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Abstract

We calculate the average multiplicity of jets in e
+
e
� annihilation as a

function of both the jet resolution parameter, ycut, and the thrust T . Our

result resums to all orders the leading and next-to-leading logarithms in ycut

and 1� T , and is exact up to second order in �S. This allows a comparison

between the number of jets found using jet algorithms and the ability to

distinguish di�erent jet topologies via thrust.
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1 Introduction

The study of jets and their physics in e+e� annihilation has added much to our under-

standing of perturbative QCD. Although hadrons are the �nal state particles seen in

such collisions, it is quarks and gluons whose dynamics are described by perturbative

QCD. The de�nition of jets, via infrared and collinear safe jet clustering algorithms,

bridges the gap between the theoretically accessible partons and the experimentally

observed hadrons.

The multiplicity of jets in e+e� annihilation events provides a good example of this.

By contrasting the jet multiplicity with the hadron multiplicity we may see some of the

advantages of using jets as our object of study. In particular, when predicting the number

of hadrons in the �nal state, one must invoke some non-perturbative hadronization model

at an unknown hadronization scaleQ0. This results in an arbitrary overall normalisation,

so that only the energy variation of the hadron multiplicity can be calculated within

perturbative QCD. In contrast, by examining the jet multiplicity, the hadronization

scale is replaced by the known jet resolution scale Q0 = Q
p
ycut, and no arbitrary

parameters are introduced. Therefore, the jet multiplicity is fully calculable within

perturbative QCD, including its absolute value. In fact, since the jet resolution scale

is �rmly within our control it can be varied at will, e�ectively studying the energy

dependence of the multiplicity in a single experiment.

For large values of the jet resolution scale, the jet multiplicity is reliably predicted by

�xed-order perturbation theory. However, the appearance of logarithms of ycut spoils the

perturbative expansion for �ner jet resolutions and these logarithms must be summed to

all orders. With the advent of the k? (or Durham) jet �nding algorithm[1], it is possible

to sum the leading and next-to-leading logarithms of ycut to all orders, making the jet

multiplicity also reliable for small resolution scales[2]. This is the jet algorithm that we

will use throughout this paper, and it de�nes jets according to the following iterative

procedure:

� For each pair of particles calculate a separation de�ned by,

yij = 2
min(E2

i ; E
2
j )

Q2
(1� cos �ij); (1)

where Ei and Ej are the particles' energies and �ij is the angle between their

momenta.

� For the pair of particles with the smallest separation, yij, combine their momenta,

pi and pj, together to form a pseudo-particle of momentum pij. In the E-scheme,

pij = pi + pj.

� Repeat the above two steps until all the separations of particles or pseudo-particles

are less than the jet resolution parameter ycut. The remaining particles and pseudo-

particles are then called jets.

This algorithm can be applied to form jets from either partons (for theoretical consider-

ations) or hadrons (for experimental analysis). The di�erence between performing the
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algorithm at the partonic and hadronic levels is expected to be suppressed by at least

one power of 1=Q [3].

The theoretical calculation and experimental analysis of event shapes have also con-

tributed greatly to our understanding of perturbative QCD. In particular, the thrust

and heavy jet mass of an event have been extensively studied[4] and show good agree-

ment with experiment[5]. It is interesting to calculate the multiplicity of jets in e+e�

annihilation, retaining the jet kinematics so that the multiplicity can be expressed for

speci�c values of one of these event shapes. In this paper we calculate the multiplicity

of jets in e+e� annihilation as a function of the thrust, summing all large logarithms to

next-to-leading logarithmic accuracy. This was done for the multiplicity of hadrons in

Ref. [6]. The thrust for an event is de�ned by,

T = max

8<:�ij~Pi � ~nj
�ij~Pij

9=; ; (2)

where ~n is a unit vector chosen to maximise the right-hand-side, and ~Pi are the three-

momenta of the �nal state partons or hadrons. Of course, our results can be easily

applied to other similar observables, such as the heavy jet mass.

The structure of the paper will be as follows. In section 2 we shall consider the

�xed-order contribution to the multiplicity up to O(�2
S). Then, in section 3, we will

resum large logarithms of � � 1� T and ycut to all orders in �S, and to next-to-leading

logarithmic accuracy, using the coherent branching formalism. To avoid double counting,

we will discuss the matching of this result to �xed order in section 4, and �nally, we

present numerical results in section 5.

