
Modelling WS-RF based Enterprise Applications

A. Akram, J Kewley and R. Allan

CCLRC e-Science Centre, Daresbury Laboratory, Warrington, WA4 4AD, UK
{a.akram, j.kewley, r.j.allan}@dl.ac.uk

Abstract

The Web Service Resource Framework (WS-RF)

specifications originated from the Grid paradigm

which has no widespread programming methodology

and lacks established design models. The flexibility

and richness of WS-RF specifications are ideal for the

complex, unpredictable and inter-dependent

components in an Enterprise Application. This paper

presents a Model-Driven approach for WS-RF to meet

the requirements of Enterprise Applications (EAs)

spread across multiple domains and institutes. This

Model-Driven approach addresses cross-platform

interoperability, quality of service, design reuse,

systematic development and compliance to user

requirements at the design level.

1. Introduction

Modular software is designed to avoid failures in

large enterprise systems, especially where there are

complex user requirements. A Services Oriented

Architecture (SOA) is an architectural style whose goal

is to achieve loose coupling among interacting software

agents (services and clients). A service is a function

that is self-contained and immune to the context or

state of other services. These services can communicate

with each other, either through explicit messages

(which are descriptive rather than instructive), or by a

number of ‘master’ services that coordinate or

aggregate activities together, typically in a workflow.

An SOA can also define a system that allows the

binding of resources on demand using resources

available in the network as independent services.

In recent years, Web Services have been established

as a popular “connection technology” for implementing

SOAs. The well-defined interface required for a service

is described in a WSDL file (Web Service Description

Language [1]). Services exposed as Web Services can

be integrated into complex workflows which may span

multiple domains and organizations.

There is growing interest in the use of stateless Web

Services for scientific, parallel and distributed

computing [2]. Web Services Resource Framework

(WS-RF) [3] specifications built on top of existing

Web Services standards address the limitation of

stateless Web Services through the concept of WS-

Resources by defining conventions for managing a

'state' so that applications can reliably share the

information, and discover, inspect and interact with

stateful resources in a standard and interoperable way

[4]. The lack of a recognized Model Driven strategy,

standard patterns and reusable concepts for stateful

resources generally results in ad-hoc solutions which

are tightly coupled to specific problems, and are not

applicable outside the targeted problem domain. This

code driven approach is neither reusable nor does it

promote dynamic adaptation facilities as it should do in

an SOA.

Section 2 discusses the abstract concepts related to

WS-RF and WS-Resources and we have envisioned

various possible interaction mechanisms for the WS-

Resources. In the Section 3, concrete design modelling

approaches are presented with respect to the WS-

Resource instantiation and Section 4 covers different

Notification Models for the WS-Resource state change.

2. Web Services Resource Framework

Web Services lack the notion of state, stateful

interactions, resource lifecycle management,

notification of state changes, and support for sharing

and coordinated use of diverse resources in dynamic

‘virtual organizations’ [5]: issues that are of central

concern to the developers of distributed systems. To

address these problems, two important sets of

specifications: WS-Resource Framework and WS-

Notification [7], built on the broadly adopted Web

Services architecture [6] and compliant with the WS-

Interoperability Basic Profile [13], were proposed.

WS-RF originates from the Grid paradigm which

can be described as “coordinated resource sharing and

problem solving in dynamic, multi-institutional virtual

organizations”. Grid design should ensure cross-

platform interoperability and re-usability of systems in

a heterogeneous context; although being a recent

computing discipline, Grid Computing lacks

established programming practices and methodologies.

WS-RF specifications are based on the Extensible

Markup Language (XML) schemas, and Web Services

Definition Language (WSDL) interfaces for the

properties and ports common to all WS-RF resources.

