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Abstract
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condensed through a number of levels to give a smaller problem that can be partitioned quickly.
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examples are given to illustrate the performance of this implmentation of multilevel methods.
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1 Introduction

The Ralpar software tool is a mesh partitioning program which implements a range of methods

for splitting unstructured meshes for parallel processing purposes. The documentation for the

original version of this program [14] describes a number of partitioning methods that have been

implemented within it. These methods vary in their computational complexity and the quality

of the partitions that they can produce but the best methods, such as spectral bisection tend

to be expensive.

Several authors have recently investigated the use of multilevel techniques as a way of

achieving high quality mesh partitioning at lower cost than conventional methods [4, ?]. These

methods seek to generate a hierarchy of simpler \meshes" from the original mesh so that a low

cost partitioning of the smallest mesh can be made and mapped back in some way to solve

the full problem. It has been shown that these can give substantial savings in time over the

spectral bisection method, while retaining the high quality results of this method.

Hence developments have been made to Ralpar to include multilevel partitioning methods.

The details of the multilevel methods are described in this document. We also present some

measurements on real meshes to illustrate how the multilevel methods can be used and to help

in the selection of parameters to optimise performance.

Ralpar was originally developed as a stand alone program for mesh partitioning which would

read a mesh �le and output a corresponding partition �le. This is useful for the investigation

of methods and their performance, but is not convenient when using Ralpar as part of a real

parallel analysis system. Hence all the multilevel methods have been developed to allow them

to be called as library functions. The library interface, known as RPMLL (RalPar MultiLevel

Library), is also be described in this document.

The structure of the report is as follows. In Section 2 we brie
y review the importance of

mesh partitioning for parallel processing. We then look in detail at the way in which multilevel

methods can be used and how they have been implemented in Ralpar. Some examples of the

results obtained with the RPMLL method within Ralpar are then given in Section 5 and some

conclusions drawn in the �nal section. The Appendix gives details of the interface routines

that can be used to access the RPMLL and suggestions for parameter values to use.

2 Mesh partitioning for parallel processing

2.1 The importance of mesh partitioning

Many physical problems can be most e�ciently solved using a mesh of points to approximate

the continuous functions in space and time. Such applications include computational 
uid dy-

namics, electromagnetic analysis and semiconductor device simulation. In all these cases, fully

three dimensional and time dependent analysis of complex structures is a highly computation-

ally intensive task. Such problems demand the use of high performance machines and e�cient

algorithms. The �rst requirement means use of parallel computers. The latter requirement

often leads to the use of unstructured meshes which can be more easily adapted to accurately

represent the solution with fewer points than �nite di�erence methods.

There are many ways in which a mesh based calculation can be mapped onto a parallel

machine and it may be the case that the most e�cient serial algorithm, often selected on the

basis of the lowest 
op count, is not the optimal one for a parallel machine. One example of
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this is a solution processes that depends on solving linear systems using iterative methods. The

conjugate gradient algorithm is very e�cient if used with incomplete Cholesky preconditioning

in the serial case. However incomplete Cholesky preconditioning is highly serial and can lead

to poor performance on parallel machines where it is often either modi�ed or replaced with

another preconditioner. Even a poor preconditioner such as diagonal scaling may prove more

e�ective on a parallel machine as it avoids the serial bottleneck.

The importance of �nding a good partitioning of the data for parallel computations is well

known, see for example [9] and [10]. A simple illustration can be seen by looking at the example

of sparse matrix vector product operation y = Ax. This operation is at the heart of many

iterative linear solvers. Typically each value xi will corresponding to an unknown at grid node

i, and the non-zeros in A re
ect how the mesh connects node i to its neighbouring nodes. If

both the matrix A and the vector x have been partitioned between two processors, then the

matrix vector product can be written as 
y1

y2

!
=

 
A11 A12

A21 A22

! 
x1

x2

!
(1)

where the subscripts 1 and 2 now refer to the separate partitions. Thus y1 = A11x1+A12x2 and

this part of the product will be stored on processor 1. The �rst term on the right is all stored

on processor 1. The second term, A12x2, requires fetching the product results from processor

2. If the partitioning can make the block matrices A12 and A21 as sparse as possible then there

will be less data to transfer and hence less time wasted in interprocessor communication.

In addition to the requirement to minimise the amount of communication, there is also the

need to ensure load balance so that each processor has, as close as possible, the same amount

of work to do 1 . For Equation 1, assigning half the nodes to each processor, so that the vectors

are of the same length should give load balance as long as the average sparsity of A11 and A22

is the same. For many mesh based computations this assumption is quite good, but there are

cases where computation per entity is highly non-uniform. For these situations it is necessary

to weight each point i according to its computational cost wi. Thus if the computational power

of each processor is Ck and there are n nodes and p processors, load balance requires that the

ideal total weight of nodes for processor j, Wj , is just:

Wj = Cj

nX
i=1

wi=

pX
k=1

Ck : (2)

As long as the computational work per node and the the power of each processor are well

known (and this is not always the case) it is not di�cult to ensure that a partitioning will

give good load balance. The hard part of the problem is in �nding a partitioning that also

minimises the communication costs.

2.2 Graph based representation of partitioning

The way data is partitioned will depend on the details of the computation being performed on

the mesh. In some cases nodal variables are used while in others element based variables or

even mesh edge based variables may be needed. Sometimes a mixture of these will be used.

1In the case of a heterogeneous system each processor should have an amount of work proportional to its

computational power for load balance.
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Hence the �rst decision to be made is which entity is be partitioned. The standard version

of Ralpar assumes that elements will be partitioned and that nodes and mesh edges will be

shared between processors if the elements either side are assigned to di�erent processors. This

is convenient when the software spends most time on calculation of element contributions.

The geometric partitioning algorithms discussed in [14] all work on the physical position of

the mesh entities. This means that distortions of the mesh which do not change the element

connectivity can lead to di�erent partition results. This is not a desirable property and is

re
ected in the fact that the quality of geometric mesh partitions is highly variable.