2 Fixed Order

We begin by de�ning the quantity N(�; ycut) as the multiplicity of subjets resolved in

the k? algorithm at a scale ycut, in events with thrust greater than 1� � . It is generally

given by,

N(�; ycut) =
1X
n=2

n �n(�; ycut)

�tot
; (3)

where �n(�; ycut) is the cross section for events with thrust greater than 1�� and exactly
n jets, and �tot is the total cross section for the production of hadrons. We will require

this up to second order in the strong coupling constant, �S. De�ning �
(m)
n (�; ycut) to be

the O(�m
S ) contribution to �n(�; ycut), the multiplicity to O(�2

S) is given by,

N(�; ycut) =

2 (�0 + �
(1)
2 (�; ycut) + �

(2)
2 (�; ycut)) + 3 (�

(1)
3 (�; ycut) + �

(2)
3 (�; ycut)) + 4 �

(2)
4 (�; ycut)

�0 +
�S
�
�0 +

�
�S
�

�2
C�0

;

(4)
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where �0 is the Born cross-section and C is some number that we will not eventually

require. Truncating at O(�2
S), we have:

N(�; ycut) = 2

"
1�

�S

�
� C

�
�S

�

�2

+

�
1�

�S

�

�
1

�0
�
(1)
2 (�; ycut) +

1

�0
�
(2)
2 (�; ycut) +

�
�S

�

�2
#

+3

��
1�

�S

�

�
1

�0
�
(1)
3 (�; ycut) +

1

�0
�
(2)
3 (�; ycut)

�
+ 4

1

�0
�
(2)
4 (�; ycut): (5)

Since at O(�S) every event has either 2 or 3 jets and at O(�2
S) every event has 2, 3 or

4 jets, we can write,

�
(1)(�) = �

(1)
2 (�; ycut) + �

(1)
3 (�; ycut); (6)

�
(2)(�) = �

(2)
2 (�; ycut) + �

(2)
3 (�; ycut) + �

(2)
4 (�; ycut): (7)

This allows us to write the multiplicity in terms of more inclusive quantities. Further

simpli�cation is made by rewriting our expression in terms of the cross section for events

with thrust less than 1� � , ��(�), using,

�
(1)(�) + ��(1)(�) =

�
�S

�

�
�0; (8)

�
(2)(�) + ��(2)(�) =

�
�S

�

�2

C�0: (9)

This gives,

N(�; ycut) = 2

�
1�

�
1�

�S

�

�
1

�0
��(1)(�)�

1

�0
��(2)(�)

�
+

��
1�

�S

�

�
1

�0
�
(1)
3 (�; ycut) +

1

�0
�
(2)
3 (�; ycut)

�
+ 2

1

�0
�
(2)
4 (�; ycut)

= 2 (1� R(�)) +R3(�; ycut) + 2R4(�; ycut); (10)

where R(�) is the ratio of the cross section for events with thrust less than 1� � to the

total cross section, and Rn(�; ycut) is the ratio for events with n jets and thrust greater

than 1� � , evaluated to the appropriate order in �S, i.e.

R(�) �
1

�tot
��(�); Rn(�; ycut) �

1

�tot
�n(�; ycut): (11)

2.1 Zeroth Order

At zeroth order, O(�0
S), i.e. with no gluon emission, the cross section is given by the

production of a quark{antiquark pair, emitted back-to-back in the centre of mass frame.

The quark and antiquark will always be placed in separate jets, so the jet multiplicity

will be two, and the thrust axis will fall along their common axis, trivially giving a

thrust of one. Therefore we have,

N(�; ycut) = 2: (12)

3



2.2 First Order

We easily obtain the multiplicity to O(�S) by truncating Eq. (10), giving,

N(�; ycut) = 2 (1�R(�)) +R3(�; ycut): (13)

Since neither of these cross sections involve the singular region of thrust equal to 1, they

can be calculated in four dimensions. At this order, i.e. O(�S), the only contribution is

from the partonic process e+e� ! q�qg.

For R(�), the cross section for producing events with thrust greater than 1�� divided
by the total cross section to hadrons, one obtains,

R(�) =
CF�S

2�

(
2 log2 � + 3 log � +

5

2
�

�
2

3

� 6� log � � 4 log(1� �) log � � 6� � 3(1� 2�) log(1� 2�)

+ 4Li2

�
�

1� �

�
�

9

2
�
2 + 2 log2(1� �)

)
; (14)

where only the �rst line contributes as � ! 0.

Next we turn to R3(�; ycut), the cross section for producing three jets with thrust

greater than 1� � divided by the total cross section to hadrons. To this order,

R3(�; ycut) =
1

�0
�
(1)
3 (�; ycut): (15)

The contributing partonic process is still e+e� ! q�qg, but now we demand that the

parton separations be greater than ycut in order to maintain a three jet �nal state.

