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Abstract 
 

This paper presents a performance analysis of an HPC 
Integer Benchmark comprising seven legacy codes (and 
13 associated data sets) designed to test both integer and 
boolean performance. In presenting an overview of 
single processor performance, data is analysed from a 
variety of Itanium2, Opteron and EM64T Xeon 
processors (16 machines in total), plus the IBM power5-
based p5-575, with a particular focus on the emerging 
dual-core systems from AMD and Intel. The subsequent 
performance analysis considers for each benchmark the 
impact of memory latency and memory bandwidth and 
dependency on both clock speed and cache. 
Defining a set of associated “RATE” benchmarks, we 
demonstrate clear pointers to the memory bandwidth 
issues on dual-core systems, and define a “workload” 
benchmark designed to fully reveal these effects when 
considering throughput workloads. Finally we present 
initial results from the MPI implementation of a number 
of the benchmark codes on a variety of parallel systems. 

1. Introduction 

Much of the performance evaluation work carried out by 
the Distributed Computing Group at CCLRC Daresbury 
Laboratory has naturally focused on 64-bit floating point 
arithmetic. To date this work has considered the 
performance attributes of current and emerging systems 
in scientific and technical computing, derived though a 
variety of synthetic and application-based floating point 
metrics. Numerous systems have been rigorously 
evaluated using important applications. Recent 
evaluations have included the Cray XD1 and Infinipath 
Clusters [1]. The primary goals of these evaluations are 
to a) determine the most effective approaches for using 
each system, b) evaluate benchmark and application 
performance, both in absolute terms and in comparison 
with other systems, and c) predict scalability, both in 
terms of problem size and in number of processors. 

However, there are a number of established and 
emerging disciplines where a greater emphasis is given 
to the integer and boolean performance of processors e.g. 
the bioinformatics community, intelligence agencies etc. 

There are of course a number of well established 
benchmarks that focus on integer performance, notably 
SPEC [2] and HPCC [3]. The former dedicates the entire 
SPECint and SPECint_rate [4] benchmarks to track 
integer related performance, while HPCC includes the 
RandomAccess benchmark [5] to measure the rate of 
integer random updates of memory. In line with our 
approach to evaluating the floating point attributes of key 
application codes, we felt it timely to develop our own 
integer-based benchmarks to reflect the performance 
interests of the above communities.  

The aim of the present work is to examine both the 
single and parallel processor performance of a set of 
integer-based benchmark codes (comprising seven 
legacy codes and 13 associated datasets) on a variety of 
different processors and hardware platforms.  The overall 
approach is to assess the performance of each code in 
light of the different processor attributes and system 
architectures. Specifically we look to understand each 
code’s dependency on clock speed, cache, both memory 
latency and bandwidth and the impact that each factor 
has on serial, rate and parallel work loads.  

This report is broken down into a number of sections, 
with Section 2 providing a description of each of the 
benchmark codes and a summary of the variety of 
systems used in the benchmarks. Subsequent sections 
each focus on a specific aspect of the observed 
performance. Section 3 reports the overall serial 
benchmark times for each of the codes as a function of 
data set, and provides a performance comparison 
contrasting the Intel Itanium (IA64) performance with 
both the  Intel Xeon EM64T (code name “Nocona” and 
“Irwindale”) and AMD Opteron (x86-64). A more 
detailed analysis of these comparisons is given in 
Sections 4 and 5. Section 4 looks to rationalise the 
performance in terms of specific attributes of the systems 
under consideration e.g. memory latency and memory 
bandwidth, processor speed etc. Section 5 turns to 
software specific effects that impact on the observed 
performance – the choice of compiler, compiler 
optimisation level and the impact of coding language 
through a consideration of performance delivered when 
using C and FORTRAN.  
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The remaining sections look to extend the preceding 
focus on just single processor performance to a 
consideration of RATE (throughput), workload and 
parallel performance. Section 6 considers the impact of 
throughput processing with the development of RATE 
benchmarks, very much in line with the SPEC provision 
of both SPECint and SPECint_rate benchmarks [4]. 
Section 7 extends this analysis still further with the 
development of a simulated “workload throughput” 
benchmark, looking to reflect “real world” usage by 
simulating a job mix of all of the benchmark codes. By 
defining this set of associated RATE benchmarks, we 
demonstrate clear pointers to the memory bandwidth 
issues on dual-core systems, while the "workload" 
benchmark is designed to fully reveal these effects when 
considering throughput workloads.  Finally we turn to 
the parallel performance of the benchmarks, and consider 
the parallel implementation and performance of a 
number of the integer codes using MPI on a variety of 
parallel systems. Note that a presentation version of this 
report is available [6].  

2. The HPC Integer Benchmark and 
Evaluation Systems 

The HPC Integer benchmark is comprised of 7 legacy 
codes, with 13 different data sets, designed to assess both 
integer and boolean performance. Originally developed 
for Cray vector supercomputers, the functionality and 
purpose of each the named codes are as follows:  

• Linemap: performs a Gray-code search for a linear 
mapping (requires extensive use of popcnt). 

• Permutit: permutes the order of bits of each entry in 
an array of 64-bit words. 

• Hadamard: performs a transform similar to the 
Hadamard transform. 

• RuWarray: calculates a read-update-write on 
random elements of a large array. 

• Treesearch: undertakes a tree search to solve a 33-
peg solitaire game. 

• Linequ: solves a system of linear binary equations – 
700 equations in 700 unknowns. 

• IObench: writes a number of 64-bit words of 
bitstream to a file and reads the file. 

In presenting an overview of processor performance for 
each of the above codes, performance data is analysed 
from a variety of Itanium2, Opteron and EM64T Xeon 
processors (16 machines in total, plus the IBM power5-
based p5-575, see Table 1), with a particular focus on the 
emerging dual-core systems from AMD and Intel. The 

systems evaluated reside at a number of sites – some at 
Daresbury itself, plus those at both academic- and 
vendor-sites e.g. Xeon systems at Dell and a number of 
Itanium2-based RX systems at Hewlett Packard. The 
subsequent performance analysis considers for each 
benchmark the impact of memory latency, memory 
bandwidth and the dependency on both clock speed and 
cache.  
 
Processor CPU 

speed 
Interconnect Location 

Opteron270 2.0GHz Myrinet 2K Leeds 
Opteron248 2.2GHz Myrinet 2K RAL 
Opteron875 2.2GHz – HP 
Opteron150 
(Cray XT3) 

2.4GHz Customised Pittsburgh 

Opteron250 2.4GHz Rapid Array DL 
Opteron280 2.4GHz – HP 
Opteron852 2.6GHz Infinipath Streamline 
Xeon (Bensley) 3.46GHz – Intel 
PowerEdge1850 3.2GHz Infiniband TACC 
PowerEdge1850 3.2GHz Infiniband TACC 
IBM p5-575 1.5GHz Federation 

(HPS) 
HPCx 

Itanium2 (SGI 
Altix) 

1.3GHz NUMAlink CSAR 

Itanium2, (SGI 
Altix) 

1.5GHz NUMAlink CSAR 

Itanium2 (HP 
rx5670) 

1.5GHz ZX1 HP 

Itanium2 (HP, 
rx8620) 

1.6GHz SX1000 HP 

Itanium2 (HP 
rx1620) 

1.6GHz ZX1 HP 

Itanium2 (HP 
SD64000B) 

1.6GHz SX2000 HP 

Table 1: Summary of the Systems Evaluated. 

Given the dependency of this analysis on the 
architectural characteristics of each of the accessed 
systems, we describe these in some detail below when 
outlining each of the systems characteristics:    
1. The Cray XT3, Bigben, at Pittsburgh 
Supercomputing Centre: The XT3 is Cray’s third-
generation massively parallel processing system. The 
XT3 builds upon a single processor node, or processing 
element (PE), using the AMD Opteron model 150 
processors. These processors are connected with a 
customized interconnect managed by a Cray-designed 
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Application-Specific Integrated Circuit (ASIC) called 
SeaStar. The compute PEs run a lightweight operating 
system kernel called Catamount. The Opteron core has 
three integer units and one floating point unit capable of 
two floating-point operations per cycle. Because the 
processor core is clocked at 2.4 GHz, the peak floating 
point rate of each compute node is 4.8 GFlops. The 
memory structure of the Opteron consists of a 64KB 2-
way associative Level 1 (L1) data cache, a 64KB 2-way 
associative L1 instruction cache, and a 1 MByte (MB) 
16-way associative, unified Level 2 (L2) cache. Each PE 
has 2 GByte (GB) of memory but only 1 GB is usable 
with the kernel used for our evaluation. The memory 
DIMMs are 1 GB PC3200 - the peak memory bandwidth 
per processor is 6.4 GB/s. Also, the Opteron 150 has an 
on-chip memory controller. As a result, memory access 
latencies with the Opteron 150 are in the 50-60 ns range.  

