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In studying the sensitivity of the gain of flow gas counters to ambient conditions it is
found that a simple model of the avalanche process can be adapted to give an excellent
description of the dependence of the gas gain on pressure (P) and temperature (T)
around ambient. Four types of detector are studied: the wire counter, the pin detector,
the parallel gap detector and the gas microstrip detector. It is found that a simple linear
servo equation using the variable P/T can be used to stabilise counters by adjusting the
applied anode potential.
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1. INTRODUCTION

It is often necessary to operate gas proportional counters with flowing gas. The
requirement arises when the counters have large area, thin, foil windows (e.g. in particle
physics applications), when internal counting of a beta source is required (e.g. in radio-
immuno assay [1]) or when very high counting rates must be supported for long periods
(as in proposed applications for X-ray detection on sychrotron radiation sources). In
flow operation the gain of a gas counter is affected by both the ambient temperature and
pressure and this, in turn, affects the counting  efficiency of the device. Depending on
the particular structure, the gain fluctuations can be very significant over the ranges of
temperature and pressure routinely experienced in a laboratory situation namely:

950mb < P < 1050mb      and       18C < T < 30C.

Since the addition of a pressure control system would add very substantially to the cost
of the detector system (and still not solve the temperature dependence), attention turned
to the option of using an electronic control system to servo the EHT and thus
compensate for the pressure and temperature induced gain shifts. A systematic study of
the gas gain of a single wire proportional counter was carried out while monitoring the
ambient thermodynamic variables - pressure (P) and temperature (T). The expected
inverse dependence of the gas gain on pressure was observed along with a direct
dependence on temperature. Turning to the extensive literature on proportional counter
gain [2-11] it was surprising to discover no formulation which makes explicit any
temperature dependence. In order to derive useful parameterisations of the gas gain as a
function of P and T, an experimental survey was instituted of the gain of an  cylindical
proportional counter, a pin detector (spherical anode), a parallel gap counter and a
microstrip gas counter (MSGD) over the dynamic range of the variables experienced in
the laboratory (940 < P < 1030mb and 18 < T < 24C). These results were analysed in
terms of the simplest possible model and stabilisation algorithms developed which
enabled the gains of the various devices to be controlled to within an error of around one
percent.

2. THE GAIN MODEL

In a single wire proportional counter the gas gain is given by the expression:
 ⌠a

             ln G = - �α dr (1)
 ⌡r0

where G is the gas gain, a the radius of the anode wire, α the first Townsend coefficient
and r0 the radius at which avalanching commences.

If we postulate for the time being only a single interaction of the drifting electrons with
the counter gas (viz. ionisation) then we can write:

α =   1 exp - W (2)
         λ         E λ
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where W is the threshold energy for ionisation in eV, λ the electron’s mean free path for
the process and E is the local value of the electric field. If σ is the molecular cross-
section for this process we also have:

                             λ =   1
     Nσ

where        N =   Na P         (the molecular density)
    R  T

(Na is Avogadro’s number and R is the gas constant).

Thus λ and therefore α are functions of the variable P/T (q).

The problem is that there are several inelastic scattering processes involved in the
avalanche with cross-sections which vary with electron energy, and the experimentally
observed α does not behave as (2) predicts when P is varied. The commonest approach
to this problem is to parameterise in terms of the variables s = α/P and S = E/P and find
an empirical fit or approximation to relate these two quantities and this has been done in
various ways with various levels of success (see [10] for a comparative analysis).
However, the temperature dependence is made implicit and so the results are not useful
in the case of flow counters. (It will be noted that in the case of a sealed (rigid) counter
the gain is independent of P and T since, by definition, N cannot change.)

Given the requirement of finding a gain expression valid only around NTP it seemed
useful to proceed on the basis of expressions (1) and (2) and see if the non-ideal
behaviour of α could be incorporated in a simple way which explicitly depended on P
and T. As a further simplification r0 was set to ∞. This removed an undefined constant
from the gain equation while still providing an excellent fit. Integrating (1) with (2)
substituted and using

E  =    V  
         r ln(b/a)

gives:          ln G = V/A exp(-B/V)         (3)

where  A = W ln(b/a)

and              B = W ln(b/a) a Naσ q
                   R

V is the anode potential and a and b the anode and cathode radii. The other parameters
are defined above.

As figure 1 shows this formula provides an excellent fit to the gain over a range of 102

to 104, the practical gain range of proportional counters. We see that (3) predicts a linear
dependence of B on q. We shall see below that experiment confirms this expectation
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and the physical complexities of the avalanche processes show up  simply as an offset
on the B versus q curve.