For ycut <
2�2

1��
we have,

R3(�; ycut) =
CF�S

2�

(Z 1�yjoin

1��
dx1

Z x1

1�x1=2
dx2

+

Z 1�ycut

1�yjoin

dx1

Z (1�x1)(2�x2)

1+ycut�x1

1�x1=2
dx2

9=; 2(x31 + x
3
2 + (2� x1 � x2)

3)

(1� x1)(1� x2)(x1 + x2 � 1)

= RD(ycut)�R(�); (16)

where,

yjoin �

q
ycut(8 + ycut)� ycut

4
; (17)

and RD(ycut) is the three{jet fraction in the k? algorithm at a scale ycut, given in Ref. [7].

For ycut >
2�2

1��
this becomes,

R3(�; ycut) =
CF�S

2�

Z 1�ycut

1��
dx1

Z (1�x1)(2�x2)

1+ycut�x1

1�x1=2
dx2

2(x31 + x
3
2 + (2� x1 � x2)

3)

(1� x1)(1� x2)(x1 + x2 � 1)

=
CF�S

2�

Z 1�ycut

1��
dx1

g(x1; ycut)

1� x1
; (18)

4



with

g(x1; ycut) =
2

x1
(2� 3x1(1� x1)) log

(1� x1)(1� ycut)

ycut � (1� x1)2
� 3(2� x1)

21� ycut � x1

1 + ycut � x1
: (19)

This integral has a closed analytic form, but does not give a very compact expression,

so we do not reproduce it here.

In order to match our resummed result to �xed order we must also extract the

logarithmic behaviour for �; ycut � 1. We obtain:

R3(�; ycut) =
CF�S

2�

(
2 log2 �

ycut
� 3 log �

ycut
+ log 64 ycut > 2� 2;

log2 1
ycut

� 2 log2 1
�
� 3 log �

ycut
+ log 64 + log2 2 ycut < 2� 2:

(20)

Note that these two solutions are continuous at the matching point, and that it can be

shifted, with logarithmic accuracy, to:

R3(�; ycut) =
CF�S

2�

(
2 log2 �

ycut
� 3 log �

ycut
+ log 64 ycut > �

2
;

log2 1
ycut

� 2 log2 1
�
� 3 log �

ycut
+ log 64 ycut < �

2
;

(21)

or:

R3(�; ycut) =
CF�S

2�

(
2 log2

�

ycut
� 3 log

�

ycut
� �(� 2 � ycut) log

2 �
2

ycut

)
: (22)

2.3 Second Order

Since we could make the �rst-order calculation in four dimensions, it is possible to

calculate the second-order terms using a standard Monte Carlo NLO program like

EVENT2[8].

Now Eq. (10) requires no modi�cation and the multiplicity is,

N(�; ycut) = 2 (1�R(�)) +R3(�; ycut) + 2R4(�; ycut); (23)

where R(�) and R3(�; ycut) should now be evaluated to NLO, and R4(�; ycut) to leading

order.

Notice that at this order we can study the dependence on the renormalization scale,

since we have

R(�) =
�S(�)

2�
A(�) +

 
�S(�)

2�

!2  
B(�)� 3

2
CFA(�) +

b

2
A(�) log

�
2

Q2

!
; (24)

with b = 11
3
CA � 2

3
Nf , and likewise for R3(�; ycut).

3 All-Orders Summation of Large Logarithms

In this section we present the all-orders resummation of all leading (�n
S log

m
� log2n�m ycut)

and next-to-leading (�n
S log

m
� log2n�m�1 ycut and �

n
S log

m�1
� log2n�m ycut) logarithms,

which appear for small ycut and/or � . These logarithms can be summed to all orders

using the coherent branching formalism.
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To next-to-leading logarithmic accuracy, we have,

N(�; ycut) = 2Fq(�Q
2
; Q

2)Nq(�Q
2
; Q

2; ycutQ
2): (25)

Here, Fq(k
2
; Q

2) is the probability that a quark formed at scale Q has a mass below k,

and logFq has been calculated in Ref. [4] to next-to-leading logarithmic accuracy. Here

we only require the expression for Fq itself to next-to-leading logarithmic accuracy, which

is,

Fq(k
2
; Q

2) = exp

(
CF log

 
Q

2

k2

!
f1

 
�S(Q)

4�
b log

 
Q

2

k2

!!
+ 3

2
CFf2

 
�S(Q)

4�
b log

 
Q

2

k2

!!)
;

(26)

where,

f1(�) =
2

b�

�
(1� 2�) log

�
1

1� 2�

�
� 2(1� �) log

�
1

1� �

��
; (27)

f2(�) =
2

b
log

�
1

1� �

�
: (28)

Also, Nq(k
2
; Q

2;Q2
0) is the contribution to the multiplicity in a quark jet formed at a

scale Q and resolved at a scale Q0, from jet masses below k.