Non-geometric partitioning methods make use of the mesh connectivity described by the

element topology. Because the connectivity of nodes di�ers from that of elements it is often

convenient to work in terms of the undirected graph which describes the connectivity of each

entity. Figure 1 illustrates the graph corresponding to a simple 2D mesh. In this example each

graph vertex represents an element in the real mesh. Edges exist in the graph only between

vertices representing neighbouring elements.

Figure 1: A simple mesh is shown on the left with the corresponding graph of element connec-

tivity on the right. This is the edge communication graph, where elements are connected if they

share a common mesh edge. In this case, with linear triangular elements, the graph of nodal

connectivity would look similar to the original mesh.

A similar graph could just as easily be built with the vertices representing nodes or mesh

edges. For the case of the element connectivity graph in Figure 1 we have assumed that

2D elements are connected if they have a common mesh edge and that these connections all

have the same weight. Ralpar allow three di�erent types of element connectivity graph to be

generated from the mesh. These are:

1. The edge communication graph. Connections exist between elements that have a common

mesh edge in 2D or a common face in 3D. All connections have unity weight.

2. The true communication graph. Connections exist between any two elements that share

one or more common nodes. Again all connections have unity weight.

3. The weighted communication graph. This also has connections between any two elements

with one or more common nodes. However the weight of the connection is equal to the

number of common nodes.

Note that the connections between vertices in the graph are usually called edges of the graph

and should not be confused with edges of the mesh.

The choice of which graph is more appropriate depends on the communication requirements

of the parallel algorithm to be used. For example, if a parallel computation only requires
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the exchange of data between elements with a common face, then the �rst type of graph is

appropriate. Each edge in the graph should represent a need for communication between

processors if the vertices at either end are on di�erent processors.

Once a graph representation of the mesh has been obtained it is then necessary to consider

how it can be partitioned in light of the requirements of load balance and minimisation of

communication costs. The load balance problem can be addressed as in Equation 2. As long

as the computational cost of each entity is known, along with the power of the processors to

be used, the total weight of graph vertices to be assigned to each partition can be determined.

The problem of minimisation of communication costs is usual taken as been equivalent to

minimisation of the number of cut edges. A cut edge is a connection in the graph between

two vertices that have been assigned to di�erent processors. In the case of a weighted graph

the aim is to minimise the weighted sum of cut edges. For the two processor partitioning in

Equation 1, each cut edge corresponds to an extra entry in the o�-diagonal blocks A12 and

A21.

Though we have concentrated on mesh based calculations and the graphs that arise from

these, similar problems can occur in many other areas. Electronic VLSI design (for the place-

ment of components with minimum interconnect) and sparse linear algebra problems are two

such examples where graph partitioning is also important. In some of these cases there are

no coordinates associated with the graph vertices. This precludes the use of any geometric

partitioning schemes.

2.3 Graph partitioning methods

The main graph partitioning techniques used in Ralpar are discussed in detail in [14]. Most

methods are based on �nding an ordering of the vertices within the graph. Once this is

obtained, the graph is then split into two (or more) parts by picking the required number of

vertices from the ordered list. The multilevel partitioning library makes use of the following

graph partitioning methods:

Graph bisection: From any vertex in a graph we can label the set of neighbouring vertices

as level 1 and work out from there labelling their neighbours as level 2 (excluding any

that have already been labelled), etc., until all vertices in the graph are labelled by the

number of steps they are away from the original vertex. If this operation is repeated

a number of times, selecting as the starting vertex each time the last one labelled in

the previous pass, this tends to a numbering between the two vertices with the greatest

separation, known as the maximum diameter of the graph [8]. The basic step of this

graph partitioning method is then to divide the vertices of the graph according to their

level numbers.

Dual graph bisection: A slight variation of the graph bisection method is available within

RPMLL. In this method we identify two vertices, one at each end of the graph diameter,

using the level numbering approach as above. Instead of gathering vertices from just one

end of the graph, we gather them from both ends in an alternating fashion. Vertices

from the �rst end are labelled from 1 upwards while those from the other end are labelled

downwards from Nv downwards, where Nv is the number of vertices in the graph. In this

case we are using sequence numbers rather than level numbers. This method generally

requires use of a re�nement technique with it to give reasonable results.

4



Bandwidth and pro�le methods: Malone [12] used standard bandwidth reduction algo-

rithms to obtain orderings to split up a mesh. Ralpar includes the Gibbs-King and

Gibbs-Poole-Stockmeyer bandwidth and pro�le reduction algorithms using the an imple-

mentation from netlib/ACM [6]. The Malone implementation used bandwidth minimi-

sation for the nodes and then transfered this numbering to elements. Within RPMLL

pro�le minimisation is used to directly renumber the graph vertices and then partition

using this ordering.

Greedy methods: The Greedy method described by Farhat [9] is normally implemented in

terms of nodes and elements of the mesh. In RPMLL it is applied directly to the graph.

The starting point for gathering vertices is taken as the vertex of lowest order (fewest

connections). Vertices are labelled in order out from the starting point in a similar way

to the graph bisection method. This ordering is then used to split the graph. Since there

will often be more than one possible choice of starting vertex for each partition, it is also

possible to use the Glutton variant of the greedy method [14].

Spectral bisection: This method makes use of the second smallest eigenvector of the as-

sociated Laplacian matrix to split the graph. The method, due to Pothen el al [2], is

computationally expensive. Within Ralpar we use the LASO package [7] to determine

the appropriate eigenvector.

Kernighan and Lin: The algorithm of Kernighan and Lin [11] does not explicitly generate

a partition but can be used to try and improve an existing one, while retaining load

balance. Each vertex of the graph is inspected and the change in cut edges of swapping

it from its current partition to the the other partition is evaluated. A single pass of the

KL method proceeds to swap vertices in alternating directions to maintain balance. The

vertex to be swapped is always that which gives the best decrease in the number of cut

edges (or the smallest increase). Once a vertex has been swapped it is not moved again

in the current KL pass. After each swap, cost values for all neighbour vertices must be

updated. This must be done carefully to avoid the cost of each pass being quadratic in

the number of vertices.

