
Council for the Central Laboratory of the Research Councils

HPC Integer Benchmarks: An Indepth Analysis of
the Performance Sensitivity of
Legacy codes on Current Hardware Platforms

Christine A. Kitchen, Martyn F. Guest, Michael Ehrig, Miles J. Deegan, Igor N. Kozin and Richard Wain

March 2006

DL-TR-2006-004

© 2006 Council for the Central Laboratory of the Research Councils

Enquiries about copyright, reproduction and requests for additional copies of this
report should be addressed to:

Library and Information Services
CCLRC Daresbury Laboratory
Daresbury Warrington
Cheshire WA4 4AD
UK
Tel: +44 (0)1925 603397
Fax: +44 (0)1925 603779
Email: library@dl.ac.uk

ISSN 1362-0207

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

 DL-TR-2006-004

HPC Integer Benchmarks: An Indepth Analysis of the Performance Sensitivity of
Legacy codes on Current Hardware Platforms

Christine A. Kitchen, Martyn F. Guest, Michael Ehrig†, Miles J. Deegan, Igor N. Kozin and
Richard Wain

Computational Science and Engineering Department, CLRC Daresbury Laboratory,
Daresbury, Warrington, Cheshire, WA4 4AD, UK

†Hewlett Packard, Schickardstrasse 32, D-71034 Boeblingen, Germany.
Date: 10th March 2006 (revised 5th November 2006).

Abstract

This paper presents a performance analysis of an HPC
Integer Benchmark comprising seven legacy codes (and
13 associated data sets) designed to test both integer and
boolean performance. In presenting an overview of
single processor performance, data is analysed from a
variety of Itanium2, Opteron and EM64T Xeon
processors (16 machines in total), plus the IBM power5-
based p5-575, with a particular focus on the emerging
dual-core systems from AMD and Intel. The subsequent
performance analysis considers for each benchmark the
impact of memory latency and memory bandwidth and
dependency on both clock speed and cache.
Defining a set of associated “RATE” benchmarks, we
demonstrate clear pointers to the memory bandwidth
issues on dual-core systems, and define a “workload”
benchmark designed to fully reveal these effects when
considering throughput workloads. Finally we present
initial results from the MPI implementation of a number
of the benchmark codes on a variety of parallel systems.

1. Introduction

Much of the performance evaluation work carried out by
the Distributed Computing Group at CCLRC Daresbury
Laboratory has naturally focused on 64-bit floating point
arithmetic. To date this work has considered the
performance attributes of current and emerging systems
in scientific and technical computing, derived though a
variety of synthetic and application-based floating point
metrics. Numerous systems have been rigorously
evaluated using important applications. Recent
evaluations have included the Cray XD1 and Infinipath
Clusters [1]. The primary goals of these evaluations are
to a) determine the most effective approaches for using
each system, b) evaluate benchmark and application
performance, both in absolute terms and in comparison
with other systems, and c) predict scalability, both in
terms of problem size and in number of processors.

However, there are a number of established and
emerging disciplines where a greater emphasis is given
to the integer and boolean performance of processors e.g.
the bioinformatics community, intelligence agencies etc.

There are of course a number of well established
benchmarks that focus on integer performance, notably
SPEC [2] and HPCC [3]. The former dedicates the entire
SPECint and SPECint_rate [4] benchmarks to track
integer related performance, while HPCC includes the
RandomAccess benchmark [5] to measure the rate of
integer random updates of memory. In line with our
approach to evaluating the floating point attributes of key
application codes, we felt it timely to develop our own
integer-based benchmarks to reflect the performance
interests of the above communities.

The aim of the present work is to examine both the
single and parallel processor performance of a set of
integer-based benchmark codes (comprising seven
legacy codes and 13 associated datasets) on a variety of
different processors and hardware platforms. The overall
approach is to assess the performance of each code in
light of the different processor attributes and system
architectures. Specifically we look to understand each
code’s dependency on clock speed, cache, both memory
latency and bandwidth and the impact that each factor
has on serial, rate and parallel work loads.

This report is broken down into a number of sections,
with Section 2 providing a description of each of the
benchmark codes and a summary of the variety of
systems used in the benchmarks. Subsequent sections
each focus on a specific aspect of the observed
performance. Section 3 reports the overall serial
benchmark times for each of the codes as a function of
data set, and provides a performance comparison
contrasting the Intel Itanium (IA64) performance with
both the Intel Xeon EM64T (code name “Nocona” and
“Irwindale”) and AMD Opteron (x86-64). A more
detailed analysis of these comparisons is given in
Sections 4 and 5. Section 4 looks to rationalise the
performance in terms of specific attributes of the systems
under consideration e.g. memory latency and memory
bandwidth, processor speed etc. Section 5 turns to
software specific effects that impact on the observed
performance – the choice of compiler, compiler
optimisation level and the impact of coding language
through a consideration of performance delivered when
using C and FORTRAN.

 HPC Integer Benchmarks 1

 DL-TR-2006-004

The remaining sections look to extend the preceding
focus on just single processor performance to a
consideration of RATE (throughput), workload and
parallel performance. Section 6 considers the impact of
throughput processing with the development of RATE
benchmarks, very much in line with the SPEC provision
of both SPECint and SPECint_rate benchmarks [4].
Section 7 extends this analysis still further with the
development of a simulated “workload throughput”
benchmark, looking to reflect “real world” usage by
simulating a job mix of all of the benchmark codes. By
defining this set of associated RATE benchmarks, we
demonstrate clear pointers to the memory bandwidth
issues on dual-core systems, while the "workload"
benchmark is designed to fully reveal these effects when
considering throughput workloads. Finally we turn to
the parallel performance of the benchmarks, and consider
the parallel implementation and performance of a
number of the integer codes using MPI on a variety of
parallel systems. Note that a presentation version of this
report is available [6].

2. The HPC Integer Benchmark and
Evaluation Systems

The HPC Integer benchmark is comprised of 7 legacy
codes, with 13 different data sets, designed to assess both
integer and boolean performance. Originally developed
for Cray vector supercomputers, the functionality and
purpose of each the named codes are as follows:

• Linemap: performs a Gray-code search for a linear
mapping (requires extensive use of popcnt).

• Permutit: permutes the order of bits of each entry in
an array of 64-bit words.

• Hadamard: performs a transform similar to the
Hadamard transform.

• RuWarray: calculates a read-update-write on
random elements of a large array.

• Treesearch: undertakes a tree search to solve a 33-
peg solitaire game.

• Linequ: solves a system of linear binary equations –
700 equations in 700 unknowns.

• IObench: writes a number of 64-bit words of
bitstream to a file and reads the file.

In presenting an overview of processor performance for
each of the above codes, performance data is analysed
from a variety of Itanium2, Opteron and EM64T Xeon
processors (16 machines in total, plus the IBM power5-
based p5-575, see Table 1), with a particular focus on the
emerging dual-core systems from AMD and Intel. The

systems evaluated reside at a number of sites – some at
Daresbury itself, plus those at both academic- and
vendor-sites e.g. Xeon systems at Dell and a number of
Itanium2-based RX systems at Hewlett Packard. The
subsequent performance analysis considers for each
benchmark the impact of memory latency, memory
bandwidth and the dependency on both clock speed and
cache.

Processor CPU

speed
Interconnect Location

Opteron270 2.0GHz Myrinet 2K Leeds
Opteron248 2.2GHz Myrinet 2K RAL
Opteron875 2.2GHz – HP
Opteron150
(Cray XT3)

2.4GHz Customised Pittsburgh

Opteron250 2.4GHz Rapid Array DL
Opteron280 2.4GHz – HP
Opteron852 2.6GHz Infinipath Streamline
Xeon (Bensley) 3.46GHz – Intel
PowerEdge1850 3.2GHz Infiniband TACC
PowerEdge1850 3.2GHz Infiniband TACC
IBM p5-575 1.5GHz Federation

(HPS)
HPCx

Itanium2 (SGI
Altix)

1.3GHz NUMAlink CSAR

Itanium2, (SGI
Altix)

1.5GHz NUMAlink CSAR

Itanium2 (HP
rx5670)

1.5GHz ZX1 HP

Itanium2 (HP,
rx8620)

1.6GHz SX1000 HP

Itanium2 (HP
rx1620)

1.6GHz ZX1 HP

Itanium2 (HP
SD64000B)

1.6GHz SX2000 HP

Table 1: Summary of the Systems Evaluated.

Given the dependency of this analysis on the
architectural characteristics of each of the accessed
systems, we describe these in some detail below when
outlining each of the systems characteristics:
1. The Cray XT3, Bigben, at Pittsburgh
Supercomputing Centre: The XT3 is Cray’s third-
generation massively parallel processing system. The
XT3 builds upon a single processor node, or processing
element (PE), using the AMD Opteron model 150
processors. These processors are connected with a
customized interconnect managed by a Cray-designed

 HPC Integer Benchmarks 2

 DL-TR-2006-004

Application-Specific Integrated Circuit (ASIC) called
SeaStar. The compute PEs run a lightweight operating
system kernel called Catamount. The Opteron core has
three integer units and one floating point unit capable of
two floating-point operations per cycle. Because the
processor core is clocked at 2.4 GHz, the peak floating
point rate of each compute node is 4.8 GFlops. The
memory structure of the Opteron consists of a 64KB 2-
way associative Level 1 (L1) data cache, a 64KB 2-way
associative L1 instruction cache, and a 1 MByte (MB)
16-way associative, unified Level 2 (L2) cache. Each PE
has 2 GByte (GB) of memory but only 1 GB is usable
with the kernel used for our evaluation. The memory
DIMMs are 1 GB PC3200 - the peak memory bandwidth
per processor is 6.4 GB/s. Also, the Opteron 150 has an
on-chip memory controller. As a result, memory access
latencies with the Opteron 150 are in the 50-60 ns range.

2. An Opteron cluster, Everest, at Leeds University:
The cluster comprises Sun Microsystems’ Sun Fire
V40z and V20z servers with dual-core AMD Opteron
processors integrated by Streamline Computing. Seven
of these (V40z) comprise four 2.2 GHz dual-core
processors configured with 192 GB memory. Eighty
seven V20z servers are interconnected with a Myrinet
network; each of these comprises two 2.0 GHz dual-core
processors sharing in total 0.7 TByte (TB) of distributed
memory across 348 processor cores. The system runs the
Linux (64-bit SuSE) operating system. The present
benchmarks were run on the myrinet-connected V20z
servers i.e. two 2.0 GHz dual-core processors per node.

3. An Opteron cluster, SCARF, at the Rutherford
Laboratory integrated by Streamline Computing: 256
AMD Opteron 248 (2.2 GHz) processors with 2GB (224
processors) and 4 GB (32 processors) of memory per
processor. The system is configured as 128, 2-way SMPs
with Myrinet 2K (M3F-PCIXD-2) interconnect. The
system runs the RedHat ES 3.0 operating system and
PGI compilers.