In order to derive Nq(k
2
; Q

2;Q2
0), let us �rst consider the quantity n

a
q(k

2
; Q

2;Q2
0) dk

2

which is the multiplicity of partons of species a in the jet, where the squared mass of

the jet lies between k
2 and k

2 + dk
2. Clearly,

Nq(k
2
; Q

2;Q2
0) =

X
a=fq;gg

Z k2

0
dq

2
n
a
q(q

2
; Q

2;Q2
0): (29)

This obeys an exclusive evolution equation given by,

n
a
q(k

2
; Q

2;Q2
0) = �(Q2) �qa �(k

2)�(Q�Q0)

+�(Q�Q0)

Z Q2

0

dq
2

q2

�(Q2)

�(q2)

Z 1

0
dz

�S(z(1� z)q)

2�
Pgq(z)

Z
1

0
dk

2
q

Z
1

0
dk

2
g�

n
a
g(k

2
g ; z

2
q
2)fq(k

2
q ; (1� z)2q2)�(zq �Q0)

+naq(k
2
q ; (1� z)2q2;Q2

0)fg(k
2
g ; z

2
q
2)�((1� z)q �Q0)

�
�

 
k
2 � z(1� z)q2 �

k
2
g

z
�

k
2
q

1� z

!
: (30)

This has a simple physical interpretation. Firstly, it is possible that the quark does

not emit any radiation. Then only the original quark will contribute to the multiplicity

if it is su�ciently hard (i.e. Q > Q0). Clearly the resulting jet will be massless. This

gives rise to the �rst term. Alternatively, the quark may survive until it reaches a

scale q before emitting a gluon of mass kg and light-cone momentum fraction z (and
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leaving the quark with mass kq and light-cone momentum fraction 1 � z). Then the

resolvable partons originating from both quark and gluon must be counted. The function

fq(k
2
; Q

2) dk2 in the above is the probability that a quark formed at a scale Q has a

squared mass between k
2 and k

2+dk
2, i.e. it is the derivative of Fq(k

2
; Q

2) with respect

to k2. � is the Sudakov form factor,

log�(Q2) = �
Z Q2

0

dq
2

q2

Z 1

0
dzPgq(z)

�S(z(1� z)q)

2�
: (31)

These equations have only formal meaning, because the integrals are divergent and

the form factor is zero. To make them physically meaningful, they can be calculated

explicitly by imposing an infrared cuto� z(1 � z)q > �, or by working in d = 4 � 2�

dimensions. They are however infrared �nite, so the limit �! 0 can be taken smoothly.

Thus we always imply such a procedure.

Di�erentiating with respect to logQ2 yields an inclusive evolution equation:

Q
2 d

dQ2
n
a
q(k

2
; Q

2;Q2
0) =

Z 1

0
dz

�S(z(1� z)Q)

2�
Pgq(z)

�Z
1

0
dk

2
q

Z
1

0
dk

2
g�

n
a
g(k

2
g; z

2
Q

2;Q2
0)fq(k

2
q ; (1� z)2Q2)�(z2Q2 �Q

2
0)

+naq(k
2
q ; (1� z)2Q2;Q2

0)fg(k
2
g; z

2
Q

2)�((1� z)2Q2 �Q
2
0)
�

�

�
k
2 � z(1� z)Q2 � k2g

z
� k2q

1�z

�
� n

a
q(k

2
; Q

2;Q2
0)�(Q�Q0)

�
: (32)

The mass of the gluon will not signi�cantly contribute to the mass of the jet so to next-

to-leading logarithmic accuracy it can be omitted from the �-function. This �-function

and the normalisation conditions,Z
1

0
dk

2
fq(k

2
; Q

2) = 1; (33)Z
1

0
dk

2
n
a
q(k

2
; Q

2;Q2
0) = N a

q (Q
2;Q2

0); (34)

can then be used to integrate out k2q and k
2
g . Here N a

q (Q
2;Q2

0) is the multiplicity of

partons of species a inside a quark jet, where the quark is emitted at a scale Q and the

partons are resolved at a scale Q0 and no demand is made on the mass of the jet. This

has been derived in Ref. [2],

N q
q (Q

2;Q2
0) = N�(Q2;Q2

0) +
8

3

CF

CA

Nf

b

fN (Q2;Q2
0); (35)

