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1 Introduction

This work has been performed as a Work Package within the PARASOL Project.
PARASOL is an ESPRIT IV Long Term Research Project (No 20160) for “An
Integrated Environment for Parallel Sparse Matrix Solvers”. The main goal of this
Project, which started on January 1 1996, is to build and test a portable library
for solving large sparse systems of equations on distributed memory systems. There
are twelve partners in five countries, five of whom are code developers and five end
users. The software is written in Fortran 90 and uses MPI for message passing. There
are routines for both direct and iterative solution of symmetric and unsymmetric
systems. The final library will be in the public domain.

The PARASOL Consortium is managed by PALLAS in Germany and consists
of

o leading FEuropean research organizations with internationally recognized
experience and an established track record in the development of parallel
solvers (CERFACS, GMD-SCAI, ONERA, Rutherford Appleton Laboratory
(RAL), University of Bergen);

e industrial code developers who define the requirements for PARASOL, are
providing test cases generated by their finite-element packages, and will use
the developed software in production mode (Apex Technologies, Det Norske

Veritas (DNV), INPRO, MacNeal-Schwendler (MSC), Polyflow);

e two leading European HPC software companies who will exploit the project
results and are providing state-of-the-art programming development tools

(GENIAS, PALLAS).

For more information, see the project web site at http://www.genias.de/parasol.

CERFACS and RAL with the collaboration of ENSEEIHT-IRIT are developing
the direct solver based on a multifrontal approach originally developed by Duff and
Reid (1983,1984) and extended to shared memory computers by Duff (1986) and
Amestoy and Duff (1989,1993) and subsequently to a prototype version using PVM
by Espirat (1996). The integration of this direct code into the PARASOL Library
and comments on the performance of earlier versions of the code can be found in
Amestoy, Duff, L'Excellent and Plechac (1998).

We discuss some important aspects of multifrontal methods in Section 2 and
describe the main implementation issues for distributed memory machines in
Section 3. We consider a performance analysis of the algorithm and show the results
of some numerical experiments with the code in Section 4 before presenting some
concluding remarks and pointers to future work in Section 5.

Throughout this paper we will show the performance of our algorithms on a
set of test problems. These test problems consist of symmetric and unsymmetric
problems from the Harwell-Boeing collection (Duff, Grimes and Lewis 1992), the
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forthcoming Rutherford-Boeing Sparse Matrix Collection (Duff, Grimes and Lewis
1997). and problems from the PARASOL end users and are shown in Table 1.1.

Problem name Type | Order | Nonzeros | Origin
GOODWIN UNS 7320 324784 | Rutherford-Boeing
BCSSTK15 SYM 3948 60882 | Harwell-Boeing
WANGS3 UNS 26064 177168 | Rutherford-Boeing
INV-EXTRUSION-1 | UNS 30412 | 1793881 | PARASOL
MIXING-TANK UNS 29957 | 1995041 | PARASOL
B5TUER sym | 162610 | 4036144 | PARASOL
BMW7ST_1 SYM | 141347 | 7339667 | PARASOL
CRANKSEG_1 SYM 52804 | 10614210 | PARASOL
CRANKSEG_2 SYM 63838 | 7106348 | PARASOL
OILPAN SYM 73752 | 1835470 | PARASOL
QUER SYM 59122 | 1462811 | PARASOL

Table 1.1: Description of test problems.

2 Multifrontal methods

The multifrontal method for the solution of sparse linear equations is a direct method
based on the LU factorization of the matrix. We refer the reader to our earlier papers
(Amestoy and Duff 1989, Duff and Reid 1983, Duff and Reid 1984) for full details
of this technique. In the following, we will consider multifrontal methods that solve
the assembled system

Ax =D,

both when A is symmetric and when it is unsymmetric.

