. 

* 
* C := A*B + C. 
* 

DO 70 J = 1, N, 2 
DO 60 I = 1, M ,  2 

T11 = DBLE(C(1 ,J)) 
T21 = DBLE(C(I+l, J)) 
T12 = DBLE(C(1 ,J+1)) 
T22 = DBLE(C(I+l,J+l)) 
DO 50 L = 1, K 

B1 = DBLE(B(L,J 1) 
B2 = DBLE(B(L,J+l)) 
A1 = A(L,I ) 
A2 = A(L,I+l) 
T11 = Tll + Bl*Al 
T21 = T21 + Bl*A2 
T12 = T12 + B2*A1 
T22 = T22 + B2*A2 

C(1 ,J) = REAL(T11) 
C(I+l,J) = REAL(T21) 
C(1 ,J+l) = REAL(Tl2) 
C(I+l, J+1) = REAL(T22) 

50 CONTINUE 

60 CONTINUE 

Figure 3.2.1: Tuned code for SGEMM on IBM 

As we can see in Table 3.2.1, the performance of the blocked implementation of  SGEMM 
without conversion is much worse than the double precision one (as soon as matrices are 
bigger than the block size). This performance decrease is due to the large number of 
unnecessary single precision to double precision conversions. Our modification allows a 
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significant reduction in the number of operand conversions. Thus, the single precision 
performance is much improved and slightly better than the double precision one as on 
the other computers. We have not used this data conversion in the other single precision 
kernels on the IBM, but they should be designed in the same way. Since IBM provides a 
tuned BLAS implementation in its scientific library, we have decided not to expend too 
much effort on tuning our code for the IBM, and certainly not to use machine dependent 
tricks for optimizing on that machine. 

SGEMM 
m=n=k Standard B lo cked 

no conv. conv 
32 17 68 68 
64 22 53 89 
96 23 54 94 

128 23 54 92 

DGEMM 
Blocked 

34 
67 
81 
a5 

Table 3.2.1: Performance in Mflop/s of the blocked implementation of SGEMM on the 
IBM RS/6000-750 with and without explicit conversion for single to double precision. 

3.3 Numerical experiments 

We show in Tables 3.3.1 and 3.3.2 the performance achieved on DEC 3000/400 AXP, DEC 
8400 5/300, IBM RS/6000-750, HP 715, MEIKO CSZHA, SGI POWER Challenge, and 
SUN SPARC 20/50 workstations. We also include the performance of the manufacturer- 
supplied library version when available (we use -1blas on the IBM, the SGI, and the HP, 
and -1dxml on the DEC 8400). Although a tuned BLAS is also available on the IBM using 
the ESSL Library, we do not use it because it is sometimes slower than using -1blas and is 
not available without extra payment. “Standard” in column 2 of the tables refers to the 
standard Fortran version. The performance reported is the average performance achieved 
on a set of 4 matrix-matrix multiplications where all matrices are square of order 32, 64, 
96, and 128. 

The blocked implementation of GEMM usually provides a gain of more than 2 over 
the standard Fortran code when the matrices exceed the cache size. Note that better 
performance can be achieved if the matrices are already located (preloaded) in the cache, 
which is not the case in our experiments. On the MEIKO CSZHA, the KAP preprocessor 
that we use performs extremely efficient optimizations (using loop-unrolling) and, since 
the matrices are relatively small and fit in cache (the size of the external cache is 256KB), 
the standard version of DGEMM when arrays are not transposed is the same as our tuned 
version (optimization performed by KAP and by hand are equivalent since blocking has no 
effect). On the DEC 8400, the vendor-supplied library routines perform significantly better 
than our blocked code, in both single and double precision, probably because better use is 
made of the multi-level cache. For possibly the same reason, the vendor-supplied library 
GEMM routines on the SGI usually perform better than our blocked code, particularly in 
double precision. However, if we increase the block size, we can improve the performance 
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Processor 

DEC3000/400-AXP 

DEC 8400 5/300 

IBM RS/6000-750 

HP 715/64 

MEIKO CS2-HA 

SGI Power Challenge 

SUN SPARC 20/50 

11 

DGEMM OP(A), OP(B) 
CN’,CN> CN>,CT> CT1,CNl CT>,CT’ 

standard 26 26 21 15 
blocked 47 51 47 45 
standard 95 98 76 61 
blocked 216 208 215 211 
library 335 327 345 318 
standard 29 29 38 26 
blocked 79 65 82 82 
library 89 81 87 85 
standard 15 16 20 22 
blocked 29 30 30 34 
library 52 47 46 51 
standard 39 36 30 27 
blocked 38 45 39 43 
standard 74 73 107 74 
blocked 131 121 132 131 
library 212 204 204 196 
standard 11 11 14 8 
blocked 26 24 26 27 

Processor 

DEC3000/400-AXP 

DEC 8400 5/300 

IBM RS/6000-750 

HP 715/64 

MEIKO CS2-HA 

SGI Power Challenge 

SUN SPARC 20/50 

SGEMM OP(A)> OP(B) 
CN>,CNl CNj,CTl CT1,CNI CT1,CTl 

standard 32 33 24 18 
blocked 67 70 68 69 
standard 105 108 77 65 
blocked 246 267 239 258 

standard 27 27 22 20 
blocked 87 85 83 91 
library 96 96 104 95 
standard 18 18 22 24 
blocked 55 59 55 56 

standard 28 33 33 36 
blocked 60 58 69 78 
standard 74 73 82 70 
blocked 203 164 207 204 
library 218 210 209 194 
standard 23 22 23 18 
blocked 42 39 42 41 

library 412 388 416 395 

library 81 63 71 81 



of the blocked codes by up to 15% even though the submatrices do not then fit in the 
on-chip caches. 

Processor 

DEC3000/400-AXP 

We also report in Table 3.3.3 the average performance of DGEMM when the inner 
dimension of the matrix-matrix product is small (k equals 8 and 16) since it is of special 
interest for sparse matrix calculations ( Amestoy et al. (1995), Amestoy & Duff (1989), 
and Puglisi (1993)). We only consider the case where A and B are not transposed. 

