Comparison of JXTA and WSRF
Asif Akram

CCLRC e-Science Centre

CCLRC Daresbury Laboratory

Warrington, UK, WA4 4AD
+44 1925 603790

a.akram@dl.ac.uk

Rob Allan

CCLRC e-Science Centre

CCLRC Daresbury Laboratory

Warrington, UK, WA4 4AD
+44 1925 603207

r.j.allan@dl.ac.uk

ABSTRACT
Virtual Collaboration among geographically dispersed resources, groups or organizational units requires support from their environment. The establishment, management and exploitation of dynamic, cross-organizational sharing relationship require new technology, which is independent of any proprietary technology and have backing of mainstream development and research institutes. This paper critically compares two Peer-to-Peer (P2P) protocols i.e. JXTA and Web Services Resource Framework (WSRF) with respect to their effectiveness for Virtual Collaboration. The comparison is based on our experiences of developing a prototype for Virtual Organization. This paper is result of out going research to build community for efficient resource discovery.

Keywords
JXTA, P-2-P, Virtual Collaboration, Virtual Organization, WSRF.

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

MGC 2006, November 27, 2006, Melbourne, Australia.

Copyright 2005 ACM 1-58113-000-0/00/0004…$5.00.

Software components or resources residing on different devices at the edges of Internet are an important abstraction for building distributed systems. Software components -- small, autonomous, self-describing programs - are an excellent building block for complex open-ended networked applications. P2P networks have a lot of advantages compared to the client-server architecture like reliability, flexibility, impact, and actuality. Recent trend of P2P file sharing systems like Gnutella [3], Freenet [4], Kazaa [5] and many more has attracted the new concept of distributed applications. P2P applications offer all sort of services and share huge amount of diverse type data, residing on different platforms. These services and data can be effectively and efficiently consumed if they can be structured in one form or another. Development of distributed applications requires rely on locating suitable resources within a Peer-to-Peer (P2P) system, which is a computationally intensive process, with no guarantee of quality and suitability of the discovered resources. An alternative approach is to categories peers based on the services they provide – leading to the interaction of Peers with common goals to form Societies and Communities.

Emerging distributed computing paradigms, such as Grid computing, comprise of dynamic and distributed resources, which can be organized as a “Virtual Organizations”. The suitable resource discovery plays a significant role in monitoring and managing such organizations. A resource discovery in large distributed environment i.e. Grid, is a time-consuming process and imposes a severe overhead on the underlying network. The number of messages is likely to increase exponentially as the numbers of resources and services grow. Restricting interactions to be between a set of peers is a key factor to scale the resource discovery problem.

The concept of communities is similar to interactions between different departments at a University. For instance, a lecturer can be a member of different faculties e.g. a mathematics lecturer teaching calculus to computer science students. A similar problem in Grid Computing is what Davis and Smith refer to as the “connection problem” [1], where peers need to find other suitable peers to co-operate with, assist, or interact with. “Focused Addressing” [2] is one solution to the connection problem where requests are sent to particular subset of peers, believed to assist the requesting peer.

Individual Peers, although selfish, are expected to interact with each other in some way to improve their own effectiveness. Co-operation of one form or another therefore becomes essential. Peers providing different services may be grouped together based on various attributes such as type of services, resources owned, target domains, or scope of operation. Each VO has one Community Coordinator (CC) [6] with dual responsibility of not only managing the member peers [7] but also keeping track of other VO’s. In such virtual collaborating environment, members propagate and share information in a decentralized, self-organizing and open manner. Data is not owned by any particular member or server and is passed around, flowing freely towards the end subscribers without centralized control or management. The community as a whole ensures the protection and persistency of data through its unique ability to adapt, resist and protect data by scattering the multiple copies within the Community boundary. Making each member as interchangeable as possible creates reliability and resilience.
Rest of the paper discusses two different technologies used while developing the prototype for Virtual Communities [6]. The initial prototype was based on JXTA [8], but later we migrated to Web Service [9] and different WS standards particularly Web Services Resource Framework (WSRF) [10]. Section 2 discusses the JXTA and its limitations. The Section 3 talks about the significance of different WS standards and their significance in the community formation.
2. JXTA
The initial selection of the JXTA framework for the simulation was to take advantages of built in features provided by the JXTA. The JXTA technology is a set of open protocols that allow any connected device on the network to communicate and collaborate in a P2P manner. The JXTA network consists of a series of interconnected nodes, or peers. Peers can self-organize into Peer Groups, which provide a common set of services. Project JXTA define a thin and generic network layer usable by wide variety of P2P applications.