N g
q (Q

2;Q2
0) = N+(Q2;Q2

0)�
8

3

CF

CA

Nf

b

fN (Q2;Q2
0); (36)

where,

N+(Q2;Q2
0) = z1

�
z0

z1

�B
[IB+1(z1)KB(z0) +KB+1(z1)IB(z0)] ;

N�(Q2;Q2
0) =

�
z0

z1

� 8
3

CF
CA

Nf

b

fN (Q2;Q2
0) =

�
z0

z1

�B
[IB(z1)KB(z0)�KB(z1)IB(z0)] : (37)
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and

B =
1

b

�
11

3
CA +

2Nf

3
�
4CFNf

3CA

�
: (38)

I� and K� are the modi�ed Bessel functions and we have used the notation of Ref. [2]

where,

z
2
1 =

32�CA

b2�S(Q)
; z

2
0 =

32�CA

b2�S(Q0)
: (39)

Removal of these integrations gives,

Q
2 d

dQ2
n
a
q(k

2
; Q

2;Q2
0) =

Z 1

0
dz

�S(z(1� z)Q)

2�
Pgq(z)�

N a
g (z

2
Q

2;Q2
0)fq((1� z)(k2 � z(1� z)Q2); (1� z)2q2)�(zQ�Q0)�(k

2 � z(1� z)Q2)

+naq((1� z)(k2 � z(1� z)Q2); (1� z)2Q2;Q2
0)�((1� z)Q�Q0)�(k

2 � z(1� z)Q2)

�naq(k2; Q2;Q2
0)�(Q�Q0)

�
: (40)

The above evolution is dominated by the emission of soft gluons (z � 0), so to next-to-

leading logarithmic accuracy z can be replaced by zero in any smooth functions. Since

neither fq nor n
a
q are smooth functions (they contain 1=k

2-like terms) such a replacement

cannot be made in their arguments. However, their integrated distributions,

Fq(k
2
; Q

2) =

Z k2

0
dq

2
fq(q

2
; Q

2); (41)

N
a
q (k

2
; Q

2;Q2
0) =

Z k2

0
dq

2
n
a
q(q

2
; Q

2;Q2
0); (42)

which are the functions we are really interested in, are smooth and obey the same

evolution equations as fq and n
a
g but with di�erent boundary conditions.

Integrating Eq. (40) over k2 and replacing z with zero where appropriate gives to

the required accuracy,

Q
2 d

dQ2
N

a
q (k

2
; Q

2;Q2
0) =

Z 1

0
dz

�S(zQ)

2�
Pgq(z)�

N a
g (z

2
Q

2;Q2
0)Fq(k

2 � zQ
2
; Q

2)�(zQ�Q0)�(k
2 � zQ

2)

+Na
q (k

2 � zQ
2
; Q

2;Q2
0)�(k

2 � zQ
2)�(Q�Q0)

�Na
q (k

2
; Q

2;Q2
0)�(Q�Q0)

�
: (43)

Furthermore, k2 � zQ
2 can be replaced with k

2 in Fq and N
a
q to next-to-leading loga-

rithmic accuracy, giving the �nal evolution equation in integral form,

N
a
q (k

2
; Q

2;Q2
0) = �qa

+

Z Q2

0

dq
2

q2

Z 1

0
dz

�S(zq)

2�
Pgq(z)Fq(k

2
; q

2)N a
g (z

2
q
2;Q2

0)�(k
2 � zq

2)�(zq �Q0)

�
Z Q2

k2

dq
2

q2

Z 1

k2=q2
dz

�S(zq)

2�
Pgq(z)N

a
q (k

2
; Q

2;Q2
0): (44)
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This has a formal solution:

N
a
q (k

2
; Q

2;Q2
0) = exp

(
�
Z Q2

k2

dq
2

q2

Z 1

k2=q2
dz

�S(zq)

2�
Pgq(z)

)n
N a

q (k
2;Q2

0)

+

Z Q2

0

dq
2

q2
exp

"Z q2

k2

d ~q2

~q2

Z 1

k2= ~q2
d�z

�S(�z ~q)

�
Pgq(�z)

#
Fq(k

2
; q

2)

�
Z 1

0
dz

�S(zq)

2�
Pgq(z)N a

g (z
2
q
2;Q2

0)�(k
2 � zq

2)�(zq �Q0)
o
: (45)

The integrals are considerably simpli�ed by inserting the unintegrated expression for Fq [4],

Fq(k
2
; Q

2) = exp

(
�
Z Q2

k2

dq
2

q2

Z 1

k2=q2
dz

�S(zq)