DGEMM k 
8 16 

standard 32 29 
blocked 32 38 

MEIKO CS2-HA 

SUN SPARC 20/50 

Table 3.3.3: Average performance in Mflop/s of the blocked implementation of DGEMM 
on RISC workstations (where C is a square matrix of order 32, 64, 96, and 128 and inner 
dimension of the product, k, equal to 8 and 16). 

standard 33 37 
blocked 32 35 
standard 16 15 
blocked 19 21 

We show in Table 3.3.4 the performance of the best available version of DGEMM and 
SGEMM to us, that is we use either our implementation or a tuned manufacturer-supplied 
version, when both A and B are not transposed on square matrices of order 500 and 1000 
in order to study whether we can get close to the theoretical peak performance. 

The performance achieved by the tuned versions of GEMM is relatively far from the peak 
performance for all the RISC processors except the IBM RS/6000-750 and the SGI Power 
Challenge. On the IBM RS/6000-750 and the IBM Power2, it is possible to reach peak 
performance by changing the leading dimensions of the matrices (Agarwal, Gustavson & 
Zubair 1994). 

4 Blocked implementation of TRSM 

TRSM solves one of the matrix equations : 

AX=aB, AtX=aB, XA=aB, or XAt =aB 
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HP 715/64 

Processor 
DEC3000/400-AXP 

DEC 8200 5/300 

IBM RS/6000-750 

MEIKO CS2-HA 

SGI Power Challenge 

SUN SPARC 20/50 

Size 
Version Kernel 500 1000 
blocked DGEMM 47 45 

SGEMM 71 70 
library DGEMM 334 313 

SGEMM 431 418 
library DGEMM 98 94 

SGEMM 111 110 
xzj-lmmx 
T x a - y m x  

l-iEJz library DGEMM 

‘Peak 
133 

240 

600 

125 

128 

100 

300 

50 

Table 3.3.4: Performance in Mflop/s of the best available implementation of DGEMM and 
SGEMM on RISC workstations (A and B are not transposed). 

where a is a scalar, X and B are m x n matrices and A is a unit, or non-unit, upper or 
lower triangular matrix. B is overwritten by X. 

We consider the following case (corresponding to the parameters “Left”, “No transpose”, 
and “Upper”, i.e. we solve for AX = cuB where A is not transposed, and upper triangular): 

1. Solution of A2,2X2,1=cuB2,1 and B ~ , J  is overwritten by X2,1 (TRSM) 

2. Solution of A2,2X2,2=aB2,2 and By2 is overwritten by X2,2 (TRSM) 

3. B1,l + aB1,1-A1,2B2,1 (GEMM) 

4. B1,2 + 0Bl,241,2B2,2 (GEMM) 

5. Solution of A1,1X1,1=B1,1 and B ~ , J  is overwritten by X1,1 (TRSM) 

6. Solution of A1,1X1,2=B1,2 and Bl,2 is overwritten by X1,2 (TRSM) 

Therefore, TRSM can be computed as a sequence of triangular solutions (TRSM) and 
matrix-matrix multiplications (GEMM). The ordering of  computational steps is chosen so 
that each submatrix Ai,i on the diagonal of A, involved in each solution step, is kept in 

e 
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the cache for as long as it can be used. As for GEMM, we use two distinct versions of the 
tuned Fortran code for the solution step : TRSML2X2 when the order of B is even and 
TRSML otherwise. The blocked code is shown in Figure 4.1. The DGEMM subroutine 
is the one we described in Section 3. The tuned Fortran code (TRIADIC option) for 
TRSML2X2 is shown in Figure A. l  in the Appendix. 

* 
* 

30 
35 

45 
50 

B := alpha*inv( A )*B. 

IF( UPPER )THEN 
IF( ALPHA.NE.ONE )THEN 
DO 35, J = I, N 

DO 30, I = 1, M 

CONTINUE 
B( I, J = ALPHA*B( I, J ) 

CONTINUE 
END IF 

DO 50 I= M,l,-NB 
IB=MIN(NB,I) 
DO 45 J=I,N,NB 

JB= MIN (NB , N- J+1) 

IF ((MOD(IB,2) .EQ.O) .AND. (MOD(JB,2) .EQ.O)) THEN 
CALL DTRSML2X2_LUN( DIAG, 

$ IB,JB,ONE, A(1-IB+l,I-IB+I), 
$ LDA, B(1-IB+I,J), LDB ) 

ELSE 
CALL DTRSML-LUN( DIAG, 

$ IB,JB,ONE, A(1-IB+l,I-IB+l), 
$ LDA, B(1-IB+l,J), LDB ) 

END IF 

CALL DGEMM ( ‘No transpose’, ‘No transpose’, 
$ I-IB,JB,IB,-ONE, A(1,I-IB+l), 
$ LDA,B(I-IB+I,J) ,LDB,ONE,B(I,J) ,LDB) 

CONTINUE 
CONTINUE 

Figure 4.1: Blocked code for TRSM 

We report in Tables 4.1 and 4.2 the performance achieved on our range of RISC 
workstations for all variants when A is unit (the performance is similar when A is non- 
unit). We are not using explicit conversions from single to double precision for the tuned 
code on the IBM workstation. 