JXTA is made up of three distinct layers i.e. the platform, services and applications. The platform contains core functionality used by services to provide access to the JXTA protocols. Finally, applications are developed that use these services to access the JXTA network and utilities. JXTA uses a new concept in peer-to-peer communication and discovery with advertisements, which are XML documents that describe services and information available on the JXTA network.
JXTA has the concept of Peers and Peer Groups which match to our vision of peers and communities, which made the JXTA best choice for implementing the prototype. Secondly JXTA is platform independent and peers can be different hardware nodes connected to network sharing different services and resources.
2.1 JXTA Protocols
JXTA specification defines a set of six protocols that have been specifically designed for ad hoc, pervasive, and multi-hop peer-to-peer (P2P) network computing. Using the JXTA protocols, peers can cooperate to form self-organized and self-configured peer groups independently of their positions in the network (edges, firewalls), and without the need of a centralized management infrastructure [6].

2.1.1 Peer Discovery Protocol

Peer Discovery Protocol allows a peer to discover other peer advertisements (peer, group, service, or pipe). The discovery protocol is the searching mechanism used to locate information. The protocol can find peers, peer groups, and all other published advertisements. The advertisements are mapped to peers, groups, and other objects, such as pipes.

2.1.2 Peer Resolver Protocol

Peer Resolver Protocol a peer to send a search query to another peer. The resolver protocol is a basic communications protocol that follows a request/response format. To use the protocol, you supply a peer to query and a request message containing XML that would be understood by the targeted peer. The result is a response message.

2.1.3 Peer Information Protocol

Once a peer is located, its capabilities and status may be queried through Peer Information Protocol. Peer Information Protocol provides a set of messages to obtain a peer status information. PIP is an optional JXTA protocol. Peers are not required to respond to PIP requests.

2.1.4 Pipe Binding Protocol

The Pipe Binding Protocol is used by applications and services in order to communicate with other peers. A pipe is a virtual channel between two endpoints described in a Pipe Advertisement. There are two ends of a Pipe: the Input Pipe (receiving end) and the Output Pipe (sending end).

2.1.5 Rendezvous Protocol

The Rendezvous Protocol is used for propagation of messages within a peer group. The Rendezvous Protocol provides mechanisms which enable propagation of messages to be performed in a controlled way. Each Rendezvous Peer cooperates with other Rendezvous Peers and with client peers to propagate messages amongst the peers of a peer group. Rendezvous Peers work together to form a PeerView. The PeerView is a list of the peers which are currently acting as Rendezvous Peers. The PeerView is structured such that Rendezvous Peers are able to direct messages within the peer group in a consistent way without the need for centralized coordination.

2.1.6 Peer Endpoint Protocol

Peer Endpoint Protocol is used to create routes to route messages to another peer. The protocol uses gateways between peers to create a path that consists of one or more of the pipe protocols suitable for creating a pipe. The pipe binding protocol uses the list of peers to create the routes between peers.