2. An Opteron cluster, Everest, at Leeds University: 
The cluster comprises Sun Microsystems’ Sun Fire 
V40z and V20z servers with dual-core AMD Opteron 
processors integrated by Streamline Computing. Seven 
of these (V40z) comprise four 2.2 GHz dual-core 
processors configured with 192 GB memory. Eighty 
seven V20z servers are interconnected with a Myrinet 
network; each of these comprises two 2.0 GHz dual-core 
processors sharing in total 0.7 TByte (TB) of distributed 
memory across 348 processor cores. The system runs the 
Linux (64-bit SuSE) operating system. The present 
benchmarks were run on the myrinet-connected V20z 
servers i.e. two 2.0 GHz dual-core processors per node. 

3. An Opteron cluster, SCARF, at the Rutherford 
Laboratory integrated by Streamline Computing: 256 
AMD Opteron 248 (2.2 GHz) processors with 2GB (224 
processors) and 4 GB (32 processors) of memory per 
processor. The system is configured as 128, 2-way SMPs 
with Myrinet 2K (M3F-PCIXD-2) interconnect. The 
system runs the RedHat ES 3.0 operating system and 
PGI compilers. 

4. An Opteron cluster at Streamline Computing: 32 
AMD Opteron 252 (2.6 GHz) processors with 2GB of 
memory per processor. The system is configured as 16, 
2-way SMPs with Pathscale interconnect. The system 
runs the RedHat ES 3.0 operating system and Pathscale 
(EKO v2.2) compilers. 

5. The Cray XD1 at Daresbury: 70 AMD 2.4 GHz 
Opteron 250 processors with 2GB of memory per 
processor. System is configured as 35 x 2-way SMPs 
with Cray’s proprietary RapidArray interconnect fabric. 
PGI compilers were used (6.0.8). 

6. The SGI Altix 3700 system, NEWTON, at 
Manchester Computing Centre comprising 512 Itanium2 
processors and SGI’s NUMAlink interconnect. Each 

processor has 256 KB L2 cache, 16 KB L1 data cache, 
16 KB L1 instruction cache. The 1.3 GHz processors 
have 3 MB L3 cache, while the 1.5 GHz processors have 
6 MB. The machine has an aggregate of 1 TB of shared 
memory. SGI NUMAlink provides sub-microsecond 
hardware latency, 3-5 microseconds MPI latency, sub-
microsecond latency for one-sided communications, and 
12.8GB/s aggregate bandwidth per brick (4 CPUs). The 
Operating System comprises a Linux kernel with SGI 
Propack extensions (based on Redhat 7.2).  

7. HP Itanium2 cluster at HP: 144 Itanium-2 1.5 GHz 
processors. The system is configured as 72 x 2-way SMP 
RX1620 nodes with an Infiniband and Gigbit 
interconnect. Each compute node has 18GB of memory. 
The system runs the HPUX (HPUX 11.23) operating 
system. 

8. The HP Integrity Superdome SD64000B. The 
system features 64 socket (128 core) 1.6 GHz Itanium2 
Montecito processors with 12 MB L3 cache per core. 
The SD64000B architecture is based on HP’s new cell 
infrastructure (SX2000), with 533 MHz frontside bus. 
The system runs the HPUX (HPUX 11.23) operating 
system. 

9. The HPCx phase2a system at Daresbury, 
comprising 96 IBM power5 eServer nodes (1.5 GHz) i.e. 
1536 processors. The system is equipped with 3.2 TB of 
memory and 36 TB of disk. In the power5 architecture, a 
chip contains two processors, together with L1 and L2 
cache. Each processor has its own L1 instruction cache 
of 32 KB and L1 data cache of 64 KB integrated onto 
one chip. Also on board the chip is the L2 cache 
(instructions and data) of 1.9 MB, which is shared 
between the two processors. Four chips (8 processors) 
are integrated into a multi-chip module (MCM). Two 
MCMs (16 processors) comprise one frame. Each MCM 
is configured with 128 MB of L3 cache and 16 GB of 
main memory. The total main memory of 32 GB per 
frame is shared between the 16 processors of the frame. 
The frames in the HPCx system are connected via IBM's 
High Performance Switch (HPS). Each frame is one 16-
way LPAR – the names LPAR and frame are synonyms 
for computer node on HPCx phase2a. 

In addition to the systems above systems, benchmarks 
have been run on a variety of single node server systems, 
including: 

• A variety of Dell Poweredge 1850 nodes, 
comprising both “Nocona” and “Irwindale” EM64T dual 
processors.  The former nodes, with 1MB L2 cache, were 
clocked at 2.8 GHz, 3.2 GHz, 3.4 GHz and 3.6 GHz. The 
Irwindale nodes, with 2MB L2 cache, were clocked at 
3.0 GHz, 3.2 GHz, 3.4 GHz and 3.6 GHz. These nodes 
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were located at the TACC centre as part of the Wrangler 
cluster system, and at Dell. 

• A prototype of the Intel Xeon 5080 processor - the 
EM64T “Bensley/Dempsey” platform - clocked at 3.46 
GHz. The prototype PowerEdge 1950 node featured 4 
cores, 2 chips, and 2 cores / chip. Each core has a 
primary Cache of 12KB (I) + 16KB (D) on chip, and a 
secondary L2 cache of 2MB (I+D). 

• Opteron-based DL145 and DL585 servers from 
Hewlett Packard. The DL145 server comprised 2 x 2.4 
GHz dual-core AMD Opteron 280 processors sharing a 
total of 2 GB memory. The DL585 server comprised 4 x 
2.2 GHz dual-core AMD Opteron 875 processors sharing 
a total of 4 GB memory. The systems run the Linux (64-
bit SuSE) operating system.  

• An HP RX5670 server, with 4 x 1.5 GHz Itanium2 
Madison processors, each with 6 MB L3 cache, 400 
MHz frontside bus and ZX1 cell interconnect. The 
system runs the HPUX (HPUX 11.23) operating system. 

• An HP RX8620 server, with 8 x 1.6 GHz Itanium2 
Madison processors, each with 6 MB L3 cache, 400 
MHz frontside bus and SX1000 cell interconnect. The 
system runs the HPUX (HPUX 11.23) operating system. 

• An HP RX1620 server with 2 x 1.6 GHz Itanium2 
Madison processors, each with 3 MB L3 cache, 533 
MHz frontside bus and ZX1 cell interconnect. The 
system runs the HPUX (HPUX 11.23) operating system. 

3. SERIAL PERFORMANCE: IA64 and  
x86-64 

The analysis below concentrates on the performance 
differential between Itanium2 (IA64) with respect to 
Xeon EM64T and AMD Opteron (x86-64). A more 
thorough break down of the various code dependencies is 
examined in Section 4. It should be noted that throughout 
this report the focus is on performance and at no point is 
the price of the systems factored into the analysis. At this 
moment, it is probably fair to say that the Intel Xeon 
EM64T and AMD Opteron are comparable in price, 
while the Intel Itanium2 is, at a conservative estimate, a 
factor of 3 times the price of the x86-64 systems. 

Before presenting the results of the current 
benchmarking, we provide in Table 2 tabulated 
SPECfp2000 [7] and SPECint2000 [4] results for many 
of the processors featuring in the present exercise. These 
should be viewed at best as illustrative of the expected 
performance differential between IA64 and x86-64 based 
systems, for it must be remembered that many of the 
results are now several years old, and that more 
aggressive figures might be forthcoming were they to be 
re-run with today’s compilers. Nevertheless, it is clear 

that the SPECfp ordering is quite different from that 
shown by SPECint. While the Itanium2 and Power5 
CPUs dominate the former, the integer-based 
benchmarks reveal a clear advantage of the x86-64 
CPUs. It is this ordering that might be expected in the 
current integer benchmarks. 