4. An Opteron cluster at Streamline Computing: 32
AMD Opteron 252 (2.6 GHz) processors with 2GB of
memory per processor. The system is configured as 16,
2-way SMPs with Pathscale interconnect. The system
runs the RedHat ES 3.0 operating system and Pathscale
(EKO v2.2) compilers.

5. The Cray XD1 at Daresbury: 70 AMD 2.4 GHz
Opteron 250 processors with 2GB of memory per
processor. System is configured as 35 x 2-way SMPs
with Cray’s proprietary RapidArray interconnect fabric.
PGI compilers were used (6.0.8).

6. The SGI Altix 3700 system, NEWTON, at
Manchester Computing Centre comprising 512 Itanium2
processors and SGI’s NUMAlink interconnect. Each

processor has 256 KB L2 cache, 16 KB L1 data cache,
16 KB L1 instruction cache. The 1.3 GHz processors
have 3 MB L3 cache, while the 1.5 GHz processors have
6 MB. The machine has an aggregate of 1 TB of shared
memory. SGI NUMAlink provides sub-microsecond
hardware latency, 3-5 microseconds MPI latency, sub-
microsecond latency for one-sided communications, and
12.8GB/s aggregate bandwidth per brick (4 CPUs). The
Operating System comprises a Linux kernel with SGI
Propack extensions (based on Redhat 7.2).

7. HP Itanium2 cluster at HP: 144 Itanium-2 1.5 GHz
processors. The system is configured as 72 x 2-way SMP
RX1620 nodes with an Infiniband and Gigbit
interconnect. Each compute node has 18GB of memory.
The system runs the HPUX (HPUX 11.23) operating
system.

8. The HP Integrity Superdome SD64000B. The
system features 64 socket (128 core) 1.6 GHz Itanium2
Montecito processors with 12 MB L3 cache per core.
The SD64000B architecture is based on HP’s new cell
infrastructure (SX2000), with 533 MHz frontside bus.
The system runs the HPUX (HPUX 11.23) operating
system.

9. The HPCx phase2a system at Daresbury,
comprising 96 IBM power5 eServer nodes (1.5 GHz) i.e.
1536 processors. The system is equipped with 3.2 TB of
memory and 36 TB of disk. In the power5 architecture, a
chip contains two processors, together with L1 and L2
cache. Each processor has its own L1 instruction cache
of 32 KB and L1 data cache of 64 KB integrated onto
one chip. Also on board the chip is the L2 cache
(instructions and data) of 1.9 MB, which is shared
between the two processors. Four chips (8 processors)
are integrated into a multi-chip module (MCM). Two
MCMs (16 processors) comprise one frame. Each MCM
is configured with 128 MB of L3 cache and 16 GB of
main memory. The total main memory of 32 GB per
frame is shared between the 16 processors of the frame.
The frames in the HPCx system are connected via IBM's
High Performance Switch (HPS). Each frame is one 16-
way LPAR – the names LPAR and frame are synonyms
for computer node on HPCx phase2a.

In addition to the systems above systems, benchmarks
have been run on a variety of single node server systems,
including:

• A variety of Dell Poweredge 1850 nodes,
comprising both “Nocona” and “Irwindale” EM64T dual
processors. The former nodes, with 1MB L2 cache, were
clocked at 2.8 GHz, 3.2 GHz, 3.4 GHz and 3.6 GHz. The
Irwindale nodes, with 2MB L2 cache, were clocked at
3.0 GHz, 3.2 GHz, 3.4 GHz and 3.6 GHz. These nodes

 HPC Integer Benchmarks 3

 DL-TR-2006-004

were located at the TACC centre as part of the Wrangler
cluster system, and at Dell.

• A prototype of the Intel Xeon 5080 processor - the
EM64T “Bensley/Dempsey” platform - clocked at 3.46
GHz. The prototype PowerEdge 1950 node featured 4
cores, 2 chips, and 2 cores / chip. Each core has a
primary Cache of 12KB (I) + 16KB (D) on chip, and a
secondary L2 cache of 2MB (I+D).

• Opteron-based DL145 and DL585 servers from
Hewlett Packard. The DL145 server comprised 2 x 2.4
GHz dual-core AMD Opteron 280 processors sharing a
total of 2 GB memory. The DL585 server comprised 4 x
2.2 GHz dual-core AMD Opteron 875 processors sharing
a total of 4 GB memory. The systems run the Linux (64-
bit SuSE) operating system.

• An HP RX5670 server, with 4 x 1.5 GHz Itanium2
Madison processors, each with 6 MB L3 cache, 400
MHz frontside bus and ZX1 cell interconnect. The
system runs the HPUX (HPUX 11.23) operating system.

• An HP RX8620 server, with 8 x 1.6 GHz Itanium2
Madison processors, each with 6 MB L3 cache, 400
MHz frontside bus and SX1000 cell interconnect. The
system runs the HPUX (HPUX 11.23) operating system.

• An HP RX1620 server with 2 x 1.6 GHz Itanium2
Madison processors, each with 3 MB L3 cache, 533
MHz frontside bus and ZX1 cell interconnect. The
system runs the HPUX (HPUX 11.23) operating system.

3. SERIAL PERFORMANCE: IA64 and
x86-64

The analysis below concentrates on the performance
differential between Itanium2 (IA64) with respect to
Xeon EM64T and AMD Opteron (x86-64). A more
thorough break down of the various code dependencies is
examined in Section 4. It should be noted that throughout
this report the focus is on performance and at no point is
the price of the systems factored into the analysis. At this
moment, it is probably fair to say that the Intel Xeon
EM64T and AMD Opteron are comparable in price,
while the Intel Itanium2 is, at a conservative estimate, a
factor of 3 times the price of the x86-64 systems.

Before presenting the results of the current
benchmarking, we provide in Table 2 tabulated
SPECfp2000 [7] and SPECint2000 [4] results for many
of the processors featuring in the present exercise. These
should be viewed at best as illustrative of the expected
performance differential between IA64 and x86-64 based
systems, for it must be remembered that many of the
results are now several years old, and that more
aggressive figures might be forthcoming were they to be
re-run with today’s compilers. Nevertheless, it is clear

that the SPECfp ordering is quite different from that
shown by SPECint. While the Itanium2 and Power5
CPUs dominate the former, the integer-based
benchmarks reveal a clear advantage of the x86-64
CPUs. It is this ordering that might be expected in the
current integer benchmarks.

SYSTEM, PROCESSOR & CPU
SPEED

SPECFP
-2000

SPECINT-
2000

IBM eServer 326m
Opteron270 / DC 2.0GHz 1785 1452

Pathscale ASUS SK8N
Opteron248 / 2.2GHz 1691 1452

HP Proliant DL145
Opteron275 DC 2.2GHz 1878 1518

AMD TYAN 2865
Opteron150 2.4GHz 1955 1681

HP Proliant DL145 G2
Opteron280 DC 2.4GHz 1914 1672

HP Proliant DL145
Opteron252 2.6GHz 2084 1708

Dell Prec. Wkstn. 690 Xeon
5080 (Bensley) DC 3.73GHz 1932 1813

Dell PowerEdge 1850 P4
Xeon 3.2GHz / 2MB L2 1716 1555

Dell PowerEdge 1850 P4
Xeon 3.2GHz / 1MB L2 (est.) 1396 1383

SGI Altix 3000 Itanium2
1.5GHz / 6MB L3

2148 1243

SGI Altix 3000 Itanium2
1.3GHz / 3MB L3

1854 1019

HP Integrity RX1620
Itanium2 1.6GHz 3MB L3

2692 1452

HP Integrity RX5670
Itanium2 1.5GHz 6MB L3

2108 1312

IBM eServer p5-575 1.5GHz 2185 1143

Table 2: SPECfp and SPECint Performance

3.1 Linemap

A number of the integer benchmark codes – including
Linemap – relied historically on efficient intrinsic bit
manipulation functions. This of course led to much of the
success of Cray given the hardware implementation of
intrinsics such as population count (popcnt) and leading
zero (leadz) count.

 HPC Integer Benchmarks 4

 DL-TR-2006-004

Linemap performs a Gray-code1 search for a linear
mapping which invokes extensive use of popcnt, the
population count instruction. Popcnt is a function that
counts the number of set bits in a data object. The three
data sets invoked each specify two arguments – the
number of dimensions in vector space (one in each case)
and the number of vectors to be searched over,
increasing from 20 to 21 and 22 in the three data sets.

15.2

15.1

11.3

12.3

9.3

8.1

2.9

2.8

2.8

16.4

0.0 4.0 8.0 12.0 16.0

Dell PowerEdge 1850 3.6
GHz 1MB L2

Dell PowerEdge 1850 3.6
GHz 2MB L2

Pathscale Opteron 852 2.6
GHz

 HP DL145 Opteron280 2.4
GHz 2CC

SGI Altix 3700 Itanium2 1.3
GHz

SGI Altix 3700 Itanium2 1.5
GHz

HP RX5670 Itanium2 1.5
GHz

HP RX8620 Itanium2 1.6
GHz

HP RX1620 Itanium2 1.6
GHz

IBM p5-575 1.5 GHz

Total Time (seconds)

Figure 1: Linemap Performance using Dataset (1 20)
on a variety of different processors.

The HP-UX Itanium systems (“HP RX” labelled systems
in Figure 1) are seen to outperform all the other
platforms by a significant margin including other
Itanium-based solutions (e.g. the SGI Altix). Thus the
HP-UX systems are faster than the SGI systems by a
factor of three, and faster than the Opteron-based
systems by a factor of over 4. Both EM64T and power5
systems are comparable in performance, slower than the
Opteron CPUs by factors of 1.3 and 1.4 respectively.

The reason for this dominance of the HP RX-systems is
that the HP-UX compiler provides pragmas in the C/C++
routines for a high performance popcnt / leadz
implementation. Pragmas are a method specified by the
C standard for providing additional information
(machine dependent) to the compiler that means the
compiler doesn’t call these functions but inlines optimal
assembly.

Another contributing factor to the Itanium’s performance
(applicable to all Itanium solutions) is that it has popcnt

1 A Gray-code, developed by Frank Gray, is a binary

numeral system where two successive values differ in only one
digit. Gray codes were originally designed to prevent spurious
outputs from electromechanical switches. Today they are
widely used to facilitate error correction in digital
communications such as in digital terrestrial television.

implemented in hardware, making it in principle much
faster than other comparable CPUs.

There is also some slight dependence on the actual CPU
speed, although the cache size has negligible impact on
performance. These trends are examined in more detail
in Section 4.1. Identical trends are observed when the
problem size is increased – see Figures 2 & 3.

45.5

45.7

34.1

36.8

27.9

24.1

8.9

8.3

8.3

49.2

0.0 10.0 20.0 30.0 40.0 50.0

Dell PowerEdge 1850 3.6 GHz
1MB L2

Dell PowerEdge 1850 3.6 GHz
2MB L2

Pathscale Opteron 852 2.6 GHz

 HP DL145 Opteron280 2.4 GHz
2CC

SGI Altix 3700 Itanium2 1.3 GHz

SGI Altix 3700 Itanium2 1.5 GHz

HP RX5670 Itanium2 1.5 GHz

HP RX8620 Itanium2 1.6 GHz

HP RX1620 Itanium2 1.6 GHz

IBM p5-575 1.5 GHz

Total Time (seconds)
Figure 2: Linemap Performance using Dataset (1 21)
on a variety of different processors.