In both cases, the structure of the matrix is first analysed to determine an
ordering that, in the absence of any numerical pivoting, will preserve sparsity in
the factors. An approximate minimum degree ordering strategy is used on the
symmetrized pattern A + AT, and this analysis phase produces both an ordering
and an assembly tree. The assembly tree is then used to drive the subsequent
numerical factorization and solution phases. At each node of the tree, a dense
submatrix (called a frontal matriz) is assembled using data from the original matrix
and from the children of the node. Pivots can be chosen from within a submatrix of
the frontal matrix (called the pivot block) and eliminations performed. The rows and
columns of the pivot block are fully summed, meaning that no further contributions
to them will come from rows or columns later in the pivotal sequence. The resulting
factors are stored for use in the solution phase, and the Schur complement (the
contribution block) is passed to the parent node for assembly at that node. In the

numerical factorization phase, the tree is processed from the leaf nodes to the root



(if the matrix is reducible, we have a forest, and each component tree of the forest
will be treated similarly and independently). The subsequent forward and backward
substitutions during the solution phase process the tree from the leaves to the root
and from the root to the leaves, respectively. A crucial aspect of the assembly tree
is that it defines only a partial order for the factorization since the only requirement
is that a child must complete its elimination operations before the parent can be
fully processed. It is this freedom that enables us to exploit parallelism in the tree
(tree parallelism).

In the unsymmetric case, threshold pivoting is used to maintain numerical
stability so that it is possible that the pivots selected at the analysis phase are
unsuitable. In the numerical factorization phase, we are at liberty to choose pivots
from anywhere within the pivot block (including off-diagonal pivots) but it still
may be impossible to eliminate all variables from this block. The result is that the
Schur complement that is passed to the parent node may be larger than anticipated
by the analysis phase and so our data structures may be different from those
forecast by the analysis. This implies that we need to allow dynamic scheduling
during numerical factorization. In the symmetric positive-definite case only static
scheduling is required. However, in this present work, we will use dynamic scheduling
for symmetric systems because we want to use our code to solve problems that are
not positive definite and it provides more flexibility for load balancing.

In both the unsymmetric and symmetric cases, data is first assembled at a node
combining the Schur complements from the children with data from the original
matrix. The original matrix data comprises rows and columns corresponding to
variables that the analysis forecasts should be eliminated at this node. This data is
usually supplied in so-called arrowhead format, with the matrix ordered according
to the permutation from the analysis phase and row 1 preceding column 1 followed
by row 2 (from the diagonal) and column 2 and so on, where the columns are not
supplied in the symmetric case because they are identical to the rows. This data and
the contribution blocks from the children are assembled (or summed) into a frontal
matrix using indirect addressing (sometimes called an extended add operation).

Eliminations are then performed on the assembled frontal matrix. A right-
looking factorization can be used and is blocked so that cache effects can be reduced
and use can be made of the Level 3 BLAS (Dongarra, Du Croz, Duff and Hammarling
19900, Dongarra, Du Croz, Duff and Hammarling 1990a). This can be done by
eliminating a fixed number of pivots (nb, say). When numerical pivoting is required,
the fully summed rows must be updated during these eliminations but the major
part of the frontal matrix is not updated until the computations on the fully summed
rows are completed whence the remaining rows can be updated using Level 3 BLAS
kernels. It is possible either to use parallel versions of the Level 3 BLAS or to update
the rows in independent strips. This gives rise to so-called node parallelism.

A version of the multifrontal code for shared memory computers was developed
by Amestoy and Duff (1989) and was included in Release 12 of the Harwell



Subroutine Library (HSL 1996) as code MA41. This was the basis for Version 1.0 of
MUMPS that was released in May 1997.

3 Description of the main implementation issues

The current version of MUMPS ( “MUltifrontal Massively Parallel Solver”) solves the
linear system of equations Ax = b, where A is either unsymmetric, or symmetric
positive definite. Main features include the solution of the transposed system, error
analysis, iterative refinement, scaling of the original matrix, and the possibility for
the user to input a given ordering.