The performance gain provided by the blocked implementation of DTRSM compared with 
the standard Fortran version is close to a factor of 3 and is more impressive than that 
obtained for DGEMM. The double precision results for our blocked version on the SGI can 
be much improved (by up to 30%) by using a larger block size although for some options 
our single precision blocked code already outperforms the library version. In both single 
and double precision, our blocked code outperforms the vendor code on the DEC 8400, 
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DEC3000/400-AXP 

DTRSM 

DEC 8400 5/300 I 
HP 715/64 

Variant 
‘Left’ I ‘Right’ 

standard 
blocked 
standard 
blocked 
library 
standard 
blocked 
standard 
blocked 

standard 
blocked 
library 
standard 
blocked 
library 
standard 
blocked 

library 

IU1,lNl IL1,lNl <Ul,<T’ IL1,lTl <U>,lNl IL1,lNl 

13 13 21 21 15 15 
39 39 38 38 40 40 
40 73 70 72 97 97 

204 187 199 231 184 175 
184 182 176 183 179 203 
13 12 31 30 12 12 
50 47 43 42 48 49 
12 12 20 19 13 15 
30 28 31 31 31 31 
33 34 34 31 36 43 
23 24 41 40 27 27 
64 67 58 67 71 77 
79 84 77 77 83 72 
21 47 76 73 73 73 

106 105 108 107 106 110 
139 132 179 180 162 165 

7 7 15 14 9 9 
22 21 25 22 22 21 

‘U’,‘T’ 
15 
39 
93 

186 
181 
11 
47 
13 
30 
42 
27 
58 
76 
73 
98 

168 
9 

i 19 

Processor 

DEC3000/400-AXP 

DEC 8400 5/300 

HP 715/64 

MEIKO CS2-HA 

IBM RS/6000-750 

SGI Power Challenge 

SUN SPARC 20/50 

‘L’,‘T’ 
15 
39 
96 

191 
177 
12 
44 
13 
28 
37 
26 
66 
71 
72 
94 

170 
9 

20 

STRSM Variant 
‘Left’ ‘Right’ 

<Ul,lNl IL1,lNl <Ul,lT> lL>,<Tl CUl,<Nl IL1,lNl lU1,ITl IL1,lTl 

standard 14 14 23 24 16 16 16 17 
blocked 56 57 58 74 60 61 57 58 
standard 41 80 71 78 113 105 102 106 
blocked 259 250 252 212 218 230 213 228 
library 212 229 194 199 204 201 201 195 
standard 13 12 25 23 17 18 15 15 
blocked 48 46 46 48 53 51 47 46 
library 51 48 49 48 62 58 80 69 
standard 18 18 46 42 43 42 43 41 
blocked 74 81 76 69 61 58 60 56 
standard 27 24 25 24 28 35 29 29 
blocked 56 67 56 59 64 61 53 56 
library 79 78 85 82 80 80 73 72 
standard 21 46 64 63 71 72 71 71 
blocked 168 167 151 149 169 166 143 145 
library 141 141 169 168 159 160 164 164 
standard 11 12 24 23 13 14 13 13 
blocked 40 45 36 34 38 42 33 38 

Table 4.1: Average performance in Mflop/s of the blocked implementation of DTRSM on 
FUSC processors (using square matrices of order 32, 64, 96, and 128). 

Table 4.2: Average performance in Mflop/s of the blocked implementation of STRSM on 
RISC processors (using square matrices of order 32, 64, 96, and 128). 
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and would be even faster if we used calls to the vendor-supplied GEMM routines from 
within our blocked code. 

5 Blocked implementation of SYMM 

SYMM performs one of the matrix-matrix operations : 

where a and /3 are scalars, A is an m x m symmetric matrix (only the upper or lower 
triangular parts are used) and B and C are m x n matrices. 

We consider the following case (corresponding to the parameters “Left”, “Upper”, i.e. 
C=aAB+PC where only the upper part of A is referenced): 

(SYMM) 

(SYMM) 

(GEMM) 

(GEMM) 

(SYMM) 

(SYMM) 

(GEMM) 

Therefore, SYMM can be expressed as a sequence of SYMM and GEMM operations. 
The SYMM operations are used for the matrix-matrix multiplication involving the blocks 
Ai,i (only the upper triangular part is stored since the submatrices are symmetric). A 
straightforward way of avoiding the multiplication step by a triangular matrix consists 
of copying the submatrices Ai,i into a working array AA where both the upper and 
the lower triangular part are stored. Therefore, instead of using a SYMM operation 
for multiplications using the submatrices Ai,i, we can use a GEMM operation involving 
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AA. The additional operations that we make are compensated by the performance gain 
due to the use of GEMM. 

Therefore, SYMM is expressed as a sequence of GEMM operations : 

1. Copy A1,l into AA 

2. C1,l + PC1,l + aAA.B1,1 

3. Cl,2 + PCl,2 + aAA.B1,2 

(GEMM) 

(GEMM) 

(GEMM) 

(GEMM) 

(GEMM) 

(GEMM) 

(GEMM) 

(GEMM) 

The GEMM operations on block rows of C can be combined. This allows us to perform 
GEMM operations on longer vectors and decreases the overhead due to subroutine calls. 
The corresponding blocked code is reported in Figure 5.1. 

We present in Tables 5.1 and 5.2 the performance of the blocked version of SYMM and we 
compare it to the performance of the standard Fortran version. We see a big improvement 
over standard Fortran BLAS when using our blocked version, usually a factor of two 
but occasionally as much as a factor of nearly eight. On the SGI, we can improve the 
performance of our blocked code by up to about 20% by using larger blocks and so would 
outperform the vendor code both in single and double precision. It seems clear that DEC 
have used a similar trick to ours on the DEC 8400 since the performance of their library 
code for SYMM is close to their GEMM performance. 
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DU 70 1 1 N , ,NB - - 
NB-COL-A MIN(M-I+I,NB) 

C 
C 

C 
C upper triangular. 

. .  Copy diagonal block of A into full array AA. 
Diagonal block of A is NB-COL-A-by-NB-COL-A and 

C 
DO 42 JJ = I, NB-COL-A 

DO 41 I1 = 1, JJ 
AA(II,JJ) = A(II+I-I,JJ+I-I) 

41 CONTINUE 
42 CONTINUE 

DO 44 JJ = 1, NB-COL-A 
DO 43 I1 = 1, JJ 

AA(JJ,II) = A(II+I-I,JJ+I-I) 
43 CONTINUE 
44 CONTINUE 

C . .  Multiply diagonal blocks of A. 
C 

C 
DO 45 K=I,N,NB 

NB-COL-B=MIN (N-K+l, NB) 
CALL DCEMM('N','N',NB_COL-A,NB-COL-B, 

$ NB-COL-A, ALPHA, AA, NNB, 
$ B(I,K), LDB ,BETA,C(I,K) ,LDC) 