147.6

25.1

25.1

26.8

72.3

83.5

110.5

102.4

136.9

135.9

0.0 25.0 50.0 75.0 100.0 125.0 150.0

Dell PowerEdge 1850 3.6 GHz
1MB L2

Dell PowerEdge 1850 3.6 GHz
2MB L2

Pathscale Opteron 852 2.6
GHz

 HP DL145 Opteron280 2.4
GHz 2CC

SGI Altix 3700 Itanium2 1.3
GHz

SGI Altix 3700 Itanium2 1.5
GHz

HP RX5670 Itanium2 1.5 GHz

HP RX8620 Itanium2 1.6 GHz

HP RX1620 Itanium2 1.6 GHz

IBM p5-575 1.5 GHz

Total Time (seconds)
Figure 3: Linemap Performance using Dataset (1 22)
on a variety of different processors.

3.2 Permutit

Permutit permutes the order of bits of each entry in an
array comprising 24 × 106 words. In contrast to Linemap,
there is little to choose between the performance of the
four classes of system, with the Opteron and EM64T
systems marginally faster than those featuring Itanium2
and power5 CPUs (see Figure 4). Thus the HP Itanium2
RX-systems are now comparable in performance to the
corresponding SGI systems, although surprisingly the
RX8620 system is seen to be much slower than both the

 HPC Integer Benchmarks 5

 DL-TR-2006-004

RX1620 and RX5670 – by a factor of two. Initially
understanding this performance differential gave cause
for concern; we shall return to this point in Section 4.

85.7

87.2

82.0

79.0

95.5

82.7

96.8

197.7

84.3

108.5

0.0 50.0 100.0 150.0 200.0

Dell PowerEdge 1850 3.6 GHz
1MB L2

Dell PowerEdge 1850 3.6 GHz
2MB L2

Pathscale Opteron 852 2.6
GHz

 HP DL145 Opteron280 2.4
GHz 2CC

SGI Altix 3700 Itanium2 1.3
GHz

SGI Altix 3700 Itanium2 1.5
GHz

HP RX5670 Itanium2 1.5 GHz

HP RX8620 Itanium2 1.6 GHz

HP RX1620 Itanium2 1.6 GHz

IBM p5-575 1.5 GHz

Total Time (seconds)

Figure 4: Permutit Performance comparison between
IA64 and x86-64 architectures.

3.3 Hadamard

This code performs a generalised class of Fourier
Transforms, similar to the Hadamard transform (for a
description of the transform see text box at the end of
this section). The two data sets invoked each specify two
arguments – the number of bits involved in each
transform – 24 in the first, 25 in the second – and the
number of transforms to be carried out, 40 and 50 in the
two data sets respectively.

136.8

135.7

138.3

151.8

112.7

108.1

103.6

114.6

81.6

119.0

0.0 25.0 50.0 75.0 100.0 125.0 150.0

Dell PowerEdge 1850 3.6 GHz
1MB L2

Dell PowerEdge 1850 3.6 GHz
2MB L2

Pathscale Opteron 852 2.6
GHz

 HP DL145 Opteron280 2.4
GHz 2CC

SGI Altix 3700 Itanium2 1.3
GHz

SGI Altix 3700 Itanium2 1.5
GHz

HP RX5670 Itanium2 1.5 GHz

HP RX8620 Itanium2 1.6 GHz

HP RX1620 Itanium2 1.6 GHz

IBM p5-575 1.5 GHz

Total Time (seconds)

Figure 5: Hadamard transformation using the (24, 40)
dataset.

360.0

357.3

402.5

389.3

292.8

282.7

272.7

307.4

217.9

320.0

0.0 100.0 200.0 300.0 400.0

Dell PowerEdge 1850 3.6 GHz
1MB L2

Dell PowerEdge 1850 3.6 GHz
2MB L2

Pathscale Opteron 852 2.6
GHz

 HP DL145 Opteron280 2.4
GHz 2CC

SGI Altix 3700 Itanium2 1.3
GHz

SGI Altix 3700 Itanium2 1.5
GHz

HP RX5670 Itanium2 1.5 GHz

HP RX8620 Itanium2 1.6 GHz

HP RX1620 Itanium2 1.6 GHz

IBM p5-575 1.5 GHz

Total Time (seconds)
Figure 6: Hadamard Transformation using the (25,
50) dataset.

 Figures 5 and 6 suggest that the Itanium2, at least in the
HP RX1620, is again showing a slight performance
advantage over the x86-64 systems when computing the
Transformation. The p5-575 performs on a par with
RX8620, while the EM64T and Opteron CPUs are
comparable, albeit somewhat slower than both power5
and Itanium2 CPUs.
The impact of increasing the problem size is negligible

 HPC Integer Benchmarks
Hadamard Transform.
The Hadamard Transform (Hadamard transformation
also known as the Walsh-Hadamard transformation)
is an example of a generalised class of Fourier
Transforms. In quantum information processing the
Hadamard transformation, more often called the
Hadamard gate in this context (cf. quantum gate), is a
one-qubit rotation, mapping the qubit-basis states |0›
and |1› to two superposition states with equal weight
of the computational basis states |0› and |1›. Usually
the phases are chosen so that we have

in Dirac notation. This corresponds to the
transformation matrix

in the |0›,|1› basis.
Many quantum algorithms use the Hadamard
transform as an initial step, since it maps n qubits
initialised with |0› to a superposition of all 2n

orthogonal states in the |0›,|1› basis with equal
weight.
The Hadamard matrix can also be regarded as the
Fourier transform on the two-element additive group
of Z(2).
The Hadamard transform is used in many signal
processing, and data compression algorithms.
 6

 DL-TR-2006-004

on the performance differential between the
architectures; the performance appears to scale linearly
with problem size. A more detailed analysis of
Hadamard’s dependencies on the system characteristics
is presented in Section 4.3.

3.4 RuWarray

RuWarray calculates a read-update-write on random
elements in an array.

265.5

210.3

189.9

248.0

409.6

396.6

177.8

212.2

208.8

355.6

0.0 100.0 200.0 300.0 400.0

Dell PowerEdge 1850 3.6 GHz
1MB L2

Dell PowerEdge 1850 3.6 GHz
2MB L2

Pathscale Opteron 852 2.6
GHz

 HP DL145 Opteron280 2.4
GHz 2CC

SGI Altix 3700 Itanium2 1.3
GHz

SGI Altix 3700 Itanium2 1.5
GHz

HP RX5670 Itanium2 1.5 GHz

HP RX8620 Itanium2 1.6 GHz

HP RX1620 Itanium2 1.6 GHz

IBM p5-575 1.5 GHz

Total Time (seconds)
Figure 7: RuWarray performance using 3 × 109
random elements.

527.9

421.4

444.7

498.1

819.0

792.4

355.3

424.2

416.9

0.0 200.0 400.0 600.0 800.0

Dell PowerEdge 1850 3.6 GHz
1MB L2

Dell PowerEdge 1850 3.6 GHz
2MB L2

Pathscale Opteron 852 2.6
GHz

 HP DL145 Opteron280 2.4
GHz 2CC

SGI Altix 3700 Itanium2 1.3
GHz

SGI Altix 3700 Itanium2 1.5
GHz

HP RX5670 Itanium2 1.5 GHz

HP RX8620 Itanium2 1.6 GHz

HP RX1620 Itanium2 1.6 GHz

Total Time (seconds)

Figure 8: RuWarray performance using 6 × 109
random elements.

The performance of RuWarray for an increasing number
of elements, shown in Figures 7-9, is comparable on
HP’s IA64 and the x86-64 platforms, with the HP
RX5670 the fastest system. However the SGI Altix’s
Itanium implementation is surprisingly much slower.
The cause, we suspect, is the use of the default pre-
processing invoking the slow implementation branch. As
with the Hadamard benchmark, performance trends are
consistent across the various problem sizes. Increasing or

decreasing the number of random elements in the
problem set does not provide a specific chipset with a
performance edge over the other systems.

1233.1

1188.5

796.5

628.3

599.6

750.0

532.7

637.2

625.2

0.0 250.0 500.0 750.0 1000.0 1250.0

Dell PowerEdge 1850 3.6 GHz
1MB L2

Dell PowerEdge 1850 3.6 GHz
2MB L2

Pathscale Opteron 852 2.6
GHz

 HP DL145 Opteron280 2.4
GHz 2CC

SGI Altix 3700 Itanium2 1.3
GHz

SGI Altix 3700 Itanium2 1.5
GHz

HP RX5670 Itanium2 1.5 GHz

HP RX8620 Itanium2 1.6 GHz

HP RX1620 Itanium2 1.6 GHz

Total Time (seconds)
Figure 9: RuWarray performance using 9 × 109
random elements.

3.5 Treesearch

Treesearch, as the name implies, involves the use of a
Treesearch algorithm to solve a 33-peg solitaire game.

80.4

70.5

58.2

77.9

128.5

109.3

105.2

180.2

95.3

108.0

0.0 50.0 100.0 150.0 200.0

Dell PowerEdge 1850 3.6 GHz 1MB L2

Dell PowerEdge 1850 3.6 GHz 2MB L2

Pathscale Opteron 852 2.6 GHz

 HP DL145 Opteron280 2.4 GHz 2CC

SGI Altix 3700 Itanium2 1.3 GHz

SGI Altix 3700 Itanium2 1.5 GHz

HP RX5670 Itanium2 1.5 GHz

HP RX8620 Itanium2 1.6 GHz

HP RX1620 Itanium2 1.6 GHz

IBM p5-575 1.5 GHz

Total Time (seconds)
Figure 10: Treesearch serial performance on both
IA64 and x86-64 architectures.

For Treesearch all the x86_64 architectures outperform
the IA64 systems, with the HP RX8620 significantly
slower than the other systems. The Opteron and EM64T
systems exhibit comparable performance, with the
2.6GHz Opteron252 the fastest CPU. The performance
dependencies of Treesearch are examined in more depth
in Section 3.5, where both the CPU speed and memory
latency prove to be important factors in governing the
performance of the code.

 HPC Integer Benchmarks 7

 DL-TR-2006-004

3.6 Linequ

Linequ solves a system of linear binary equations using
700 equations with 700 unknowns. The equations are
solved using Gaussian elimination with block reductions
and partial pivoting. Extensive use is made of both the
popcnt and leadz intrinsics.