WS-RF comprises four inter-related specifications;

which define how to represent, access, manage, and

group WS-Resources:

• WS-ResourceProperties [8] defines how WS-

Resources are described by XML documents that

can be queried and modified;

• WS-ResourceLifetime [9] defines mechanisms for

destroying WS-Resources;

• WS-ServiceGroup [10] describes how collections of

Web Services can be represented and managed;

• WS-BaseFaults [11] defines a standard exception

reporting format.

2.1 WS-Resources

WS-Resources model the state of a Web Service by

wrapping atomic/composite data types called WS-

Resource Properties. A Resource Property is a piece of

information defined as part of the state model,

reflecting a part of the WS-Resource’s state, such as its

meta-data, manageability information and lifetime.

Figure 1: A WS-Resource with Resource Properties

The WS-RF specification supports dynamic

insertion and deletion of the Resource Properties of a

WS-Resource at run time. Customer details in a

Trading System are a single WS-Resource with

multiple Resource Properties like name, address, card

details and trading history. The address Resource

Property can have multiple entries such as billing

address and shipping address. Trading history is a

dynamic Resource Property, which is added for every

new order and may automatically be deleted after a

given period. WS-Resource itself is a distributed

object, expressed as an association of an XML

document with a defined type attached with the Web

Service portType in the WSDL. Although WS-

Resource itself is not attached to any Uniform

Resource Locator (URL), it does provide the URL of

the Web Service that manages it. The unique identity of

the WS-Resource and the URL of the managing Web

Service is called an Endpoint Reference (EPR), which

adheres to Web Services Addressing (WSA) [12]. WS-

RF avoids the need to describe the identifier explicitly

in the WSDL description by instead encapsulating the

identifier within its EPR and implicitly including it in

all messages addressed through it.

WS-Resources instances have a certain lifetime

which can be renewed before they expire; they can also

be destroyed pre-maturely as required by the

application.

2.2 WS-Resource Sharing

WS-Resources are not bound to a single Web

Service; in fact multiple Web Services can manage and

monitor the same WS-Resource instance with different

business logic and from a different perspective.

Similarly, WS-Resources are not confined to a single

organization and multiple organizations may work

together on the same WS-Resource leading to the

concept of collaboration. Passing a unique identity of

the WS-Resource instance between partner processes

and organizations results in minimum network

overhead and avoids issues of stale information. The

WS-Resource EPRs are generated dynamically and can

be discovered, inspected and monitored dynamically

via dedicated Web Services. In Figure 2, Resource B is

shared between two different Web Services each of

them exposing possibly different sets of operations on

the same WS-Resource, for instance to provide both an

administrators’ and users’ perspective (where an

administrator can modify the data and a user can only

query the data).

Figure 2: Web Service managing multiple WS-

Resources and two Web Services sharing same

WS-Resource.

WS-Resource sharing is used extensively for load

balancing by deploying semantically similar or cloned

Web Services for multiple client access. At run time,

appropriate EPRs of the WS-Resource are generated

with the same unique WS-Resource identity but with

different URLs of managing Web Services.

2.3 Managing Multiple WS-Resources

In EAs, WS-Resources related to different entities

can be very similar. Seller and Buyer details, for

instance, are different WS-Resources in the sample

Trading Application, but the majority of operations

executed on these WS-Resources are either queries or

minor updates. It is more effective to manage these

similarly natured operations on different WS-Resources

with the single Instance Service. In Figure 1, different

instances of the same WS-Resource are being managed

by a single Web Service; whereas in Figure 2, multiple

Web Services are managing different WS-Resources

which can have any number of instances. A single Web

Service managing multiple WS-Resources could be

deployed as a Gatekeeper Service which creates

instances of different WS-Resources, returning the

corresponding EPR. It could also be deployed as a

Monitoring Service which monitors the state of

different but inter-dependent WS-Resources. For

example, when a particular stock level drops below a

threshold value, the WS-Resource related to the order

is either created or updated. Monitoring services have

different applications like managing Quality of Service

(QoS), recording usage for statistical analysis or

enforcing WS-Resource dependencies and resolving

conflicts: features which can be crucial for Enterprise

Applications.