45 CONTINUE 

C .. Update block row of C. 
C 

C 
DO 60 J=l,I-NB,NB 

NB-COL,B=N 
CALL DGEMM('T','N',NB-COL-A,NB-COL-B, 

NB-LIG-A=MIN(M-J+I ,NB) 

$ NB-LIG-A, ALPHA, A(J,I) ,LDA, 
$ 

$ 
$ B(1,I) ,LDB,ONE,C(J,l) ,LDC) 

B( J, 1) ,LDB, ONE,C(I , I) ,LDC) 

NB-COL-A , ALPHA, A (J , I) , LDA , 
CALL DGEMM('N','N',NB-LIC-A,NB-COL-B, 

60 CONTINUE 
70 

Figure 5.1: Blocked code for SYMM 
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Processor 

DEC3000/400-AXP 

DEC 8400 5/300 

HP 715/64 

MEIKO CS2-HA 

IBM RS/6000-750 

SGI Power Challenge 

SUN SPARC 20/50 

DSYMM Variant 

standard 24 19 19 18 
blocked 42 42 43 44 
standard 87 96 91 90 
blocked 188 183 180 183 
library 315 310 300 300 
standard 4 4 16 16 
blocked 28 28 30 31 
library 44 45 45 46 
standard 15 15 40 38 
blocked 37 36 40 42 
standard 21 18 31 30 
blocked 69 71 71 70 
library 75 81 85 76 
standard 82 76 80 80 
blocked 116 116 113 114 
library 81 79 134 134 
standard 16 17 11 11 
blocked 23 24 23 23 

CLY,tU7 CL9,CL’ tR7,CUY CR’,CL7 

Table 5.2: Average performance in Mflop/s of the blocked implementation of SSYMM for 
RISC processors (using square matrices of order 32, 64, 96, and 128). 

DEC3000/400-AXP 

DEC 8400 5/300 

HP 715/64 

MEIKO CS2-HA 

IBM RS/6000-750 

SGI Power Challenge 

SUN SPARC 20/50 
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tL>,CUY tLY,CL> CR?,tU’ 

standard 24.1 21.1 30.4 
blocked 65.1 65.3 66.7 
standard 93 96 99 
blocked 233 228 231 
library 381 377 360 
standard 4 4 18 
blocked 48 48 54 
library 89 84 88 
standard 6 6 40 
blocked 60 62 75 
standard 13 12 28 
blocked 88 84 84 

standard 89 87 77 
blocked 189 189 158 
library 87 83 133 
standard 26 27 22 
blocked 42 38 39 

library 90 93 93 



6 Blocked implementation of TRMM 

TRMM performs one of the matrix-matrix operations : 

B=aAB, B=aAtB, or B=aBA, B=aBAt 

where Q is a scalar, B is an m x n matrix, A is a unit, or non-unit, upper or lower 
triangular matrix. 

We consider the following case (corresponding to the parameters “Left”, “No transpose”, 
and “Upper”, i.e. B=aAB where A is upper triangular): 

1. B1,l + aA1,1B1,1 (TRMM) 

(GEMM) 

(TRMM) 

(GEMM) 

(TRMM) 

(TRMM) 

TRMM is expressed as a sequence of GEMM and TRMM operations. The computations of 
the submatrices of B within the same block row are independent. The GEMM operations 
can be combined. We use a tuned Fortran code called DTRMML2X2 for performing the 
multiplication of diagonal blocks of A. 

The blocked code is reported in Figure 6.1. The code for DTRMML2X2 (TRIADIC 
option) is reported in Figure A.2 in Appendix. 

We report in Tables 6.1 and 6.2 the performance of the blocked version of TRMM in 
the case where A is unit. Our blocked code can be seen to be usually more than twice 
as efficient as standard BLAS. Although larger blocking on the SGI does not help much 
on this kernel, we notice that, for most options in single precision, the blocked code 
outperforms the vendor code. On the DEC 8400, our blocked code performs consistently 
better than the vendor code, particularly in single precision. The blocked code would be 
even faster if we used the vendor-supplied GEMM routines. 
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I 

* Form B := alpha*A*B. 
* 

DO 50 K=l,N,NB 
NB-COL-B=MIN(N-K+~,NB) 
DO 40 I = l,M,NB 

NB-LIG-A = MIN(M-I+l,NB) 

IF ((MOD(NB-LIG-A,2) .EQ.O) 
. AND. (MOD (NB-COL-B , 2) . EQ . 0) 
CALL DTRMML2X2-LUN(DIAG9 

THEN 

NB-LIG-A,NB-COL-B,ALPHA, A(I,I) , 
LDA,B(I,K), LDB ) 

ELSE 

CALL DTRMML-LUN(DIAG, 
NB-LIG-A,NB-COL-B,ALPHA, A(1,I) , 
LDA,B(I,K), LDB ) 

END IF 

CALL DGEMM(’No transpose’,’No transpose’, 
NB-LIG-A,NB-COL-B,M-I-NB-LIG-A+l, 
ALPHA , A (I , I+NB-LIG-A) , LDA , 
B (I+NB-LIG-A, K) , LDB, ONE, B (I , K) , LDB) 

CONTINUE 

Figure 6.1: Blocked code for TRMM 
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Processor DTRMM 

DEC3000/400-AXP standard 
blocked 

blocked 
library 

blocked 
library 

DEC 8400 5/300 standard 

HP 715/64 standard 

MEIKO CS2-HA standard 

Variant 
‘Left’ ‘Right’ 

‘U9,‘Nl ‘L’,lN’ lU>,lT’ LL1,LTI ‘U’,tNl lLl,lN’ tU’,‘T7 ‘Ll,‘T? 