2.2 Advantages of JXTA
JXTA framework has many advantages as compared to other existing P-2-P tools. These advantages helped us to speed up the initial prototype development. The main advantages of JXTA are listed below:
2.2.1 Abstraction

 JXTA provides a far more abstract language for peer communication than other protocols, enabling a wider variety of services, devices, and network transports to be used in P2P networks.
2.2.2 XML based Messaging

The employment of an XML for messaging provides a standard based format for structured data that is well understood, well supported, and can be easily adapted for a variety of transports.
2.2.3 Bootstrapping

Every peer and peer group automatically joins the NetPeerGroup or WorldPeerGroup once it boots in the JXTA network. This default peer group is crucial for the bootstrapping of a new peer or group, as it supports a new peer to discover enough network resources to sustain itself.
2.2.4 Discovery
The JXTA framework provides built in support for searching other peers, peer groups or other services. The search can be generic using wild cards or can be based on the ID, name or description. The application does not need to worry about the details of how this query operates, because the JXTA platform handles it. It may query a central server (like Napster), or it may query different groups in a decentralized fashion (like Gnutella). Either way, the application developers has discovery support at his disposal from the JXTA without any extra effort.
2.2.5 Query
The JXTA Search defines a Query Routing Protocol (QRP). This protocol specification fully specifies QRP's message types, message formats, and message routing rules that must be supported by a JXTA Search peer. Peers or peer groups can construct different queries through provided classes and propagate them across the whole network.
2.2.6 Routing
JXTA also provides firewall routing capabilities. When a JXTA peer joins the network from behind a firewall or a NAT router, it can find another peer on the network, which can perform a routing service for it to bypass the firewall. Applications do not need to be aware for this firewall traversal, they simply connect to the relay peer directly and the JXTA platform takes care of it.
2.2.7 Scoping
Services are always associated with a group. Access to these services is only for members, which allows the scoping of services within the group boundary. The services supported by the group are listed in the group advertisement.
2.2.8 Dependency
The JXTA framework has minimum dependency on other open source projects, which makes it possible to run as standalone environment. It is possible to combines other projects like security, single sign on etc. with JXTA. This mix and match can open unlimited options for various types of services.
2.2.9 Advertisement
Every peer, peer group and service has the corresponding XML based advertisement. The discovery and query protocols are based on these advertisements. These advertisements are quick solution only for generic discovery which are mostly enough for new joined resource to survive in the JXTA network.
2.3 Limitations of JXTA
During the extension of our prototype we discovered lot of limitations of JXTA, which forced us to change our architecture completely. The purpose was to use standard protocols which have backing of industry instead of relying one set of protocols which is in the process of development and still has to cover long way to achieve industrial backing. Limitations faced while implementing the JXTA based simulation are following:

2.3.1 Complexity

Programming in JXTA is not straightforward. The addition of different protocols in JXTA brings more complexities in the proper development, which makes it hard to encompass all relevant aspects. To implement the custom service supported by any peer requires Module Class Advertisement, Module Specification Advertisement and Module Implementation Advertisement along with the service and the listener class. Communication between peers is through the notion of ‘Pipes’ and pipes can be of different types to make things more complicated.
2.3.2 API Stability

In less than two years time from mid 2003 to mid 2005 there are 10 major releases, and most of time software written in one API is not compatible with the new release. Always changing JXTA API [8] makes implementation of large project impossible. The optional projects available to download to build custom services are far from being considered for any real application.
2.3.3 Compatibility

JXTA platform implementation is available for Java and C/C++ only; although on the website declares JXTA bindings for PERL, Python, Smalltalk and Ruby but no real work has been done [8]. Limitations of JXTA bindings restrict simulation to Java Peers or C/C++ Peers. The features supported by different JXTA implementations vary and bring severe issues of compatibility.
2.3.4 JXTA Bootstrapping

Bootstrapping the JXTA platform loads a large class library, which may involve access to the local disk, network file system (NFS) or even the Internet. Bootstrapping is very costly process with respect to memory and even takes too much time for initial startup.