In the current version of MUMPS (Version 2.3), both tree and node parallelism
are exploited, and we distribute the pool of work among the processors, but our
model still requires an identified host node to perform the analysis phase, distribute
the incoming matrix, collect the solution, and generally oversee the computation.
All routines called by the user for the different steps are SPMD, and the distinction
between the host and the other processors is made by the MUMPS code. The code
is organized with a designated host node and other processors as follows (notice
that the following steps are easily implemented within the controlling strategy of

the PARASOL Library):

1. Analysis. The host performs an approximate minimum degree algorithm based
on the symmetrized pattern A+ A7, and carries out symbolic factorization. A
mapping of the multifrontal tree is then computed, and symbolic information
is transferred from the host to the other processors. Using this information,
the processors estimate the memory necessary for factorization and solution.

2. Factorization. The host sends appropriate entries of the original matrix to the
other processors that are responsible for the numerical factorization. The
numerical factorization on each frontal matrix is conducted by a master
processor (determined by the analysis phase) and one or more slave processors
(determined dynamically) as discussed later in this section. Each processor
allocates an array for contribution blocks and factors; the factors must be
kept for the solution phase.

3. Solution. The right-hand side is broadcast from the host to the other
processors. These processors compute the solution using the (distributed)
factors computed during Step 2, and the solution is assembled on the host.

We discuss, in the following subsections, implementation issues in a distributed
environment and will focus on the description of the factorization phase since it is
the most complicated and time consuming phase.

We first introduce common features of the unsymmetric and symmetric codes.
We describe the static mapping strategy. We present the three types of parallelism



exploited during the factorization and solve phases and focus on the description of
the factorization phase. Parallel implementation issues are then presented. Finally,
we describe the main differences between the LU and the LDL™ factorizations.

For both the symmetric and the unsymmetric algorithms used in the code,
we have chosen a fully asynchronous approach with dynamic scheduling of
the computational tasks. Asynchronous communication was chosen to enable
overlapping between communication and computation. Dynamic scheduling was
initially used to accommodate numerical pivoting in the factorization. The other
important reason for this choice is that, with dynamic scheduling, the algorithm has
the potential to adapt itself at execution time, and can remap work and data to
a more appropriate processor. In fact, we combine the main features of static and
dynamic approaches. We use the estimation done during analysis to map some of the
main computational tasks; the other tasks are dynamically scheduled at execution
time. The main data structures (original matrix and matrix of the factors) are
similarly partially mapped according to the analysis phase. Part of the initial matrix
is replicated to enable rapid task migration without data redistribution.

3.1 Mapping

A mapping of the assembly tree to the processors is performed statically as part
of the analysis phase. The main objectives of this phase are to control the
communication costs, and to balance the memory used and the computation done
by each processor. The computational cost will be approximated by the number
of floating-point operations, and only the matrix of the factors will be taken into
account when balancing the memory used by the processors.

In this section, we describe the algorithms used to map the assembly tree onto
the processors and show how we have combined memory and work balancing criteria.

Figure 3.1: Decomposition of the assembly tree into levels.

The tree is processed from the bottom to the top, level by level (see Figure 3.1).
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Level L is determined using the Algorithm 1 (Geist and Ng 1989) and is illustrated
in Figure 3.2. Then for ¢+ > 0, a node belongs to L; if all its children belong to
L;, 7 < i. First, nodes of level L, (and the subtrees for which they are the root)
are mapped. This first step is designed to balance the work in the subtrees and
to reduce communication since all nodes in a subtree are mapped onto the same
processor. Normally to get a good load balance it is necessary to have many more
nodes in level L, than there are processors. Thus L, depends on the number of
processors and a higher number of processors will lead to smaller subtrees.

Algorithm 1 — Construction and mapping of the initial level L
Let Ly <~ Roots of the assembly tree
Repeat
Find the node q in Ly whose subtree has largest computational cost
Set Ly < (Ly\{q}) U {children of q} (See Figure 3.2)
Cyclic mapping of the nodes of Ly onto the processors.
Estimate the load imbalance
Until load imbalance < threshold

a b c

Figure 3.2: One step in the construction of the first level L.