   
 

SYSTEM, PROCESSOR & CPU 
SPEED 

SPECFP
-2000 

SPECINT-
2000 

IBM eServer 326m 
Opteron270 / DC 2.0GHz 1785 1452 

Pathscale ASUS SK8N 
Opteron248 / 2.2GHz 1691 1452 

HP Proliant DL145 
Opteron275 DC 2.2GHz 1878 1518 

AMD TYAN 2865  
Opteron150 2.4GHz 1955 1681 

HP Proliant DL145 G2 
Opteron280 DC 2.4GHz 1914 1672 

HP Proliant DL145 
Opteron252 2.6GHz 2084 1708 

Dell Prec. Wkstn. 690 Xeon 
5080 (Bensley) DC 3.73GHz 1932 1813 

Dell PowerEdge 1850 P4 
Xeon 3.2GHz / 2MB L2 1716 1555 

Dell PowerEdge 1850 P4 
Xeon 3.2GHz / 1MB L2 (est.) 1396 1383 

SGI Altix 3000 Itanium2 
1.5GHz / 6MB L3 

2148 1243 

SGI Altix 3000 Itanium2 
1.3GHz / 3MB L3 

1854 1019 

HP Integrity RX1620 
Itanium2 1.6GHz 3MB L3 

2692 1452 

HP Integrity RX5670 
Itanium2 1.5GHz 6MB L3  

2108 1312 

IBM eServer p5-575 1.5GHz     2185 1143 

Table 2: SPECfp and SPECint Performance 

3.1 Linemap 

A number of the integer benchmark codes – including 
Linemap – relied historically on efficient intrinsic bit 
manipulation functions. This of course led to much of the 
success of Cray given the hardware implementation of 
intrinsics such as population count (popcnt) and leading 
zero (leadz) count.   
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Linemap performs a Gray-code1 search for a linear 
mapping which invokes extensive use of popcnt, the 
population count instruction. Popcnt is a function that 
counts the number of set bits in a data object. The three 
data sets invoked each specify two arguments – the 
number of dimensions in vector space (one in each case) 
and the number of vectors to be searched over, 
increasing from 20 to 21 and 22 in the three data sets. 

15.2

15.1

11.3

12.3

9.3

8.1

2.9

2.8

2.8

16.4

0.0 4.0 8.0 12.0 16.0

Dell PowerEdge 1850 3.6
GHz 1MB L2

Dell PowerEdge 1850 3.6
GHz 2MB L2

Pathscale Opteron 852 2.6
GHz

 HP DL145 Opteron280 2.4
GHz 2CC

SGI Altix 3700 Itanium2 1.3
GHz

SGI Altix 3700 Itanium2 1.5
GHz

HP RX5670 Itanium2 1.5
GHz

HP RX8620 Itanium2 1.6
GHz

HP RX1620 Itanium2 1.6
GHz

IBM p5-575 1.5 GHz

Total Time (seconds)
 

Figure 1: Linemap Performance using Dataset (1 20) 
on a variety of different processors. 

The HP-UX Itanium systems (“HP RX” labelled systems 
in Figure 1) are seen to outperform all the other 
platforms by a significant margin including other 
Itanium-based solutions (e.g. the SGI Altix). Thus the 
HP-UX systems are faster than the SGI systems by a 
factor of three, and faster than the Opteron-based 
systems by a factor of over 4. Both EM64T and power5 
systems are comparable in performance, slower than the 
Opteron CPUs by factors of 1.3 and 1.4 respectively.  

The reason for this dominance of the HP RX-systems is 
that the HP-UX compiler provides pragmas in the C/C++ 
routines for a high performance popcnt / leadz 
implementation. Pragmas are a method specified by the 
C standard for providing additional information 
(machine dependent) to the compiler that means the 
compiler doesn’t call these functions but inlines optimal 
assembly. 

Another contributing factor to the Itanium’s performance 
(applicable to all Itanium solutions) is that it has popcnt 

                                                           
1 A Gray-code, developed by Frank Gray, is a binary 

numeral system where two successive values differ in only one 
digit. Gray codes were originally designed to prevent spurious 
outputs from electromechanical switches. Today they are 
widely used to facilitate error correction in digital 
communications such as in digital terrestrial television.  

implemented in hardware, making it in principle much 
faster than other comparable CPUs. 

There is also some slight dependence on the actual CPU 
speed, although the cache size has negligible impact on 
performance. These trends are examined in more detail 
in Section 4.1. Identical trends are observed when the 
problem size is increased – see Figures 2 & 3. 
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Figure 2: Linemap Performance using Dataset (1 21) 
on a variety of different processors. 
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Figure 3: Linemap Performance using Dataset (1 22) 
on a variety of different processors. 

3.2 Permutit 

Permutit permutes the order of bits of each entry in an 
array comprising 24 × 106 words. In contrast to Linemap, 
there is little to choose between the performance of the 
four classes of system, with the Opteron and EM64T 
systems marginally faster than those featuring Itanium2 
and power5 CPUs (see Figure 4). Thus the HP Itanium2 
RX-systems are now comparable in performance to the 
corresponding SGI systems, although surprisingly the 
RX8620 system is seen to be much slower than both the 
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RX1620 and RX5670 – by a factor of two. Initially 
understanding this performance differential gave cause 
for concern; we shall return to this point in Section 4. 
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Figure 4: Permutit Performance comparison between 
IA64 and x86-64 architectures. 

3.3 Hadamard 

This code performs a generalised class of Fourier 
Transforms, similar to the Hadamard transform (for a 
description of the transform see text box at the end of 
this section). The two data sets invoked each specify two 
arguments – the number of bits involved in each 
transform – 24 in the first, 25 in the second – and the 
number of transforms to be carried out, 40 and 50 in the 
two data sets respectively. 
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Figure 5: Hadamard transformation using the (24, 40) 
dataset. 
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Figure 6: Hadamard Transformation using the (25, 
50) dataset. 

 Figures 5 and 6 suggest that the Itanium2, at least in the 
HP RX1620, is again showing a slight performance 
advantage over the x86-64 systems when computing the 
Transformation. The p5-575 performs on a par with 
RX8620, while the EM64T and Opteron CPUs are 
comparable, albeit somewhat slower than both power5 
and Itanium2 CPUs. 
The impact of increasing the problem size is negligible 
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Hadamard Transform. 
The Hadamard Transform (Hadamard transformation 
also known as the Walsh-Hadamard transformation) 
is an example of a generalised class of Fourier 
Transforms. In quantum information processing the 
Hadamard transformation, more often called the 
Hadamard gate in this context (cf. quantum gate), is a 
one-qubit rotation, mapping the qubit-basis states |0›
and |1›  to two superposition states with equal weight 
of the computational basis states |0› and |1›. Usually 
the phases are chosen so that we have 

 
in Dirac notation. This corresponds to the 
transformation matrix 

 
in the |0›,|1› basis. 
Many quantum algorithms use the Hadamard 
transform as an initial step, since it maps n qubits 
initialised with |0› to a superposition of all 2n

orthogonal states in the |0›,|1› basis with equal 
weight. 
The Hadamard matrix can also be regarded as the 
Fourier transform on the two-element additive group 
of Z(2). 
The Hadamard transform is used in many signal 
processing, and data compression algorithms. 
                         6 
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on the performance differential between the 
architectures; the performance appears to scale linearly 
with problem size. A more detailed analysis of 
Hadamard’s dependencies on the system characteristics 
is presented in Section 4.3. 

3.4 RuWarray 

RuWarray calculates a read-update-write on random 
elements in an array. 
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Figure 7: RuWarray performance using 3 × 109 
random elements. 
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Figure 8: RuWarray performance using 6 × 109 
random elements. 

The performance of RuWarray for an increasing number 
of elements, shown in Figures 7-9, is comparable on 
HP’s IA64 and the x86-64 platforms, with the HP 
RX5670 the fastest system. However the SGI Altix’s 
Itanium implementation is surprisingly much slower. 
The cause, we suspect, is the use of the default pre-
processing invoking the slow implementation branch. As 
with the Hadamard benchmark, performance trends are 
consistent across the various problem sizes. Increasing or 

decreasing the number of random elements in the 
problem set does not provide a specific chipset with a 
performance edge over the other systems. 
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Figure 9: RuWarray performance using 9 × 109 
random elements. 

3.5 Treesearch 

Treesearch, as the name implies, involves the use of a 
Treesearch algorithm to solve a 33-peg solitaire game. 
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Figure 10: Treesearch serial performance on both 
IA64 and x86-64 architectures. 

For Treesearch all the x86_64 architectures outperform 
the IA64 systems, with the HP RX8620 significantly 
slower than the other systems. The Opteron and EM64T 
systems exhibit comparable performance, with the 
2.6GHz Opteron252 the fastest CPU. The performance 
dependencies of Treesearch are examined in more depth 
in Section 3.5, where both the CPU speed and memory 
latency prove to be important factors in governing the 
performance of the code. 

