Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

Security Risk Mitigation for Information Systems
Victor Page', Maurice Dixon?, Islam Choudhury?

YFaculty of Computing Information Systems and Mathematics,
Kingston University,
Sopwith Building, Penryhn Road, Kingston upon Thames, Surrey, KT1 2EE, UK
v.page@kingston.ac.uk
’Department of Computing Communications Technology and Mathematics,
London Metropolitan University,
31 Jewry Street, London, EC3N 2EY, UK
{m.dixon, i.choudhury} @londonmet.ac.uk

Abstract — Security risk mitigation is a salient issue in systems delopment research. This
paper introduces a light weight approach to security risk ntigation, that can be used
within an Agile Development framework, the Security Obtacle Mitigation Model
(SOMM). The SOMM uses the concept of Trust Assumptiono derive obstacles and the
concept of Misuse Cases to model the obstacles. A synibatcenario, based on an on-line
system, shows how the SOMM is used to anticipate malicisiehaviour with respect to an
operational Information System and to document a priori how tlis malicious behaviour
should be mitigated. Since the SOMM is conceptually simplin deployment, its use is well
within the capacities of the users who form part of an Ailg Development team and
crucially it should not take up a significant amount of development the.

1 Introduction

Security risk mitigation is concerned with developing trustwoftiigrmation Systems
that uphold the security requirements of Confidentiality, Integrityailability, and
Authentication as presented in [21] and given the acronym CIAA. -Goahted
requirements engineering is concerned with the precise isj#ioin of software
behaviour. Within goal-oriented requirements engineering Potts [1@duted the
term obstacle to describe something that would obstruct a goabforg achieved. In
this spirit we describe security risk mitigation for thevelopment of trustworthy
Information Systems that are tolerant to obstacles that maguocbthe CIAA security
requirements.

In [8] Fickas and Feather suggested that development teams shomrlli assumptions
made about requirements, along with amendments or extensions thanwigeade the
problems caused by the assumptions that become invalid. In [14] Lardsweetier
and Ponsard suggest that requirements assumptions that become cavaliduse
obstacles that would obstruct a goal from being achieved. Trusinfgions are
concerned with developing trustworthy Information Systems. Theyaasumptions
made by the development team that a Use Case, when realised operational
Information System, will have certain stated properties andfavieur, in order to
satisfy one or more of the CIAA security requirements [18, 23].04h therefore state
that obstacles to the CIAA security requirements can be caugesh Trust
Assumptions become invalid i.e. they are obstructed by an obstacle.

In [4] Dewar introduces Assumption Based Planning as a post-plareahgique that
is used to contain the risk to a plan caused by assumptions aboutth#tgilbecome
invalid. In Assumption Based Planning assumptions that would have severe
consequences should they become invalid are chistibearing assumptions while

Page 1 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

assumptions that are most likely to become invalid are caliedrable assumptions.
Assumptions that are both load-bearing and vulnerable must be pdtigasome way.
We adopt this terminology and suggest that load-bearing vulneralde Assumptions
must be protected from the obstacles that obstruct them; spicificaobstacles must
be mitigated in some way.

In [20] Sindre and Opdhal state that significant requirements camdsed during Use
Case analysis due to analysts making unjustified or naive assusmbout the
problem domain. They explain that one area where this could causenmsablen the
elicitation of security requirements. In order to counter pablem they introduce the
concept of a Misuse Case. A Misuse Case captures unwanted belaadallows the
development team to reason about security threats. We use the afnidepise Cases
to model obstacles that will obstruct the load-bearing vulnerable Trust Assumptions
This present work uses the above concepts to form the Security ©hditigation
Model (SOMM). Specifically the SOMM provides a light weighpproach for
developing trustworthy Information Systems that preserve thAACkecurity
requirements. This is achieved by mitigating obstacles thHabtstruct load-bearing
vulnerable Trust Assumptions. The underlying principles used taeguhe
development of the SOMM are borrowed from our previous work on the Thsta€e
Mitigation Model [17, 18].

The rest of this paper is structured as follows. Section 2 providesexview of the
SOMM. Section 3 demonstrates the application of the SOMM fontatyc scenario
based on an on-line student grades system. Section 4 overviewd vebake Finally
conclusions are presented in Section 5 along with proposals for future work

2 Overview of the SOMM

Section 2.1 presents the definitions and terminology that are used WithiSOMM.
This is followed in section 2.2 by an Activity Diagram that shiwes the SOMM is
used. Section 2.3 presents the abstract syntax of the SOMM iwrtheof a meta-
model. The meta-model is used in section 2.4 to define extensitims t&vViL, via the
use of Stereotypes, in order for it to incorporate the vocabulary of the SOMM.