2.4 WS-Resource Referencing

WS-Resources are composed of Resource

Properties which reflect their state. These can vary

from simple to complex data types and even reference

other WS-Resources. Referencing other WS-Resources

through Resource Properties is a powerful concept

which defines inter-dependency of the WS-Resources

at a lower level. This eliminates complicated business

logic in a similar way to the mapping of Entity

Relationships in a Relational Database through primary

and foreign keys. In EAs entities do not exist in

isolation but inter-communicate and are dependent on

each other’s state. Similarly, WS-Resources are not

only dependent on the state of other WS-Resources but

can even query and modify them. In a Trading System

(see Figure 3), a single User may reference multiple

Orders placed by that User on different occasions and

each Order references varying numbers of items

purchased as a part of a single Order.

Figure 3: WS-Resources referencing other WS-

Resources through their EPRs

3. Modelling the Implied Resource Pattern

The WS-RF specifications recommend the use of

the Implied Resource pattern (Figure 4) to describe

views on state and to support its management through

associated properties. The Implied Resource pattern

has a single Factory Service to instantiate the resources

and an Instance Service to access and manipulate the

information contained in the resources according to the

business logic.

Figure 4: The Implied Resource pattern

During the prototype development we investigated

variations of the Implied Resource pattern to model

varying enterprise requirements.

3.1 Factory/Instance Pair Model

The Factory/Instance Pair Model (Figure 5) is the

simplest model, in which for each resource there is a

Factory Service to instantiate the resource and

corresponding Instance Service to manage the resource.

In a typical EA different Factory Services are

independent of each other and can work in isolation.

This is the simplest approach: repeating the similar

resource instantiating logic in multiple Factory

Services or even the same Factory Service which can

be deployed multiple times.

Figure 5: Factory/Instance Pair Model

In this model the user manually interacts with

different Factory Services; which instantiate the

appropriate resources and return the corresponding

EPRs to the client. The client application contains the

logic of deciding when and which resources should be

instantiated.

The Factory/Instance Pair Model is preferable in

many different scenarios. In many cases, WS-

Resources may be instantiated for a limited duration

only when required. This late binding is crucial to

maximize the effective usage of scarce physical

resources like memory or storage media. The loose

coupling of different WS-Resources within the

application is easier to achieve in a dynamic

environment where each WS-Resource is managed by a

separate pair of Factory/Instance Services. The late

binding and loose coupling provides the mechanism of

re-usability of WS-Resources and dynamic replacement

of WS-Resources at run time. To optimize the

performance the server can instantiate the pool of

semantically equivalent WS-Resources and share them

among different clients for scalability and meeting the

high-performance requirements for EAs. Each create

WS-Resource request fetches the available WS-

Resource from the pool. In other instances there are a

few optional WS-Resources which may only be used

by certain users, e.g. in a certain university, not all

students live in Halls of Residence, so such a WS-

Resource (with corresponding Student Resource EPR)

would only be created when a room is allocated to the

student.

During the development and testing phase it is

easier to test a set of Factory/Instance Services and

WS-Resources in isolation using a black box testing

methodology. This approach requires some fairly

complicated logic for the client who must interact with

the Factory Services to instantiate different WS-

Resources and update the mandatory WS-Resource to

reference every optional WS-Resource. The server side

implementation of this model is quite simple. The

Server-Client implementation is tightly integrated,

leaving minimum flexibility in design change without

altering the client application.

3.2 Factory/Instance Collection Model

The Factory/Instance Collection Model (Figure 6) is

an extension of the Factory/Instance Pair Model. The

difference being that a single Factory Service

instantiates multiple WS-Resources managed by

different Instance Services. Enterprise Applications

process various entities which are tightly coupled and

due to this inter-dependency all of these WS-Resources

must co-exist before a client may interact with them

successfully. This model is suitable for core WS-

Resources which should be instantiated as early as

possible during the application lifecycle. For example,

in a Banking System, when a user opens a bank

account, three WS-Resources are created immediately:

User, Current Account and Saving Account; the User

WS-Resource will reference the other two WS-

Resources through their EPRs.