 HPC Integer Benchmarks                           7 



  DL-TR-2006-004 

3.6 Linequ 

Linequ solves a system of linear binary equations using 
700 equations with 700 unknowns. The equations are 
solved using Gaussian elimination with block reductions 
and partial pivoting. Extensive use is made of both the 
popcnt and leadz intrinsics. 
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Figure 11: Linequ serial performance on both IA64 
and x86-64 architectures. 

As with Treesearch, the IA64 systems are seen to be 
significantly slower than the x86-64 systems. The 
problem would appear to lie in the integer multiplication 
routine, where the Itanium systems spend excessive time 
calculating loop addresses. A typical loop in Linequ is of 
the form: 
 
SUBROUTINE REDUCE (SETNUM, MSIZE, NW, 
MAXM, B, I, R, RR, EQN, KARY, IS) 
 
PARAMETER (ONE=1) 
INTEGER*8 R(0:NW-1,0:2**B-1) 
INTEGER*8 EQN(0:NW-1,O:MSIZE-1) 
INTEGER*8 KARY(O:MSIZE-1) 
 
KK=ISHFT(I+IS,-6) 
 
DO J = 0,I-1 

ENT = KARY(J) 
DO  MM = KK,NW-1 
  EQN(MM,J)=IEOR(EQN(MM,J),R(MM,ENT)) 

      END DO 
END DO 

 Matrices with two dimensions are used, where the array 
boundaries are passed by the caller, and are unknown at 
compile time. If the inner MM-loop is very short, most 
of the time will be spent calculating the addresses of 
R(MM,ENT). The x86-64 has the advantage over IA64 
in that it can perform the integer multiplication in 
hardware, while the IA64 systems must convert the 

integer to floating point, perform the multiplication and 
then re-convert to integer format (analogous to the 
process deployed on PA-RISC architectures). Profiling 
studies suggest that these instructions are indeed using a 
significant proportion of the time in Linequ, thus 
explaining the performance lead of both the Intel Xeon 
EM64T and AMD Opteron (x86-64) systems. The 
2.6GHz Opteron252 is again the fastest CPU. 

3.7 IObench 

IObench writes a number of 64-bit words of  bitstreams 
to a file and reads the file. Two data sets are used, one 
with 108 words (Figure 12), the second with 109 (Figure 
13). 
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Figure 12: IObench with 108 64-bit words of 
bitstreams. 
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Figure 13: IObench with 109 64-bit words of 
bitstreams. 
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This benchmark is, as the name suggests, Input/Output 
(I/O) intensive, and is critically dependent on the disk 
subsystem in use. In terms of understanding the HP IA64 
performance of Figures 12 and 13, only a single disk was 
available on the RX1620 and RX5670 systems, whilst 
the RX8620 had 3 striped disks. I/O is actually buffer 
cached in this benchmark, and should be explicitly 
opened with osync or a flush call added. Note that this 
benchmark is really dated, and should be replaced by e.g. 
IOzone, now the I/O standard benchmark of choice [8]. 

4. Serial Performance: Code Dependencies 

This section looks to understand in more detail the 
performance of each of the benchmarking codes 
presented in Section 3, though an examination of 
performance dependency on the various aspects of the 
system architecture, such as CPU Speed, L2 and L3 
cache effects and memory bandwidth/latency. This 
analysis was conducted by gaining access to a set of Dell 

PowerEdge 1850 servers with varying clock speeds and 
L2 cache sizes. 

The Dell PowerEdge systems use Intel Xeon EM64T 
processors with the codenames “Nocona” containing 
1MB L2 cache and “Irwindale” that has 2MB L2 cache. 
Table 3 summaries the CPU speeds of the systems used 
in this experiment. 

 
Nocona 

(1MB/L2) 
2.8 X 3.2 3.4 3.6 

Irwindale 
(2MB/L2) 

X 3.0 3.2 3.4 3.6 

Table 3: Clock Speed Summary (GHz) for the Dell 
PowerEdge 1850 systems. 

Using related systems in this fashion reduces the number 
of variables that might be influencing the observed 
performance, enabling an additional degree of 
confidence in determining the underlying cause of a 
particular trend. 
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Figure 14: Summary of all HPC integer benchmarks on Dell PowerEdge 1850 systems

 
Figure 14 provides an overall summary of all 7 codes on 
Intel Xeon EM64T systems. To the left of the red central 
vertical line are all PowerEdge systems with 2MB L2 
cache, in increasing clock speed, starting at the red line 
and working outwards to the left margin. To the right of 
the red line are all the Dell PowerEdge systems with 
1MB L2 cache in decreasing clock speed working from 
the red line to the right hand side of the page. 
 
 

 
Each of the codes is examined individually in the 
sections below. Figure 14 attempts to summarise the 
overall effects on all the codes. The following layout of 
the systems above is consistent in all subsequent graphs 
in this section: 

 INCREASING CPU SPEED     |    DECREASING CPU SPEED  
            2MB L2 CACHE              |               1MB L2 CACHE 
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4.1 Linemap – Impact of Clock Speed & Cache 

Figure 15 suggests that Linemap is dependent primarily 
on the CPU speed and that L2 cache has a negligible 
impact on performance. Concentrating on one half of the 
graph shows that performance improves with increasing 
clock speed. Comparing corresponding systems on either 
side of the line, we find almost identical performance, 
indicating that increasing L2 cache has no impact on the 
performance of the code i.e. the benchmark is 

• CPU dependent 
• Insensitive to L2 cache 
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Figure 15: Linemap Performance on a range of Intel 
EM64T CPUs. 

These trends are consistent across all 3 Linemap data sets 
(although these effects are not as obvious for the two 
smaller data sets as the performance is dominated by the 
largest data set total time, skewing somewhat the results 
for the 1,20 and 1,21 datasets). 

4.2 Permutit: Impact of Clock Speed & Cache 

Figure 16 suggests that Permutit demonstrates similar 
dependencies as Linemap. Time to solution decreases as 
CPU speed increases, but is insensitive to increasing the 
amount of L2 cache (comparing corresponding systems 
on either side of the line) i.e. the benchmark is 

• CPU dependent 
• Insensitive to L2 cache 
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Figure 16: Permutit Performance on a range of Intel 
EM64T CPUs. 

4.3 Hadamard – Impact of Clock Speed & 
Cache 
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Figure 17: Hadamard Performance on a range of Intel 
EM64T CPUs. 

Figure 17 strongly suggests that neither CPU speed nor 
L2 cache size has any influence on calculating a 
Hadamard transformation, as indicated by the uniform 
behaviour over all the systems i.e. the benchmark is 

• Insensitive to CPU speed 
• Insensitive to L2 cache 

The insensitivity of a code to both CPU frequency and 
cache is a strong indicator that either I/O or memory    
bandwidth/latency is the performance bottleneck. Given 
that there is virtually no I/O from Hadamard, we can be 
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certain that the code is 100% memory bandwidth/latency 
bound. 

4.4 RuWarray – Impact of Clock Speed & 
Cache 

Increasing CPU speed has minimal impact on the 
performance of RuWarray (speed of performing a read-
update-write on random elements of a large array).  In 
contrast, increasing the amount of L2 cache available 
improves the codes performance, demonstrated by the 
shorter time requirements for systems on the left hand 
side of Figure 18 i.e. the benchmark is 

• Insensitive to CPU speed 
• L2 cache sensitive 
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Figure 18: RuWarray Performance on a range of Intel 
EM64T CPUs. 

4.5 Treesearch – Impact of Clock Speed & 
Cache 

Treesearch has joint dependencies on both increasing 
CPU speed and level of L2 cache, as demonstrated not 
only by the increased performance of systems on either 
side of the “dividing” line (L2 cache), but also the 
improved performance when increasing clock speed for 
systems with the same L2 cache (comparing either the 
horizontal or vertical striped systems) in Figure 19 i.e. 
the benchmark is. 

• Sensitive to CPU speed 
• L2 Cache sensitive. 
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Figure 19: Treesearch performance on range of Intel 
EM64T CPUs. 

4.6 Linequ – Impact of Clock Speed & Cache 
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Figure 20: Linequ performance on a range of Intel 
EM64T CPUs. 

As with Treesearch, Figure 20 shows that Linequ is 
sensitive to both CPU speed and the level of L2 cache 
i.e. the benchmark is 

• Sensitive to CPU speed 
• L2 cache sensitive 

4.7 Impact of the Memory Subsystem. 

In order to keep abreast of the advances in technology, 
the Distributed Computing group relies heavily on 
gaining access to a variety of systems through fostering 
existing relationships with various Tier1 and Cluster 
Integrator companies. As part of the integer 
benchmarking exercise, Hewlett Packard made available 
a variety of Itanium systems (using the HP-UX operating 
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system). We here take a closer look at some of the 
performance attributes of these systems, and compare 
these with the latest HP Itanium2 product on the market 
(the Montecito SuperDome SD64000B), which at the 
time of writing was in pre-production release, but is now 
commercially available (from February 2006). 
Table 4 provides a reminder of the HP-UX Integrity 
systems used in the benchmarking report. 