2.1 Concepts and Terminology

Listed alphabetically in the following are the definitions of the epte and

terminology that are used within the SOMM:

» Mitigation : A mitigation is a procedure that will counter the effect of an obstacle.

» Mitigation Case: A Use Case that shows what should be done to counter the effect
of an Obstacle Case.

* Obstacle An obstacle is something that, should it occur, will obstructuat tr
assumption and affect the CIAA security requirements. Obstacesaused by
malicious or inadvertent use of the operational Information System.

* Obstacle Case A Use Case that shows misuse (malicious or inadvertent)eof t
operational Information System that would obstruct a Trust Assumption.

* RAG Code: RAG Codes form an intuitive ‘traffic light' approach to rankiting
ability for load-bearing and the vulnerability of a Trust AssuamptRAG is an
acronym for Red, Amber, and Green:

- R: signifies stop and mitigate; issues associated with this ratikhewve
associated obstacles that can cause significant problemshei@IAA security
requirements.

Page 2 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

- A: signifies proceed with caution; issues associated with this walhkhave
associated obstacles that will cause undesirable problems kathCIAA
security requirements.

- G: signifies continue with trust; issues associated with this remknaignificant
and can be ignored.

Trust Assumptions that have a (R,R) load-bearing/vulnerability naaking are

classified as load-bearing vulnerable Trust Assumptions whose lelsstatust be

mitigated. Some projects may require that additional Trust Assons should also
be addressed. To facilitate this, the SOMM uses a load-bearingadilitg matrix

(Figure 1) to combine the RAG Codes. This approach is borrowed frgim ri

analysis and is generally known as a probability impact gridsuonmary risk
profile [11].

Vulnerability

G A R
Load-bearing

Figure 1 Load-bearing/Vulnerability Matrix

The filled square shows load-bearing vulnerable Trust Assumptions whstxcles
must be mitigated. The thick line is a tolerance line thatagldd on a per project
basis. For a specific project Trust Assumptions that fall abogdathe right of the
tolerance line are classed as significant and may also beagqoi have their
obstacles mitigated.

e Trust Assumption: Documents the way in which a Use Case, when realised in the
operational Information System, can be trusted to have certded gpeoperties
and/or behaviour.

 Use Case A representation by diagram and text of a sub-set of thenhatoyn
System functionality.

2.2 Activity Diagram

Figure 2 presents an Activity Diagram for the SOMM. The phasdsactivities of the
SOMM allow the development team to anticipate malicious behawdhbrrespect to
the operational Information System and to document a priori how thigious
behaviour should be mitigated.

The swim lanes show the three phases of the SOMM: ElicitGases, Elicit Obstacle
Cases, and Elicit Mitigation Cases. Each phase could be carried @ithier a separate
Facilitated Workshop, or in a particular stage of an Agile @reent framework.
Each phase of the SOMM has its own unique set of activities. Theyodform a
strictly sequential process and there is an implied iteratiosome of the activities.
Specifically the development team may wish to re-prioritieeWise Case list either at
the end of the Elicit Obstacle Cases phase, or at the end &litlit Mitigation Cases
phase.

Page 3 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

Elicit Use Cases

Elicit Obstacle Cases

Elicit Mitigation Cases

List and Prioritise Use
Cases

Get Use Case from
List

List and Rank Trust
Assumptions

Disregard Insignificant
Trust Assumptions

List Significant Trust
Assumptions

Get Significant Trust
Assumption from List

Define Obstacle Case

Get Defined Obstacle

Figure 2 Activity Diagram of the SOMM

The activities of the SOMM are defined as follows:

List and Prioritise Use Cases It is assumed that the initial Use Cases for the

“\ Case

(Outline Mitigations i
Select Most Effective
Mitigation

Define Mitigation Case

Information System will be elicited and prioritised in a Facilitated koop.
Get Use Case from ListGet the first/next Use Case from the elicited list.

List and Rank Trust Assumptions The purpose of this activity is to list the Trust
Assumptions we hold about a particular Use Case. The Trust Assusipte given
a load-bearing rank and a vulnerability rank. RAG Codes are usdédefoanking

process.