Figure 6: Factory/Instance Collection Model

The implementation of this Factory Service is likely

to be more complicated than the previous, depending

on the requirements of the application, and can be

implemented in two possible ways:

Returning an Array. This is the simplest scenario

where a Factory Service instantiates multiple Resources

and returns the array of EPRs corresponding to each

Resource. The client application parses an array of

EPRs and manages each of them accordingly, putting

more workload on the client. This solution is “Fragile”

as all clients need to know how to handle each

Resource and its inter-dependencies.

Returning a Single EPR. In this recommended

approach, a single Factory Service implements the

business logic and inter-dependency of the different

Resources. The Factory Service instantiates all the

Resources yet returns only a single EPR which contains

references to other Resources; this may or may not be

changed by the client. The Banking example quoted

above falls in this category: a Client can’t modify his

Account since any change would have to be authorized

by the bank administration. Returning a single EPR

requires a more complicated Factory Service but a

much easier to implement client, resulting in a

comparatively robust application.

The Factory/Instance Collection Model results in

less interaction between the client and the server with

minimum network overhead. The Server-Client

implementation is quite flexible with minimum inter-

dependency, providing the opportunity to update the

server business logic without changing the client

application. The biggest disadvantage of the

Factory/Instance Collection Model approach is the

larger initial processing overhead with its

correspondingly longer initial latency, especially when

the WS-Resources are geographically distributed. Due

to the fundamental nature of WS-Resources’ late

binding, loose coupling and reusability are fairly

limited in this model.

3.3 Master-Slave Model

In a security dominated era with its unpredictable

request traffic, different security and load balancing

measures are required for an application to run

smoothly. These measures should be planned at design

time, irrespective of the technologies to be used for

implementation. EAs are frequently protected by a

firewall. It has to be anticipated that firewall policies

will limit direct access from external clients to

Resources (i.e. it is most likely that these Resources

will be located inside private firewalls, and can only be

accessed via known gateway servers). Consequently, an

extensible Gateway model is required for accessing

these resources. This model mandates that all client

requests are sent to an externally visible Gateway Web

Service before being routed through the firewall to the

actual requested service. In addition, firewall

administrators may implement additional security

measures such as IP-recognition between gateway

server and service endpoint in the form of Web

Services handlers.

One approach is to use a Gateway Service to

manage multiple Factory Services in the Master-Slave

format; the client interacts only with the Master

Factory Service without knowing the inner details of

the application. The Master Factory Service performs

authentication and authorization of the client before

invoking respective Factory Services (Slaves) which

are behind the firewall and restricted by strict access

polices.

Figure 7: Master-Slave Model

Services expecting higher volumes of user traffic

can be cloned and deployed on different nodes in the

cluster. The Master Factory service can use any

monitoring mechanism to monitor each node related to

its service load, quality of service and availability of

external resources and thus redirect the clients’

requests to the most appropriate node (ultimate service

endpoint). The main advantage of this approach is that

if at any time any service is overloaded or even

unavailable, then that service can easily be replaced by

a compatible or cloned service on another node with

minimal effort. The implementation of the

corresponding client is quite simple since the client

interacts only with the single Master Factory Service

and is independent of the location of other protected

services. The business model can be modified, updated

and refined without affecting the client application as

long as the Master Factory Service still provides the

same interface.

3.4 Hybrid Model

We propose that the best approach is to combine

these variations of the Implied Resource Pattern as

follows. The client still interacts with a single Factory

Service which instantiates all mandatory WS-

Resources and returns a single EPR. Subsequent client

interactions invoke the ‘create’ operation of the Factory

Service with different ‘parameters’ with the Factory

Service instantiating the corresponding WS-Resources

according to those parameters. Optional WS-Resources

are supported using a Factory/Instance Pair model due

to their limited usage. The core WS-Resources which

are to be shared among different applications are also

instantiated through the Factory/Instance Pair model.