 
System CPU 

Speed 
Itanium 
Platform 

L3 
Cache 
(MB) 

FSB 
(MHz) 

rx5670 4×1.5GHz Madison 6 400 
rx8620 8×1.6GHz Madison 6 400 
rx1620 2×1.6GHz Madison 3 533 

SD64000B 1.6GHz Montecito 12 533 

Table 4: Characteristics of the HP Itanium2 systems 
(HP-UX). 

These four systems have different clock speeds, cache 
sizes and front side bus (FSB) speeds. Whilst the cache 
has been demonstrated to be important in the above 
analysis, this is not always the major differentiator 
between these systems, as even the lowest L3 cache in 
Table 4 is larger than the L2 cache supplied with most of 
the x86-64 systems. One of the most important 
differences between these systems is the memory latency 
(primarily representative of a cache coherency effect). 
Table 5 gives an overview of the memory latencies of 
these four systems as well as the standard latency for 
both the AMD Opteron and SGI Altix. Also included are 
detailed memory latencies to main memory measured by 
S. R. Alam and co-workers [9]. 
 

System Memory Latency (ns) 
HP Integrity rx1620 110-120 
HP Integrity rx5670 140 
HP Integrity rx8620 280 1,  400 2

HP Integrity SD64000B 180 1,  350 2

Opteron (averaged) 753 ,  1404

Cray XT3 / Opteron 150 / 
2.4 GHz [9] 

51.4 

Cray XD1 / Opteron 248 
2.2 GHz [9] 

86.5 

Intel Xeon 3.0 GHz [9] 140.6 
IBM p690 POWER4 1.3 
GHz [9] 

90.6 

SGI Altix 3700 200-250 

Table 5: Summary of the memory latency (in 
nanoseconds). 1local to cell access; 2access to memory 
on remote cell; 3local access; 4access to memory on 
remote CPU. 

Table 5 shows there is a significant variation in the 
memory latencies between the HP Itanium solutions,; 
with the exception of the SD64000B, none of these 
latencies are particularly impressive compared with some 
of the current systems available on the market today.  
This stems from the fact that the HP cell-based solutions, 
in for example the rx8620, are reliant on the same cell 
infrastructure technology that was developed 5 years ago 
around the PA-RISC superdome. Extensive investment 
in redeveloping this infrastructure for the latest cell-
based products means the latest systems e.g. the 
SD64000B, exhibit reduced latency, from 280ns to 
around 180ns (using the SX2000 chipset). 
In many scientific benchmarks [10], where a significant 
proportion of the time is spent in performing floating 
point arithmetic, the rx8620 is between 20 – 40% slower 
than the rx1620. In many of these 64-bit scientific codes, 
the effect of the high memory latency is circumvented by 
accessing the memory in a predictable manner (for 
example unit stride, serial access). This involves the 
compiler employing memory pre-fetching and 
speculative loads to counteract the memory latency 
effects. However the codes used in the present Integer 
benchmarking suite are quite different from the ‘usual’ 
floating point scientific applications.  
Given the cell developments above, the runtimes on the 
new Integrity “Montecito” SuperDome (SD64000B) 
should be much closer to the rx1620 times, thus 
highlighting the impact of the high memory latency in 
the current rx8620 system on the Integer benchmarks. 
 

System CPU & 
CPU 
Speed 

Memory 
Latency 

(ns) 

L3 
Cache 
(MB) 

FSB 
(MHz) 

SD64000B Itanium2 
Montecito 
1.6GHz 

180 12 (per 
core) 

533 

Table 6: System specification of the new HP Integrity 
Superdome using the SX2000 chipset. 

The above expectations were confirmed with access to 
HP’s flagship system, a prototype Montecito Integrity 
Superdome SD64000B (64 socket / 128 core system) 
employing the latest cell infrastructure (the SX2000). 
The specifications of this system are provided in Table 6. 

 
Case Program Time (seconds) 

  rx8620 SD 64000B 

1 Linemap 2.8 2.8 

2 Linemap 8.3 8.3 

3 Linemap 25.1 25.0 

4 Permutit 197.7 80.1 
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5 Hadamard 114.6 75.5 

6 Hadamard 307.4 195.6 

7 RuWarray 212.2 131.7 

8 RuWarray 424.2 262.8 

9 RuWarray 637.2 394.3 

10 Treesearch 180.2 100.1 

11 Linequ 131.8 126.6 

12 IObench 2.0 0.7 

13 IObench 74.8 6.8 

Table 7: Summary of the Integer Benchmarking 
times (in seconds) for the rx8620 and the HP Integrity 
Superdome SD64000B. 

This new machine (SD64000B) provides a real test of 
the integer code performance in terms of clock speed, 
memory latency and bandwidth. Table 7 gives the total 
run times for each of the integer benchmarks, on both the 
older rx8620 system and on the Montecito Superdome. 

A comparison of these timings allows the following 
conclusions to be drawn: 
• Linemap performs almost identically on all Itanium 

platforms. Neither latency nor cache has any 
measurable impact on performance. 

• On the rx8620, Permutit gave poor performance. 
With the latest SX2000 chipset the code 
demonstrates a two fold improvement in 
performance, even out-performing the rx1620 (the 
lowest latency rx system). 

• Hadamard. This code is heavily latency-bound, as 
demonstrated by the results in Table 7. There is a 
30% improvement in the run times when moving to 
the lower latency Superdome. 

• RuWarray: This code gave unexpected runtime 
figures (see section 4), where the rx5670 out 
performed the other Itanium systems, even though it 
had a slower clock speed and slower bus. This was 
attributed to the larger cache on the rx5670. The 
timings from SD64000B confirm this, as the 
Montecito SuperDome is much faster than the older 
Madison platforms. This was also demonstrated by 
the Dell PowerEdge analysis in Section 4.4. 

• Treesearch would appear to be heavily latency 
bound. Section 4.5 demonstrated the dependence on 
both CPU speed and cache. The 44% improvement 
in run time using the SX2000 chipset confirms the 
cache / latency discussion of Section 4.5. 

• Linequ. Whilst Section 4.6 shows the dependence of 
the code with respect to both CPU speed and L2 
cache (1MB /2MB), it would appear that there is a 
‘saturation’ point beyond which increasing the 
amount of cache has little impact on performance. 
This is shown in Table 7; although the cache is 
doubled compared to the rx8620 (12MB), the 
performance gain is minimal. 

• IObench is much faster on the SD64000B. This is 
because of a large buffer cache (15GB) and a fast 
striped filesystem on the HP Superdome. 

4.8 Performance Sensitivity Summary 

Table 8 highlights the conclusions from Sections 3 and 4, 
summarising the performance attributes displayed by 
each of the integer benchmarking codes and which 
processor family displays optimum performance. 
 

Performance Sensitivity Analysis Code Optimum 
CPU CPU 

(GHz) 
L2 
cache 

Mem. 
(MB/s) 

Mem. 
(µs) 

Linemap Itanium  X X X 
Permutit Opteron  X   
Hadamard Itanium X X  X 
RuWarray Itanium X   X 
Treesearch Opteron   X  
Linequ Opteron   X X 

Table 8: Summary of the Performance Trends 
from Sections 3 and 4 for the HPC Integer 
Benchmarking Suite. 

It should be noted that the same performance attributes 
noted in the sections above were observed when 
performing the corresponding calculations on AMD 
Opteron systems. 
 

5. Enhancing Performance 

This section focuses on two important considerations 
when looking to enhance performance of the Integer 
benchmarking suite. First, we investigate the impact of 
different compiler optimisation levels on runtime 
performance for each of the codes. Secondly, we 
consider the impact of coding language; for Hadamard, 
there are two versions of the code currently available, 
one in FORTRAN, the second in C. By default the 
former version is typically used, for the C 
implementation was found historically to be significantly 
slower than the FORTRAN code, particularly on vector 
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machines, and has been largely ignored. Both versions of 
this code have now been built and the timings and output 
compared on a variety of systems. 