Page 4 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

» Disregard Insignificant Trust Assumptions Based on the load-
bearing/vulnerability RAG Code pair in the load-bearing/vulnditglmatrix, those
Trust Assumptions that lie below the tolerance line are disregarded.

» List Significant Trust Assumptions: Based on the load-bearing/vulnerability RAG
Code pair in the load-bearing/vulnerability matrix, those Trususggions that lie
above and to the right of the tolerance line are listed.

* Get Significant Trust Assumption from List: Get the first/next significant Trust
Assumption from the list.

* Define Obstacle Case:An Obstacle Case is defined for the significant Trust
Assumption. In some cases more than one Obstacle Case may hatedsoith a
particular Trust Assumption.

* Get Defined Obstacle CaseGet the first/next Obstacle Case to mitigate.

» OQutline Mitigations: For the Obstacle Case a possible list of mitigations isetkri
The options at this point are to completely mitigate the obstpatéially mitigate
the obstacle, or monitor the obstacle. The estimated cost and dwfagiach of the
mitigations are also recorded at this stage along with theydar benefits to the
operational Information System.

» Select Most Effective Mitigation: Each of the mitigations for a particular obstacle
is considered and the most effective mitigation, or possibly the most effayghbvie
mitigation, is selected. Here the development team could protatypevaluate the
mitigation approaches in order to help in selecting the most ig#auitigation and
strike the right balance between cost and value.

» Define Mitigation Case A Mitigation Case is defined for the most effective
mitigation.

2.3 Meta-Model
Figure 3 presents the meta-model for the SOMM.

Load-Bearing Rank

Actor Use Case Trust Assumption F
>

1 1 |

Z% Z% Vulnerability Rank

Malicious Obstacle Case Mitigation Case Significant Insignificant

1 1.

Mitigation 1. 1 Obstacle

Figure 3 Meta-Model of the SOMM

Page 5 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

The SOMM is based on Use Cases and Trust Assumptions, whichtemel éx several
directions. Use Case is extended to incorporate the concepts ofl@lfftan misuse)
and mitigation. Also Actor is extended to include the concept of aimadi actor. Trust
Assumptions are given a load-bearing rank and a vulnerability rardghvainé used to
classify them as significant or insignificant. Significamtu§t Assumptions are related
explicitly to obstacles and obstacles are related to ridiga Each obstacle is related
to an Obstacle Case and each mitigation is related to a Mitigation Case.

2.4 UML Stereotypes for Security Obstacle Mitigation

In order for the meta-model of the SOMM to be used effectinatlh the UML, we
need to extend the UML to incorporate the vocabulary of the SOMNMmUse Cases
and Class Diagrams. The extensions to the UML are via thef \&tereotypes and are

given in Table 1.
Table 1 UML Stereotypes for Security Obstacle Mitigtion

Stereotype Base Class Description
<<ObstacleCase>> Use Case An action that would obstruct one or
more of the CIAA security requirements.
<<MitigationCase>> Use Case A mitigation that would stop or

ameliorate one or more of the CIAA
security requirements from being
obstructed by an Obstacle Case.

<<MaliciousActor>> Use Case (Actor) An actor that would instigate an
Obstacle Case.

<<Mitigates>> Use Case (Relation) Shows that a mitigation case mitigates
a particular Obstacle Case.

<<ObstacleTo>> Use Case (Relation) Shows that an Obstacle Case is an
obstacle to a particular Use Case.

<<MitigationClass>> Class A class that mitigates a particular
obstacle.

<<MitigationAttribute>> Attribute An attribute in a class that is used to
mitigate a particular obstacle.

<<MitigationMethod>> Method A method in a class that is used to

mitigate a particular obstacle.

In the next section typical use of the Stereotypes assoordth Use Cases can be
found in Figures 5 and 6. Figure 8 shows typical use of the Steesofgsociated with
Class Diagrams.

3 Example of Applying the SOMM

Section 3.1 provides an overview and Use Case Diagram for a SGidelgs scenario.
For clarity in illustrating the principle deployment of the S®Mhe scenario does not
address all aspects of security that are related to such a systesrafmle there are no
Trust Assumptions relating to the way in which user identdaregasswords should be
managed. Section 3.2 shows how the SOMM is applied to the scenario.