77.3

68.5

56.5

68.0

177.4

150.2

136.3

131.8

127.1

110.0

0.0 50.0 100.0 150.0

Dell PowerEdge 1850 3.6
GHz 1MB L2

Dell PowerEdge 1850 3.6
GHz 2MB L2

Pathscale Opteron 852 2.6
GHz

 HP DL145 Opteron280 2.4
GHz 2CC

SGI Altix 3700 Itanium2 1.3
GHz

SGI Altix 3700 Itanium2 1.5
GHz

HP RX5670 Itanium2 1.5
GHz

HP RX8620 Itanium2 1.6
GHz

HP RX1620 Itanium2 1.6
GHz

IBM p5-575 1.5 GHz

Total Time (seconds)

Figure 11: Linequ serial performance on both IA64
and x86-64 architectures.

As with Treesearch, the IA64 systems are seen to be
significantly slower than the x86-64 systems. The
problem would appear to lie in the integer multiplication
routine, where the Itanium systems spend excessive time
calculating loop addresses. A typical loop in Linequ is of
the form:

SUBROUTINE REDUCE (SETNUM, MSIZE, NW,
MAXM, B, I, R, RR, EQN, KARY, IS)

PARAMETER (ONE=1)
INTEGER*8 R(0:NW-1,0:2**B-1)
INTEGER*8 EQN(0:NW-1,O:MSIZE-1)
INTEGER*8 KARY(O:MSIZE-1)

KK=ISHFT(I+IS,-6)

DO J = 0,I-1

ENT = KARY(J)
DO MM = KK,NW-1
 EQN(MM,J)=IEOR(EQN(MM,J),R(MM,ENT))

 END DO
END DO

 Matrices with two dimensions are used, where the array
boundaries are passed by the caller, and are unknown at
compile time. If the inner MM-loop is very short, most
of the time will be spent calculating the addresses of
R(MM,ENT). The x86-64 has the advantage over IA64
in that it can perform the integer multiplication in
hardware, while the IA64 systems must convert the

integer to floating point, perform the multiplication and
then re-convert to integer format (analogous to the
process deployed on PA-RISC architectures). Profiling
studies suggest that these instructions are indeed using a
significant proportion of the time in Linequ, thus
explaining the performance lead of both the Intel Xeon
EM64T and AMD Opteron (x86-64) systems. The
2.6GHz Opteron252 is again the fastest CPU.

3.7 IObench

IObench writes a number of 64-bit words of bitstreams
to a file and reads the file. Two data sets are used, one
with 108 words (Figure 12), the second with 109 (Figure
13).

0.8

0.8

0.7

2.8

3.7

1.5

0.7

2.0

0.5

0.0 1.0 2.0 3.0 4.0

Dell PowerEdge 1850 3.6
GHz 1MB L2

Dell PowerEdge 1850 3.6
GHz 2MB L2

Pathscale Opteron 852 2.6
GHz

 HP DL145 Opteron280 2.4
GHz 2CC

SGI Altix 3700 Itanium2 1.3
GHz

SGI Altix 3700 Itanium2 1.5
GHz

HP RX5670 Itanium2 1.5
GHz

HP RX8620 Itanium2 1.6
GHz

HP RX1620 Itanium2 1.6
GHz

Total Time (seconds)
Figure 12: IObench with 108 64-bit words of
bitstreams.

9.9

13.7

29.4

17.2

13.1

74.8

21.6

39.0

8.7

0.0 20.0 40.0 60.0 80.0

Dell PowerEdge 1850 3.6 GHz
1MB L2

Dell PowerEdge 1850 3.6 GHz
2MB L2

Pathscale Opteron 852 2.6 GHz

 HP DL145 Opteron280 2.4 GHz
2CC

SGI Altix 3700 Itanium2 1.3
GHz

SGI Altix 3700 Itanium2 1.5
GHz

HP RX5670 Itanium2 1.5 GHz

HP RX8620 Itanium2 1.6 GHz

HP RX1620 Itanium2 1.6 GHz

Total Time (seconds)

Figure 13: IObench with 109 64-bit words of
bitstreams.

 HPC Integer Benchmarks 8

 DL-TR-2006-004

This benchmark is, as the name suggests, Input/Output
(I/O) intensive, and is critically dependent on the disk
subsystem in use. In terms of understanding the HP IA64
performance of Figures 12 and 13, only a single disk was
available on the RX1620 and RX5670 systems, whilst
the RX8620 had 3 striped disks. I/O is actually buffer
cached in this benchmark, and should be explicitly
opened with osync or a flush call added. Note that this
benchmark is really dated, and should be replaced by e.g.
IOzone, now the I/O standard benchmark of choice [8].

4. Serial Performance: Code Dependencies

This section looks to understand in more detail the
performance of each of the benchmarking codes
presented in Section 3, though an examination of
performance dependency on the various aspects of the
system architecture, such as CPU Speed, L2 and L3
cache effects and memory bandwidth/latency. This
analysis was conducted by gaining access to a set of Dell

PowerEdge 1850 servers with varying clock speeds and
L2 cache sizes.

The Dell PowerEdge systems use Intel Xeon EM64T
processors with the codenames “Nocona” containing
1MB L2 cache and “Irwindale” that has 2MB L2 cache.
Table 3 summaries the CPU speeds of the systems used
in this experiment.

Nocona

(1MB/L2)
2.8 X 3.2 3.4 3.6

Irwindale
(2MB/L2)

X 3.0 3.2 3.4 3.6

Table 3: Clock Speed Summary (GHz) for the Dell
PowerEdge 1850 systems.

Using related systems in this fashion reduces the number
of variables that might be influencing the observed
performance, enabling an additional degree of
confidence in determining the underlying cause of a
particular trend.

0

100

200

300

400

500

600

700

800

900

Dell
PowerEdge

1850 3.6 GHz
2MB L2

Dell
PowerEdge

1850 3.4 GHz
2MB L2

Dell
PowerEdge

1850 3.2 GHz
2MB L2

Dell
PowerEdge

1850 3.0 GHz
2MB L2

Dell
PowerEdge

1850 3.6 GHz
1MB L2

Dell
PowerEdge

1850 3.4 GHz
1MB L2

Dell
PowerEdge

1850 3.2 GHz
1MB L2

Dell
PowerEdge

1850 2.8 GHz
1MB L2

linemap linemap linemap permutit
hadamard hadamard RuWarray RuWarray
RuWarray treesearch linequ iobench
iobench

Total Time

Figure 14: Summary of all HPC integer benchmarks on Dell PowerEdge 1850 systems

Figure 14 provides an overall summary of all 7 codes on
Intel Xeon EM64T systems. To the left of the red central
vertical line are all PowerEdge systems with 2MB L2
cache, in increasing clock speed, starting at the red line
and working outwards to the left margin. To the right of
the red line are all the Dell PowerEdge systems with
1MB L2 cache in decreasing clock speed working from
the red line to the right hand side of the page.

Each of the codes is examined individually in the
sections below. Figure 14 attempts to summarise the
overall effects on all the codes. The following layout of
the systems above is consistent in all subsequent graphs
in this section:

 INCREASING CPU SPEED | DECREASING CPU SPEED
 2MB L2 CACHE | 1MB L2 CACHE

 HPC Integer Benchmarks 9

 DL-TR-2006-004

4.1 Linemap – Impact of Clock Speed & Cache

Figure 15 suggests that Linemap is dependent primarily
on the CPU speed and that L2 cache has a negligible
impact on performance. Concentrating on one half of the
graph shows that performance improves with increasing
clock speed. Comparing corresponding systems on either
side of the line, we find almost identical performance,
indicating that increasing L2 cache has no impact on the
performance of the code i.e. the benchmark is

• CPU dependent
• Insensitive to L2 cache

0

20

40

60

80

100

120

140

160

180

Dell PowerEdge
1850 3.6 GHz

2MB L2

Dell PowerEdge
1850 3.4 GHz

2MB L2

Dell PowerEdge
1850 3.2 GHz

2MB L2

Dell PowerEdge
1850 3.0 GHz

2MB L2

Dell PowerEdge
1850 3.6 GHz

1MB L2

Dell PowerEdge
1850 3.4 GHz

1MB L2

Dell PowerEdge
1850 3.2 GHz

1MB L2

Dell PowerEdge
1850 2.8 GHz

1MB L2

linemap 1 20
linemap 1 21
linemap 1 22

To
ta

l T
im

e
(s

ec
on

ds
)

Figure 15: Linemap Performance on a range of Intel
EM64T CPUs.

These trends are consistent across all 3 Linemap data sets
(although these effects are not as obvious for the two
smaller data sets as the performance is dominated by the
largest data set total time, skewing somewhat the results
for the 1,20 and 1,21 datasets).

4.2 Permutit: Impact of Clock Speed & Cache

Figure 16 suggests that Permutit demonstrates similar
dependencies as Linemap. Time to solution decreases as
CPU speed increases, but is insensitive to increasing the
amount of L2 cache (comparing corresponding systems
on either side of the line) i.e. the benchmark is

• CPU dependent
• Insensitive to L2 cache

0

20

40

60

80

100

120

Dell
PowerEdge

1850 3.6 GHz
2MB L2

Dell
PowerEdge

1850 3.4 GHz
2MB L2

Dell
PowerEdge

1850 3.2 GHz
2MB L2

Dell
PowerEdge

1850 3.0 GHz
2MB L2

Dell
PowerEdge

1850 3.6 GHz
1MB L2

Dell
PowerEdge

1850 3.4 GHz
1MB L2

Dell
PowerEdge

1850 3.2 GHz
1MB L2

Dell
PowerEdge

1850 2.8 GHz
1MB L2

To
ta

l T
im

e
(s

ec
on

ds
)

Figure 16: Permutit Performance on a range of Intel
EM64T CPUs.

4.3 Hadamard – Impact of Clock Speed &
Cache

0

100

200

300

400

Dell
PowerEdge

1850 3.6 GHz
2MB L2

Dell
PowerEdge

1850 3.4 GHz
2MB L2

Dell
PowerEdge

1850 3.2 GHz
2MB L2

Dell
PowerEdge

1850 3.0 GHz
2MB L2

Dell
PowerEdge

1850 3.6 GHz
1MB L2

Dell
PowerEdge

1850 3.4 GHz
1MB L2

Dell
PowerEdge

1850 3.2 GHz
1MB L2

Dell
PowerEdge

1850 2.8 GHz
1MB L2

hadamard 24 40 hadamard 25 50

To
ta

l T
im

e
(s

ec
on

ds
)

Figure 17: Hadamard Performance on a range of Intel
EM64T CPUs.

Figure 17 strongly suggests that neither CPU speed nor
L2 cache size has any influence on calculating a
Hadamard transformation, as indicated by the uniform
behaviour over all the systems i.e. the benchmark is

• Insensitive to CPU speed
• Insensitive to L2 cache

The insensitivity of a code to both CPU frequency and
cache is a strong indicator that either I/O or memory
bandwidth/latency is the performance bottleneck. Given
that there is virtually no I/O from Hadamard, we can be

 HPC Integer Benchmarks 10

 DL-TR-2006-004

certain that the code is 100% memory bandwidth/latency
bound.