The mapping of higher levels in the tree takes into account only memory
balancing issues. For each processor, the memory load (total size of its factors)
is first computed for the nodes at level L. For each level L;, ¢« > 0, each unmapped
node of L; is mapped to the processor with the smallest memory load and its memory
load is revised.

The mapping is then used to explicitly distribute the permuted initial matrix
onto the processors and to estimate the amount of work and memory required on
each processor.

3.2 Sources of parallelism

We consider the condensed assembly tree of Figure 3.3, where the leaves are Ly
subtrees of the assembly tree.

There will be in general more leaf subtrees than processors, and therefore we can
expect a good overall load balance of the computation at the bottom of the tree.
However, if we only exploit the tree parallelism, the speed-up is very disappointing.
The actual speed-up from this parallelism depends on the problem but is typically
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Figure 3.3: Distribution of the computations of a multifrontal assembly tree.

only 2 to 4 irrespective of the number of processors. This poor performance is
caused by the fact that the tree parallelism decreases while going towards the root
of the tree. Moreover, it has been observed (see for example Amestoy and Duff,
1993) that often more than 75% of the computations are performed in the top three
levels of the assembly tree. It is thus necessary to obtain further parallelism within
the large nodes near the root of the tree. The additional parallelism will be based
on parallel versions of the blocked algorithms used during the factorization of the
frontal matrices.

Nodes of the tree processed by only one processor will be referred to as nodes of
type 1 and the parallelism of the assembly tree will be referred to as type 1 parallelism.
Further parallelism is obtained by doing a 1D block partitioning of the rows of the
frontal matrix for nodes with a large contribution block. Such nodes will be referred
to as nodes of type 2 and the corresponding parallelism as type 2 parallelism. Finally,
if the root node is large enough, then 2D block cyclic partitioning of the root frontal
matrix is performed. The parallel root node will be referred to as a node of type 3
and the corresponding parallelism as type 3 parallelism.

3.2.1 Description of type 2 parallelism

If a node is of type 2, one processor (called the master of the node) holds all the
fully summed rows and performs the pivoting and the factorization on this block
while other processors (so called slaves) perform the updates on the contribution
rows (see Figure 3.4).

Macro-pipelining based on a blocked factorization of the fully-summed rows is
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Figure 3.4: Type 2 nodes: partitioning of frontal matrix.

used to overlap communication with computation. The efficiency of the algorithm
thus depends on both the block size used to factor the fully-summed rows and on
the number of rows allocated to a slave process. During the analysis phase, based
on the structure of the assembly tree, a node is determined to be of type 2 if its
frontal matrix is sufficiently large. In terms of memory, the mapping algorithm
assumes that the master processor holds the fully-summed rows and that any other
processors might be selected as slave processes. As a consequence, part of the initial
matrix is duplicated onto all the processors to enable efficient dynamic scheduling
of computational tasks. At execution time, the master then first receives symbolic
information describing the structure of the contribution blocks sent by its children.
Based on this information, the master determines the exact structure of its frontal
matrix and decides which slave processors will participate in the factorization of the
node.

Further details on the implementation of type 2 nodes depends on whether the
initial matrix is symmetric or not and will be given in Section 3.4.3.

3.2.2 Description of type 3 parallelism

In order to have good scalability, we perform a 2D block cyclic distribution of the
root node. We use ScaLAPACK (Blackford, Choi, Cleary, D’Azevedo, Demmel,
Dhillon, Dongarra, Hammarling, Henry, Petitet, Stanley, Walker and Whaley 1997)
or the vendor equivalent implementation (PDGETRF for unsymmetric matrices and
PDPOTREF for symmetric matrices).

Currently, a maximum of one root node, chosen during the analysis, is processed
in parallel. This node is of type 3. The node chosen will be the largest root provided
its size is larger than a computer dependent parameter. One processor, the so-called
master of the root, holds all indices describing the root frontal matrix.