3.1 Scenario

The SOMM is used to design an Information System that is sedite tolerant to
security obstacles. The primary aim of the system to be dewkispe provide a Web-
based interface to an existing Information System. At pressttirers pass paper
copies of student grades to operatives who enter the student grathessystem. The
grades are then printed out by the operatives and placed on coucsehuatids. The
Web-based interface should provide the following functionality:

Page 6 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

» lecturers will be able to either enter, or update or view student grades;

* lecturers will be able to view grades for a particular student or group eings;id

» students will be able to view their own grades for all module$i®raurse they are
taking.

The following assumptions were made with respect to the web system beahgpeel

» passwords will be secure;

 student records can only be maintained by a lecturer;

 the system will be available during normal working hours.

No specific design decisions were made with respect to th@mpsisns above.

However a load-bearing/vulnerability matrix was produced for pinigect that has a

tolerance line like that in Figure 1. The Use Case Diagmarthe new system is shown

in Figure 4.

Lecturer Logon

Update Student Grades

g
% L~ student

Lecturer \
Enter Student Grades Student Logon

Figure 4 Student Grade System Use Case Diagram

Lecturer Logon and Student Logon are shown separately in Figure 4 asd¢le paths
for each type of user will be different.

3.2 Applying the SOMM to the Scenario

The Trust Assumptions are an expansion of the assumptions made in the scenario. Use
Cases and their associated Trust Assumptions are shown in Table 2

Table 2 Use Cases and Trust Assumptions

Use Case Trust Assumption
Lecturer Logon Lecturer password and user identity will not be revealed
Enter Student Grades Student records will only be entered by a lecturer who is an authorised
user
Update Student Grades Student records will only be updated by a lecturer who is an authorised

user

Student records will only be deleted by a lecturer who is an authorised
user

Lecturer View Student records will be revealed to a lecturer only if he/she is an
authorised user

Student Logon Student password and user identity will not be revealed

Student view A Student’s records will be revealed to that student alone and then only

if he/she is an authorised user

Page 7 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

There is one general Trust Assumption - system use will not be blocked during normal
operational times. Trust Assumptions along with their load-bearing and vulrgrabil
RAG Codes are shown in Table 3.

Table 3 Trust Assumptions and RAG Codes

Trust Assumption Load-Bearing Vulnerability
RAG Code RAG Code
1. Lecturer password and user identity will not be revealed R R
2. Student records will only be entered by a lecturer who is R R
an authorised user
3. Student records will only be updated by a lecturer who is R R

an authorised user

4. Student records will only be deleted by a lecturer who is
an authorised user

5. Student records will be revealed to a lecturer only if
he/she is an authorised user

6. Student password and user identity will not be revealed
7. A Student’s records will be revealed to that student alone
and then only if he/she is an authorised user

8. System use will not be blocked during normal operational
times

Py}
Py}

@ OO ©
> x| >

Trust Assumptions 5 and 7 were given a load-bearing RAG Co€® bkcause we
considered the revelation of a grade as non-critical, since gragesommonly
displayed on course notice boards. Trust Assumption 6 was given a loaddeaG
Code of G because a student can only look up grades, but can not chalajeter
them.

Trust Assumption 8 was given a load-bearing RAG Code of G, bevaugealged that
blocking system use would only be a problem when departmentspnegaring for
assessment boards; work could continue with a minimum of disruptiarsiby the
underlying system as previously intended.

The vulnerability RAG Codes for Trust Assumptions 5-8 are set teegause although
the Trust Assumptions are not load bearing they are still vulnei@bleing obstructed.
Trust Assumptions 1-4 have a load-bearing/vulnerability RAG CodeopdR, R) due
to the seriousness of student grades being changed.

After considering the tolerance line on the load-bearing/vulnésalpiatrix for this
project it is clear that Trust Assumptions 1-4 require Obstaakes to be developed for
them because they have a RAG Code pair of (R,R). Trust Assumpti®nsan be
classed as insignificant and disregarded. Obviously any Trust Agsas)ghould they
exist, with a RAG Code pair of (A,R) or (R,A) would also requikestacle Cases to be
developed for them. Table 4 shows Trust Assumptions 1-4 along withpibteintial

obstacles.
Table 4 Trust Assumptions and Obstacles

Trust Assumption Obstacle

Lecturer password and user identity will not be Revealed by a brute-force password attack
revealed
Revealed by a traffic analysis attack
Student records will only be entered by a lecturer | Subverted by a masquerade attack

who is an authorised user
Student records will only be updated by a Subverted by a masquerade attack
lecturer who is an authorised user
Student records will only be deleted by a lecturer | Subverted by a masquerade attack
who is an authorised user

Page 8 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

From Table 4 we can define the following Obstacle Cases:

* The obstacle Masquerade Attack is an obstacle to Update StudetgsGmnd Enter
Student Grades.