The Factory Service is an extension of the

Factory/Instance Collection Model with request parsing

capabilities, utilising advanced features of XML

Schema in its WSDL interface. Since WSDL

specifications prohibit the overloading of methods, the

Factory Service implements a single “create” operation

wrapping all the parsing logic in a few private utility

methods. Our experience in using WS-RF for different

distributed applications has shown that the “Hybrid

Approach” is more manageable and easier to maintain.

This is due to having a single Factory Service, shorter

response times, inter-dependency logic confined to the

server and the facility to upgrade or add WS-

Resources.

4. WS-RF and Notification Model

The Event-driven, or Notification-based, interaction

model is commonly used for inter-object

communications. Different domains provide this

support to various degrees: “Publish/Subscribe”

systems provided by Message Oriented Middleware

vendors; support for the “Observable/Observer” pattern

in programming languages; “Remote Eventing” in RMI

and CORBA. Due to the stateless nature of Web

Services, the Web Service paradigm has no notion of

Notifications. This has limited the applicability of Web

Services to complicated application development. WS-

RF defines conventions for managing 'state' so that

applications can reliably share information as well as

discover, inspect, and interact with stateful resources in

a standard and interoperable way. WS-Notification

(WSN) [7] is a set of three separate specifications

(WS-BaseNotification, WS-BrokeredNotification, and

WS-Topics), but its usefulness beyond WS-RF is

limited.

The WSN specification defines the Web Services

interfaces for Notification-Producers and Notification-

Consumers. It includes standard message exchanges to

be implemented by service providers (producers) and

clients (consumers) that wish to act in these roles,

along with the operational requirements expected of

them. Notification Consumers subscribe with

Notification Producers to request asynchronous

delivery of messages. A subscribe request may contain

a set of filters that restrict which notification messages

are delivered. The most common filter specifies a

message topic using one of the topic expression

dialects defined in WS-Topics (e.g., topic names can

be specified with simple strings, hierarchical topic

trees, or wildcard expressions). Additional filters can

be used to examine message content as well as the

contents of the Notification Producer’s current

Resource Properties. Each subscription is managed by

a Subscription Manager Service (which may be the

same as the Notification Producer). Clients can request

an initial lifetime for subscriptions, and the

Subscription Manager Service controls subscription

lifetime thereafter. Clients may unsubscribe by deleting

their subscription through the Subscription Manager

Service. When a Notification Producer generates a

message that is sent wrapped in a <Notify> element

(though unwrapped “raw” delivery is also possible) to

all subscribers whose filters evaluate to ‘true’. WS-

BrokeredNotification provides for intermediaries

between Notification Producers and Notification

Consumers. These intermediaries receive messages

from Notification Producers and broadcast them to

their own set of subscribers, allowing for architectures

in which Notification Producers do not want to, or even

cannot, know who is subscribed. In any notification

model a Web Service, or other entity, disseminates

information to a set of other Web Services or entities,

without prior knowledge of them.

4.1 Client as a Notification Consumer

In this approach the client application acts as a

Notification Consumer; which is notified of any change

in the “state” of the subscribed WS-Resource instance.

The client processes the notification messages and

updates instance/s of other related WS-Resources

through corresponding Instance Services. It is the

client’s responsibility to inter-relate dependent

Resource instances. The client application exposes a

‘notify’ operation to receive asynchronous notification

messages and must implement the complex logic of

associating different Resource instances. An EA, on the

other hand, is simpler to maintain and independent of

notification. There can be many scenarios where the

client receives optional notifications which are

independent of core functionality of application.