4.4 RuWarray – Impact of Clock Speed &
Cache

Increasing CPU speed has minimal impact on the
performance of RuWarray (speed of performing a read-
update-write on random elements of a large array). In
contrast, increasing the amount of L2 cache available
improves the codes performance, demonstrated by the
shorter time requirements for systems on the left hand
side of Figure 18 i.e. the benchmark is

• Insensitive to CPU speed
• L2 cache sensitive

0

100

200

300

400

500

600

700

800

900

Dell
PowerEdge

1850 3.6 GHz
2MB L2

Dell
PowerEdge

1850 3.4 GHz
2MB L2

Dell
PowerEdge

1850 3.2 GHz
2MB L2

Dell
PowerEdge

1850 3.0 GHz
2MB L2

Dell
PowerEdge

1850 3.6 GHz
1MB L2

Dell
PowerEdge

1850 3.4 GHz
1MB L2

Dell
PowerEdge

1850 3.2 GHz
1MB L2

Dell
PowerEdge

1850 2.8 GHz
1MB L2

RuWarray RuWarray RuWarray

To
ta

lT
im

e
(s

ec
on

ds
)

Figure 18: RuWarray Performance on a range of Intel
EM64T CPUs.

4.5 Treesearch – Impact of Clock Speed &
Cache

Treesearch has joint dependencies on both increasing
CPU speed and level of L2 cache, as demonstrated not
only by the increased performance of systems on either
side of the “dividing” line (L2 cache), but also the
improved performance when increasing clock speed for
systems with the same L2 cache (comparing either the
horizontal or vertical striped systems) in Figure 19 i.e.
the benchmark is.

• Sensitive to CPU speed
• L2 Cache sensitive.

0

20

40

60

80

Dell
PowerEdge

1850 3.6 GHz
2MB L2

Dell
PowerEdge

1850 3.4 GHz
2MB L2

Dell
PowerEdge

1850 3.2 GHz
2MB L2

Dell
PowerEdge

1850 3.0 GHz
2MB L2

Dell
PowerEdge

1850 3.6 GHz
1MB L2

Dell
PowerEdge

1850 3.4 GHz
1MB L2

Dell
PowerEdge

1850 3.2 GHz
1MB L2

Dell
PowerEdge

1850 2.8 GHz
1MB L2

To
ta

lT
im

e
(s

ec
on

ds
)

Figure 19: Treesearch performance on range of Intel
EM64T CPUs.

4.6 Linequ – Impact of Clock Speed & Cache

0

10

20

30

40

50

60

70

80

90

100

Dell
PowerEdge
1850 3.6 GHz

2MB L2

Dell
PowerEdge
1850 3.4 GHz

2MB L2

Dell
PowerEdge
1850 3.2 GHz

2MB L2

Dell
PowerEdge

1850 3.0 GHz
2MB L2

Dell
PowerEdge
1850 3.6 GHz

1MB L2

Dell
PowerEdge

1850 3.4 GHz
1MB L2

Dell
PowerEdge

1850 3.2 GHz
1MB L2

Dell
PowerEdge

1850 2.8 GHz
1MB L2

To
ta

l T
im

e
(s

ec
on

ds
)

Figure 20: Linequ performance on a range of Intel
EM64T CPUs.

As with Treesearch, Figure 20 shows that Linequ is
sensitive to both CPU speed and the level of L2 cache
i.e. the benchmark is

• Sensitive to CPU speed
• L2 cache sensitive

4.7 Impact of the Memory Subsystem.

In order to keep abreast of the advances in technology,
the Distributed Computing group relies heavily on
gaining access to a variety of systems through fostering
existing relationships with various Tier1 and Cluster
Integrator companies. As part of the integer
benchmarking exercise, Hewlett Packard made available
a variety of Itanium systems (using the HP-UX operating

 HPC Integer Benchmarks 11

 DL-TR-2006-004

system). We here take a closer look at some of the
performance attributes of these systems, and compare
these with the latest HP Itanium2 product on the market
(the Montecito SuperDome SD64000B), which at the
time of writing was in pre-production release, but is now
commercially available (from February 2006).
Table 4 provides a reminder of the HP-UX Integrity
systems used in the benchmarking report.

System CPU

Speed
Itanium
Platform

L3
Cache
(MB)

FSB
(MHz)

rx5670 4×1.5GHz Madison 6 400
rx8620 8×1.6GHz Madison 6 400
rx1620 2×1.6GHz Madison 3 533

SD64000B 1.6GHz Montecito 12 533

Table 4: Characteristics of the HP Itanium2 systems
(HP-UX).

These four systems have different clock speeds, cache
sizes and front side bus (FSB) speeds. Whilst the cache
has been demonstrated to be important in the above
analysis, this is not always the major differentiator
between these systems, as even the lowest L3 cache in
Table 4 is larger than the L2 cache supplied with most of
the x86-64 systems. One of the most important
differences between these systems is the memory latency
(primarily representative of a cache coherency effect).
Table 5 gives an overview of the memory latencies of
these four systems as well as the standard latency for
both the AMD Opteron and SGI Altix. Also included are
detailed memory latencies to main memory measured by
S. R. Alam and co-workers [9].

System Memory Latency (ns)
HP Integrity rx1620 110-120
HP Integrity rx5670 140
HP Integrity rx8620 280 1, 400 2

HP Integrity SD64000B 180 1, 350 2

Opteron (averaged) 753 , 1404

Cray XT3 / Opteron 150 /
2.4 GHz [9]

51.4

Cray XD1 / Opteron 248
2.2 GHz [9]

86.5

Intel Xeon 3.0 GHz [9] 140.6
IBM p690 POWER4 1.3
GHz [9]

90.6

SGI Altix 3700 200-250

Table 5: Summary of the memory latency (in
nanoseconds). 1local to cell access; 2access to memory
on remote cell; 3local access; 4access to memory on
remote CPU.

Table 5 shows there is a significant variation in the
memory latencies between the HP Itanium solutions,;
with the exception of the SD64000B, none of these
latencies are particularly impressive compared with some
of the current systems available on the market today.
This stems from the fact that the HP cell-based solutions,
in for example the rx8620, are reliant on the same cell
infrastructure technology that was developed 5 years ago
around the PA-RISC superdome. Extensive investment
in redeveloping this infrastructure for the latest cell-
based products means the latest systems e.g. the
SD64000B, exhibit reduced latency, from 280ns to
around 180ns (using the SX2000 chipset).
In many scientific benchmarks [10], where a significant
proportion of the time is spent in performing floating
point arithmetic, the rx8620 is between 20 – 40% slower
than the rx1620. In many of these 64-bit scientific codes,
the effect of the high memory latency is circumvented by
accessing the memory in a predictable manner (for
example unit stride, serial access). This involves the
compiler employing memory pre-fetching and
speculative loads to counteract the memory latency
effects. However the codes used in the present Integer
benchmarking suite are quite different from the ‘usual’
floating point scientific applications.
Given the cell developments above, the runtimes on the
new Integrity “Montecito” SuperDome (SD64000B)
should be much closer to the rx1620 times, thus
highlighting the impact of the high memory latency in
the current rx8620 system on the Integer benchmarks.

System CPU &
CPU
Speed

Memory
Latency

(ns)

L3
Cache
(MB)

FSB
(MHz)

SD64000B Itanium2
Montecito
1.6GHz

180 12 (per
core)

533

Table 6: System specification of the new HP Integrity
Superdome using the SX2000 chipset.

The above expectations were confirmed with access to
HP’s flagship system, a prototype Montecito Integrity
Superdome SD64000B (64 socket / 128 core system)
employing the latest cell infrastructure (the SX2000).
The specifications of this system are provided in Table 6.

Case Program Time (seconds)

 rx8620 SD 64000B

1 Linemap 2.8 2.8

2 Linemap 8.3 8.3

3 Linemap 25.1 25.0

4 Permutit 197.7 80.1

 HPC Integer Benchmarks 12

 DL-TR-2006-004

5 Hadamard 114.6 75.5

6 Hadamard 307.4 195.6

7 RuWarray 212.2 131.7

8 RuWarray 424.2 262.8

9 RuWarray 637.2 394.3

10 Treesearch 180.2 100.1

11 Linequ 131.8 126.6

12 IObench 2.0 0.7

13 IObench 74.8 6.8

Table 7: Summary of the Integer Benchmarking
times (in seconds) for the rx8620 and the HP Integrity
Superdome SD64000B.

This new machine (SD64000B) provides a real test of
the integer code performance in terms of clock speed,
memory latency and bandwidth. Table 7 gives the total
run times for each of the integer benchmarks, on both the
older rx8620 system and on the Montecito Superdome.

A comparison of these timings allows the following
conclusions to be drawn:
• Linemap performs almost identically on all Itanium

platforms. Neither latency nor cache has any
measurable impact on performance.

• On the rx8620, Permutit gave poor performance.
With the latest SX2000 chipset the code
demonstrates a two fold improvement in
performance, even out-performing the rx1620 (the
lowest latency rx system).

• Hadamard. This code is heavily latency-bound, as
demonstrated by the results in Table 7. There is a
30% improvement in the run times when moving to
the lower latency Superdome.

• RuWarray: This code gave unexpected runtime
figures (see section 4), where the rx5670 out
performed the other Itanium systems, even though it
had a slower clock speed and slower bus. This was
attributed to the larger cache on the rx5670. The
timings from SD64000B confirm this, as the
Montecito SuperDome is much faster than the older
Madison platforms. This was also demonstrated by
the Dell PowerEdge analysis in Section 4.4.

• Treesearch would appear to be heavily latency
bound. Section 4.5 demonstrated the dependence on
both CPU speed and cache. The 44% improvement
in run time using the SX2000 chipset confirms the
cache / latency discussion of Section 4.5.

• Linequ. Whilst Section 4.6 shows the dependence of
the code with respect to both CPU speed and L2
cache (1MB /2MB), it would appear that there is a
‘saturation’ point beyond which increasing the
amount of cache has little impact on performance.
This is shown in Table 7; although the cache is
doubled compared to the rx8620 (12MB), the
performance gain is minimal.

• IObench is much faster on the SD64000B. This is
because of a large buffer cache (15GB) and a fast
striped filesystem on the HP Superdome.

4.8 Performance Sensitivity Summary

Table 8 highlights the conclusions from Sections 3 and 4,
summarising the performance attributes displayed by
each of the integer benchmarking codes and which
processor family displays optimum performance.

Performance Sensitivity Analysis Code Optimum
CPU CPU

(GHz)
L2
cache

Mem.
(MB/s)

Mem.
(µs)

Linemap Itanium X X X
Permutit Opteron X
Hadamard Itanium X X X
RuWarray Itanium X X
Treesearch Opteron X
Linequ Opteron X X

Table 8: Summary of the Performance Trends
from Sections 3 and 4 for the HPC Integer
Benchmarking Suite.

It should be noted that the same performance attributes
noted in the sections above were observed when
performing the corresponding calculations on AMD
Opteron systems.