* The obstacle Traffic Analysis Attack is an obstacle to Lecturer Logon.

¢ The obstacle Brute-force Password Attack is an obstacle to Lectgen.

We assume that an Attacker, an external agent with malianbestions, instigates all

three of the attacks. Figure 5 shows a subset of the Use Cagmbifor the Student

Grades system for those Use Cases that have Obstacle Casesealsaattiaghem.

<<ObstacleTo>> .
Update Student Grades Masquerade Attack
/ <<ObstacleTo>>
i <<ObstacleCase>> i
EnteqStucentlGraces Traffic Analysis Attack
<<MaliciousActor>>

<<ObstacleTo>>
et \ / Attacker
<<ObstacleTo>> <<ObstacleCase>>
Lecturer Logon Brute Force Password Attack

Figure 5 Student Grades System with Associated Olzstle Cases

\Y/

The mitigations for the Obstacle Cases are shown in Table 5.

Table 5 Obstacle Cases and Mitigations

Obstacle Case Mitigation
Brute-force Password Attack Monitor access attempts
Masquerade Attack Use public key encryption

Identify location
Traffic Analysis Attack Use a firewall

The Traffic Analysis Attack and the Brute-Force Passworddkttboth have a single
mitigation associated with them. However the Masquerade Attagkwa candidate
mitigations associated with it. We decided to use the idemdifpation mitigation
because public-key encryption would be too costly to implement anddaatifying
location would be complimented by monitor access attempts. TheakibitiigCases can
be defined as follows:

* Identify Location

* Use a Firewall

e Monitor Access Attempts

Figure 6 shows a subset of the Use Case Diagram for thenSt@dmles system with
the Obstacle Cases and Mitigation Cases included.

This section has shown that the SOMM aids Agile Developers by helping thesdioc
mitigating malicious use of an operational Information System.

Page 9 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

<<ObstacleTo>> <<Mtigates>> A
Update Student Grades <<ObstacleCase>> <<MitigationCase>>
Masquerade Attack Identify Location

<<ObstacleTo>>
<<MitigationCase>> O
Use A firewall
Enter Student Grades X
<<MaliciousActor>>
Attacker

Lecturer <<Mitigates>>

<<ObstacleCase>>
<<ObstacleTo>> Traffic Analysis Attack
Lecturer Logon
<<0ObstacleTo>>
<<ObstacleCase>>
Brute Force Password Attack
<<Mitigates>>

<<MtigationCase>>

Monitor Access Attempts

Figure 6 Student Grades System with Associated Olzstle Cases and Mitigation Cases

In order for the Agile Development team to further understand bBawh of the
mitigations should be implemented we introduce an approach that has lekn us
successfully by a significant number of our postgraduate studeimsgolies iteratively
developing a simple paper based Sequence Diagram for each {EseClstacle Case,
Mitigation Case} triple. This helps the development team to incompdingt mitigations

in a baselined Class Diagram ready for further enhancemengsototyping. Figure 7
shows the output from using this approach on the {Update Student Gradesekéale
Attack, Identify Location} triple.

Cxam>E
L enNT

ve Aoke & e el)

FT AT Aw

%

LI
oy o

VeIt RS

Raant
’i LeoRit

ViR

Yy DA

1 INTeq €Le

x&km\@

e eda Ve A0l

y

b\, o Aoy O\
Mnuioss Ao~
ATTALAY

ﬁk:\\Lokw\zO

v Lt §

a

Lvt)\k;“’\ %\V\\»\q
e A X oy 1§

e N Lol)

ey Lotk ©

NESUYA] AN VWY) ATvAackEl Syacu Lo NoT

et YW faa

Figure 7 lterative Paper Based Sequence Diagram

Page 10 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

The first iteration in Figure 7 shows two Sequence Diagrams:

1. In the first Sequence Diagram a normal user is attemfuingdate a student grade.
Grade change details are sent to the Grade Updater via dadeteFhe grade is
updated and a grade updated message is sent to the user via an interface.