Notification processing at the application level can be

an overhead due to enormous amount of messages. The

notification and subscription at the application level

can result in a cyclic notification chain. In a Travel

application, clients subscribe for a particular type of

deal (e.g., deals related to South Asia, family packages,

multi-city tours or budget deals). With various

categories and possible subcategories, managing the

notifications can be a significant overhead at the

application level since most do not result from a

client’s subscription. The client as a notification

consumer is only applicable for low priority

notifications where immediate action is not required.

This notification model does not assume that the client

application is continuously executing and any delay in

response should not affect the core functionality of the

Enterprise Application.

The client can also delegate any other service as a

notification consumer on its behalf, provided that the

service fulfils the criteria of being a ‘Notification

Consumer’ by implementing the appropriate WSN

interface. Such delegated services are independent of

the business logic of the EA, although they may be

provided as utility services. These are provided for the

clients who do not want to be notification consumers,

are not available all the time, are behind a firewall, or

who do not have a reachable notification interface (e.g.,

desktop clients).

4.2 Service as a Notification Consumer

At the application level, different services managing

different WS-Resource instances can have inter-

dependencies. These services may have an interest in

the state of other WS-Resource instances. It is therefore

better to handle notifications of these state changes at

the service level without any client interaction. This is

the situation where automatic and quick action is

required; these actions are not initiated by the client.

The client has no role in these decisions and the actions

required are related to the core functionality of the

application and not with any specific client. This

approach is generic where certain types of notifications

are processed for a certain clients (e.g., changing the

overdraft limit for all international students, a discount

offer for all loyal customers, upgrading broadband

speed for all customers in central London). These are

more or less management and application level policies

and updating the appropriate WS-Resource instances

should be handled at the application level.

The client application may not even be aware of any

such WS-Resource instances and their relationships.

The client applications are therefore simplified with

most of the processing logic residing on the server side.

These server implementations can be extended so that

users can subscribe and unsubscribe to certain types of

notification; this requires business level support for

such filtering.

Overall this approach results in a cleaner design

with an easier to manage and maintain EA. Since the

notification processing logic is confined to the server,

the client application is immune to the ‘state’ changes

and there is therefore no need to update the client logic

whenever the business logic changes. The main

drawback in this approach is that of the loose

associations between WS-Resource instances which are

of a one-to-many or many-to-many linkage rather than

one-to-one.

4.3 Resource as a Notification Consumer

The two notification approaches discussed above

(Sections 4.1 and 4.2) have their own limitations and

benefits. A third notification model can provide the

best of both approaches with an even cleaner design.

Applications are still easy to manage and maintain and

WS-Resource instances can have one-to-one

associations. In this approach WS-Resource itself is a

notification consumer, yet may also act as a producer.

Each instance of the WS-Resource can subscribe to

‘state’ changes of specific WS-Resource instances

whilst broadcasting notification messages related to its

own ‘state’. Overall this mechanism gives tighter

control on the business logic without interference from

the client side (e.g., if the outstanding balance in a

customer’s current account is insufficient to pay a bill,

funds are either transferred from the customer’s savings

account). Implementing a WS-Resource as a

notification consumer or a consumer-producer can

result in large numbers of messages which can overload

the Subscription Manager Service, thus affecting the

overall performance of the application. The more inter-

related instances, the worse the problem becomes. This

model should be applied with caution and WS-

Resources serving as notification consumers should

obey the following guidelines:

• There is a controlled number of instances of each

WS-Resource at any given time;

• Each WS-Resource has limited dependency on

other WS-Resources and is not involved in

complicated association linkage;

• At least one of each WS-Resource instance is

available all the time, Brokered Notification is

required for persistent WS-Resources;

• Producer-consumer WS-Resources should be

avoided if possible to avoid cyclic notification

chains.