2.3.5 JXTA Discovery

The JXTA Discovery protocol is not reliable, it works fine as long different Peers are on same network but for different subnet, discovery is not reliable. Discovery mechanism uses cache to optimize discovery process which raises many other issues of stale and outdated information. The discovery mechanism supported by the JXTA framework relies heavily on the ID, name or description of the peer or peer group. Although it is possible to search for peers or peer groups providing specific services but this involves prior knowledge of different advertisements like Module Class Advertisement, Module Specification Advertisement or Module Implementation Advertisement.
2.3.6 IP Encapsulation

JXTA encapsulates IP address of Peers, PeerGroups to achieve location transparency. Encapsulation of IP address of any Peer/Node into Pipe ID and Peer ID makes it impossible for non JXTA based resource to interact directly with our simulation. Indirect means requires lot of extra efforts based on type of resource and programming language.

2.3.7 Service Interface

Services provided by Peers or PeerGroups in JXTA lacks any standard interface, indicating their capabilities and usage information. Due to absence of interfaces for JXTA based service/s; others peers can only consume service if they have before hand knowledge of service usage.

2.3.8 Service Invocation

The JXTA framework does not attempt to address how discovered services (other than the core services that implement the JXTA protocols) can be invoked. Developer has to mix other specifications such as WSDL with JXTA framework, which is error prone.
2.3.9 Limited Advertisement

JXTA advertisements provide limited information about resources, so querying any resource doesn’t relieve enough information i.e. the nature of the resource or how it can be invoked. These advertisements can have dependency on various other advertisements which triggers chain of discovery for proper use by the client.
2.3.10 Web Interface

Memory extensive JXTA environment makes it impossible to have light weight monitoring tool, manageable from web based interface. Although there is an attempt to invoke JXTA from Java Servlets but that provides limited functionality.
2.3.11 Tools Support
The development of various services in JXTA is complicated process. The development can be improved considerably through various types of tools. The lack of tools makes development time consuming and error prone. Unluckily there are not even single tool available to assist developers.
JXTA comes with lot of built in features of Quality of Service (QoS), Security, Reliable Messaging but all of them are not still mature and extending the template provided by JXTA Environment is not easy job. Virtual Organization and Virtual Collaborating Environments Peers are not restricted to one single platform or programming language which forced us to migrate to Web services paradigm.
3. WSRF
Web Services architecture lacked the notion of state, stateful interactions, resource lifecycle management, notification of state changes, and support for sharing and coordinated use of diverse resources in dynamic ‘virtual organizations’: issues that are of central concern to the developers of distributed systems. To address these problems, two important sets of specifications: WS-Resource Framework [10] and WS-Notification [16], build on broadly adopted Web Services architecture [9] were proposed. WSRF is a set of specifications, which are based on the concept of modeling state as stateful resource and defines the relationship between Web services and stateful resources. This relationship is declared in terms of a set of conventions on current stateless Web services architecture.

WS-RF comprises four inter-related specifications; which define how to represent, access, manage, and group WS-WS-Resources:

· WS-ResourceProperties [11] defines how WS-Resources are described by XML documents that can be queried and modified; this document is a view or projection of the state of the WS-Resource and is typically not equivalent to the state;

· WS-ResourceLifetime [12] defines mechanisms for destroying WS-Resources ("Create" is not defined but use of the Factory Design pattern is recommended.);

· WS-ServiceGroup [14] describes how collections of Web Services and/or WS-Resources can be represented and managed;

· WS-BaseFaults [13] defines a standard exception reporting format.

3.1 WS-Resouce

A stateful resource is defined having specific state data expressible as an XML document with well defined life-cycle. The composition of a stateful resource and a Web service under the implied resource pattern is termed as a WS-Resource. WS-Resources are not bound to a single Web Service; in fact multiple Web Services can manage and monitor the same WS-Resource instance with different business logic and from a different perspective [15]. In Grid Applications, WS-Resources related to different entitles can be very similar, these similar natured WS-Resources can be managed with the single Instance Service. WS-Resources are composed of Resource Properties which can vary from simple to complex data types and even reference other WS-Resources. Referencing other WS-Resources through Resource Properties is a powerful concept which defines inter-dependency of the WS-Resources at a lower level.
3.2 WS-ServiceGroup