2. In the second Sequence Diagram an attacker is attempting to apstatent grade.
Location details of the attacker (in the form of an IP addrass)sent to the
Location Verifier via an interface. The location is checked anad to be a wrong
location. The interface blocks the student grade update from taking place.

The second iteration in Figure 7 merges the normal use Seqieagram and the

attack Sequence Diagram in order for the location of a user ¢bdmked before they

are allowed to update a student grade. The attacker has been removed, but the mitigation
remains.This is because malicious actors and their associated ObSts#s need only

be present in the system documentation up to the point where the deseidpam

have a grasp of how the mitigation should be implemented. In Agilel®@ment ‘just
enough’ work is completed in order for the development team to move the next

stage of development. The Sequence Diagrams in Figure 7 progtp@ng stone

from Use Case Diagrams to Class Diagrams. The Claggddis do not need to be
complete to allow mitigations to be explored. One of the purposes otypivtg is to
uncover missing classes, methods, attributes and relations. Anotbeaddress issues

like how the data is stored and how to protect the data at rest.

Figure 8 shows how the Stereotypes introduced in Table 1 should be useddba

mitigation at class level. The sole purpose of the Locatiorfigkedlass is to mitigate a

Masquerade Attack. So the <<MitigationClass>> Stereotype @d s model this.

Therefore there is no need to assert either the <<Muigsliethod>> or the

<<MitigationAttribute>> in this case since the methods andbat&s are implicitly

defaulted to be mitigation terms.

Interface <<MitigationClass>>
Location Verifier

+AllowGradeUpdate()
<<MitigationMethod > > +BlockGradeUpdate() +CheckLocation()
+WrongLocation()

Figure 8 Using the SOMM Class Stereotypes

In contrast the Interface class is not solely in place it@ate an obstacle. Only the
method BlockGradeUpdate plays a part in mitigating the Masquétadek. So the

Stereotype <<MitigationMethod>> is used to model this. A simdrgument would

apply for the use of the <<MitigationAttribute>> Stereotype.

These Stereotypes will show the development team and more importastl

maintenance team where and how mitigations are being realised.

5 Related Work

Our work takes existing approaches to security requirements basedrust
Assumptions and Obstacle Analysis and adapts them for use in anD¥yiElopment
environment. In [9] Trust Assumptions are used to analyse the domainsystem
from a security perspective. An approach to structuring secamfyments, including
the use of rebuttals and mitigations is added in [10]. The ideacaréfully document
assumptions about the extent to which domains can be trusted. We build worthi
but use a more lightweight approach, in order to facilitate th@fufaist Assumptions
in an Agile Development environment. We note that an approach subhtas {10],

Page 11 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

that includes the use of formal reasoning and domain analysig&elg to be better
suited to large, safety critical systems.

In [13], a goal-based approach to requirements engineering isdext¢o deal with
obstacles to a system meeting its requirements. In [12] tHeisvextended and applied
to security, by modelling threats to security (malicious obs$d@s anti-goals. Security
requirements are added to address such threats. Whilst that work ageenable to
automation through the use of a library of security patterns,bgsgld approaches have
yet to be adapted to Agile Development.

Several approaches to addressing security at the requirestesggsextend the Use Case
approach. These include Misuse Cases [1, 20] and Abuse Cases [1bjsihilea in
both cases is to model an attacker's intentions as anti-requiseriiéig approach is
extended in [6] by modelling misuse in Collaboration Diagrams. Coupittdthis is
the concept that UML diagrams can be represented as attribptl gyaphs that can
have positive or negative graphical constraints. Negative graphicestraints are
similar to obstacles.

The CORAS methodology [22] uses an extended version of the UML fadalhmg
language and provides a heavyweight approach to risk analysgedarity critical
systems. The methodology integrates and further develops severaficaigni
techniques from the risk engineering domain. We take a similambré light weight
approach and focus on Obstacle Analysis as opposed to Risk Analysis.

The Model Driven Security approach [2] is grounded in formal loticdefines a
security language based on Role Based Access Control (RBAM [vigta-model for
the language is used to extend the UML via the use of Stereoilypgsther they are
used to provide a model driven architecture for developing secure sysiémtake a
similar approach in as much as we have developed a meta-modeé fSOMM and
used it to extend the UML via the use of Stereotypes.