We define the root node as determined by the analysis phase, the estimated
root node. Before factorization, the estimated root node frontal matrix is statically
mapped onto a 2D grid of processors. We use a static distribution and mapping for
those variables known by the analysis to be in the root node so that, for an entry in
the estimated root node, we know where to send it and assemble it using functions
involving integer divisions, moduli, ...



In the factorization phase, the original matrix entries and the part of the
contribution blocks from the children corresponding to the estimated root can be
assembled as soon as they are available. The master of the root node then collects
the index information for all the uneliminated variables of its children and builds
the structure of the frontal matrix. This symbolic information is broadcast to all
participating processors. The contributions corresponding to uneliminated variables
can then be sent by the children to the appropriate processors in the 2D grid for
assembly, or directly assembled locally if the destination is the same processor. Note
that, because of the requirements of ScaLAPACK, local copying of the root node
is required since the leading dimension will change if there are any uneliminated
variables.

3.2.3 Impact of parallelism on memory and work balance

Processor number 1 2 3 4 )

Original matrix (x103) | 1920 | 2904 | 2475 | 2571 | 2059
LU factors (x10%) 15927 | 15982 | 15993 | 16149 | 16117
Flop count (x107) 18.2 21.5 18.6 22.6 19.5

Table 3.1: Study of memory and work balancing on matrix
CRANKSEG_1 using 5 working processors (that is, we exclude
the host processor) and all levels of parallelism of the method. All
sizes are in number of 64-bit reals per processor.

We show, in Table 3.1, the distribution of both the input matrix and the
LU factors during the factorization of matrix CRANKSEG_1 on five working
processors. The matrix is considered unsymmetric and has 10.6 x 105 nonzeros
with 80.6 x 10° nonzeros in the LU factors. We see, in Table 3.1, how well the
mapping algorithm balances the storage of the LU factors between the processors.
Concerning the original matrix, we observe that the extra space due to duplication
for type 2 node parallelization only represents around 10% of the size of the original
matrix. Finally we see that, even if the algorithm does not aim to balance the work
near the top of the tree, balancing the memory used for the factors also leads to a
good balance for the floating-point operations.

3.3 Parallel implementation issues

To enable automatic overlapping between computation and communication, we have
chosen to use fully asynchronous communications. For flexibility and efficiency,
explicit buffering in the user space has been implemented. We have developed a
Fortran 90 module to send asynchronous messages, based on immediate sends. We
define a send buffer for each processor based on information from the analysis phase.



When we try to send contribution blocks, factorized blocks, ... we first check to see if
there is room in the send buffer. Our module provides an equivalent of MPI_BSEND
(Dongarra, Hempel, Hey and Walker 1995) with the advantage that messages are
directly packed in the buffer and problems occurring when the buffer is full are
overcome. Note that messages are never sent when the destination is identical to
the source; in that case the associated action is performed directly locally, instead
of the send.

Estimates of the minimum sizes needed for the send and receive buffers are
computed by each processor prior to factorization. This estimation is based on
the static mapping of the assembly tree and takes into account the three types
of parallelism used during factorization. Note that, for example, using type 2
parallelism will significantly reduce the size of the contribution blocks sent between
processors, and thus of the required buffers, as shown in Figure 3.5. Buffers are
allocated on each processor at the beginning of the factorization.
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Figure 3.5: Impact of type 2 parallelism on the size (in number of 64-bit reals) of
the send buffer. Test matrix is WANG3.