23 22 20 20 15 15 15 15 
46 45 45 45 45 44 44 45 
84 81 74 70 104 101 93 94 

194 180 183 184 190 182 175 184 
175 174 178 175 180 174 172 171 
16 15 21 20 14 15 14 15 
30 29 33 31 34 33 32 30 
41 41 41 39 40 39 39 38 
13 12 31 30 11 11 11 12 

IBM RS/6000-750 

Table 6.1: Average performance in Mflop/s of the blocked implementation of DTRMM 
for RISC processors (using square matrices of order 32, 64, 96, and 128). 

blocked 50 47 43 42 49 49 47 44 
standard 30 28 40 41 32 33 33 32 

SGI Power Challenge 

SUN SPARC 20/50 

Table 6.2: Average performance in Mflop/s of the blocked implementation of STRMM for 
RISC processors (using square matrices of order 32, 64, 96, and 128). 

blocked 49 69 75 56 72 50 48 63 
library 72 80 80 77 79 84 76 76 
standard 54 53 77 76 73 73 72 72 
blocked 123 122 124 124 116 114 108 109 
library 171 168 183 141 177 168 174 175 
standard 11 11 14 14 9 9 9 9 
blocked 22 22 23 24 22 22 19 20 
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Processor 

DEC3000/400-AXP 

DEC 8400 5/300 

HP 715/64 

MEIKO CS2-HA 

IBM RS/6000-750 

SGI Power Challenge 

SUN SPARC 20/50 

STRMM Variant 
‘Left’ ‘Right’ 

tU’,INY CJ,>,tN> <U’,&T> <L’,‘T’ CUl,<N> ‘L?,‘N9 ‘U9,&TY ‘Ll,<T? 

standard 28 28 21 20 16 12 12 12 
blocked 71 73 70 70 72 70 69 71 
standard 91 88 70 70 107 105 97 108 
blocked 261 233 225 242 236 225 224 232 
library 206 213 206 211 209 206 205 206 
standard 20 17 26 24 15 13 13 14 
blocked 49 49 53 51 56 66 56 53 
library 72 71 69 63 75 72 77 71 
standard 18 18 46 42 43 42 43 41 
blocked 74 81 76 69 61 58 60 56 
standard 28 27 24 23 32 20 19 21 
blocked 60 59 58 61 57 56 58 52 
library 87 80 85 80 84 79 76 84 
standard 50 52 56 54 71 64 63 63 
blocked 193 195 160 160 179 180 166 165 
library 151 151 180 131 176 161 175 174 
standard 22 21 19 20 13 9 9 9 
blocked 37 42 39 39 38 39 36 36 



7 Blocked implementation of SYRK 

SYFtK performs one of the symmetric rank-k operations : 

c = ~ A A ~ + ~ c ,  or C=QA~A+PC 

where a! and p are scalars, C is an n x n symmetric matrix (only the upper or lower 
triangular parts are updated), and A is a n x k matrix in the first case and a k x n 
matrix in the second case. 

We consider the following case (corresponding to “Upper”, and “NO transpose)’, i.e. we 
perform C=aAAt+PC where only upper triangular part of C is updated): 

The symmetric rank-k update is expressed as a sequence of SYRK for updating the 
submatrices Ci,i and GEMM for the other blocks. The updates of the submatrices of 
C can be performed independently. The GEMM updates of off-diagonal blocks can be 
combined. Note that, at the price of extra operations, we could perform the update of the 
diagonal blocks of C using GEMM instead of SYRK. 

The corresponding blocked code is shown in Figure 7.1. Note that it is more efficient to 
perform the multiplication of matrix C by P before calling GEMM rather than performing 
this multiplication within GEMM. The code for SYRKL2X2 (TRIADIC option) is reported 
in Figure A.3 in Appendix. In Tables 7.1, and 7.2 the performance of the standard 
Fortran code and of the blocked implementation are compared for all the variants. For 
this kernel, our gains over using standard BLAS are significant, usually by a factor of close 
to two. Although using a larger block size on the SGI improves performance by usually less 
than lO%, we consistently outperform .the vendor code by a significant amount in single 
precision, even at the lower block size. Our blocked code is substantially better than the 
vendor kernel on the DEC 8400 and would be even faster if we used the vendor-supplied 
GEMM. 
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NB-LIG-C=MIN(NB,N-I+l) 
* 
* 
* 

90 

Multiplication of diagonal block of C 

IF (BETA. Eq . ZERO) THEN 
DO J = 1, NB-LIG-C 

DO I1 = I, J 

ENDDO 
C(II+I-I,J+I-I) = ZERO 

ENDDO 

DO J = I, NB-LIG-C 
DO I1 = 1, J 

ENDDO 

ELSE 

C(II+I-I,J+I-I) = BETA*C(II+I-1,J+I-1) 

ENDDO 
END IF 

DO 90, L=I,K,NB 

NB-COL-A=MIN(NB,K-L+I) 

IF ((MOD(NB-LIG-C,2) .Eq.O) .AND. (MOD(NB-COL-A,2) .EQ.O))THEN 
CALL DSYRKL2X2(NB-LIG-C,NB-COL-A,ALPHA, 

$ A (I , L) , LDA , ONE, C(I , I) , LDC) 
ELSE 

CALL DSYRKL(NB-LIG-C,NB-COL-A,ALPHA, 
$ A(I ,L) ,LDA , ONE ,C(I, I) ,LDC) 

END IF 

CONTINUE 

NB-COL-C=N-NB-LIG-C-I+l 
NB-COL-A=K 

CALL DGEMM( ‘N’ , ‘T’ ,NB-LIG-C,NB-COL-C,NB-COL-A, 
$ ALPHA,A(I,I) ,LDA,A(I+NB-LIG-C,l) ,LDA, 
$ BETA, C (I, I+NB-LIG-C) , LDC) 

Figure 7.1: Blocked code for SYRK 
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Processor 

DEC3000/400-AXP 

DEC 8400 5/300 

HP 715/64 

MEIKO CS2-HA 

IBM RS/6000-750 

SGI Power Challenge 

SUN SPARC 20/50 

25 

DSYRK Variant 

standard 21 21 22 22 
blocked 42 42 48 49 
standard 81 82 74 78 
blocked 172 162 182 189 
library 82 86 100 85 
standard 17 15 24 24 
blocked 26 23 32 31 
library 16 16 28 27 
standard 20 20 37 36 
blocked 44 44 40 40 
standard 29 28 46 47 
blocked 55 54 70 69 
library 88 83 83 85 
standard 56 55 105 105 
blocked 115 114 135 137 
library 111 111 114 114 
standard 11 11 15 15 
blocked 18 18 23 24 