Random partitioning: A random split of the vertices at each step can be made. This is only

useful if used with a re�nement method such the KL algorithm. It has the advantage of

looking at starting con�gurations which are not generated by the conventional methods.

2.4 Measures of partition quality

The main measure of partition quality used by the graph based methods described above is the

total number of cut edges resulting from the partitioning. This is also the objective function

used in the KL re�nement process.

Another measure that may be of use in some cases is the maximum number of partitions

about any single partition. With the Ralpar interface to RPMLL the maximum and average

of the neighbours about a partition is reported. The start up time to initiate a communication

operation can sometimes be very signi�cant and may favour methods, such as those of Malone,

which tend to reduce the number of neighbouring partitions.

For graphs describing element connectivity we can also determine the number of interface

nodes that are generated by a partitioning. An interface node is one that lies on the boundary
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between two or more partitions. The calculation of the number of interface nodes requires

access to the element topology information as well as the actual graph partitioning. This

measure can be useful in comparing the partitions generated using di�erent graphs of element

connectivity (edge communication, true communication, etc.).

Appendix A gives details of the routines RPPARQAL and RPNODCST which can be used to

determine the above values for a given partitioning of a graph.

3 Multilevel methods

3.1 Previous work on multilevel techniques

Multilevel methods have been used by several authors for speeding up the process of graph

partitioning. The basic idea is to merge neighbouring vertices of the graph together in some

fashion so as to produce a smaller, more manageable graph. The merging process can be

repeated several times until a graph that is su�ciently small has been obtained. This process

is illustrated in Figure 2.

Figure 2: An illustration of how a graph can be condensed by merging vertices. The top graph

has 12 vertices. By merging those vertex pairs which have been connected with a bold line we

get the second graph with just 6 vertices. Another level of condensation leaves just 3 vertices.

There are at least two main approaches to the use of multilevel techniques in graph parti-

tioning.

� Barnard and Simon [1] and others, e.g. [3], have used multilevel methods as a means

to e�ciently calculate the eigenvalues to be used in spectral bisection of the full graph.
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This is usually referred to as multilevel spectral bisection (MSB). It has been shown that

obtaining the second smallest eigenvalue on the simplest graph and using this to approx-

imate the corresponding eigenvectors for the higher level graphs can be very e�ective in

reducing the CPU time to �nd the eigenvector of the full graph.

� Multilevel partitioning schemes on the other hand try to partition the lowest level graph

directly. Having got a partition at this level they then propagate it back through all the

intermediate graphs up to the original graph. Usually some re�nement is made at each

intermediate level to improve the quality of the partition. Methods of this type have

been used by Hendrickson and Leland [4] and Karypis and Kumar [5].

The implementation within Ralpar is based on the latter approach and o�ers a number of

options as to the partitioning method to be used on the coarse graph. In addition the user can

control the way in which the graph is reduced and the re�nement to be used on intermediate

levels.

3.2 Graph condensation methods

In the example shown in Figure 2 a simple 2D graph was reduced from 12 vertices to 3 by a

process of merging neighbouring vertices two at a time. Clearly there are many di�erent ways

in which pairs these could be chosen. It is also possible to merge more than two vertices at a

time to give a more rapid condensation of the graph with fewer levels. It is likely that a more

rapid condensation with fewer intermediate levels will be more e�cient in terms of memory

and computational speed. On the negative side it is possible that larger clusters will have

more uneven interfaces giving lower partition quality and requiring more re�nement work on

the higher level graphs.

The current version of Ralpar currently supports two methods of vertex clustering. These

are as follows:

Greedy clustering: A scan is made through all vertices in the graph. If a vertex has not

yet been clustered it is merged with all its neighbouring vertices which have not yet

been clustered. All these vertices are then marked so that they will not be clustered any

further in this level.

Heaviest edge clustering: Again all vertices are scanned through. When an unclustered

vertex is found, all its neighbouring unclustered vertices are examined and it is merged

with the one which has the highest edge weight connecting it to the �rst vertex.

Figure 3 demonstrates how these two methods work on a simple graph.

It is important to track the edge weights as a graph is condensed, even if the original graph

is unweighted. The weight of an edge in the condensed graph is just the sum of the weights of

edges joining the two clusters in the higher level graph. This values should be proportional to

the amount of communication required if the two clusters are assigned to separate processors.

The weight of vertices in the condensed graph is similarly given be the sum of weights of the

merged vertices. This must be available to ensure load balance in partitioning the condensed

graph. Vertex and edge weights are shown in Figure 3 assuming that the initial graph has unit

weights for both of these quantities.
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Figure 3: Clustering vertices: the three levels on the left have been clustered using the heaviest

edge method. The �rst level is assumed to have no edge weighting, so vertices are merged

starting from the top right with the �rst free neighbour. For the weighted graphs, vertex weights

are given in a Roman font and edge weights in italic. The three graphs on the right show greedy

clustering. Each vertex is merged with all free neighbours. This leads to a more rapid reduction

in graph size, as can be seen here.
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3.3 Partitioning condensed graphs

All the graph partitioning algorithms previously used within Ralpar have assumed that graph

edges are unweighted. Some of these methods can be used without modi�cation to partition

weighted graphs. This is partly because there is no obvious way to to adapt them to use

the additional information. The set of partitioning methods that have been implemented in

RPMLL can be divided into two with respect to the e�ect of edge weighting. Those that have

not been adapted to take account of edge weighting are:

Graph bisection: The level numbering scheme which is at the heart of the graph bisection

algorithm does not take the weight of an edge into account. The same applies to the dual

graph variation of this method.

Bandwidth and pro�le methods: Again the renumbering methods only make use of the

fact that a link exists, not on the actual weight of the edge.