The WS-ServiceGroup specification provides a description of a general-purpose WS-Resource which aggregates information from multiple WS-Resources or Web Services for domain specific purposes. The aggregated information can be used as a directory in which the descriptive abstracts of the individual WS-Resources and Web Services are queried to identify useful entries. Membership in the group can be constrained through policies for meaningful queries and classification mechanism.
The WS-ServiceGroup itself is a stateful Web Service. The specification itself doesn’t address the means of membership in the ServiceGroup and it can be either through ServiceGroup Registeration or through any other means. Details of each member in the ServiceGroup are in the form of Resource Properties; which wraps the EndpointReference and the contents of the member. The WS-ServiceGroup specification can be extended to organize resources in the hierarchical manner to create communities.

WS-ServiceGroup specification describes different components and the message exchange patterns for its smooth functioning which are described below:

· WS-ResourceProperty ‘Entry’: Each member in the ServiceGroup has an atomic ‘Entry’ element. The ServiceGroupEntry contains the content information by which the member’s participation in the ServiceGroup is advertised.

· ServiceGroupEPR: The ServiceGroupEPR is the sub-element of the WS-ResourceProperty Entry; which contains the endpoint reference to the ServiceGroup of which this entry represents the membership.

· MemberEPR: The MemberEPR is optional sub-element of the WS-ResourceProperty ‘Entry’; which contains the endpoint reference to the member to which this entry pertains.

· Content: This optional XML element contains information pertinent to the group membership represented by the ServiceGroupEntry. The Content elements conform to the XSD element declarations listed (by QName) in the membershipContentRule resource property of the ServiceGroup containing this ServiceGroupEntry.

· WS-ResourceProperty “MembershipContentRule”: The MembershipContentRule elements specify the intentional constraints for membership to the group. The membership of the service group can be restricted to only those members which implement any particular interfaces or declare any specific WS-Resource model. The ServiceGroup resource property document may contain zero MembershipContentRule child elements. When no MembershipContentRule elements are specified, the members of the ServiceGroup are unconstrained. The element MembershipContentRule in the resource property document of the ServiceGroup has following two attributes:

· MemberInterfaces: This attribute is optional and declares the list of interfaces which must be implemented by each “entry” in the ServcieGroup.

· ContentElements: This attribute declares the list of WS-ResourceProperties, which must be part of the WS-Resource model for each entry. ContentElements is mandatory attribute in the element MembershipContentRule but can have no value.

<wssg:MembershipContentRule MemberInterface="ns2:X" ContentElements=""/>

<wssg:MembershipContentRule MemberInterfaces="ns3:Y" ContentElements="ns3:RP1 ns3:RP2” />

MembershipContentRule in the first statement expects members to implement “ns2:X” portType; where as second MembershipContentRule expects not only implementation of “ns3:Y” but also exposing two ResourceProperties. Multiple MembershipContentRule elements have the “or” relation which means the members should fulfil at least one the membership criteria completely. A member fulfilling different membership criteria can appear multiple times in the ServiceGroup.

· ServiceGroupRegisteration: The ServiceGroupRegisteration defines the message exchanges that allow a requestor to add entries to a ServiceGroup WS-Resource explicitly. The interface has only one operation “Add”; which takes the endpoint reference of the member, the content which member wants to advertise (ServiceGroup may tailor or modify the content) and the initial duration of the membership.

· Notification Message Exchange: Optionally WS-ServiceGroup specify the notification messages if the WS-ServiceGroup also implements the NotificationProducer interface defined in the WS-BaseNotification specification. These notification messages are generated either when new member is added in the service group or when details of the existing member are modified.
3.3 Advantages
The prototype was developed based on Web services architecture and particularly WSRF during second stage. The migration of prototype from JXTA framework to Web Services stack of protocols provided many benefits. During the development WSCore (WSRF implementation) from the Globus Alliance was used.
3.3.1 Open Standards

WSRF and corresponding specifications i.e. WSA and WSN are standardized by the Organization for the Advancement of Structured Information Standards (OASIS) and has wider support from different independent vendors.
3.3.2 Compliance with Web services

The WSRF specification is built on top of Web services architecture. This compliance to accepted Web service protocols help developers to re-use their existing expertise.