5.1 Compiler Optimisation Levels 

In order to determine the sensitivity of the Integer codes 
to the level of compiler optimisation, a single platform 
was taken (the 2.6 GHz AMD Opteron 852) and, using 
one of the latest compiler suites – Pathscale’s EKO 
version 2.2.1, executables generated using different build 
options. Figure 21 captures the results from this exercise. 
Three different optimisation levels were invoked: 
• -O2 (generates an optimised executable that is 

numerically safe – this is used by default); 
• -O3 (generates a highly optimised executable, 

generally numerically safe); 
• -O3 –ipa –OPT:OFAST (optimisations selected to 

maximise performance). Although these 
optimisations are generally safe, they may affect the 
achieved accuracy given the inevitable 
rearrangement of computations. 

Figure 21 depicts the benchmark results normalised with 
respect to the performance of the codes built using the –
O2 optimisation level.  

70 80 90 100 110 120

linemap

linemap

linemap

permutit

hadamard

hadamard

RuWarray

RuWarray

RuWarray

treesearch

linequ  -O3 -ipa -OPT:Ofast
 -O3
 -O2

Figure 21: Effect of Different Compiler Optimisation 
Levels on the Performance of the Integer 
benchmarking Codes. 

The impact of optimisation is seen to be highly 
dependent on the code in question, with some (e.g. 
Treesearch) showing much greater sensitivity than 
others. In the case of Hadamard, and to a lesser extent 
RuWarray, the impact on performance is also heavily 
dependent on the size of the input dataset. Interestingly, 
the higher optimisation level only benefits the smaller 
test case – indeed for the larger case it actually has a 
detrimental effect, causing longer run times. 

In contrast, the size of dataset has no bearing on the 
relative performance of Linemap as a function of 
optimisation level. In fact Linemap appears to be the 
only code to show a marked improvement in 
performance at the highest optimisation level using the 
PathScale compiler. Of the six codes tested, four – 
RuWarray, Hadamard, Permutit and Linemap – show 
enhanced performance when progressing beyond the 
default –O2. 
This exercise suggests, perhaps not surprisingly, that the 
impact of compiler optimisation on performance is 
dependent on the nature of the code and the subsequent 
datasets. It certainly shows that certain codes are more 
susceptible to optimisation than others and it is clearly 
important to understand the performance implications 
this might have. In general –O2 provides a robust 
optimisation that gives reasonably good performance for 
the majority of application codes. 

5.2 Hadamard – C and FORTRAN codes 

In the HPC Integer benchmarking suite there are two 
serial versions of the Hadamard code. One is written in 
FORTRAN and is the default build; the second, a little 
used C version. Prior to generating these two Hadamard 
executables, it was widely believed that the FORTRAN 
compiled version of the transform would out-perform the 
corresponding C version. This understanding was largely 
based on historical data relating to results on legacy 
vector systems. 

Whilst the FORTRAN version of the code compiled 
without any modifications, it was necessary to comment 
out the “include <malloc.h>” line in the C code. Without 
this change, the code core-dumps in 64-bit mode because 
the malloc routine is unknown and therefore is assumed 
to generate a 32-bit return value. This is a common 
programmer’s bug for 64-bit codes. Once the change had 
been made, the code compiled and executed with no 
further errors. The subsequent output files for both the C 
and FORTRAN executables verified correctly. Figures 
22 and 23 provide the timings for both versions of the 
Hadamard executable. 

These two figures clearly show that on all the systems 
used, the C version of the code outperforms the 
FORTRAN build. This is contrary to the historical 
understanding of the performance of the C code. The 
difference between the two executables is most 
pronounced on the x86-64 architecture, indicating a three 
to 4 fold increase in performance over the corresponding 
FORTRAN version. 
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Figure 22: Execution time (seconds) using the C and 
FORTRAN builds of the Hadamard code. The (24,40) 
data set. 
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The Figure 23: Execution time (seconds) using the C 
and FORTRAN builds of the Hadamard code. The 
(25,50) data set. 

HP-rx systems reveal the closest performance, but even 
here there is significant performance gain using the C 
compiled executable. This effect clearly reflects the 
advances in optimisation that have accompanied 
generations of development to C compilers, plus the 
major differential that FORTRAN enjoyed on the vector-
based architectures of the 1980’s and 90’s. 

6. Integer RATE Benchmarks. 

Whilst understanding the serial, single processor 
performance of code remains important, the significance 
of benchmarks such as SPECint2000 has become more 
debatable given the advent of dual-core (and multi-core) 

systems. In order to understand the impact of utilising all 
the processing elements on a multi-core system, the 
throughput RATE-style benchmarks seem more 
attractive e.g. SPECint_rate2000 [4]. In this spirit, the 
HPC Integer benchmark has been extended to include an 
associated “RATE” Benchmark. This benchmark 
incorporates six of the present integer codes and eleven 
data sets; note that IObench was not included in this 
benchmark. There are two rate procedures depending on 
whether the aim is to interpret the performance of a 
single machine with ‘n’ CPUs, or if it is to compare 
different multi processor or multi-core systems. 
1) Single Server with n CPUs 
When comparing the RATE runs on n CPUs or n PEs, 
the rate for a given benchmark code is: 

Rn = n × (T1 / Tn) 
where T1 is the elapsed time taken for a single 

processor run (normalised to a time of 100 units) and Tn 
the elapsed time taken for n copies of the code, one on 
each CPU, to complete (where elapsed time is given by 
the time of the last job to finish – time of first to start). 
The normalization above makes it easier to picture the 
performance impact when adding additional processors 
and to highlight any degradation in performance. If there 
is no performance degradation when using multiple 
cores, then for a dual core, dual processor system (4 
processing elements, PEs), using 1 PE the rate, R1, will 
be 100, using 2 PEs (one on each core) will yield a rate, 
R2, of 200 and running on all 4 PEs would provide a rate, 
R4,of 400. 

In practice this is not usually found given the inevitable 
bottlenecks occurring when multiple processors are used, 
e.g., memory bandwidth issues due to, say, two 
processors requiring the same front side bus (FSB) to 
access main memory. The extent to which this affects the 
performance of the codes is heavily dependant on (i) the 
architectural design of the system in question, and (ii) the 
code itself, and whether it has extensive memory 
bandwidth requirements. We examine these effects in 
more detail in this section. 
2) RATE-based Machine Comparisons 
With a multi component benchmark, then for a given 
benchmark, ‘i’, and assuming a system with n PEs, we 
need to run ‘n’ instances of the benchmark code 
simultaneously and calculate the elapsed time. 

elapsed time = time of last to finish – first to start time 
The rate for benchmark i, Ri, is then calculated using: 

Ri = n × (Tref / Ti) 
where Tref is the elapsed time on a predefined arbitrary 
reference system scaled to a single processor (n=1); note 
that Tref is now normalised to an elapsed time of 100 
units. Again, the latter normalization makes it easier to 
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picture the performance impact when adding additional 
processors and to highlight any degradation in 
performance. 
An important note when running the rate benchmark is to 
use the taskset2 comment. This is typically used to 
prevent process migration (job moving to another 
processor) during the benchmark and binds the process 
to a specific processing element. Taskset takes the form: 

taskset –pc [cpu] X 
where [cpu] specifies the PE in question, and X the 
running process or task.  
Three systems are examined in this section: 

1. A Dell Poweredge 1850 node, comprising “Nocona” 
EM64T dual processors with 1MB L2 cache.  

2. An Opteron-based Supermicro node comprising 2 x 
2.2 GHz dual-core AMD Opteron 275 processors. 

3. A prototype of the Intel Xeon 5080 processor - the 
EM64T “Bensley/Dempsey” platform - clocked at 
3.46 GHz. The prototype PowerEdge 1950 node 
featured 4 cores, 2 chips, and 2 cores / chip.  
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Figure 24: HPC Integer Rate Benchmark on a Dell 
Poweredge 1850 system with dual EM64T 3.2GHz 
processors, normalised with respect to the 
performance of a single processor (100%). 