Those methods that have been altered in some way to use the edge weighting information

are:

Greedy methods: The Greedy method is similar to graph bisection in the gathering stage,

and the weight of an edge has no in
uence on this part of the method. In the selection of

the starting vertex though, it is necessary to allow for the edge weight to �nd a vertex of

minimum connectivity. In the Glutton variation of the standard greedy method several

starting vertices are tried and the one with lowest cut edge cost is selected. The evaluation

of cut edge cost must take into account the edge weights.

Spectral bisection: In the unweighted case the Laplacian matrix L has o�-diagonal entries

Lij = �1 whenever an edge exists between vertices i and j. For the weighted graph case,

this value is replaced by the negative of the actual edge weight. The diagonal terms, Lkk,

are then given by the sum of weights of all edges meeting at vertex k. The rest of the

spectral bisection algorithm remains unchanged.

Kernighan and Lin: The basic steps of the KL smoothing method are unchanged, but the

weight of edges must be taken into account when computing the cost changes that result

from any vertex partition swap. While the actual change to the cost computation is

trivial, this does have some repercussions in the e�cient implementation of this algorithm.

This is due to the fact that it is necessary to keep a sorted list of the cost of each possible

vertex swap. To avoid doing an expensive full sort of this list on every swap, a list of

swaps at all possible cost levels is kept. This table can become large and sparse for

heavily weighted edges, making the method less e�cient.

3.4 Uncoarsening and partition re�nement

Once a partition has be made on the lowest graph level it is a simple matter to map it back

through all the intermediate graph levels to the original graph. At each level of graph con-

densation it is necessary to retain an array recording the mapping of vertices in the �ne graph

to the coarse one. This gives a rapid partitioning of the full graph from that on the smallest

graph. However the load balance of the partition will be governed by the best that could be
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obtained on the coarsest graph and the partition boundaries will be forced to follow the cluster

boundaries.

To improve the partition quality and the load balance, KL re�nement of the partitions can

be used. This is straightforward when a simple partition of a graph into two parts is considered

as the re�nement can be done as the solution is mapped back from one graph to the next. When

more than two partitions are required the cost of re�nement becomes more signi�cant because

the �rst bisection has to be transfered back up to the original graph. Re�nement of this graph

means that the original condensation of the graph is now no longer valid as some clusters will

straddle partition boundaries. Hence the condensation process has to be repeated for each

bisection operation.

4 Software Implementation

4.1 Language

All of Ralpar and the multilevel library has been developed in standard Fortran 77. The

exception is at the start of the Ralpar software where the workspace is allocated with a call to

a C subroutine. Though C does o�er some advantages in memory allocation and wider range

of data structures, it was felt that Fortran was more a more appropriate choice as it allows

easy access to standard sparse eigenvalue software.

4.2 Graph representation

Since the RPMLL can be called from other software packages it is necessary to know the details

of the graph representation that has been used. Though the library does include routines to

generate graphs from the users topology information, these arrays must be declared by the

calling program. Communication graphs are stored as a pair of integer arrays:

� PG(NV) This array is a set of pointers into the graph array G. The length must be Nv +1,

where Nv is the number of vertices in the graph.

� G(1:IG,1:JG) This array stores the neighbours of each vertex and must be addressed

via PG. For vertex I the neighbours will be stored in locations G(1,J) where J runs from

PG(I) to PG(I+1)-1. Note that all neighbours of each vertex are stored and this format

does not take account of symmetry. The �rst dimension, IG, may be either 1 or 2. The

former case implies an unweighted graphs where all edges have unity weight, while in the

latter case G(2,J) gives the weight of edge J. Only integer edge weights are allowed.

In addition to the above data describing the graph, it is necessary to provide an array of

vertex weights GW(NV). These are required even if all weights are unity. The array must be

integer and all vertex weights are strictly positive.

4.3 Graph generation

The graph is built from the mesh topology information. To construct the graph for element

partitioning the list of elements about each node is �rst formed. This just requires knowing

the set of nodes that make up each element of the mesh. To make the software easier to

integrate into other programs, the element node information is accessed via a function call.
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This minimises the dependence of this operation on the format used to store the topology data

- it is just necessary to modify this routine to extract the required information.

Once the list of elements about nodes has been obtained the graph can be built using it.

As mentioned previously there are three options available for the type of graph to generate.

The edge graph assumes that elements are connected if they have a common face. The true

communication graph assumes a connection if there is a least one node in common, while the

weighted graph weights each link according to the number of common nodes.

A similar graph can be built for the nodes instead of the elements. In this only one option

is supported, where a node is connected by unweighted links to all the other nodes in each

element it appears in. The user is free to generate graphs in other ways if they are more

appropriate to the problem under consideration.

4.4 Generation of multilevel graphs

Assuming that a graphG0 has been generated from the mesh, then we wish to build a hierarchy

of smaller graphs from it, G1;G2 : : : ;GN . The procedure used to do this is as shown in Figure 4.

Procedure gen mlgraphs ( G0 , MaxLev , MinSize )

i = 0

do while i < MaxLev and Size(Gi) > MinSize

v = �nd vertices to merge( Gi )

Gi+1 = generate subgraph( Gi, v )

i = i+ 1

enddo

end

Procedure �nd vertices to merge ( G )

v = 0

c = 0

do i = 1;Nv

if ( vi � 0 ) then

vi = c

for all j where G(i; j) 6= 0 and vj � 0

vj = c

c = c+ 1

endif

enddo

end

Figure 4: Outline of the method to generate a set of graphs from the original graph G0. The

vertex clustering operation here is of the greedy form where all available vertices are merged

at each step. Nv is the number of vertices in the current graph and v is a vector giving the

mapping of vertices on a �ne graph to those on the next coarser level.

The amount of space taken to build the set of condensed graphs depends on the graph
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itself and the clustering method used. As each subgraph should be at least half the size of the

previous level, the total should not exceed that of the original graph. A single workspace array

is used as input to the RPMLL and all working arrays are allocated from this.