3.3.3 Toolkits
The WSRF specification is implemented by different vendors and in various research projects. These implementations are in various languages i.e. Java (WS Core, IBM EETK, Apache Apollo), Perl, Python and .NET. All these compatible implementations can be mixed to utilize the best feature of specific implementation.
3.3.4 Development Tools

Even with the wider acceptance only two reasonable tools are available for the development of WSRF services i.e. IBM ETTK and GT4IDE. Different toolkits provide build scripts to ease the development.

3.3.5 Soft State
The service group queries the member resources after every certain time interval and to update the registry. The service group is also the notification subscriber for any update in the state, which results in dynamic updated state of members.
3.3.6 Service Interface

The WSRF service extends the standard WSDL to define client facing interface. WSDL is the de facto standard and supported by different tools to generate client side stubs and proxies.

3.3.7 Support for XML

All WSRF toolkits provide built in support for XML which hides complicated serialization and de-serialization of XML fragments from developers.
3.3.8 Flexibility and Features
The WSRF provides the flexibility to mix it with other Web services specifications i.e. WS Reliable Messaging, WS Policy, WS trust. This integration opens unlimited possibilities for WSRF services and brings all sorts of features at developer’s disposal.

3.3.9 Security

The WSRF applications can make maximum use of the Grid Security Infrastructure (GSI), which incorporates different mechanisms for authentication, authorization and confidentiality. The WSRF applications can have transport level and message level security incompliance with different specifications i.e. SAML, WS Security, use of tokens or digital certificates, single sign on based on delegation etc.

3.3.10 Lifecycle

The WS-ResourceLifetime specifies the life cycle of resources, which can be extended for time constrained membership. The initial duration for the membership can be renewed if required.
3.3.11 Notification

The notification for change in the state not only updates the VO’s local registry but can be used effectively to automate the workflow. Any service in the workflow can notify the next service to start processing without intervention from central server. The JXTA has support for listeners only to response queries.
3.4 Disadvantages
With all the hype about the WSRF and its related specifications; developers face taunting task to incorporate WSRF in their projects. The concerns from developer community are not about the specifications but concerns are mainly due to different implementations of the specifications. As mentioned earlier WSRF is set of different specifications which should be used independently as required with minimum impact on the project. In real development WSRF projects are tied to selected framework and are forced to use the implementation offered by that specific vendor and in case of in-complete implementation developers have to implement the missing specifications which are not portable thus duplicating the efforts to implement the standards.

1. Developers who want to benefit from WSRF must have complete understanding of specifications and be prepared to implement missing components.

2. Projects relying on various low-level specification implementations are not portable across framework which minimizes the effectiveness of efforts.

3. Projects can’t be run on multiple stacks of specifications without modification; thus reuse of code within organizations is restricted.

4. Projects can’t use various implementations of different specifications on plug and play basis similar to J2EE where Enterprise Applications can be built on top of EJB, JDBC or JMS implementation from different vendors.

The WSRF should define API’s of interfaces according to the specifications which can be implemented by different vendors and frameworks. The API may not include any implementation of those interfaces; although it can define the utility classes for complicated tasks i.e. generating EPR for Resources; serializing/de-serializing resources; persistence logic etc. The interface based specifications will ensure that WS-RF developers can leverage an existing design and even implementation from other projects. Resources defined through interfaces can be deployed, discovered and manipulated in standard way thus WS-RF applications will be portable across stacks and framework and can plug in different implementation of specifications without re-writing the whole stack.
4. Prototype