2�
Pgq(z)

)
; (46)

so that the expression for Na
q becomes,

N
a
q (k

2
; Q

2;Q2
0) = Fq(k

2
; Q

2)
n
N a

q (k
2;Q2

0) + Caq (k2; Q2;Q2
0)
o
; (47)

where,

Caq (k2; Q2;Q2
0) =

Z Q2

k2

dq
2

q2

Z 1

0
dz

�S(zq)

2�
Pgq(z)N a

g (z
2
q
2;Q2

0)�(k
2� zq

2)�(zq�Q0): (48)

The remaining integral can be done by making a change of variable from q
2 to

~q2 = z
2
q
2. To next-to-leading logarithmic accuracy,

Caq (k2; Q2;Q2
0) =

Z k4=Q2

0

d ~q2

~q2

Z ~q=k

~q=Q
dz

�S( ~q)

2�
Pgq(z)N a

g ( ~q
2;Q2

0)�( ~q �Q0)

+

Z k2

k4=Q2

d ~q2

~q2

Z ~q=k

~q2=Q2
dz

�S( ~q)

2�
Pgq(z)N a

g ( ~q
2;Q2

0)�( ~q �Q0)

= 2CF

Z k4=Q2

0

d ~q2

~q2
�S( ~q)

2�
N a

g ( ~q
2;Q2

0) log

�
Q

k

�
�( ~q �Q0)

+ 2CF

Z k2

k4=Q2

d ~q2

~q2
�S( ~q)

2�
N a

g ( ~q
2;Q2

0) log

 
k

~q

!
�( ~q �Q0): (49)

Making the �-functions more explicit and rearranging gives,

Caq (k2; Q2;Q2
0) = �(k2 �QQ0)2CF

Z k4=Q2

Q2
0

d ~q2

~q2
�S( ~q)

2�
N a

g ( ~q
2;Q2

0) log

�
Q

k

�

+ �(k2 �Q
2
0)2CF

Z k2

Q2
0

d ~q2

~q2
�S( ~q)

2�
N a

g ( ~q
2;Q2

0) log

 
k

~q

!

� �(k2 �QQ0)2CF

Z k4=Q2

Q2
0

d ~q2

~q2
�S( ~q)

2�
N a

g ( ~q
2;Q2

0) log

 
k

~q

!
= CF

n
I
a(k2;Q2

0)� I
a(k4=Q2;Q2

0)
o
; (50)
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where

I
a(k2;Q2

0) = �(k2 �Q
2
0)

Z k2

Q2
0

dq
2

q2

�S(q)

2�
N a

g (q
2;Q2

0) log

 
k
2

q2

!
: (51)

This integral is most easily done using the change of variables, Eq. (39), with the

obvious addition,

z
2
k =

32�CA

b2�S(k)
; (52)

so that it becomes,

I
a(k2; Q2

0) = �(zk � z0)
1

2CA

Z zk

z0

dz

z
N a

g (z; z0)(z
2
k � z

2): (53)

Using the results,Z zk

z0

dz

z
N+(z; z0)(z

2
k � z

2) = 2
�
N+(zk; z0)� 1

�
+ 4BfN (zk; z0); (54)Z zk

z0

dz

z

fN (z; z0)(z
2
k � z

2) = 2fN (zk; z0)� z
2
k=z

2
0 + 1; (55)

we obtain,

I
g(k2; Q2

0) = �(zk � z0)
1

CA

h
N+(zk; z0)� 1 + 2BfN (zk; z0)

�
C

2

�
2fN (zk; z0)� z

2
k=z

2
0 + 1

��
; (56)

I
q(k2; Q2

0) = �(zk � z0)
C

2CF

�
2fN (zk; z0)� z

2
k=z

2
0 + 1

�
; (57)

where the parameters B and C are given by Eq. (38) and

C =
8

3

Nf

b

CF

CA

: (58)

However, the quantity of interest is the multiplicity of all jets, independently of their


avour, i.e. Nq = N
q
q +N

g
q . Therefore we �nally have,

Nq(k
2
; Q

2;Q2
0) = Fq(k

2
; Q

2)
n
Nq(k

2;Q2
0) + CF

�
I(k2; Q2

0)� I(k4=Q2
; Q

2
0)
�o

; (59)

with,

I(k2; Q2
0) = �(zk � z0)

1
CA

h
N+(zk; z0)� 1 + 2BfN (zk; z0)

+(B � 1)
�
2fN (zk; z0)� z

2
k=z

2
0 + 1

�i
: (60)

The above equation conforms with na��ve expectations. One might expect that the

number of jets of mass below k
2 resulting from a quark created at a scale Q2 would be

simply the probability of �nding a jet of mass below k
2 multiplied by the number of jets

within. Indeed, this is the �rst term of our expression for Nq, and the na��ve expectation

requires only the addition of next-to-leading logarithmic corrections.