Applying the same reasoning to the case of the pin detector with its spherical electrode
where:

   E =        V      
         r2(1/a -1/b)

we get: ln G = √π/2 √(V/A) erfc√(B/V)

where A and B are functions of a,b, W, λ.

This equation is very unfriendly for purposes of analysis and it was found that equation
(3) fitted the pin detector gain curves just as well so permitting the same analysis to be
performed for both detectors (with, of course, different fitting parameters).

The integration of (1) in the case of the parallel gap counter is simplified by the fact that
E = V/d where d is the width of the amplifying gap. We have:

ln G = A exp(-AB/V) (4)

where  A = d/λ and B = W

In this case we expect A to be proportional to q.

3. EXPERIMENTAL RESULTS

Using a 55Fe X-ray source (5.9keV) experimental gain measurements were carried out
on four detectors:

1. A standard cylindrical wire counter with a gold-plated tungsten anode wire of 20µm
diameter inside a brass tube of 20mm diameter.

 
2. A single pin detector as described in [1] with an anode consisting of a 2mm diameter

sphere mounted on a coned shaft. The cathode structures are approximately 50mm
from the anode.

 
3. A parallel gap counter consisting of a 10mm deep conversion space separated from a

1mm wide avalanche gap by a stainless steel mesh. The drift field was kept low
(typically 30V across the 10mm gap) to minimise charge loss on the mesh which was
kept at earth while positive EHT was applied to the back electrode.

4. A microstrip gas detector (MSGD) with 10µm wide anodes, 100µm wide anode-
cathode gaps and 90µm wide cathode strips. The anodes and cathodes of this test
device were connected together in groups of twenty, forming a counter of active area
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6mm x 50mm. The pattern was formed with a Ni/Au process on S8900 glass [12].
The conversion space was defined by a drift electrode 9mm above the glass plate.

 
In cases 1 - 3 a flow of 100cc/min of argon + 7.5%CH4 premixed gas was used. The
MSGD (case 4) was flowed with a mixture of argon + 50%dimethylether supplied by a
precision mass-flow controller.

Measurements were carried out over the range of ambient conditions obtaining in the
laboratory which during the period of the experiment was 940 < P < 1030mb and 18 < T
< 24C giving a range of approximately 3.25 < q < 3.5 (mb/K).

As figure 1 shows, the fit of equation (3) for the gain of the wire counter is extremely
good over the gain range of 70 < G < 17000. (Equally good fits are obtained for all the
detector types to the appropriate model.) As P and T varied the constants A and B were
determined by a standard fitting procedure from the measured gain versus EHT curve
for each q value. If unconstrained, A and B were both found to vary with q. However, it
was found that no statistically significant change occurred in the fitting error if A was
fixed at the average derived from the first six q values so that all the q dependence could
be confined to the B parameter. After a few weeks a sufficient span of q values had been
accumulated to allow a plot of B versus q. As figure 2 shows this gives a very
reasonable straight line fit:

B = 219q + 307 (V).

The procedure was repeated with the pin detector. As noted above, the wire formula (3)
was applied to the pin detector gain curves and found to fit as well as the formula
derived from the spherical field description. Figure 3 shows the B versus q plot for this
detector. Again a good straight line fit is observed:

B = 1915q + 663 (V).

The parallel gap counter was the most difficult device to obtain reproducible results
from, due to its high sensitivity to gas purity as well as to q. However, eventually a
consistent set was obtained. In this case the B parameter (equation 4) was averaged and
a single parameter fit performed on the A parameter which was expected to dominate
the q dependence. As figure 4 shows we again observe a straight line fit for A:

A = 916q - 91.4 (V).

Biassing is more complex in the case of the MSGD since the potential applied to the
drift electrode (VD) weakly influences the electric field above the anode, and hence the
gain. For consistency the bias conditions on the MSGD were kept constant (VD = -
3200V, VC = 
-690V) and the gain points measured over a few weeks fitted to the equation:

G = exp{VC/A exp(-(cq + d)/VC)}

The A parameter was evaluated from the gain versus VC curve (equation (3)) to be
54.9V and all the q dependence is forced into the B parameter (cq + d).
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Figure 5 shows the data and fit.
4. GAIN STABILISATION

As a result of the above measurements it is possible to have a complete description of
the gain of a device in terms of q and V. Thus for the wire counter we have:

ln G = V/74.0 exp(-(222q+297)/V) (5)

If we now select a desired operating point for the counter such as: Po=990mb, To=20C,
Vo=1330V (Go=3565.4) then the relation between V and q defined by the equation

ln(3565.4) = VS/74.0 exp(-(222q+297)/VS)   (6)

yields the anode potential (VS) which keeps the counter gain set on G0 at any ambient
condition defined by q. Solving this equation numerically yields data that can be
accurately fitted by the straight line:

 VS = 124q + 910.