Note that all subgraphs will include edge weighting and vertex weights. In addition the

clustering data at each level will have to be stored with the graph.

4.5 Multilevel methods

To partition a graph into n parts with a multilevel method there are two approaches available

within RPMLL. The �rst is faster but does not allow re�nement on intermediate levels because

we alway work on the lowest level graph and only map the �nal partition back to the original

graph. The second method involves mapping the partition back to the original graph after

each bisection. This allows re�nement of intermediate levels, but is more expensive as the

condensation process has to be repeated each time.

The control 
ow in the two methods is outlined in Figure 5.

The pseudo code in Figure 5 we have used G to denote a graph and P to indicate a parti-

tioning vector which maps vertices to partitions. Several complex operations are abbreviated

by single statements such as partition( Gn , N ) to denote a call to a standard partitioning

method to split the vertices of the graph into N parts, KL smooth( P s
k ,G

s
k) for an application

of the Kernighan and Lin algorithm to improve the given bisection on the current graph. In

general the quality of partitions produced without re�nement of the intermediate levels limits

the usefulness of the �rst method.

The above outline of the method with KL re�nement is structured for the case of recursive

bisection. This is normally the most e�cient method to split up a mesh. This method is not

limited of cases where the number of partitions is a power of 2, since weighting can be used

to get the required number of partitions. The multilevel library also supports splitting graphs

using recursive sectioning, where one complete partition at a time is split away from the main

body of the graph. This can also be combined with KL re�nement on the intermediate graphs.

Another option is to use linear sectioning, where the the partitioning method is called just

once to provide an ordering of all vertices in the graph. This is then used to split the graph

into the required number of partitions. Linear sectioning can not currently be combined with

KL re�nement, hence it is only supported for the �rst type of partitioning in Figure 5.

4.6 The library interface

In addition to the implementation of multilevel methods within Ralpar, the partitioning meth-

ods can also be accessed via a library interface. This allows the methods to be included into

other software packages more easily. There are two main partitioning routines plus a number of

support routines which can be used to help in building the initial graph and assessing the qual-

ity of the generated partition. All the interfaces to these routines are described in Appendix

A.

A simple test program, rplibtest.f is included in the distribution version of Ralpar which

illustrates the use of the multilevel library interface. The program can be used to generate a

partitioning of a graph described in a simple ASCII formatted �le, but is also useful as a guide

to include RPMLL in other programs.

12



Procedure ml partition 1 ( n , G0 )

G1; : : : Gn = gen mlgraphs( G0 , MaxLev , MinSize )

Pn = partition( Gn, N )

do i = n to 1 step �1

Pi�1 = map partition( Pi )

end

Procedure ml partition 2 ( n , G0 )

set initial partition P0 to all in partition 1

do i = 1 , log2n

do j = 1 , 2i�1

Gs
0 = generate subgraph( G0, P0, j )

Gs
1; : : : G

s
n = gen mlgraphs( Gs

0 , MaxLev , MinSize )

P s
n = partition( Gs

n, 2 )

do k = n to 1 step �1

P s
k�1 = map partition( P s

k )

KL smooth( P s
k�1, G

s
k�1 )

enddo

update P0 from P s
0

enddo

enddo

end

Figure 5: Pseudo code outlining the two di�erent implementations of multilevel methods in

Ralpar. The �rst method condenses the graph once, performs the normal partitioning on that

graph and maps the result back to the top level. In the second method, the bisection partitioning

method has been modi�ed so that a set of condensed graph is generated for each partition every

time it is to be bisected.
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5 Examples

To illustrate the use of the multilevel partitioning methods within the Ralpar framework we

now present some example results on 2D and 3D meshes. A more detailed comparison of the

multilevel method with other techniques will be made in [16].

5.1 Simple 2D structured mesh

A simple mesh is shown in Figure 6 which is actual a structured grid composed of quadrilateral

elements, but is useful to illustrate the multilevel methods.

Mesh plot of T2.MSH

Figure 6: A simple structured mesh of 1701 nodes and 1600 quadrilateral elements.

One of the main advantages of multilevel techniques is in saving CPU time in expensive

methods such as recursive spectral bisection. In Figure 7 we show three results of partitioning

the test mesh into 7 parts of equal size. The only di�erence between the three cases is in the

number of levels of graph condensation that has been used. The �rst case, with MAXLVL=0

corresponds to no condensation and is essentially a non-multilevel result. In the other two

cases we have used 1 and 2 levels of graph condensation with the greedy clustering method.

Within Ralpar the command to generate such a partition with 2 levels of condensation would

be:

MLPART 7 SPEC KLEF=FULL GTYPE=E MAXLVL=2

Full details of the commands and their parameters are given in the Ralpar User Manual [15].

It can be seen that there is a wide variation in the actual partitions that are obtained

when graph condensation is used, at least in this particular case. Some of these di�erences
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Mesh plot of T2.MSH using MULTILEVEL method

Number of partitions=  7 Cost=  148

Mesh plot of T2.MSH using MULTILEVEL method

Number of partitions=  7 Cost=  143

Mesh plot of T2.MSH using MULTILEVEL method

Number of partitions=  7 Cost=  139

Figure 7: The three �gures correspond to partitioning the graph into 7 parts using recursive

spectral bisection with KL re�nement on all intermediate levels. The top �gure is with no

condensation, the middle with one level and the third with 2 levels.
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are due to KL re�nement which is performed on all graph levels, though even without any

re�nement there are still signi�cant di�erences. Table 1 shows the partition quality measures

(mesh interface nodes and graph cut edges) as a function of the number of levels used. The

CPU times were obtained on a Sparc 10 processor using full compiler optimisation.

Max. Level Int. Nodes Cut Edges CPU (secs)

0 148 147 4.00

1 143 140 1.45

2 139 136 0.65

3 138 135 0.43

4 143 139 0.36

Table 1: Partition quality and CPU time as a function of the maximum number of levels

used in the multilevel method. Seven partitions are generated using spectral bisection and KL

re�nement.