5. Enhancing Performance

This section focuses on two important considerations
when looking to enhance performance of the Integer
benchmarking suite. First, we investigate the impact of
different compiler optimisation levels on runtime
performance for each of the codes. Secondly, we
consider the impact of coding language; for Hadamard,
there are two versions of the code currently available,
one in FORTRAN, the second in C. By default the
former version is typically used, for the C
implementation was found historically to be significantly
slower than the FORTRAN code, particularly on vector

 HPC Integer Benchmarks 13

 DL-TR-2006-004

machines, and has been largely ignored. Both versions of
this code have now been built and the timings and output
compared on a variety of systems.

5.1 Compiler Optimisation Levels

In order to determine the sensitivity of the Integer codes
to the level of compiler optimisation, a single platform
was taken (the 2.6 GHz AMD Opteron 852) and, using
one of the latest compiler suites – Pathscale’s EKO
version 2.2.1, executables generated using different build
options. Figure 21 captures the results from this exercise.
Three different optimisation levels were invoked:
• -O2 (generates an optimised executable that is

numerically safe – this is used by default);
• -O3 (generates a highly optimised executable,

generally numerically safe);
• -O3 –ipa –OPT:OFAST (optimisations selected to

maximise performance). Although these
optimisations are generally safe, they may affect the
achieved accuracy given the inevitable
rearrangement of computations.

Figure 21 depicts the benchmark results normalised with
respect to the performance of the codes built using the –
O2 optimisation level.

70 80 90 100 110 120

linemap

linemap

linemap

permutit

hadamard

hadamard

RuWarray

RuWarray

RuWarray

treesearch

linequ -O3 -ipa -OPT:Ofast
 -O3
 -O2

Figure 21: Effect of Different Compiler Optimisation
Levels on the Performance of the Integer
benchmarking Codes.

The impact of optimisation is seen to be highly
dependent on the code in question, with some (e.g.
Treesearch) showing much greater sensitivity than
others. In the case of Hadamard, and to a lesser extent
RuWarray, the impact on performance is also heavily
dependent on the size of the input dataset. Interestingly,
the higher optimisation level only benefits the smaller
test case – indeed for the larger case it actually has a
detrimental effect, causing longer run times.

In contrast, the size of dataset has no bearing on the
relative performance of Linemap as a function of
optimisation level. In fact Linemap appears to be the
only code to show a marked improvement in
performance at the highest optimisation level using the
PathScale compiler. Of the six codes tested, four –
RuWarray, Hadamard, Permutit and Linemap – show
enhanced performance when progressing beyond the
default –O2.
This exercise suggests, perhaps not surprisingly, that the
impact of compiler optimisation on performance is
dependent on the nature of the code and the subsequent
datasets. It certainly shows that certain codes are more
susceptible to optimisation than others and it is clearly
important to understand the performance implications
this might have. In general –O2 provides a robust
optimisation that gives reasonably good performance for
the majority of application codes.

5.2 Hadamard – C and FORTRAN codes

In the HPC Integer benchmarking suite there are two
serial versions of the Hadamard code. One is written in
FORTRAN and is the default build; the second, a little
used C version. Prior to generating these two Hadamard
executables, it was widely believed that the FORTRAN
compiled version of the transform would out-perform the
corresponding C version. This understanding was largely
based on historical data relating to results on legacy
vector systems.

Whilst the FORTRAN version of the code compiled
without any modifications, it was necessary to comment
out the “include <malloc.h>” line in the C code. Without
this change, the code core-dumps in 64-bit mode because
the malloc routine is unknown and therefore is assumed
to generate a 32-bit return value. This is a common
programmer’s bug for 64-bit codes. Once the change had
been made, the code compiled and executed with no
further errors. The subsequent output files for both the C
and FORTRAN executables verified correctly. Figures
22 and 23 provide the timings for both versions of the
Hadamard executable.

These two figures clearly show that on all the systems
used, the C version of the code outperforms the
FORTRAN build. This is contrary to the historical
understanding of the performance of the C code. The
difference between the two executables is most
pronounced on the x86-64 architecture, indicating a three
to 4 fold increase in performance over the corresponding
FORTRAN version.

 HPC Integer Benchmarks 14

 DL-TR-2006-004

0 50 100 150 200

Dell PowerEdge 1850 3.2
GHz 1MB L2

 HP DL585 Opteron850 2.2
GHz 2CC

 HP DL145 Opteron280 2.4
GHz 2CC

 Cray XD1 Opteron250 2.4
GHz

SGI Altix 3700 Itanium2
1.3 GHz

SGI Altix 3700 Itanium2
1.5 GHz

HP RX5670 Itanium2 1.5
GHz

HP RX1620 Itanium2 1.6
GHz C

FORTRAN

Figure 22: Execution time (seconds) using the C and
FORTRAN builds of the Hadamard code. The (24,40)
data set.

0 100 200 300 400 500

Dell PowerEdge 1850 3.2
GHz 1MB L2

 HP DL585 Opteron850
2.2 GHz 2CC

 HP DL145 Opteron280
2.4 GHz 2CC

 Cray XD1 Opteron250 2.4
GHz

SGI Altix 3700 Itanium2
1.3 GHz

SGI Altix 3700 Itanium2
1.5 GHz

HP RX5670 Itanium2 1.5
GHz

HP RX1620 Itanium2 1.6
GHz

C
FORTRAN

The Figure 23: Execution time (seconds) using the C
and FORTRAN builds of the Hadamard code. The
(25,50) data set.

HP-rx systems reveal the closest performance, but even
here there is significant performance gain using the C
compiled executable. This effect clearly reflects the
advances in optimisation that have accompanied
generations of development to C compilers, plus the
major differential that FORTRAN enjoyed on the vector-
based architectures of the 1980’s and 90’s.

6. Integer RATE Benchmarks.

Whilst understanding the serial, single processor
performance of code remains important, the significance
of benchmarks such as SPECint2000 has become more
debatable given the advent of dual-core (and multi-core)

systems. In order to understand the impact of utilising all
the processing elements on a multi-core system, the
throughput RATE-style benchmarks seem more
attractive e.g. SPECint_rate2000 [4]. In this spirit, the
HPC Integer benchmark has been extended to include an
associated “RATE” Benchmark. This benchmark
incorporates six of the present integer codes and eleven
data sets; note that IObench was not included in this
benchmark. There are two rate procedures depending on
whether the aim is to interpret the performance of a
single machine with ‘n’ CPUs, or if it is to compare
different multi processor or multi-core systems.
1) Single Server with n CPUs
When comparing the RATE runs on n CPUs or n PEs,
the rate for a given benchmark code is:

Rn = n × (T1 / Tn)
where T1 is the elapsed time taken for a single

processor run (normalised to a time of 100 units) and Tn
the elapsed time taken for n copies of the code, one on
each CPU, to complete (where elapsed time is given by
the time of the last job to finish – time of first to start).
The normalization above makes it easier to picture the
performance impact when adding additional processors
and to highlight any degradation in performance. If there
is no performance degradation when using multiple
cores, then for a dual core, dual processor system (4
processing elements, PEs), using 1 PE the rate, R1, will
be 100, using 2 PEs (one on each core) will yield a rate,
R2, of 200 and running on all 4 PEs would provide a rate,
R4,of 400.

In practice this is not usually found given the inevitable
bottlenecks occurring when multiple processors are used,
e.g., memory bandwidth issues due to, say, two
processors requiring the same front side bus (FSB) to
access main memory. The extent to which this affects the
performance of the codes is heavily dependant on (i) the
architectural design of the system in question, and (ii) the
code itself, and whether it has extensive memory
bandwidth requirements. We examine these effects in
more detail in this section.
2) RATE-based Machine Comparisons
With a multi component benchmark, then for a given
benchmark, ‘i’, and assuming a system with n PEs, we
need to run ‘n’ instances of the benchmark code
simultaneously and calculate the elapsed time.

elapsed time = time of last to finish – first to start time
The rate for benchmark i, Ri, is then calculated using:

Ri = n × (Tref / Ti)
where Tref is the elapsed time on a predefined arbitrary
reference system scaled to a single processor (n=1); note
that Tref is now normalised to an elapsed time of 100
units. Again, the latter normalization makes it easier to

 HPC Integer Benchmarks 15

 DL-TR-2006-004

picture the performance impact when adding additional
processors and to highlight any degradation in
performance.
An important note when running the rate benchmark is to
use the taskset2 comment. This is typically used to
prevent process migration (job moving to another
processor) during the benchmark and binds the process
to a specific processing element. Taskset takes the form:

taskset –pc [cpu] X
where [cpu] specifies the PE in question, and X the
running process or task.
Three systems are examined in this section:

1. A Dell Poweredge 1850 node, comprising “Nocona”
EM64T dual processors with 1MB L2 cache.

2. An Opteron-based Supermicro node comprising 2 x
2.2 GHz dual-core AMD Opteron 275 processors.

3. A prototype of the Intel Xeon 5080 processor - the
EM64T “Bensley/Dempsey” platform - clocked at
3.46 GHz. The prototype PowerEdge 1950 node
featured 4 cores, 2 chips, and 2 cores / chip.

100

100

100

100

100

100

100

100

100

100

100

99

99

100

31

6

9

9

58

83

0 50 100 150 200

linemap

linemap

linemap

permutit

hadamard

hadamard

RuWarray

RuWarray

RuWarray

treesearch

linequ

1-CPU
2-CPUs

Figure 24: HPC Integer Rate Benchmark on a Dell
Poweredge 1850 system with dual EM64T 3.2GHz
processors, normalised with respect to the
performance of a single processor (100%).

Figure 24 shows the rate benchmark results on the dual
processor Dell Poweredge node. Thus for Linemap we
find a linear increase in the benchmark when using both
processors (i.e. a RATE figure of 100 + 100). The
performance of the Linequ code also appears reasonable
on this system. However the performance collapses
dramatically for Hadamard, RuWarray and Permutit
when both CPUs are in use. This confirms the strong

2 Taskset binds a process to a given set of CPUs on

the system, so that the process will not run on any other
CPU.

dependency on memory bandwidth (MB/s) of these
codes, as noted previously (see Table 4 in Section 4.7).
Given that both processors share the same FSB to access
memory, thus severely restricting available memory
bandwidth, the observed impact on the performance of
these codes, and the subsequent dramatic collapse in
performance, is not surprising. Where there is very little
dependence on memory bandwidth, the codes
demonstrate a linear performance increase.
Figure 25 demonstrates the rate benchmark on the dual
core Opteron275 system. In order to reflect the dual core
architecture, we now shift nomenclature from CPU to PE
(Processing Elements). In this system, we see that there
is no major performance degradation when going from
one to two PEs, for each RATE job will be allocated to a
core on a distinct processor with dedicated FSB access to
memory. There is, however a major performance
degradation when all 4 PEs are utilised and, as with the
Intel Xeon EM64T above, the codes that are dominated
by memory bandwidth requirements show no additional
performance when run on all 4 PEs. Codes such as
Linemap with no real memory bandwidth requirements
still demonstrate a linear increase in performance

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

99

99

100

100

100

101

98

197

200

200

36

145

188

12

11

0 100 200 300 400 500

linemap

linemap

linemap

permutit

hadamard

hadamard

RuWarray

RuWarray

RuWarray

treesearch

linequ

1-PE
2-PE
4-PE

Figure 25: HPC Integer Rate Benchmark on an AMD
Opteron 275/ 2.2GHz system, normalised with respect
to the performance of a single processor (100%).