The Globus Toolkit (GT4) implementation of the WSRF is to used for the prototype. The GT4 has Monitoring and Discovery System (MDS) (implementation of WS-ServiceGroup), which defines and implements mechanisms for service and resource discovery and monitoring in distributed environments. The MDS manages ContainerRegistryService and DefaultIndexService; and when a new instance of a resource is created it is added in the DefaultIndexService of the container. The DefaultIndexService service is the entry point for each resource and works as local VO. Each member within the community fulfills the membership requirements. The community can have multiple membership criteria in the form MembershipContentRule and thus different types of resources. Each resource in the ServiceGroup itself is the Notification Topic; and VO’s subscribe for notification for any update in its state. In MDS each resource/service is a resource property, which makes it possible to utilize notification mechanism for dynamic discovery and monitoring leading to soft state nature of registration, indexing and monitoring. The local DefaultIndexService can be member of any remote DefaultIndexService leading to the hierarchy of VOs. In the case of community of communities top level VO gathers information from constituting VO’s at regular intervals (retrieving information from its local index) and it also subscribes to the changes in the local index. The membership criteria of any VO in the hierarchy are more lenient and generic as compared to VOs on the level above.
The membership criteria based on portTypes and data type of resource properties is crucial to define workflow within the VO. The portType restriction guarantees availability of operations with pre-defined interface. It is not possible to set such membership policy for the JXTA peer group which can help to achieve orchestration of services provided by members. The
5. Conclusion
The development of communities or VO in JXTA reduces the initial development time due to built in support for peers and peer groups. The implementation of services in JXTA is quite cumbersome and requires extra efforts. The community formation in WSRF based on WS-Service group specification may require more initial efforts but in long term these additional efforts are worthy. The WSRF support for notification, lease based membership and soft state of VO’s can’t be easily incorporated in the JXTA application. The use of JXTA is recommended only for domain specific applications which are supposed to work in isolation. The WSRF is the appropriate choice for applications which are built from various types of services.
6. REFERENCES

[1] Davis, R. and R. G. Smith. Negotiation as a Metaphor for Distributed Problem Solving. Artificial Intelligence 20, 63-109, 1983.

[2] Parunak, H. V. D. Distributed Artificial Intelligence. Manufacturing Experience With the Contract Net, Research Notes in Artificial Intelligence. Los Altos, CA, 1987.

[3] Gnutella Home. http://www.gnutella.com/
[4] Freenet. http://freenet.sourceforge.net/
[5] Kazaa. http://www.kazaa.com/us/index.htm
[6] Asif Akram, Rob Allan, Omer Rana. Virtual Communities and Community Coordinator. The First International Conference on Semantics, Knowledge and Grid. (2005)

[7] Asif Akram, Omer Rana. Organizing Service Oriented Peers Collaboration. The First International Conference on Service Oriented Computing. (2004) 451- 466
[8] JXTA. http://www.jxta.org/
[9] D. Booth, H. Haas, F. McCabe, and et al. Web Services Architecture. W3C Working Group Note 11 February 2004.

[10] Web Services Resource Framework, www.globus.org/wsrf/
[11] Web Services Resource Properties 1.2, http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-ResourceProperties-1.2-draft-04.pdf.

[12] Web Services Resource Lifetime, http://docs.oasis-open.org/ wsrf/2004/06/wsrf-WS-ResourceLifetime-1.2-draft-03.pdf.

[13] Web Services Base Faults, http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-BaseFaults-1.2-draft-02.pdf.

[14] Web Services Service Group, http://docs.oasis-open.org /wsrf/2004/06/wsrf-WS-ServiceGroup-1.2-draft-02.pdf.

[15] A Akram, J Kewly, R Allan. Modelling WS-RF based Enterprise Applications. The Tenth IEEE International Enterprise Distributed Object Computing Conference (2006)

[16] S. Graham, D. Hull, B. Muray. Web Services Notification. http://www.oasis-open.org/committees/wsn, 2005.
[17] GT4IDE, http://gsbt.sourceforge.net/content/view/12/29/

PAGE