In this simple test case the measures of partition quality get slightly better as more graph

levels are used, up to 3 levels. It is not always the case that the multilevel version produces

better results but allowing the KL re�nement method to work on a range of size scales can

sometimes be bene�cial. In terms of CPU time it can be seen that the multilevel version is an

order of magnitude faster using 3 or 4 levels of condensation. Again this result only applies to

this particular test case, but is representative of the sort of speed up possible through the use

of multilevel methods. Some further speed up may be obtained by use of the parameter KLLIM

which limits the length of KL re�nement passes.

As well as using spectral bisection to provide the initial partition on the lowest level graph,

other methods can be used. As an example, Table 2 shows the results of using graph bisection

as the splitting method. These results are again for generation of 7 partitions.

Max. Level Int. Nodes Cut Edges CPU (secs)

0 138 134 0.26

1 146 142 0.20

2 148 143 0.29

3 135 132 0.28

4 145 142 0.29

Table 2: Partition quality and CPU time used as a function of the maximum number of levels

used in the multilevel method. Seven partitions are generated using graph bisection and KL

re�nement.

In this case there is little gain to be seen in CPU time from using multilevel methods. This

is to be expected since graph bisection on its own is a very fast technique. Though the quality

results compare favourably with those from use of spectral bisection, this is not always the

case.
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5.2 2D unstructured triangular mesh

A unstructured mesh of the space around an airfoil is shown in Figure 8. This mesh is due to

Hammond and can be found via the WWW. The mesh contains 4720 nodes and 9000 elements.

Mesh plot of HAMMOND.MSH

Figure 8: The Hammond mesh. The aerofoil at the centre of the mesh is not visible on this

scale.

In Table 3 we compare some measures of the partition quality and CPU time for splitting

the Hammond mesh with multilevel methods. Partitioning has been made of the elements of

the mesh, rather than the nodes. Again we have used the edge communication graph for these

tests with greedy clustering and KL re�nement on all levels.

It can be seen that the multilevel methods o�er substantial savings in CPU time as the

number of levels is increased. Again there is often a slight improvement in the partition quality

as the the number of levels increases. The use of the parameter KLLIM=200 is seen to have a

slight e�ect in reducing the CPU time used, though sometimes giving more cut edges. The

speed up by use of multilevel methods is of the order of 20 in these cases.

5.3 3D unstructured hexahedral mesh

As a �nal example we present some results of partitioning a 3D unstructured hexahedral mesh

of the airspace within a cylinder head. The mesh is shown in Figure 9 and contains 26573

nodes and 23446 elements.

A set of multilevel results are summarised in Table 4 for the case of partitioning the graph

into 8 parts. Again a speed up of an order of magnitude is seen through the use of the multilevel

techniques. In a 3D mesh the greedy clusters will grow faster than in 2D meshes. This may

explain the fact that there is less improvement above two levels of condensation than seen
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Partitions Max. Level Int. Nodes Cut Edges CPU (secs)

2 0 55 54 16.79

1 55 54 7.53

2 54 53 2.30

3 51 50 1.28

4 51 50 0.78

4y 51 50 0.59

8 0 229 226 52.90

1 218 215 15.16

2 204 201 7.44

3 206 203 3.25

4 204 202 2.23

4y 204 202 2.02

64 0 928 939 69.10

1 908 922 28.00

2 874 889 12.20

3 892 907 5.67

4 898 912 4.42

4y 899 914 4.07

Table 3: Results for the Hammond mesh. Partition quality and CPU time as a function of the

maximum number of levels used. The symbol y indicates that the KLLIM parameter was set to

200.

previously. The larger mesh also shows a more signi�cant reduction in CPU time through the

use of the KLMIM parameter.
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Max. Level Int. Nodes Cut Edges CPU (secs)

0 2071 1915 53.20

1 2025 1866 31.30

2 1973 1807 10.67

3 2085 1937 10.37

4 2132 1934 10.31

4y 2088 1909 5.21

Table 4: Partition quality and CPU time results for the multilevel method on the cylinder head

mesh. Results are for partitioning into 8 parts. y indicates the use of the KLLIM parameter.
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Mesh  plot of TUBU2.MSH

Figure 9: A 3D mesh of a cylinder head.

6 Conclusions

A multilevel partitioning library has been developed for use in graph partitioning. This library

o�ers a number of options to control the clustering method and how many levels are used. A

range of partitioning methods, including spectral bisection, may be used to split the lowest

level graph and Kernighan and Lin type re�nement can be used on all graph levels to improve

the partition quality.

Results presented here show that the multilevel methods can easily give an order of magni-

tude speed gain compared to spectral bisection and KL re�nement on a single level. In addition

we have seen that partition quality from the multilevel methods is as good, and often slightly

better than, that of the single level methods.

A more detailed comparison of the performance of multilevel methods with other partition-

ing techniques will be made in [16].
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A The library interface

In addition to the implementation of multilevel methods in Ralpar, the partition methods can

also be accessed via a library interface. This allows the methods to be included into other

software packages more easily.

This appendix lists the top level subroutines that are provided within the RPMLL. Three

types of routines are provided for:

� Graph generation

� Graph partitioning

� Partition quality assessment

The details of the parameters for each subroutine are described along with suggested values

where appropriate.

A.1 RPPARMLL Partition graph, re�nement of lowest graph only

A.2 RPPARMLF Partition graph, re�nement of all intermediate graphs

A.3 RPGENGCL Generate graph of cell connectivity

A.4 RPGENGND Generate graph of node connectivity

A.5 RPEDCUT Evaluate cut edges in a partitioning

A.6 RPLDBAL Evaluate load balance of a partitioning

A.7 RPNODCST Evaluate interface nodes in cell partitioning

A.8 RPPARQAL Evaluate quality and connectivity of a partitioning
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A.1 Graph partitioning routine RPPARMLL

Syntax

SUBROUTINE RPPARMLL(PG,IPG,G,IG,JG,GW,NV,NP,PW,PMTH,WORK,IWORK,

+ COPT,MAXLVL,MINSIZ,KLREF,KLLIM,GP,INFO,IERR)

Description

This subroutine partitions a graph using multilevel methods without KL re�nement

on the intermediate levels.