Finally, Figure 26 shows the dual core Xeon 5080
processor performance. Whilst this represents a major
step forward by Intel compared to their original dual core
systems (codenamed Paxville / Irwindale), where all four
cores of the dual processor system shared the same FSB,
the Bensley platform has each processor with its own
unique path to memory, plus other performance
enhancements e.g., fully buffered DIMMS.

 HPC Integer Benchmarks 16

 DL-TR-2006-004

100

100

100

100

100

100

100

100

100

100

100

95

96

96

86

71

74

66

68

66

92

74

195

196

196

25

103

161

0 100 200 300 400 500

linemap

linemap

linemap

permutit

hadamard

hadamard

RuWarray

RuWarray

RuWarray

treesearch

linequ

1-PE
2-PE
4-PE

Figure 26: HPC Integer Rate Benchmark on an Intel
Xeon 5080 / 3.46GHz system, normalised with respect
to single processor performance (100%).

The smaller improvement found when moving from 1 to
2 PEs compared to the Opteron results of Figure 25 does
suggest that the 5080 still has a few additional
performance issues compared to the dual-core Opteron
system. In the case of RuWarray this is as much as a
30% decrease in expected performance As with the
Opteron systems, a major performance degradation
occurs for the Hadamard, RuWarray and Permutit codes
when all 4 PEs are invoked, when both cores of each
processor will now be sharing the same FSB.

7. Throughput Workload Benchmarks.

All the examples in this report have concentrated on
individual code performance – either on a single CPU or
single compute node or server. Realistically codes used
on a mid-range commodity compute cluster are unlikely
to run in such a fashion, with dedicated single code
usage and no other users running competing jobs on the
system. We try now to simulate these effects using a
throughput workload benchmark designed to give an
indication of the performance of a system under heavy
load. The throughput workload benchmark comprises the
same seven programs used in the HPC Integer
benchmark. Allowing for the various input job decks (as
defined in Section 3) associated with these codes results
in a total of 13 different test jobs. To simulate “real
world” usage, this benchmark consists of submitting
batch jobs in a predefined random sequence using a perl
script to the system under evaluation. Each of the batch
jobs is an invocation of one of the following 13 test-
cases:

• case1 – Linemap (1 20)
• case2 – Linemap (1 21)
• case3 – Linemap (1 22)

• case4 – Permutit
• case5 – Hadamard (24 40)
• case6 – Hadamard (25 50)
• case7 – RuWarray ()
• case8 – RuWarray ()
• case9 – RuWarray ()
• case10 –Treesearch
• case11 – Linequ
• case12 – IOBench ()
• case13 – IOBench ()

All the jobs – 765 in total – are submitted to the
scheduler with equal priority. Such a job mix should be
sufficient to provide a reasonably thorough test of
clusters with processor counts in the range of 16 to 64.
The performance of the benchmark is calculated by
measuring the wall-clock time starting from the
submission of job 1 until the final job is completed. Note
the final job to complete is not necessarily the same as
the last job to start (job 765) – final in this context means
the last job to finish.

Two systems have been used to test this throughput
workload:
• A 72-node (144 processor) HP rx1620 Itanium2

system, 16GB RAM per node and using an
Infiniband Interconnect.

• A 35-node (70 processor) Cray XD1 with AMD
Opteron 250/2.4GHz processors, 4GB RAM per
node, connected using Cray’s Rapid Array fabric.

Case Programme Number of

instances
Summed

Time
(seconds)

1 Linemap 60 168
2 Linemap 15 125
3 Linemap 5 125
4 Permutit 5 422
5 Hadamard 400 32640
6 Hadamard 100 21790
7 RuWarray 20 4176
8 RuWarray 10 4169
9 RuWarray 5 3126
10 Treesearch 10 953
11 Linequ 75 9533
12 IObench 40 20
13 IObench 5 195
 TOTAL 765 77350

(1290
minutes)

Table 9: Overview of the 765 jobmix for the HP
rx1620 Cluster.

Several different node counts have been used to run the
throughput benchmark in order to gauge the potential

 HPC Integer Benchmarks 17

 DL-TR-2006-004

performance gain (“speed-up”) with increasing number
of nodes. The elapsed time (minutes) is calculated by
taking the time difference between the first and last
output files. Table 9 gives a summary of each of the 13
test cases and the number of times the code is invoked in
the 765 jobmix on the rx1620 cluster.

It should be noted that the weightings applied to the
number of times a code appears in the script should be
designed to simulate the expected usage of the cluster.
Most commonly used codes should be given a higher
weighting than codes that are only used by a minority of
users. In this job mix Hadamard dominates the usage,
with 500 occurrences in total.
The speedup is determined by combining all the times
for the 765 jobs to obtain a “theoretical peak”. In the
case of the HP rx1620 this is 1290 minutes, as`shown in
Table 9 i.e. it would require 1290 minutes to run all 765
jobs sequentially on one rx1620 processor.

Number
of

Nodes

Number of
CPUs

Elapsed
Time

(minutes)

Speedup

1 1 1290 (est.) 1.0
16 32 81 15.9
32 64 49 26.3
48 96 35 36.9
64 128 29 44.5
72 144 25 51.6
∞ ∞ 11 117

Table 10: Workload Speedup using Multiple CPUs on
the HP rx1620 (dual CPU, 1.6GHz Itanium2)
Infiniband Cluster.

For an infinite number of processors, the time required to
run the longest individual job is used as the elapsed time.
On this system it is case9 (RuWarray) which requires 11
minutes on average to complete.
Table 10 demonstrates the speed up of the throughput
mix as the processor count increases. Perfect speedup is
not realised for a couple of reasons. First, the
parallelisation is extremely course. Certain test cases
require significantly longer than others to run, thus
dominating the total runtime. In this scenario it is case9,
which is invoked 5 times in the jobmix. Because this
case has a longer execution time than the other codes,
towards the end of the benchmark, all but 5 of the nodes
are idle waiting for this case to complete. Also, as
demonstrated earlier in this report, for memory
bandwidth sensitive codes, when more than one
processor per node is occupied, the performance of these
codes decrease causing additional slow downs, thus
affecting the overall speedup.
It takes a significant time for any scheduler to accept and
schedule 765 jobs. This could be improved by assigning

more than 4 jobs per 2-CPU systems, but this would then
harm the ‘shortest time to solution’ approach for each
job. The scheduler used on the rx1620 system was LSF.
Performance of LSF could be fine-tuned by adjusting
various parameters, reducing the time required to
schedule the number of jobs. However for benchmarks to
be reproducible on numerous systems, normally the
default implementations of most applications are
employed wherever possible to avoid any potential bias
in the conclusions.
Similar trends are observed when the job mix is run on
the Cray XD1 which uses the Rapid Array switching
fabric and the Active Manager Job Management System
(AM JMS) to schedule jobs. This resource manager is
based on similar technology to sun grid engine (SGE). In
order not to over saturate the scheduler during job
submission, a pause between each of the 765 jobs was
applied. This was controlled using the “sleep” command.
The overall run times were extremely sensitive to this
controlled submission setting, with it eventually being
reduced to “sleep 1”.

Number
of Nodes

Number
of CPUs

Elapsed Time
(minutes)

Speedup

1 1 2331.7 (est.)* 1.0
8 16 167 14.0
16 32 85 27.4
24 48 58 40.2
32 64 48 48.6
35 70 43 54.2
∞ ∞ 12.7 184

Table11: Workload speedup using Multiple CPUs on
a Cray XD1 (AMD Opteron 250 / 2.4GHz). *The
estimated time was calculated using (Number of
Instances of the code) × (single job elapsed time).

Whilst the Cray XD1 is comparable in performance to
that observed on the rx1620 cluster, it doesn’t quite show
the same speedup. It would be interesting to repeat the
exercise on an rx1620 using SGE to determine the
impact of using an open source scheduler on the overall
speedup in comparison to the commercial offerings such
as LSF or PBS Pro.
Both these job mix cases used the default builds for all
the HPC Integer codes. This meant the FORTRAN
version of Hadamard was implemented in each case,
despite evidence that the C version of the executable
provides much improved performance. Table 12 shows
the difference in performance of these job mixes on the
XD1 when the C build of the Hadamard executable is
used rather than the FORTRAN. Since Hadamard
dominates the jobmix (500/765) it does indeed have
quite a dramatic effect on performance.

 HPC Integer Benchmarks 18

 DL-TR-2006-004

Workload with
FORTRAN-

based Hadamard

Workload with C-
based Hadamard

Nodes

CPU

Elapsed
Time
(mins)

Speed-
up

Elapsed
Time
(mins)

Speed-
up

1 1 2331.7 1.0 942.0 1.0
8 16 167 14.0 69 13.7

16 32 85 27.4 37 25.5
24 48 58 40.2 29 32.5
32 64 48 48.6 27 34.9
35 70 43 54.2 25 37.7
∞ ∞ 12.7 184 12.7 74.2

Table 12: Workload Speedups using both FORTRAN
and C Versions of the Hadamard code on a Cray XD1
(AMD Opteron 250 / 2.4GHz).

8. MPI Parallel Integer Benchmarks

All of the preceding benchmark results have focused on
the serial performance of the Integer benchmark codes.
We finally turn to a consideration of the parallel
performance of the suite, focusing on the MPI
implementation of two of the codes, namely Linemap
and RuWarray. Both codes have two associated input job
decks.
Running the MPI parallel versions of the code will
provide greater insight into the codes dependency on the
cluster configuration, rather than just the processor,
especially the requirements for interconnect bandwidth
and latency. It will also highlight how well the code
scales on the current generations of interconnect. The
results presented in this section have all been performed
using the HP-MPI routines on an rx1620 dual CPU
cluster with Infiniband and Gigabit Ethernet
interconnects. Analogous results were obtained on the
Cray XD1, but are not presented in this report for
reasons of space. Details can be made available upon
request to the authors.

8.1 Parallel implementation of Linemap

The single processor performance of the MPI-version of
Linemap gives very good agreement with the serial
version of the code. Figure 27 demonstrates reasonably
good scaling for the gigabit Ethernet interconnect but,
surprisingly, Infiniband stops scaling at 8 processors.
This is of course contrary to expectations, although there
is a reasonably simple explanation. According to the
Infiniband switch manufacturers, the switch tends to
have a significant start-up time of up to several seconds
for each job. This is attributed to the need to first build a
routing table which requires a finite amount of time

before the job commences. For standard applications,
job times tend to be several hours in duration, in which
case the few seconds required to build the table have a
negligible impact on performance. In the case of
Linemap which is an extremely short job, the time
allocated to build the routing table becomes a dominant
contributing factor in the recorded benchmarking time.
There are no such “warm-up” requirements however for
the Gigabit Ethernet switch.