Thus on any particular occasion when the counter is in use one obtains the ambient
pressure and temperature, calculates q and thence the set value for the EHT from this
relation. Figure 6 shows the measured gas gain of the wire counter over a reasonably
wide range of q under (manual) servo control. A standard deviation of 0.8% is observed;
without correction a gain change of 25% would occur over this range of q.

Similarly for the pin detector:

ln G = V/60.0 exp(-(1915q+663)/V)

Choosing a set point of V0=3700V (G0=7855) with P0 and T0 as above and solving the
equivalent equation to (6) above we get:

 VS = 655q + 1485.

Applying this servo control to the usual range of ambient variation (3.3 < q < 3.48) the
gain is held constant to a standard deviation of 1.27%. Over this range of q the gain, if
uncorrected, would vary by a factor of 2.3:1.

Solving the equation for a range of set-points reveals the useful information that the
coefficients of q in the equation for VS are themselves linear functions of the set-point
voltage V0. Thus the servo relation can be calculated for any chosen bias (V0) using the
formula:

VS = (0.116V0+226)q + 0.586V0 - 720
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For the parallel gap detector the gain formula is:

ln G = (91.6q-91.4) exp(-23.864(91.6q-91.4)/V)

Choosing a set point of V0=1520V (G0=1218) with P0 and T0 as above and again solving
the equivalent of equation (6) for the parallel gap case we obtain the servo equation for
the set-point voltage:

VS = 453q - 11.

 Measurements show that this relation permits the gain to be stabilised to within a
standard deviation of 4.15%. (The uncorrected gain variation over 3.3 < q < 3.5 is
4.1:1).

If the ambient variables P and T are recorded at the same time as any experimental data
then the gain formulae G(VC,q) can be used for off-line corrections. This approach was
used in a long series of measurements on the aging and stability of MSGDs [12]. The
data of figure 5 can be used as an example. The residuals of the data points with respect
to the fitted curve show a standard deviation σ = 0.62%  compared with a gain variation
of 6% over the range of q covered (3.45 < q < 3.5).

5. DISCUSSION

The success of the simple model described above in predicting the behaviour of a range
of gas avalanche detectors in response to ambient changes provides reliable
characterisations of their gain variations. Thus because the gain can be written:

G = G(P/T)

it follows (by differentiation) that:

∂G/∂T  =  -P/T ∂G/∂P

In the units in which the modelling is carried out ({P}=mb, {T}=K),  P/T≈3, i.e. 1
degree K (C) change in T produces the same gain change as a 3mb change in P. The
maximum likely excursion range of T in a laboratory is around 15C corresponding to
about 45mb in P. Thus it is clear that temperature and pressure excursions have a
comparable effect and must both be taken account of.

The full gain formula deduced for a detector G(V,q) {e.g. equation (5)} can be used to
explore the gain sensitivity of the various detectors to ambient fluctuations. Figure 7
shows that the MSGD operating at VC=-690V (G≈1000) exhibits a relative sensitivity
(1/G dG/dq in K/mb) which varies between -1.08 and -1.115 over the range 3.3 < q <
3.5 which one may expect in a laboratory. i.e. it is to first order constant.

Figure 8 shows the relative sensitivity of the same counter at q=3.4637 as a function of
the MSGD gain. While the sensitivity rises sharply at low gains, in the practical working
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region (G>500) 1/G dG/dq settles to a value around -1.1 K/mb, again to first order
constant.

The above results show that a simple modification to the simplest model for gas counter
amplification gives algorithms which can describe the behaviour of the gains of the
main types of flow gas counter accurately in the range of ambient conditions normally
encountered in practical operation. The results show that (as the physics predicts) the
key parameter for determining environmental effects is P/T (ambient pressure/ambient
absolute temperature). It is relatively easy to adapt these algorithms to produce servo
control formulae which permit the gain of the counter to be stabilised by appropriate
adjustment of the counter voltage. The fact that these formulae are simple linear
expressions in q (P/T) make the option of automatic electronic control of the gain very
attractive and much cheaper to implement than stabilising the pressure and temperature
of the detector.

The (perhaps) surprising fact that the solutions to equations such as (6) are so accurately
linear is simply due to the limited range of q over which we must work. Differentiating
(6) with respect to q shows that dV/dq is indeed approximately constant under these
conditions. Given the knowledge that VS is a linear function of q, the servo equation for
any detector can obviously be measured directly as ambient conditions vary and the
required function quickly obtained.