6 Conclusions and Future Work

This work has shown that the SOMM aids Agile Development teanfiscts on the
detection and mitigation of security obstacles which would blockC#A security
requirements. Sections 2 and 3 showed that the detection and mitiglaBenurity
obstacles need not be complex tasks with the SOMM nor require coneglexical
skills and also crucially would not take up a lot of development tiiiit@s is because
Use Cases are used to focus the development team on what andglatlevél of
abstraction, how an obstacle should be mitigated. Also the iteratwedogenent of
simple hand drawn Sequence Diagrams gives the development team estamolieg
of the underlying classes associated with the mitigation andasp gof how the
mitigation should be implemented. Both techniques provide a simple yetrfobw
diagrammatic representation of security obstacles and th&égatrons at a level of
granularity appropriate for reasoning about them in Facilitateatk8%ops and/or
moving to the prototyping stage in an Agile Development project.

RAG Codes are used to rank Trust Assumptions with respewetotdaictors: that of
being load-bearing and that of being vulnerable. As RAG Codes areatjualithe two
factors can not be multiplied. We have introduced the concept of a load-
bearing/vulnerability matrix to express the combination of the faaors. This is
summarised by the inclusion of a tolerance line which partitibesratrix. The top
right RAG Code pairs above the tolerance line are class&dracant and RAG Code
pairs below the tolerance line are classed as insignificantstférgth of this approach
is that the development team can decide where the tolerance line sitsnattixe Once
this decision has been made the development team need only focus on itz kizgl-

Page 12 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

bearing and vulnerability factors for each Trust Assumption. The ioatin of the
RAG Codes is ‘automatic’ and fast.
Future work will focus on an Action Research project. The underpireprggjemology
of Action Research is interpretive [16]. It merges research pmadtice to produce
research findings that are relevant to academia and industryHi3].is important for
research in Information Systems as the end result of the chseasimed at being of
use to industry while satisfying the rigour required by acaaeiiie Action Research
project will be used for two purposes:
1. to evaluate the use of the SOMM within the Dynamic SystemeelDpment
Method (DSDM) [5];
2. to extend the concepts within the SOMM to cover the complete seftwar
development lifecycle.
In the Action Research project we will be working closely witd development team
and the Workshop Facilitator to evaluate the use of existing seteehniques to elicit
Trust Assumptions within the SOMM. This will include but will no# bmited to
security reviews, self assessment questionnaires, and the dodiwnemia Trust
Assumptions associated with any underlying systems. The ainbevito use and/or
adapt the techniques to provide the right mix of speed of development aqndhizde
protection. The Action Research project will also provide us witlogportunity to
evaluate the SOMM against other approaches such as threat trees.

Acknowledgements

The authors wish to thank Robin Laney and Charles Haley, from the Qpeersity,
for the insights that they provided about Trust Assumptions. We asfugrim Stephen
Cook from Reading University for introducing us to Assumption-Basadnitig. Peter
Bielkowicz of London Metropolitan University is thanked for useful discussions.

References

1. Alexander, I. (2003): Misuse Cases: Use Cases with Hostéeat| IEEE Software, Vol. 20,
No. 1. pp. 58-66.

2. Basin, D., Doser, J., and Lodderstedt, T. (2006): Model Driven Sgciom UML
models to access control infrastructures, ACM Transactions onva&eftEngineering
Methodolgy, Vol. 15, No. 1, pp. 39-91.

3. Baskerville, R., and Wood-Harper, T. (1996): A critical perspective on agtgmarch as a
method for information systems research, Journal of Information Texhnadfol. 11, pp
235-246.

4. Dewar, J. (2002): Assumption-Based Planning: A Tool for Reducirgidable Surprises.
Cambridge University Press, ISBN 0 521 001269.

5. DSDM Version 4.2, (2005): (www.dsdm.org) Available: http://www.dsdm.okgtéssed:
200, December 2).

6. Dwaikat, Z., and Parisi-Presicce, F. (2004): From Misuse<asCollaboration Diagrams,
in UML, Proceedings of the'BInternational Workshop on Critical System Development
with UML, pp.130-138.

7. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., and Chandramouli, R)(Z&@osed
NIST standard for role-based access control, ACM Transactiongamhtion and System
Security, Vol. 4, No. 3, pp. 224-274.

8. Fickas, S., and Feather, M. (1995): Requirements Monitoring in DgnBmiironments,
Proceedings of the" IEEE International Symposium on Requirements Engineering,
pp. 140-147.