CU9,CN’ CLY,CN! CU1,CT’ CL9,CT’ 

4 

Processor 

DEC3000/400-AXP 

DEC 8400 5/300 

HP 715-64 

MEIKO CS2-HA 

IBM RS/6000-750 

SGI Power Challenge 

SUN SPARC 20/50 

SSYRK Variant 

standard 27 27 25 24 
blocked 62 60 70 65 
standard 87 89 75 79 
blocked 224 215 24 1 247 

standard 21 19 28 26 
blocked 56 47 68 62 
library 19 19 29 30 
standard 32 29 48 47 
blocked 66 57 70 65 
standard 28 26 23 24 
blocked 50 45 50 49 
library 90 95 95 103 
standard 51 54 79 80 
blocked 165 162 166 168 
library 99 98 100 99 
standard 21 21 25 23 
blocked 33 32 39 38 

CU’,CN1 CL9,CN’ CU1,CT’ CL?,CT’ 

library 87 94 106 90 



8 Blocked implementation of SYR2K 

SYR2K performs one of the symmetric rank-2k operations: 

where a and p are scalars, C is an n x n symmetric matrix (only the upper or lower 
triangular parts are updated) and A and B are n x k matrices in the first case and k x n 
matrices in the second case. 

We consider the following case (corresponding to "Upper", and "NO transpose", i.e 
C=aABt+aBAt+PC where only the upper triangular part of C is updated): 

(SYR2K) 

(SYR2K) 

(GEMM) 

(GEMM) 

(GEMM) 

(GEMM) 

(SYR2K) 

(SYR2K) 

SYR2K is expressed as a sequence of SYR2K for updating the triangular submatrices Ci,i, 
and GEMM on the other blocks. The update of the submatrices of C can be effected 
simultaneously. There is no need to compute both *ABt and *BAt (since it is the same 
matrix but transposed). Thus, only one of the two operations is performed and the result 
is stored into a working array called CC. This can be done using GEMM. 

Using these remarks SYR2K is computed in the following way : 
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2. CC t CC+ aAi,2.B4,2 

3. C1,l t PClJ + cc + CCt 

4. c1,2 + P G , 2  + "AlJB;,, 

5. c1,2 t c1,2 + aB1,lA;J 

8. CC t C Y A ~ , ~ . B ~ , ~  

(GEMM) 

(GEMM) 

(GEMM) 

(GEMM) 

(GEMM) 

(GEMM) 

(GEMM) 

(GEMM) 

As for SYRK, with a larger number of blocks, the GEMM updates of the off-diagonal 
blocks can be combined. The corresponding blocked code is given in Figure 8.1. We 
report in Tables 8.1 and 8.2 the results obtained using the blocked implementation of 
SYR2K. We note that SYR2K is the one kernel where the ESSL Library on the IBM has 
significantly better performance than the standard vendor-supplied BLAS. Although using 
a larger block size on the SGI improves performance by between 10% and 20%, even at 
the lower block size we consistently outperform the vendor code, by a significant amount 
in single precision. Our blocked code is substantially better than the vendor kernel on the 
DEC 8400 and would be even faster if we used the vendor-supplied GEMM. 

DO 130 9 1 - 1  9 ,  N N B  - 
NB-LIG-C=MIN(NB,N-I+l) 
CALL DGEMM('N','T',NB-LIG-C,NB-LIG-C,K, 

DO JJ=l,NB-LIG-C 
DO II=l,JJ 

$ ALPHA, A(1,l) , LDA ,B (I, 1) , LDB , ZERO ,CC ,NB) 

C(I+II-l,I+JJ-l) = BETA*C(I+II-l,I+JJ-l) 
C(I+II-l,I+JJ-1) = C(I+II-1,I+JJ-1)+CC(II,JJ) 
C(I+II-l,I+JJ-1) = C(I+II-1,I+JJ-1)+CC(JJ,II) 

ENDDO 
ENDDO 
J=I+NB-LIG-C 
NB-COL_C=MAX(N-J+l,O) 
CALL DGEMM('N','T',NB-LIG-C,NB-COL-C,K, 

CALL DGEMM('N', 'T',NB-LIG-C,NB-COL-C,K, 
$ ALPHA,A(I,l) ,LDA,B(J,l) ,LDB,BETA,C(I,J) ,LDC) 

$ ALPHA,B(I, 1) ,LDB,A(J, 1) ,LDA,ONE,C(I, J) ,LDC) 
130 

Figure 8.1: Blocked code for SYR2K 
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Processor 

DEC3000/400-AXP 

DEC 8400 5/300 

HP 715/64 

MEIKO CS2-HA 

IBM RS/6000-750 

SGI Power Challenge 

SUN SPARC 20/50 

Table 8.2: Average performance in Mflop/s of the blocked implementation of SSYR2K for 
RISC processors (using square matrices of order 32, 64, 96, and 128). 

DSYR2K Variant 

standard 23 20 14 14 
blocked 50 49 47 48 
standard 83 89 82 82 
blocked 187 181 191 198 
library 106 103 130 127 
standard 5 5 2 2 
blocked 33 31 34 35 
library 5 5 3 3 
standard 15 17 10 10 
blocked 44 44 46 46 
standard 18 15 39 35 
blocked 70 66 81 82 
library 19 15 36 36 
standard 87 87 89 88 
blocked 115 113 126 128 
library 112 113 116 115 
standard 13 13 15 15 
blocked 23 22 24 25 

tUl,tN? <Ll,tN? iU7,<T7 tL,,tT? 