Figure 24 shows the rate benchmark results on the dual 
processor Dell Poweredge node. Thus for Linemap we 
find a linear increase in the benchmark when using both 
processors (i.e. a RATE figure of 100 + 100). The 
performance of the Linequ code also appears reasonable 
on this system. However the performance collapses 
dramatically for Hadamard, RuWarray and Permutit 
when both CPUs are in use. This confirms the strong 

                                                           
2 Taskset binds a process to a given set of CPUs on 

the system, so that the process will not run on any other 
CPU. 

dependency on memory bandwidth (MB/s) of these 
codes, as noted previously (see Table 4 in Section 4.7). 
Given that both processors share the same FSB to access 
memory, thus severely restricting available memory 
bandwidth, the observed impact on the performance of 
these codes, and the subsequent dramatic collapse in 
performance, is not surprising. Where there is very little 
dependence on memory bandwidth, the codes 
demonstrate a linear performance increase. 
Figure 25 demonstrates the rate benchmark on the dual 
core Opteron275 system. In order to reflect the dual core 
architecture, we now shift nomenclature from CPU to PE 
(Processing Elements). In this system, we see that there 
is no major performance degradation when going from 
one to two PEs, for each RATE job will be allocated to a 
core on a distinct processor with dedicated FSB access to 
memory. There is, however a major performance 
degradation when all 4 PEs are utilised and, as with the 
Intel Xeon EM64T above, the codes that are dominated 
by memory bandwidth requirements show no additional 
performance when run on all 4 PEs. Codes such as 
Linemap with no real memory bandwidth requirements 
still demonstrate a linear increase in performance 
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Figure 25: HPC Integer Rate Benchmark on an AMD 
Opteron 275/ 2.2GHz system, normalised with respect 
to the performance of a single processor (100%). 

Finally, Figure 26 shows the dual core Xeon 5080 
processor performance. Whilst this represents a major 
step forward by Intel compared to their original dual core 
systems (codenamed Paxville / Irwindale), where all four 
cores of the dual processor system shared the same FSB, 
the Bensley platform has each processor with its own 
unique path to memory, plus other performance 
enhancements e.g., fully buffered DIMMS.  
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Figure 26: HPC Integer Rate Benchmark on an Intel 
Xeon 5080 / 3.46GHz system, normalised with respect 
to single processor performance (100%). 

The smaller improvement found when moving from 1 to 
2 PEs compared to the Opteron results of Figure 25 does 
suggest that the 5080 still has a few additional 
performance issues compared to the dual-core Opteron 
system. In the case of RuWarray this is as much as a 
30% decrease in expected performance As with the 
Opteron systems, a major performance degradation 
occurs for the Hadamard, RuWarray and Permutit codes 
when all 4 PEs are invoked, when both cores of each 
processor will now be sharing the same FSB. 

7. Throughput Workload Benchmarks. 

All the examples in this report have concentrated on 
individual code performance – either on a single CPU or 
single compute node or server. Realistically codes used 
on a mid-range commodity compute cluster are unlikely 
to run in such a fashion, with dedicated single code 
usage and no other users running competing jobs on the 
system. We try now to simulate these effects using a 
throughput workload benchmark designed to give an 
indication of the performance of a system under heavy 
load. The throughput workload benchmark comprises the 
same seven programs used in the HPC Integer 
benchmark. Allowing for the various input job decks (as 
defined in Section 3) associated with these codes results 
in a total of 13 different test jobs. To simulate “real 
world” usage, this benchmark consists of submitting 
batch jobs in a predefined random sequence using a perl 
script to the system under evaluation. Each of the batch 
jobs is an invocation of one of the following 13 test-
cases:  

• case1 – Linemap (1 20) 
• case2 – Linemap (1 21) 
• case3 – Linemap (1 22) 

• case4 – Permutit 
• case5 – Hadamard (24 40) 
• case6 – Hadamard (25 50)  
• case7 – RuWarray () 
• case8 – RuWarray () 
• case9 – RuWarray () 
• case10 –Treesearch 
• case11 – Linequ 
• case12 – IOBench () 
• case13 – IOBench () 

All the jobs – 765 in total – are submitted to the 
scheduler with equal priority. Such a job mix should be 
sufficient to provide a reasonably thorough test of 
clusters with processor counts in the range of 16 to 64. 
The performance of the benchmark is calculated by 
measuring the wall-clock time starting from the 
submission of job 1 until the final job is completed. Note 
the final job to complete is not necessarily the same as 
the last job to start (job 765) – final in this context means 
the last job to finish. 

Two systems have been used to test this throughput 
workload: 
• A 72-node (144 processor) HP rx1620 Itanium2 

system, 16GB RAM per node and using an 
Infiniband Interconnect. 

• A 35-node (70 processor) Cray XD1 with AMD 
Opteron 250/2.4GHz processors, 4GB RAM per 
node, connected using Cray’s Rapid Array fabric. 

 
Case Programme Number of 

instances 
Summed 

Time 
(seconds) 

1 Linemap 60 168 
2 Linemap 15 125 
3 Linemap 5 125 
4 Permutit 5 422 
5 Hadamard 400 32640 
6 Hadamard 100 21790 
7 RuWarray 20 4176 
8 RuWarray 10 4169 
9 RuWarray 5 3126 
10 Treesearch 10 953 
11 Linequ 75 9533 
12 IObench 40 20 
13 IObench 5 195 
 TOTAL 765 77350 

(1290 
minutes) 

Table 9: Overview of the 765 jobmix for the HP 
rx1620 Cluster. 

Several different node counts have been used to run the 
throughput benchmark in order to gauge the potential 
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performance gain (“speed-up”) with increasing number 
of nodes. The elapsed time (minutes) is calculated by 
taking the time difference between the first and last 
output files. Table 9 gives a summary of each of the 13 
test cases and the number of times the code is invoked in 
the 765 jobmix on the rx1620 cluster. 

It should be noted that the weightings applied to the 
number of times a code appears in the script should be 
designed to simulate the expected usage of the cluster. 
Most commonly used codes should be given a higher 
weighting than codes that are only used by a minority of 
users. In this job mix Hadamard dominates the usage, 
with 500 occurrences in total. 
The speedup is determined by combining all the times 
for the 765 jobs to obtain a “theoretical peak”. In the 
case of the HP rx1620 this is 1290 minutes, as`shown in 
Table 9 i.e. it would require 1290 minutes to run all 765 
jobs sequentially on one rx1620 processor. 
 

Number 
of 

Nodes 

Number of 
CPUs 

Elapsed 
Time 

(minutes) 

Speedup 

1 1 1290 (est.) 1.0 
16 32 81 15.9 
32 64 49 26.3 
48 96 35 36.9 
64 128 29 44.5 
72 144 25 51.6 
∞ ∞ 11 117 

Table 10: Workload Speedup using Multiple CPUs on 
the HP rx1620 (dual CPU, 1.6GHz Itanium2) 
Infiniband Cluster. 

For an infinite number of processors, the time required to 
run the longest individual job is used as the elapsed time. 
On this system it is case9 (RuWarray) which requires 11 
minutes on average to complete. 
Table 10 demonstrates the speed up of the throughput 
mix as the processor count increases. Perfect speedup is 
not realised for a couple of reasons. First, the 
parallelisation is extremely course. Certain test cases 
require significantly longer than others to run, thus 
dominating the total runtime. In this scenario it is case9, 
which is invoked 5 times in the jobmix. Because this 
case has a longer execution time than the other codes, 
towards the end of the benchmark, all but 5 of the nodes 
are idle waiting for this case to complete. Also, as 
demonstrated earlier in this report, for memory 
bandwidth sensitive codes, when more than one 
processor per node is occupied, the performance of these 
codes decrease causing additional slow downs, thus 
affecting the overall speedup.  
It takes a significant time for any scheduler to accept and 
schedule 765 jobs. This could be improved by assigning 

more than 4 jobs per 2-CPU systems, but this would then 
harm the ‘shortest time to solution’ approach for each 
job. The scheduler used on the rx1620 system was LSF. 
Performance of LSF could be fine-tuned by adjusting 
various parameters, reducing the time required to 
schedule the number of jobs. However for benchmarks to 
be reproducible on numerous systems, normally the 
default implementations of most applications are 
employed wherever possible to avoid any potential bias 
in the conclusions. 
Similar trends are observed when the job mix is run on 
the Cray XD1 which uses the Rapid Array switching 
fabric and the Active Manager Job Management System 
(AM JMS) to schedule jobs. This resource manager is 
based on similar technology to sun grid engine (SGE). In 
order not to over saturate the scheduler during job 
submission, a pause between each of the 765 jobs was 
applied. This was controlled using the “sleep” command. 
The overall run times were extremely sensitive to this 
controlled submission setting, with it eventually being 
reduced to “sleep 1”. 

 
Number 
of Nodes 

Number 
of CPUs 

Elapsed Time 
(minutes) 

Speedup 

1 1 2331.7 (est.)* 1.0 
8 16 167 14.0 
16 32 85 27.4 
24 48 58 40.2 
32 64 48 48.6 
35 70 43 54.2 
∞ ∞ 12.7 184 

Table11: Workload speedup using Multiple CPUs on 
a Cray XD1 (AMD Opteron 250 / 2.4GHz). *The 
estimated time was calculated using (Number of 
Instances of the code) × (single job elapsed time). 