10



For completeness, we also present the result for Ng(k
2
; Q

2
; Q

2
0), the multiplicity of

partons found within a gluon of squared mass below k
2. The derivation closely fol-

lows that of the quark case above and will not be reproduced here. For the tagged

multiplicities we have,

N
a
g (k

2
; Q

2;Q2
0) = Fg(k

2
; Q

2)
n
N a

g (k
2;Q2

0) + CA

�
I
a(k2; Q2

0)� I
a(k4=Q2

; Q
2
0)
�o

; (61)

Here Fg(k
2
; Q

2) is the integrated gluon jet mass distribution[4], and takes the same form

as Fq, Eq. (26), but with the coe�cients of f1 and f2 now being CA and b=2 respectively.

Also N a
g (k

2;Q2
0) is the multiplicity of parton species a found within the gluon[2].

Notice that the function Ia is identical to that in the quark case. This is because the

only contribution to these functions is from the singular parts of the splitting kernels in

the evolution equation. The appropriate kernel for the quark is Pgq(z) = 2CF=z +O(1)
and for the gluon is Pgg(z) = 2CA=z + O(1) (the other kernels Pqq and Pqg have no

singular parts and cannot contribute). The only di�erence between the two cases is the

colour factor, CA or CF , which is re
ected in the coe�cient of Ia.

Clearly, the untagged multiplicity is given by,

Ng(k
2
; Q

2;Q2
0) = Fg(k

2
; Q

2)
n
Ng(k

2;Q2
0) + CA

�
I(k2; Q2

0)� I(k4=Q2
; Q

2
0)
�o

: (62)

4 Matching to Fixed Order

Of course, the resummed result also contains part of the �xed-order contribution, which

has already been included. It must be matched to �xed order so that we do not over-

count. This is done by expanding the resummed result to next-to-leading order in �S,

and subtracting the o�ending piece from our result. Expanding each term individually,

we obtain:

Fq(e
�L
Q

2
; Q

2) � 1�
�S

2�

�
CFL

2 � 3
2
CFL

�
+

�
�S

2�

�2 �
1
2
C

2
FL

4 � [1
2
bCF + 3

2
C

2
F ]L

3 + [3
8
bCF + 9

8
C

2
F ]L

2
�
; (63)

where �S = �S(Q),

Nq(k
2; e�lk2) � 1 +

�S

2�

�
1
2
CF l

2 � 3
2
CF l

�
+

�
�S

2�

�2
 

1
24
CFCAl

4 � 1
12
CF [3CA � b]l3

+
2(CA � CF )CFTRNf (8CFTRNf � 2CATRNf � C

2
A)

9C3
A

l
2

!
; (64)

where �S = �S(k), and �nally,

I(k2; e�lk2) �
�S

2�

�
1
2
l
2
�

+

�
�S

2�

�2
 

1
24
CAl

4 + 1
12
bl

3 �
2(CA � CF )TRNf(11C

2
A � 4CFTRNf )

9C3
A

l
2

!
; (65)

where again �S = �S(k).
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Note that, in the above, the coe�cients of �2
SL

2 and �
2
Sl

2 are not believed to be

correct, since they are only next-to-next-to-leading logarithms. Nevertheless, they must

be considered when performing the matching since the �xed-order result is exact to

order �2
S. It only remains to write the various �S values in terms of �S(Q):

�S(k)

2�
�

�S

2�
+ 1

2
b

�
�S

2�

�2

log
Q

2

k2
; (66)

�S(k
2
=Q)

2�
�

�S

2�
+ b

�
�S

2�

�2

log
Q

2

k2
: (67)

The result of this expansion is most easily written in the form of Eqs. (10) and (24),

with the additional notation:

eR(�; ycut) = R3(�; ycut) + 2R4(�; ycut)

=
�S(Q)

2�
eA(�; ycut) +

 
�S(Q)

2�

!2 � eB(�; ycut)� 3
2
CF

eA(�; ycut)� : (68)

Then,

A(e�L) = 2CFL
2 � 3CFL; (69)

B(e�L) = �2C2
FL

4 + CF (6CF + b)L3 � CF (
3
4
b+ 3

2
CF )L

2 � 9
2
C

2
FL; (70)eA(e�L; e�l�L) = (2CF l

2 � 3CF l)�(l)� CF (l � L)2�(l � L); (71)

eB(e�L; e�l�L) =

"
(1
2
bL� (2CFL

2 � 3CFL) +
3
2
CF )(2CF l

2 � 3CF l)