9. Haley, C., Laney, R., Moffett, J., Nuseibeh, B.: (2004), The EfiEgrust Assumptions on
the Elaboration of Security Requirements, Proceedings of @b International
Requirements Engineering Conference, pp. 102-111.

Page 13 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

10. Haley, C., Moffett, J., Laney, R.., Nuseibeh, B. (2005): Arguing Secuwalidating
Security Requirements Using Structured Argumentation, Proceedifrtge 3 Symposium
on Requirements Engineering for Information Security held in cotipmaevith the 18
International Requirements Engineering Conference.

11. Hughes, B., and Cotterell, M. (2006): Software Project Manage(®idition), McGraw
Hill, ISBN 0 07 710989 9.

12. Lamsweerde, A. (2004): Elaborating Security Requirements by Cotiatrad Intentional
Anti-Models, Proceedings of the 26nternational Conference on Software Engineering,
pp. 148-157.

13. Lamsweerde, A., and Letier, E. (2000): Handling Obstaclesoal-Griented Requirements
Engineering, IEEE Transactions on Software Engineering, Vol. 26, No. 10, pp. 978-1005.

14. Lamsweerde, A., Letier, E and Ponsard, C. (1997): Leaving Inconsisteosifion paper
for the ICSE'97 workshop on Living with Inconsistency.

15. McDermott, J. (2001): Abuse-Case-Based Assurance Argumeriseedings of the 17
Computer Security Applications Conference, pp. 366-374.

16.0Olesen, K., and Myers, M. (1999): Trying to improve communication and
collaboration with information technology: an action research project whicl,faile
Information Technology and People, Vol. 12, pp. 12-27.

17. Page, V., Dixon, M., and Choudhury, . (2006): Mitigating Data Gatheringa@les within
an Agile Information Systems Development Environment, Proceedaigshe 10
International Conference on Intelligent Engineering Systems, pp. 11-16.

18. Page, V., Laney, R., Dixon, M., and Haley, C. (2006): Trust &hstMitigation for
Database Systems, Proceedings of tH&B®ish National Conference on Databases, pp.
254-257.

19. Potts, C. (1995): Using Schematic Scenarios to Understand Usds Neroceedings of the
ACM Symposium on - Designing Interactive Systems: ProceBsastices, and techniques,
pp. 247-256.

20. Sindre, G., and Opdahl, A (2000).: Eliciting Security Requirements lsuddi Cases,
Proceedings of the 37th International Conference on Technology tdhjeated
Languages and Systems, pp. 120-131.

21. Stallings, W. (2005): Business Data Communications (5th Editi@grsen Prentice Hall,
ISBN 0 13 127633 6.

22. Stolen, K. (2002): Model-based risk assessment — the CORAS approaehidttes the*1
iTrust Workshop.

23.Viega, J., Kohno, T., and Potter, B. (2001): Trust (and mistrust) in Secure
Applications, Communications of the ACM, Vol. 44, No. 2, pp. 31-36.

Page 14 of 15

Please cite aBT Technology Journal 25 (2007) p118-127 D{D:1007/s10550-007-0014-8

Curriculum Vitae of Authors

Victor Page

Victor Page is Senior Lecturer in Information Systems atgkion University. He
worked for BT from 1979-1997. His last ten years in BT were spevdrious software
development roles. After resigning from BT he also worked astarézcat London
Guildhall University, London Metropolitan University and the Universiof

Westminster. He holds an MSc in Information Systems Design fhenUniversity of
Westminster.

Maurice Dixon

Maurice Dixon is Reader in Computational Modelling at London Metropolita
University. He is a long term Visitor to the CCLRC’s Biio{v e-Science) Department
at the Rutherford Appleton Laboratory. He spent 8 years in softearelopment for a
SME. Prior to that he was a computational modelling researcHeeading and then
Oxford University and attached to AERE Harwell. He holds botiSa &1d a PhD
degree from the University of Leeds.

Islam Choudhury

Islam Choudhury has been a lecturer in Information System#$doiast 12 years. He
has worked at South Bank University, London Guildhall University and London
Metropolitan University. He holds a BSc from the University oal#¢ College of
Cardiff and a PhD, funded by BT, from South Bank University. Hisarebeinterests
include generic business modelling, workflow modelling and softwaeps
improvement.

Page 15 of 15