Whilst the Cray XD1 is comparable in performance to 
that observed on the rx1620 cluster, it doesn’t quite show 
the same speedup. It would be interesting to repeat the 
exercise on an rx1620 using SGE to determine the 
impact of using an open source scheduler on the overall 
speedup in comparison to the commercial offerings such 
as LSF or PBS Pro. 
Both these job mix cases used the default builds for all 
the HPC Integer codes. This meant the FORTRAN 
version of Hadamard was implemented in each case, 
despite evidence that the C version of the executable 
provides much improved performance. Table 12 shows 
the difference in performance of these job mixes on the 
XD1 when the C build of the Hadamard executable is 
used rather than the FORTRAN. Since Hadamard 
dominates the jobmix (500/765) it does indeed have 
quite a dramatic effect on performance. 
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Workload with 
FORTRAN-

based Hadamard 

Workload with C-
based Hadamard 

  
Nodes 

 
CPU 

Elapsed 
Time 
(mins) 

Speed-
up 

Elapsed 
Time 
(mins) 

Speed-
up 

1 1 2331.7 1.0 942.0 1.0 
8 16 167 14.0 69 13.7 

16 32 85 27.4 37 25.5 
24 48 58 40.2 29 32.5 
32 64 48 48.6 27 34.9 
35 70 43 54.2 25 37.7 
∞ ∞ 12.7 184 12.7 74.2 

Table 12: Workload Speedups using both FORTRAN 
and C Versions of the Hadamard code on a Cray XD1 
(AMD Opteron 250 / 2.4GHz).  

 

8. MPI Parallel Integer Benchmarks 

All of the preceding benchmark results have focused on 
the serial performance of the Integer benchmark codes. 
We finally turn to a consideration of the parallel 
performance of the suite, focusing on the MPI 
implementation of two of the codes, namely Linemap 
and RuWarray. Both codes have two associated input job 
decks.  
Running the MPI parallel versions of the code will 
provide greater insight into the codes dependency on the 
cluster configuration, rather than just the processor, 
especially the requirements for interconnect bandwidth 
and latency. It will also highlight how well the code 
scales on the current generations of interconnect. The 
results presented in this section have all been performed 
using the HP-MPI routines on an rx1620 dual CPU 
cluster with Infiniband and Gigabit Ethernet 
interconnects. Analogous results were obtained on the 
Cray XD1, but are not presented in this report for 
reasons of space. Details can be made available upon 
request to the authors. 

8.1 Parallel implementation of Linemap 

The single processor performance of the MPI-version of 
Linemap gives very good agreement with the serial 
version of the code. Figure 27 demonstrates reasonably 
good scaling for the gigabit Ethernet interconnect but, 
surprisingly, Infiniband stops scaling at 8 processors. 
This is of course contrary to expectations, although there 
is a reasonably simple explanation. According to the 
Infiniband switch manufacturers, the switch tends to 
have a significant start-up time of up to several seconds 
for each job. This is attributed to the need to first build a 
routing table which requires a finite amount of time 

before the job commences. For standard applications,  
job times tend to be several hours in duration, in which 
case the few seconds required to build the table have a 
negligible impact on performance. In the case of 
Linemap which is an extremely short job, the time 
allocated to build the routing table becomes a dominant 
contributing factor in the recorded benchmarking time. 
There are no such “warm-up” requirements however for 
the Gigabit Ethernet switch. 
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Figure 27: HP-MPI using Linemap on an HP rx1620 
1.6GHz cluster with Infiniband and Gigabit Ethernet 
interconnects. 

8.2 Parallel implementation of RuWarray 

The two RuWarray cases are equivalent to test cases 7 
and 9 in the HPC Integer benchmarking suite. Unlike 
Linemap, both RuWarray examples do not match the 
single CPU timing obtained during the jobmix 
benchmarks of Section 6.  This can be traced to a 
completely different path in the source code.  

Figures 28 and 29 show the elapsed times (in seconds) as 
a function of processor count for both test decks, 
featuring 3 x 109 and 9 x 109 random elements 
respectively. As the smaller job deck for RuWarray takes 
longer to complete than the Linemap benchmark, some 
of the highlighted performance issues around the 
infiniband switch do not have as great an impact and thus 
the code demonstrates scalability up to 8 CPUs. The 
larger benchmark scales up to 16 CPUs (Figure 29). This 
code, using either problem set, does not scale beyond 
these processor counts – in fact the performance starts to 
deteriorate at higher processor counts. 
It would seem fair comment that the current MPI 
implementations of the two benchmark codes are far 
from optimal. 
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Figure 28:  Parallel MPI performance of RuWarray 
using 3 × 109 random elements. Total Elapsed times 
(seconds) as a function of processor count. 
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Figure 29: Parallel MPI performance of RuWarray 
using 9 × 109 random elements. Total Elapsed times 
(seconds) as a function of processor count. 

9. Summary  

This paper has introduced an integer-based 
benchmarking suite comprising seven legacy codes (with 
13 associated datasets) designed to test both integer and 
Boolean performance. We have provided a detailed 
breakdown of the performance attributes of the codes 
comprising the suite, based on their execution on some 
16 different systems. The focus has been primarily on 
measured performance on commodity-based processors  
including Itanium2, Opteron and EM64T Xeon systems 
together with IBM’s proprietary Power5 (p5-575) 
processor. These evaluations have been carried out on 

both systems at Daresbury and those at external sites, the 
latter accessed via numerous collaborations involving 
both the academic and vendor communities.  

The results have been systematically evaluated and 
presented across a number of key areas of code 
utilisation and associated performance in a number of 
stages: 

1. Single Processor, serial performance. The overall 
serial benchmark times for each of the codes have been 
reported as a function of data set, and a performance 
comparison presented in each case which contrasts the 
Intel Itanium (IA64) performance in both HP and SGI 
systems with a variety of systems featuring both Intel 
Xeon EM64T and AMD Opteron (x86-64) CPUs. 
Contrary to the SPECint ratings, the Itanium2 processor 
is found to be the leading CPU in three of the 
benchmarks – Linemap, Hadamard and RuWarray. The 
Opteron processor is found to the fastest CPU in 
Permutit, Treesearch and Lineq.  

We have sought to understand each code’s dependency 
on clock speed, cache, and both memory latency and 
bandwidth, through a number of experiments in which 
both clock speed and cache levels have been 
systematically varied on a variety of Dell PowerEdge 
EM64T nodes.  

2. We have extended the serial, single processor 
benchmarking approach to incorporate throughput, 
RATE-style benchmarks including six of the present 
integer codes and eleven data sets. The RATE 
benchmarks provide an additional performance probe 
crucial in understanding the impact of utilising all the 
processing elements on a multi-core system, and shed 
considerable light on the memory bandwidth 
requirements of each of the codes. The present approach 
is consistent with the SPECint2000 and 
SPECint_rate2000 benchmarks. In highlighting the 
memory bandwidth demands of the Hadamard, 
RuWarray and Permutit codes, this exercise has 
illustrated the FSB limitations in the EM64T series of 
Intel processors when compared to Opteron-based dual 
processor systems. In examining the emerging dual-core 
technologies from both AMD and Intel, we have 
considered the improvements underway within Intel’s 
emerging generation of multi-core systems. 

3. A consideration of software specific effects that 
impact on the observed performance has been 
undertaken through (i) the choice of compiler and 
compiler optimisation level, and (ii) the impact of coding 
language through a consideration of performance 
delivered when using C and FORTRAN. In the case of 
Hadamard, the C version of the code was surprisingly 
found to outperform the FORTRAN code on all 
platforms 
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4. Through the development of a Workload 
Benchmark, we have simulated “real-world” usage of a 
cluster and quantified the ensuing impact that fully 
populating the job scheduler has on the individual 
benchmark performance. 

5. Parallel (MPI) Benchmarks – taking parallel MPI 
versions of two of the HPC Integer codes, we have 
examined the impact of Interconnect bandwidth and 

latencies on performance and the level of scalability 
achievable. 

Finally, to summarise our findings across the serial, rate 
and parallel work loads described in this paper, we point 
to the performance sensitivity analysis of Section 4 in 
summarising the optimum processor family for each 
code, together with its dependency on clock speed, 
cache, and both memory latency. 

 
Performance Sensitivity Analysis Code Optimum 

CPU Clock 
speed  
(GHz) 

L2 
cache 

Memory 
Bandwidth. 

(MB/s) 

Memory 
Latency. 

(µs) 
Linemap Itanium  X X X 
Permutit Opteron  X   

Hadamard Itanium X X  X 
RuWarray Itanium X   X 
Treesearch Opteron   X  

Linequ Opteron   X X 
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