28 

Processor SSYR2K 

DEC3000/400-AXP standard 

DEC 8400 5/300 standard 
blocked 

blocked 
library 

blocked 
library 

blocked 

blocked 

HP 715/64 standard 

MEIKO CS2-HA standard 

IBM RS/6000-750 standard 

library 

blocked 
library 

SGI Power Challenge standard 

SUN SPARC 20/50 standard 
blocked 

Variant 
tU’,tN7 tL?,<N7 tU?,tT? tL7,tT’ 

25 23 14 14 
69 70 67 67 
92 97 87 88 

254 251 241 240 
127 126 139 136 

5 5 2 2 
60 59 61 59 

5 5 2 2 
7 7 3 3 

64 64 75 79 
14 11 38 38 
81 79 90 87 
14 11 35 35 
76 76 78 77 

159 158 199 200 
102 100 101 100 
23 23 30 28 
39 38 40 40 



9 Conclusion 

The Level 3 BLAS are a set of computational kernels targeted at matrix-matrix operations 
with the aim of providing efficient and portable implementations of algorithms on 
high-performance computers. The linear algebra package LAPACK (Anderson, Bai, 
Bischof, Demmel, Dongarra, DuCroz, Greenbaum, Hammarling, McKenney, Ostrouchov & 
Sorensen 1995), for example, makes extensive use of the Level 3 BLAS. We have described 
an efficient and portable implementation of the Level 3 BLAS for RISC processors. 

The Level 3 BLAS are expressed as a sequence of matrix-matrix multiplications (GEMM) 
and operations involving triangular blocks. The combination of blocking, copying, and 
loop unrolling allows efficient exploitation of the memory hierarchy and only the blocking 
parameter and the loop unrolling depth are machine dependent. Both the performance of 
GEMM and performance of the kernel dealing with triangular matrices are crucial. 

We have shown here that significant Megaflop rates can be achieved, only using tuned 
Fortran kernels. Although our primary aim is not to outperform the vendor-supplied 
libraries, our portable implementation compares reasonably well with the manufacturer- 
supplied libraries on the IBM RS/6000, the HP 715/64, the DEC 8400 5/300, and the SGI 
Power Challenge. It is interesting that, although the vendor-supplied GEMM routines are 
better than our blocked version of GEMM on the DEC 8400 5/300 and the SGI Power 
Challenge, many of our blocked versions of the other kernels are better than the vendor- 
supplied equivalents, sometimes by a large margin. Note also that the availability of a 
highly tuned version of the matrix-matrix multiplication kernel GEMM would improve 
the performance figures of our blocked code substantially. For example, when using the 
manufacturer-supplied version of DGEMM within our blocked version of DTRSM, we 
achieve a close or marginally better performance than that of the DTRSM kernel available 
in the vendor-supplied library on the HP 715/64 and the IBM RS/6000-750. We would 
suggest that some vendors could easily increase the performance of their non-GEMM Level 
3 BLAS kernels by using the techniques described in this paper. Finally, for some machines, 
perfomance could be enhanced by judiciously selecting appropriate leading dimensions of 
the matrices although we do not consider this because it is dependent on the machine 
architecture and cache management strategy. 

We demonstrated in Dayd6 et al. (1994) how this blocked version could be used to 
parallelize the Level 3 BLAS. A preliminary version was successfully used for developing 
both serial and parallel tuned versions of the Level 3 BLAS for a 30-node BBN-TC2000 
(Amestoy et al. 1995, Dayd6 & Duff 1995). We are currently experimenting on other 
shared and virtual shared memory machines in order to develop tuned serial and parallel 
implementations for them. 

10 Availability of codes 

The codes described in the present paper are available using ftp anonymous at 
ftp.enseeiht.fr. The software is located in pub/numerique/BLAS/RISC. A compressed 
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tarfile called blas-risc.tar.2 contains the following codes : 

0 A set of test routines that check the correct execution and compute the Megaflop 
rates of the blocked implementation compared with the standard version of the 
Level 3 BLAS. 

0 The blocked implementation of the Level 3 BLAS. 

We advise the user to check the availability of tuned serial codes (manufacturer-supplied 
library) before using our blocked implementation. 

11 Acknowledgments 

We are grateful to Nick Hill of the Rutherford Appleton Laboratory for his advice’on the 
DEC 8400, to ‘Andrew Cliffe of AEA Technology, Harwell for performing the runs on the 
SGI Power Challenge, and to Gdrard Le Blanc for help in accessing the IBM RS/6000-750 
at IMFT in Toulouse. 

References 

Agarwal, R. C., Gustavson, F. G. & Zubair, M. (1994), ‘Exploiting functional parallelism 
of POWER2 to design high-performance numerical algorithms’, IBM Journal of 
Research and Development 38, 563-576. 

Amestoy, P. R. & Duff, I. S. (1989)) ‘Vectorization of a multiprocessor multifrontal code’, 
Int. J. of Supercomputer Applics. 3, 41-59. 

Amestoy, P. R., Daydd, M. J., Duff, I. S. & Morkre, P. (1995)) ‘Linear algebra calculations 
on a virtual shared memory computer’, Int Journal of High Speed Computing 7( l),  21- 
43. 

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., DuCroz, J., Greenbaum, 
A., Hammarling, S., McKenney, A., Ostrouchov, S. & Sorensen, D. (1995), LAPACK 
Users’ Guide, second edition, SIAM Press. 

Bodin, F. & Seznec, A. (1994), Cache organization influence on loop blocking, Technical 
Report 803, IRISA, Rennes, France. 

Dayd6, M. J. & Duff, I. S. (1995), ‘Porting industrial codes and developing sparse linear 
solvers on parallel computers’, Computing Systems in Engineering 6(4/5), 295-305. 

Daydk, M. J., Duff, I. S. & Petitet, A. (1994), ‘A parallel block implementation of Level 
3 BLAS kernels for MIMD vector processors’, A CM Transactions on Mathematical 
Software 20, 178-193. 

30 



Dongarra, J. J. (1995), Performance of various computers using standard linear algebra 
software, Technical Report CS-89-85, University of Tennessee. 

Dongarra, J. J., Du Croz, J., Duff, I. S. & Hammarling, S. ( 1 9 9 0 ~ ) ,  ‘Algorithm 679: A 
set of Level 3 Basic Linear Algebra Subprograms: Model implementation and test 
programs’, A CM fiansactions on Mathematical Software 16, 18-28. 