The results also show that the dependence of the gain on the ambient conditions is much
more serious in the case of the pin detector and the parallel gap counter. In fact,
differentiating the gain with respect to q for each of the four cases and substituting the
measured parameters and typical running conditions  gives the following results:

     Error in
Detector       1/G(dG/dq) Servoed Gain (σ)

           (K/mb) 3.3 < q < 3.5

MSGD             -1.1       0.62%
wire counter -1.4       0.8%

 pin detector -4.6       1.27%
parallel gap counter -8.4       4.15%

The stabilisation accuracy of the servo process is determined by the interaction of the
measurement errors of P and T, the accuracy with which the detector HT can be set and
dG/dV for the detector at the operating point. With δP=0.5mb, δT=0.1K and δV=0.5V a
combined error of 0.61% is calculated for the single wire counter which is dominated by
the HT error. At the other extreme the predicted error for the parallel gap servo is 1.6%
compared with the observed 4.15%. The poorer performance in practice is almost
certainly due to the additional uncertainties present in the ambient parameters. Because
of the thermal inertia of the detector housing it is unlikely that the gas temperature
monitor was always in thermal equilibrium with the gas. Similarly, the small pressure
fluctuations caused by the gas bubbler on the counter gas outlet were probably
significant in this case. The parallel gap counter is so sensitive to ambient conditions
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that a significant gain shift is induced by doubling the counter flow rate and thus slightly
increasing the back pressure from the outlet tube.

The different sensitivities exhibited by the various counters probably result from the
differing number of mean free paths involved in the respective gain processes. In the
case of the MSGD and the 20µm diameter wire the gain occurs almost entirely in about
20 mean free paths, in the pin detector there is probably of order 100 and in the parallel
gap device the fit to equation (4) indicates some 220 mean free paths. Clearly, the best
flow detector design for minimising the effects of ambient fluctuations is an MSGD
with as small an anode width as possible.

The recently introduced Gas Electron Multiplier (GEM) [13] is a detector in which
electrons released by an ionising event in a drift region are avalanched in the high
electric field within a hole (50µm diameter) in a thin (50µm) plastic foil coated on either
side with conducting material and across which a suitable potential (≈500V) may be
established. The characteristic dimension of the avalanche region is 50µm, therefore one
would expect that the stability of the gain against ambient conditions will be slightly
worse that of a single wire counter.

The Micro-Dot Avalanche Chamber [14] reproduces the field geometry of the pin
detector used for the present tests on a much smaller scale. Anode diameters are
typically tens of microns which will result in an ambient sensitivity similar to that of the
single wire counter and the MSGD.

The “Compteur a Trous” (CAT) [15] is simply a parallel gap avalanche counter. In its
form with multiple holes it becomes indistinguishable from the parallel gap with a mesh
drift-avalanche separator used for the tests described above. The CAT can therefore be
expected to suffer from the poor environmental stability described above.

A new form of the parallel gap detector is recently reported in the form of the
MICROMEGAS in which the avalanche gap is reduced to a dimension of 50 to 100µm
[16] and operated near to gain saturation. Under these conditions the ambient sensitivity
should be much reduced compared with the detector used for the present measurements.

The gain curve of each detector has been fitted to q and V with three parameters which
clearly depend on both the detector dimensions and the filling gas. Separating out these
dependencies would entail a further sequence of measurements which would eventually
produce constants for the gas. The methods described above are simply intended to
provide a convenient method for stabilising flow counters against ambient conditions in
an ad hoc manner and not as a method for investigating the physics of the avalanche
process. However, additional measurements with varying counter parameters would
generate general formulae predictive of the gas gain of any cylindrical wire counter in
conditions around the ambient range.
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FIGURE CAPTIONS

Figure 1 A fit of the gain formula proposed for a cylindrical wire counter over a wide
range of gain (70 - 17000).

Figure 2 The fitted values of the parameter B in the cylindrical wire counter formula (3)
as ambient conditions change (q = P/T).

Figure 3 The fitted values of the parameter B in the gain formula (3) applied to pin
detector as ambient conditions change.
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Figure 4 The fitted values of the parameter A in the gain formula (4) for the parallel gap
counter as ambient conditions change.

Figure 5  The gain of an MSGD is plotted as a function of the environmental variable  q.

Figure 6  The gas gain of the cylindrical wire counter as ambient conditions change
while the anode potential is adjusted in accordance with the "servo" formula
derived from the measurements shown in figure 2.

Figure 7 The ambient gain sensitivity 1/GdG/dq of the MSGD as a function of q at
VC=-690V (G=1000).

Figure 8 The ambient gain sensitivity 1/GdG/dq of the MSGD at q=3.4637 (typical
ambient conditions) as a function of gas gain.
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