8.2

5.0
6.0

17.9

7.9

4.2
2.4

1.4

15.3

30.3

0

5

10

15

20

25

30

35

1 2 4 8 16 32

Infiniband
Gigabit

Figure 27: HP-MPI using Linemap on an HP rx1620
1.6GHz cluster with Infiniband and Gigabit Ethernet
interconnects.

8.2 Parallel implementation of RuWarray

The two RuWarray cases are equivalent to test cases 7
and 9 in the HPC Integer benchmarking suite. Unlike
Linemap, both RuWarray examples do not match the
single CPU timing obtained during the jobmix
benchmarks of Section 6. This can be traced to a
completely different path in the source code.

Figures 28 and 29 show the elapsed times (in seconds) as
a function of processor count for both test decks,
featuring 3 x 109 and 9 x 109 random elements
respectively. As the smaller job deck for RuWarray takes
longer to complete than the Linemap benchmark, some
of the highlighted performance issues around the
infiniband switch do not have as great an impact and thus
the code demonstrates scalability up to 8 CPUs. The
larger benchmark scales up to 16 CPUs (Figure 29). This
code, using either problem set, does not scale beyond
these processor counts – in fact the performance starts to
deteriorate at higher processor counts.
It would seem fair comment that the current MPI
implementations of the two benchmark codes are far
from optimal.

 HPC Integer Benchmarks 19

 DL-TR-2006-004

14.1

6.2
8.5

18.2

33.2

69.0

0

10

20

30

40

50

60

70

1 2 4 8 16 32

Infiniband

Figure 28: Parallel MPI performance of RuWarray
using 3 × 109 random elements. Total Elapsed times
(seconds) as a function of processor count.

41.5

16.3 11.3
20.7

99.5

205.7

0

40

80

120

160

200

1 2 4 8 16 32

Infiniband

Figure 29: Parallel MPI performance of RuWarray
using 9 × 109 random elements. Total Elapsed times
(seconds) as a function of processor count.

9. Summary

This paper has introduced an integer-based
benchmarking suite comprising seven legacy codes (with
13 associated datasets) designed to test both integer and
Boolean performance. We have provided a detailed
breakdown of the performance attributes of the codes
comprising the suite, based on their execution on some
16 different systems. The focus has been primarily on
measured performance on commodity-based processors
including Itanium2, Opteron and EM64T Xeon systems
together with IBM’s proprietary Power5 (p5-575)
processor. These evaluations have been carried out on

both systems at Daresbury and those at external sites, the
latter accessed via numerous collaborations involving
both the academic and vendor communities.

The results have been systematically evaluated and
presented across a number of key areas of code
utilisation and associated performance in a number of
stages:

1. Single Processor, serial performance. The overall
serial benchmark times for each of the codes have been
reported as a function of data set, and a performance
comparison presented in each case which contrasts the
Intel Itanium (IA64) performance in both HP and SGI
systems with a variety of systems featuring both Intel
Xeon EM64T and AMD Opteron (x86-64) CPUs.
Contrary to the SPECint ratings, the Itanium2 processor
is found to be the leading CPU in three of the
benchmarks – Linemap, Hadamard and RuWarray. The
Opteron processor is found to the fastest CPU in
Permutit, Treesearch and Lineq.

We have sought to understand each code’s dependency
on clock speed, cache, and both memory latency and
bandwidth, through a number of experiments in which
both clock speed and cache levels have been
systematically varied on a variety of Dell PowerEdge
EM64T nodes.

2. We have extended the serial, single processor
benchmarking approach to incorporate throughput,
RATE-style benchmarks including six of the present
integer codes and eleven data sets. The RATE
benchmarks provide an additional performance probe
crucial in understanding the impact of utilising all the
processing elements on a multi-core system, and shed
considerable light on the memory bandwidth
requirements of each of the codes. The present approach
is consistent with the SPECint2000 and
SPECint_rate2000 benchmarks. In highlighting the
memory bandwidth demands of the Hadamard,
RuWarray and Permutit codes, this exercise has
illustrated the FSB limitations in the EM64T series of
Intel processors when compared to Opteron-based dual
processor systems. In examining the emerging dual-core
technologies from both AMD and Intel, we have
considered the improvements underway within Intel’s
emerging generation of multi-core systems.

3. A consideration of software specific effects that
impact on the observed performance has been
undertaken through (i) the choice of compiler and
compiler optimisation level, and (ii) the impact of coding
language through a consideration of performance
delivered when using C and FORTRAN. In the case of
Hadamard, the C version of the code was surprisingly
found to outperform the FORTRAN code on all
platforms

 HPC Integer Benchmarks 20

 DL-TR-2006-004

4. Through the development of a Workload
Benchmark, we have simulated “real-world” usage of a
cluster and quantified the ensuing impact that fully
populating the job scheduler has on the individual
benchmark performance.

5. Parallel (MPI) Benchmarks – taking parallel MPI
versions of two of the HPC Integer codes, we have
examined the impact of Interconnect bandwidth and

latencies on performance and the level of scalability
achievable.

Finally, to summarise our findings across the serial, rate
and parallel work loads described in this paper, we point
to the performance sensitivity analysis of Section 4 in
summarising the optimum processor family for each
code, together with its dependency on clock speed,
cache, and both memory latency.

Performance Sensitivity Analysis Code Optimum

CPU Clock
speed
(GHz)

L2
cache

Memory
Bandwidth.

(MB/s)

Memory
Latency.

(µs)
Linemap Itanium X X X
Permutit Opteron X

Hadamard Itanium X X X
RuWarray Itanium X X
Treesearch Opteron X

Linequ Opteron X X

10. References

[1] Comparative Study of Cray XD1 and PathScale
InfiniPath clusters, I.N. Kozin, R. Wain, M. J. Deegan,
M.F. Guest and C.A. Kitchen:
http://www.cse.clrc.ac.uk/disco/publications/Cray_XD1_
vs_InfiniPath_report.pdf

[2] The Standard Performance Evaluation Corporation
(SPEC): http://www.spec.org/cpu2000

[3] Introduction to the HPCChallenge Benchmark Suite,
J. Dongarra and P. Luszczek, ICL Technical Report,
ICL-UT-05-01, (Also appears as CS Dept. Tech Report
UT-CS-05-544), 2005. http://icl.cs.utk.edu/hpcc/

 [4] Integer speed benchmarks, SPECint2000,
http://www.spec.org/cpu2000/results/cint2000.html and
Integer throughput benchmarks SPECint 2000 rates,
http://www.spec.org/cpu2000/results/rint2000.html.

[5] The HPCS HPCChallenge RandomAccess
benchmark,
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/

[6]
http://www.cse.clrc.ac.uk/disco/DLAB_BENCH_WEB/HPCInt
eger/HPCinteger.pdf

[7] Floating point speed benchmarks, SPECfp2000,
http://www.spec.org/cpu2000/results/cfp2000.html and
Floating point throughput benchmarks SPECfp 2000
rates, http://www.spec.org/cpu2000/results/rfp2000.html

[8] The IOzone Filesystem Benchmark,
http://www.iozone.org/

[9] Evaluation of the Cray XT3 at ORNL: a Status
Report, S. R. Alam, R. F. Barrett, M. R. Fahey, O. E.
Bronson Messer, R. T. Mills, P. C. Roth, J. S. Vetter and
P. H. Worley, Oak Ridge National Laboratory, Published
at the 2006 Cray User Group Meeting, Lugano,
Switzerland.

[10] THE CCLRC / Intel Benchmark Project. 1.Serial
Performance and Benchmarks. Igor Kozin, Miles Deegan,
Martyn Guest, Christine Kitchen.
http://www.cse.clrc.ac.uk/disco/Benchmarks/IntelProj.Serial.pdf

Acknowledgements

This work was performed under the auspices of the
EPSRC’s Distributed Computing Support Programme at
CLRC Daresbury Laboratory. We thank HP for the
technical support and access to numerous pre-production
systems, Dell for access to the TACC cluster and EM64T
systems, and to Cambridge On-line for making the
various HP Dl45 and DL585 systems available.

 HPC Integer Benchmarks 21

http://www.cse.clrc.ac.uk/disco/publications/Cray_XD1_vs_InfiniPath_report.pdf
http://www.cse.clrc.ac.uk/disco/publications/Cray_XD1_vs_InfiniPath_report.pdf
http://www.spec.org/cpu2000
http://icl.cs.utk.edu/hpcc/
http://www.spec.org/cpu2000/results/cint2000.html
http://www.spec.org/cpu2000/results/rint2000.html
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
http://www.cse.clrc.ac.uk/disco/DLAB_BENCH_WEB/HPCInteger/HPCinteger.pdf
http://www.cse.clrc.ac.uk/disco/DLAB_BENCH_WEB/HPCInteger/HPCinteger.pdf
http://www.spec.org/cpu2000/results/cfp2000.html
http://www.spec.org/cpu2000/results/rfp2000.html
http://www.iozone.org/
http://www.cse.clrc.ac.uk/disco/Benchmarks/IntelProj.Serial.pdf

www.cclrc.ac.uk

Council for the Central Laboratory of the Research Councils
Chilton, Didcot, Oxfordshire OX11 0QX, UK

Tel: +44 (0)1235 445000 Fax: +44 (0)1235 445808

CCLRC Rutherford Appleton
Laboratory
Chilton, Didcot,
Oxfordshire OX11 0QX
UK

Tel: +44 (0)1235 445000

Fax: +44 (0)1235 44580

CCLRC Daresbury Laboratory
Keckwick Lane
Daresbury, Warrington
Cheshire WA4 4AD
UK

Tel: +44 (0)1925 603000

Fax: +44 (0)1925 603100

CCLRC Chilbolton Observatory
Drove Road
Chilbolton, Stockbridge
Hampshire SO20 6BJ
UK

Tel: +44 (0)1264 860391

Fax: +44 (0)1264 860142

	Introduction
	The HPC Integer Benchmark and Evaluation Systems
	SERIAL PERFORMANCE: IA64 and x86-64
	Linemap
	Permutit
	Hadamard
	RuWarray
	Treesearch
	Linequ
	IObench

	Serial Performance: Code Dependencies
	Linemap – Impact of Clock Speed & Cache
	Permutit: Impact of Clock Speed & Cache
	Hadamard – Impact of Clock Speed & Cache
	RuWarray – Impact of Clock Speed & Cache
	Treesearch – Impact of Clock Speed & Cache
	Linequ – Impact of Clock Speed & Cache
	Impact of the Memory Subsystem.
	Performance Sensitivity Summary

	Enhancing Performance
	Compiler Optimisation Levels
	Hadamard – C and FORTRAN codes

	Integer RATE Benchmarks.
	Throughput Workload Benchmarks.
	MPI Parallel Integer Benchmarks
	Parallel implementation of Linemap
	Parallel implementation of RuWarray

	Summary
	References
	Acknowledgements