Dongarra, J. J., Du Croz, J., Duff, I. S. & Hammarling, S. (1990b), ‘A set of Level 3 
Basic Linear Algebra Subprograms.’, A CM fiansactions on Mathematical S O ~ ~ W Q E  
16, 1-17. 

Dongarra, J. J., Mayes, P. & Radicati di Brozolo, G. (1991), Lapack working note 28 : The 
IBM RISC System/6000 and linear algebra operations, Technical Report CS-91-130, 
University of Tennessee. 

Gallivan, K. ,  Jalby, W. & Meier, U. (1987), ‘The use of BLAS3 in linear algebra on 
a parallel processor with a hierarchical memory’, SIAM J O U ~ Q Z  on Scientific and 
Statistical Computing 8 ,  1079-1084. 

Gallivan, K., Jalby, W., Meier, U. & A., S. (1988), ‘Impact of hierarchical memory systems 
on linear algebra algorithm design’, Int Journal of Supercomputer Applications 
2(1),  12-48. 

KAgstrom, B., Ling, P. & Loan, C. V. (1993), Portable high performance GEMM-based 
Level-3 BLAS, in R. F. Sincovec et al., ed., ‘Proceedings of the Sixth SIAM Conference 
on Parallel Processing for Scientific Computing’, SIAM, 339-346. 

Puglisi, C. (1993), QR Factorization of Large Sparse Overdetermined and Square Matrices 
using the Multifrontal Method in a Multiprocessor Environment, PhD thesis, INPT. 
Technical Report TH/PA/93/33, CERFACS. 

Qrichi Aniba, A. (1994), ImplCmentation performante du BLAS de niveau 3 pour les 
processeurs RISC, Technical Report Rapport 3bme AnnCe, DCpartement Informatique 
et MathCmatiques AppliquCes, ENSEEIHT. 

A Appendix 

We show here some of the tuned Fortran codes referenced in the paper. 
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70 
80 

* 

* 
* 
* 

30 
* 
* 
* 

40 

~~ IF ( ALPHA,. NE. ONE )THEN 

DO 70 I = I, M 

CONTINUE 

DO 80 J = 1, N 

B( I, J ) = ALPHA*B( I, J 

CONTINUE 
END IF 

DO 50 I = M , 1, -2 
DO K = M, I+1, -1 

AA2(K) = A(1-1,K) 
AAI(K) = A(1,K) 

ENDDO 
DO 40 J = 1, N, 2 

Bll = B(I ,J ) 
B21 = B(1-1,J ) 
B12 = B(I ,J+I) 
B22 = B(1-1 , J+1) 

Update B 

DO 30 K = M, I + I, -1 
BI = B(K,J ) 
B2 = B(K,J+l) 
AI = AAI(K) 
A2 = AA2(K) 
BII = B11 - AI*BI 
B21 = B21 - A2*BI 
B12 = B12 - AI*B2 
B22 = B22 - A2*B2 

CONTINUE 

Compute s o l u t i o n  

IF ( NOUNIT) THEN 
T1 = ONE / A( I, I ) 
Bll = B11 * T1 
B12 = B12 * TI 
U1 = ONE / A( 1-1, 1-1 ) 

END IF 
A l = A (  1 - 1 ,  I )  
B21 = B21 - B11 * AI 
B22 = B22 - B12 * AI 
IF ( NOUNIT) THEN 

B21 = B21 * U1 
B22 = B22 * U1 

END IF 
B(I , J  ) = B11 
B( I - 1, J = B21 
B( I , J +  1 )  =B12 
B( I - 1, J + 1 )  =B22 

CONTINUE 

Figure A. l :  Tuned code for TRSM 
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uu L W  I--I,n,L 

DO K=I+2,M 
AAl(K) = A(1,K) 
AA2(K) = A(I+l,K) 

ENDDO 
DO 10 J=l,N,2 

Tll = B(1,J) 
T21 = B(I+l,J) 
T12 = B(I,J+l) 
T22 = B(I+l,J+l) 

* 
* . .  Update triangular block 

A1 = A(I,I+l) 
T11 = T11 + Al*T21 
T12 = T12 + Al*T22 
DO K=I+2,M 

* 

A1 = AAl(K) 
A2 = AA2(K) 
B1 = B(K,J) 
B2 = B(K,J+l) 
T11 = T11 + Al*Bl 
T21 = T21 + A2*B1 
T12 = T12 + Al*B2 
T22 = T22 + A2*B2 

ENDDO 
B(1,J) = T11 
B(I+l,J) = T21 
B(I,J+l) = T12 
B(I+l,J+l) = T22 

10 CONTINUE 

Figure A.2: Tuned code for TRMM 
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J STAKP 1 
DO 10, I=IyNy2 

T11 = BETA*C(I,I) 
T12 = BETA*C(I,I+I) 
T22 = BETA*C(I+I,I+I) 
DO L = l,K 

AAI(L) = A(I,L) 
AA2(L) = A(I+l,L) 

ENDDO 
DO 15, L = 1,K 

AI = AAI(L) 
A2 = AA2(L) 
BI = ALPHA*AI 
B2 = ALPHA*A2 
T11 = TI1 + BI*AI 
T12 = T12 + BI*A2 
T22 = T22 + B2*A2 

15 CONTINUE 
C(1,I) = Tll 
C(I,I+I) = T12 
C(I+I,I+I) = T22 
JSTART=JSTART+2 
DO 20 J=JSTART,N,2 

TII = BETA*C(I,J) 
T21 = BETA*C(I+I,J) 
T12 = BETA*C(I,J+l) 
T22 = BETA*C(I+I,J+l) 
DO L = 1, K 

BI = ALPHA*A(J,L) 
B2 = ALPHA*A(J+l,L) 
AI = AAI(L) 
A2 = AA2(L) 
T11 = T11 + BI*AI 
T21 = T21 + BI*A2 
T12 = T12 + B2*A1 
T22 = T22 + B2*A2 

ENDDO 
C(1,J) = T11 
C(I+I,J) = T21 
C(I,J+I) = T12 
C(I+l,J+I) = T22 

20 CONTINUE 
10 

Figure A.3: Tuned code for SYRK 
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