4.4 Hybrid Approach

There is no clear rule when to recommend the use of

one or another of the Resource-Notification models and

when they should be avoided. The application of any

specific model depends on the overall role of the WS-

Resources in the application; their availability and

inter-dependencies; the context in which each WS-

Resource is used; and the type of notification to be

used (either point-to-point or broker-based

notification). Distributed applications spanning

multiple domains comprise large number of data

entities (WS-Resources), each of them having different

roles. This requires mixing different patterns to have

the best of both worlds (a clean design with a

manageable and maintainable implementation). This

suggests a Hybrid Approach; which requires a clear

understanding of the limitations and advantages of each

approach. A typical EA client or delegated service will

act as a notification consumer for optional Resources

(which don’t participate in core activities of the

application and have low priority in the overall

Resource hierarchy). The generic and application level

notification messages will be processed by the services,

whereas the critical and one-to-one association

notification messages will be handled at the WS-

Resource level.

5. Conclusions

WS-RF specifications are designed on top of Web

Services specifications to address the implementation

of heterogeneous and loosely-coupled distributed

applications. WS-RF provides the missing concepts of

stateful interactions, state change notification, and

support for the sharing and coordinated use of diverse

resources in an easy and standard way. Being a

comparatively new programming paradigm, Grid

computing does not have established programming

methodologies. In this paper we have investigated a

Model-Driven approach to encapsulate different

applications and user requirements to design Enterprise

Applications. This Model-Driven approach can be used

from design to deployment of an application in a

standard way. MDE is a useful paradigm to develop

reusable, loosely coupled, scaleable and efficient

systems. The use of models eases the transformation

from design to the implementation of the system in a

robust and flexible manner. We have presented

different models based on the Implied Resource Pattern

to seek a common strategy for the functional and non-

functional requirements of the mandatory and optional

WS-Resources.

WS-RF based applications can take advantage of

many Web Services specifications to implement any

level of complexity with flexibility, portability and

interoperability. Migration to WS-RF is conceptually

easier if the application and user requirements can be

modelled earlier in the design phase. The paper further

discusses different possible notification models for

event-driven systems with their advantages and

disadvantages in conjunction with WS-Resources and

concluded that the different design models are

complementary and can be combined to form a Hybrid

Model.

6. References

[1] Web Services Description Language (WSDL) 1.1,

Available at http://www.w3.org/TR/wsdl.

[2] Wolfgang Emmerich, Ben Butchart, Liang Chen and

Bruno Wassermann, “Grid Service Orchestration using

he Business Process Execution Language (BPEL)”, to

be published.

[3] Web Services Resource Framework, Available at

http://devresource.hp.com/drc/specifications/wsrf/index.

jsp

[4] Globus Alliance, Web Service Resource Framework,

Available at http://www.globus.org/wsrf/

[5] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The

Physiology of the Grid: An Open Grid Services

Architecture for Distributed Systems Integration.

[6] D. Booth, H. Haas, F. McCabe, and et al. Web Services

Architecture, W3C Working Group Note 11. Available

at http://www.w3.org/TR/ws-arch/, 2004.

[7] S. Graham, I. Robinson, and et al. Web Services

Resource Framework Primer, Draft 5. Available at

http://www.oasis-open.org/committees/wsrf, 2005.

[8] Web Services Resource Properties 1.2 (WS-

ResourceProperties), http://docs.oasis-

open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-

1.2-draft-04.pdf.

[9] Web Services Resource Lifetime 1.2 (WS-

ResourceLifetime), http://docs.oasis-

open.org/wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-

draft-03.pdf.

[10] Web Services Base Faults 1.2 (WS-BaseFaults),

http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-

BaseFaults-1.2-draft-02.pdf.

[11] Web Services Service Group 1.2 (WS-ServiceGroup),

http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-

ServiceGroup-1.2-draft-02.pdf.

[12] D. Box, E. Christensen, F. Curbera, and et al. Web

Services Addressing, W3C Member Submission 10

August 2004, Available at

http://www.w3.org/Submission/ws-addressing, 2004.

[13] Keith Ballinger, David Ehnebuske, Martin Gudgin,

Mark Nottingham,Prasad Yendluri, Available at

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-

16.html