+1
6
CFCAl

4 + (1
3
b� 1

2
CA)CF l

3

�
8(CA � CF )CFTRNf (6C

2
A + CATRNf � 6CFTRNf )l

2

9C3
A

#
�(l)

�
"
(bL� (2CFL

2 � 3CFL) +
3
2
CF )CF (l � L)2

+ 1
12
CFCA(l � L)4 + 1

6
bCF (l � L)3

�
4(CA � CF )CFTRNf (11C

2
A � 4CFTRNf)(l � L)2

9C3
A

#
�(l � L):

(72)

These have been checked by solving the evolution equation iteratively, verifying that the

claimed solution does actually satisfy the evolution equation, at least to second order

in �S.

5 Numerical Results

Combining the �xed-order and resummed results, we obtain the contribution to the

mean jet multiplicity from events with thrust between T and T + dT , n(1� T; ycut)dT .
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Figure 1: The mean number of jets in e
+
e
� annihilation as a function of thrust, using

the O(�2
S) result alone (dashed) and matched with the resummed result (solid).

To obtain the mean jet multiplicity as a function of thrust we normalise this to the

number of events in the same range, r(1� T )dT , to give

hNi(T ) =
n(1� T; ycut)

r(1� T )
; (73)

shown in Fig. 1 for a representative value of ycut = 10�3. We �x � =
p
s = mZ and

�S(mZ) = 0:120. We see that for 1�T � ycut, the resummation is extremely important.

For 1 � T � ycut, the physical threshold, the NLO corrections are negative and even

after resumming large logarithms to all orders, give an unphysical result, with the mean

number of jets falling below 2. This region is anyway outside perturbative control, since

it corresponds to k2 = s(1� T ) � �
p
s.

In Fig. 2 we show the result for �xed thrust T = 0:95 as a function of ycut. The

resummation is again seen to be important for ycut � 1� T .

The thrust can be used to separate two-jet from three-jet events. In Fig. 3 we show

the multiplicity of jets in each sample. These are de�ned by

hNi(T > t) =
N(1� t; ycut)

R(1� t)
; (74)

and

hNi(T < t) =
N(ycut)�N(1� t; ycut)

1� R(1� t)
; (75)

respectively. They can be directly compared with the results of Ref. [9], where the

separation into two- and three-jet events was made using the same jet algorithm as

the one in which the jets were counted | the k? algorithm. Note that for small ycut
the O(�2

S) results appear to be unphysical with the multiplicity in two-jet events being

13



Figure 2: The mean number of jets in e
+
e
� annihilation as a function of ycut for �xed

thrust, using the O(�2
S) result alone (dashed) and matched with the resummed result

(solid).

Figure 3: The mean number of jets in e
+
e
� annihilation as a function of ycut for events

with thrust above and below a �xed cut, using the O(�2
S) result alone (dashed) and

matched with the resummed result (solid).
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Figure 4: The mean number of jets in e
+
e
� annihilation as a function of ycut for �xed

thrust, using the resummed result matched with the O(�S) (dashed) and O(�2
S) (solid)

results, for renormalization scale choices � =
p
s=2,

p
s and 2

p
s.

higher than for three-jet events. This is somewhat misleading as they are e�ectively

calculated to di�erent orders owing to the di�erent denominators in Eqs. (74) and (75),

hNi(T > t) �
2 +O(�S) +O(�2

S)

1 +O(�S) +O(�2
S)
� 2 +O(�S) +O(�2

S); (76)

hNi(T < t) �
O(�S) +O(�2

S)

O(�S) +O(�2
S)
� 3 +O(�S): (77)

The all-orders results are physically behaved, because the �rst uncalculated term in

either result is suppressed by at least two orders of �S and two powers of log(ycut).

One might na��vely expect that the number of jets in a three-jet event be larger than

in a two-jet event by a factor (2CF + CA)=(2CF ) � 2, which is certainly not the case

in Fig. 3 where for small ycut it is around 1.3. This is comparable to the ratio found in

the k? algorithm of around 1.4 and, as discussed in Ref. [9] is because the form factor

suppression for the gluon jet is always stronger than for the quark jets.

Finally, in Fig. 4 we show the variation of the result at �xed thrust under changes

of renormalization scale between
p
s=2 and 2

p
s. We see that the O(�2

S) result matched

with the all-orders resummation is considerably more stable than the O(�S) plus re-

summed result.
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