Parameters

PG(IPG) Integer array of pointers into graph G, where IPG is equal

to Nv + 1.

G(IG,JG) Integer array describing the graph. Vertices linked to I

are given in G(1,PG(I)) to G(1,PG(I+1)-1). If the graph

is weighted, IG=2, then G(2,I) is the edge weight. Un-

weighted graphs have IG=1. JG is the number of edges

in the graph. Note that all links must be included even

though the graph is undirected and hence symmetric.

GW(NV) Integer array giving the weights for each vertex.

NV Integer, the number of vertices in graph, Nv.

NP Number of partitions required.

PW(NP) Real*4 array giving the partition weights.

PMTH Integer giving the partition method. This encodes both

the splitting method and the way in which it is applied.

The available methods are:

1. Pro�le (Malone) renumbering method.

2. Spectral method.

3. Graph method.

4. Random partitioning.

5. Dual graph method.

6. greedy method.

7. Glutton method.

The way in which a method is used is controlled by adding

a constant to the above method numbers. For recursive

bisection, add 100, for recursive sectioning, splitting one

partition o� at a time, add 200. If no constant is added,

then linear sectioning is used, where the separator is eval-

uated only once and used to split the graph into N parts.
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WORK(IWORK) Integer workspace array. The exact size required by this

array is dependent on the method used and the number of

levels of condensation. Twice the size of the graph array

would be a reasonable initial guess.

COPT Integer denoting how graph vertices should be condensed.

COPT=1 implies use the greedy clustering method. COPT=2

implies use the heaviest edge clustering method.

MAXLVL Integer giving the maximum number of levels to use. Typ-

ical values may be in the range 0 to 5.

MINSIZ Integer giving the minimum size of graph that should be

generated. Typical values may be 10 to 1000 vertices.

KLREF Logical 
ag to control KL re�nement. If this is true, then

KL re�nement will be made on the partitions generated

at the lowest graph level. This must be false if a linear

section method is used.

KLLIM Integer value to control KL re�nement. If this is zero then

the full KL method is applied. If it is set to a value > 0

then each KL pass can terminate early if the current cost

gain is KLLIM below the best one seen so far. Typical values

are in the range 100 to 5000.

INFO Integer value to control the output of information. Zero

gives the lowest amount of output. For more details on

the operation of the software, values in the range 1 to 3

may be used.

GP(NV) Integer array giving the partitioning of the graph. For each

vertex this gives the partition it has been assigned to.

IERR Integer error 
ag. This should always be checked on return.

A zero value indicates success.
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A.2 Graph partitioning routine RPPARMLF

Syntax

SUBROUTINE RPPARMLF(PG,IPG,G,IG,JG,GW,NV,NP,PW,PMTH,WORK,IWORK,

+ COPT,MAXLVL,MINSIZ,KLREF,KLLIM,GP,INFO,IERR)

Description

This subroutine partitions a graph using multilevel methods with KL re�nement

possible on all the graph levels. Note that most parameters are identical to those

of subroutine RPPARMLL, so the description given above are brief.

Parameters

PG(IPG) Integer array of pointers into graph G, where IPG is equal

to Nv + 1. (In).

G(IG,JG) Integer array describing the graph. (In).

GW(NV) Integer array giving the weights for each vertex. (In).

NV Integer, the number of vertices in graph, Nv. (In).

NP Number of partitions required. Options are the same as

for RPPARMLL except that the linear section method is not

supported. (In).

PW(NP) Real*4 array giving the partition weights. (In).

PMTH Integer giving the partition method. (In).

WORK(IWORK) Integer workspace array. The exact size required by this

array is dependent on the method used and the number of

levels of condensation. Twice the size of the graph array

would be a reasonable initial guess. (Workspace).

COPT Integer denoting how graph vertices should be condensed.

(In).

MAXLVL Integer giving the maximum number of levels to use. (In).

MINSIZ Integer giving the minimum size of graph that should be

generated. (In).

KLREF Logical 
ag to control KL re�nement. If this is true, then

KL re�nement will be made on all graph levels. (In).

KLLIM Integer value to control KL re�nement. (In).

INFO Integer value to control the output of information. (In).

GP(NV) Integer array giving the partitioning of the graph. For

each vertex this gives the partition it has been assigned to.

(Out).

IERR Integer error 
ag. This should always be checked on return.

A zero value indicates success. (Out).

25



A.3 Graph generation routine RPGENGCL

Syntax

SUBROUTINE RPGENGCL(NCELLS,NNODES,GTYPE,DIMEN,WORK,IWORK,PPG,IPG,

+ PG,IG,JG,IPT,IERR)

Description

This subroutine generates a graph of cell based connectivity in the format required

by RPMLL.

Parameters

NCELLS Integer, number of cells or elements in the mesh. (In).

NNODES Integer, number of nodes in the mesh (In).

GTYPE Integer, for type of graph to generate. Values are 1 for

edges graph, 2 for true communication graph and 3 for

weighted graph. (In).

DIMEN Integer giving dimensionality of mesh, 2 or 3. (In).

WORK(IWORK) Integer array of work space, but which will contain the

graph on exit. The size of IWORK depends on the type of

mesh, but should be at least twice the expected size of the

graph array. (Out).

PPG Integer, pointer into array work to the start of the array

of pointers to the graph. (Out).

IPG Integer, the length of the array of pointers to the graph.

(Out).

PG Integer giving the start location of the graph data in WORK.

(Out).

IG, JG Integers giving the dimensions of the graph array stored in

WORK. (Out).

IPT Integer giving the �rst unused location in the array WORK.

(Out).

IERR Integer error 
ag. This should always be checked on return.

A zero value indicates success. (Out).

User provided subroutine

The user has to provide a subroutine which will return the nodes which form a given

cell or element. This routine must be called RPUCLINF and take the arguments:

SUBROUTINE RPUCLINF(CELL,NODES,INODES,NODCL)

CELL Integer giving the number of the cell for which information

is requested (1 to NCELLS). (In).

NODES(INODES) Integer array that will contain the nodes forming cell CELL.

(Out).

INODES The maximum number of nodes in a cell. This is set inter-

nally to 32 but can be increased if necessary. (In).

NODCL Integer giving the number of nodes in the requested

cell.(Out).
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Keeping strictly to the Fortran 77 standard requires that the cell topology data is

stored in a common block for this routine to access the required data.
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A.4 Graph generation routine RPGENGND

Syntax

SUBROUTINE RPGENGND(NCELLS,NNODES,GTYPE,DIMEN,WORK,IWORK,PPG,IPG,

+ PG,IG,JG,IPT,IERR)

Description

This subroutine generates a graph of the nodal connectivity. The set of parameters

are the same as that required for RPGENGCL.Parameter GTYPEmust have the value 2

at present and this generates a graph where a node is connected to all other nodes

that appear in a common cell. This routine also requires the existence of the user

supplied subroutineRPUCLINF to give the nodes in each cell.
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A.5 Partition assessment routine RPEDCUT

Syntax

SUBROUTINE RPEDGCUT(GP,PG,IPG,G,IG,JG,NV,CEDGES,IERR)

Description

This subroutine evaluates the number of cut edges in a graph given the graph and

the partition vector.

Parameters

GP(NV) Integer array giving the partition that each vertex has been

assigned to. (In).

PG(IPG) Integer array of pointers into graph G, where IPG is equal

to Nv + 1. (In).

G(IG,JG) Integer array describing the graph. (In).

NV Integer giving the number of vertices in the graph. (In).

CEDGES Integer giving the number of cut edges in the graph. (Out).

IERR Integer error 
ag. Zero for success. (Out).
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A.6 Partition assessment routine RPLDBAL

Syntax

SUBROUTINE RPLDBAL(NV,GP,GW,PW,NP,RBAL,RBMAX,IERR)

Description

This subroutine reports the quality of the load balance achieved by the partition

vector GP in relation to the requested partition weights PW. Normally we expect

good load balance but this may not be the case when multilevel methods are used

without re�nement on the intermediate levels.

Parameters

NV Integer giving the number of vertices in the graph. (In).

GP(NV) Integer array giving the partition that each vertex has been

assigned to. (In).

GW(NV) Integer array giving the weights for each vertex. (In).

PW(NP) Real*4 array giving the requested partition weights. (In).

NP Integer giving the number of partitions that have been gen-

erated. (IN).

RBAL(NP) Real*4 array giving ratio of partition weight to that re-

quested by GW. Ideally all these should be unity. (Out).

RBMAX Real*4 value giving the largest value of RBAL. (Out).

IERR Integer error 
ag. Zero for success. (Out).
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A.7 Partition assessment routine RPNODCST

Syntax

SUBROUTINE RPNODCST(NCELLS,NNODES,NPNOD,NP,GP,TOTAL,COST,NTYPE,

+ CLNOD,ICLNOD)

Description

This subroutine is speci�cally designed for use with partitioning graphs that repre-

sent cell or element connectivity. For such a partitioning it calculates the number

of mesh nodes that lie on internal partition boundaries.

Parameters

NCELLS Integer, number of cells or elements in the mesh. (In).

NNODES Integer, number of nodes in the mesh (In).

NPNOD Integer, number of periodic nodes pairs in mesh. (In).

NP Integer giving the number of partitions that have been gen-

erated. (IN).

GP(NCELLS) Integer array giving the partition that each cell has been

assigned to. (In).

NTYPE(NNODES) Integer array, used as workspace. (In).

CLNOD(ICLNOD) Integer array, used as workspace. Length must be at least

the maximum number of nodes in a cell. (In).

TOTAL Integer, giving the total number of interface nodes. (Out).

COST(NP) Integer array giving the number of interface nodes associ-

ated with each partition. (Out).

User provided subroutines

This routine also requires access to the cell topology information. This requires

the existence of RPUCLINF, described in the section on RPGENGCL. Also required is a

subroutine called RPUPNINF which returns periodic node pairs for cases where the

mesh has a symmetry plan. If no such plane exists then a dummy routine stub can

be used as long as NPNOD is zero.
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A.8 Partition assessment routine RPPARQAL

Syntax

SUBROUTINE RPPARQAL(PG,IPG,G,IG,JG,GP,NV,NP,CEDGES,AVECON,MAXCON,

+ AVENEI,MAXNEI,WORK,IWORK,INFO,IERR)

Description

This subroutine returns the edge cut cost of a partition, as does RPEDCUT, but also

gives information on the average and maximum connectivity of partitions. The

number of partitions that a given partition is connected to can be important in

estimating the total communication costs.

Parameters

PG(IPG) Integer array of pointers into graph G, where IPG is equal

to Nv + 1. (In).

G(IG,JG) Integer array describing the graph. (In).

GP(NV) Integer array giving the partition each vertex has been as-

signed to. (In).

NV Integer giving the number of vertices in the graph. (In).

NP Integer giving the number of partitions. (in).

WORK(IWORK) Integer workspace array, the size of which must be at least

2*(NP**2+NV)+1. (In).

INFO Integer value controlling amount of output. Should be zero

if data is just required via the arguments. (In).

CEDGES Integer giving the number of cut edges in the graph. (Out).

MAXCON Integer giving the maximum number of cut edges on any

single partition. (Out).

AVECON Real*4 giving the average number of cut edges on a single

partition. (Out).

MAXNEI Integer giving the maximum number of partitions about

any single partition. (Out).

AVENEI Real*4 giving the average number of partitions about a

single partition. (Out).

IERR Integer error 
ag. Zero for success. (Out).
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