If there is not enough space to put the message in the buffer, the procedure
requesting the send returns with an error code. In such cases, to avoid deadlock,
the processor will try to receive messages until space becomes available in its local
send buffer. Let us take a simple illustrative example. Processor A has filled-up its
buffer doing an asynchronous send of a large message to processor B. Processor B
has done the same to processor A. The next messages sent by both processors A
and B will then be blocked until the other processor has received the first message.
More complicated situations involving more processors can occur, but in all cases
the key issue for avoiding deadlock is that each processor tries not to be the blocking
processor.
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MPI only guarantees that messages are non-overtaking, that is if a processor
sends two messages to the same destination, then the receiver will receive them in
the same order. For synchronous algorithms the non-overtaking property is often
enough to ensure that messages are received in the correct order. With a fully
asynchronous algorithm, based on dynamic scheduling of the computational tasks,
it can happen that messages arrive “too early”. In this case, it is crucial to be
sure that the “missing” messages have already been sent so that blocking receives
can be performed to process all messages that should have already been processed
at this stage of the computation. As a consequence, the order used for sending
messages is important. The impact on the algorithm design will be illustrated in
Sections 3.4.1 and 3.4.3 during the detailed description of type 2 parallelism for
LDLT factorization.

A pool of tasks is used to implement dynamic scheduling. All tasks ready to be
activated on a given processor are stored in the pool of tasks local to the processor.
Each processor then executes the following algorithm.

Algorithm 2
while ( all nodes not processed )
if local pool empty then
blocking wait for a message; process the message
elseif message available then
recetve and process message
else
extract work from the pool, and process it.
endif

end while

Note that priority is given to message reception. The main reasons for this
choice are first that the message received might be a source of additional work and
parallelism and second that the sending processor might be blocked because its send

buffer is full.

3.4 LU versus LDL" approaches

In this section, we describe the main differences between the symmetric and the
unsymmetric algorithms. The symmetric code currently solves symmetric positive-
definite systems, but it has been designed so that future developments like fully
distributed LDLT factorization with numerical pivoting and the detection of the
null spaces, remain possible.

Taking into account the symmetry of the input matrix leads to a reduction in
both the memory requirements (smaller input matrix, matrix of factors and frontal
matrices) and the computational cost. Only the lower part of the original matrix
is accessed and the LDLT factorization is computed. Even if a significant part of
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the implementation issues are shared by the LU and LDL” factorizations, taking
into account the symmetry implies major modifications in the assembly process, in
the blocked factorization of nodes of type 1 and 2, and in the type 2 and 3 parallel
algorithms.

Taking into account the symmetry for a node of type 3 was rather straightforward
because our implementation is based on the use of ScaLAPACK (Blackford et al.
1997) routines (PDGETRF for the LU factorization and PDPOTRF for the LL”
factorization). Note that a parallel version of the LDLT factorization for dense
matrices does not exist in ScaLAPACK and that this issue will have to be addressed
in a future release of the code that includes numerical pivoting for symmetric
matrices.

3.4.1 Assembly process

An estimation of the frontal matrix structure (size, number of fully-summed
variables) is computed during the analysis phase. The final structure and the list
of indices in the front is however only computed during the assembly process of
the factorization phase. The list of indices of a front is the result of a merge of
the index lists of the contribution blocks of the children with the list of indices in
the arrowheads associated with all the fully-summed variables of the front. Once
the index list of the front is computed, the assembly of numerical values can be
performed efficiently.

Let inode be a node of type 2. The master of inode defines the partition of rows
of the frontal matrix into blocks, and chooses a set of slave processors that will
participate in the parallel assembly and factorization of inode. It sends a message
(identified by the tag DESC_STRIP) describing the work to be done on each slave
processor. It also sends a message (with tag MAPROW) to all type 1 nodes and
slave processors of type 2 nodes for the children of inode, giving them information
on where to send their contribution blocks for the assembly process.

As already mentioned in Section 3.3, the order in which messages are sent is
important. For example, a slave of inode may receive a contribution block before
receiving the message of tag DESC_STRIP from its master. To allow this slave
processor to safely perform a blocking receive on the missing DESC_STRIP message,
we must ensure that the master of the node has sent DESC_STRIP before sending
MAPROW. Otherwise we cannot guarantee that DESC_STRIP will actually be sent
(for example, the send buffer might be full).

The main difference between the symmetric and the unsymmetric case is that a
global ordering of the indices in the frontal matrices is necessary in the symmetric
case to guarantee that all lower triangular entries in a contribution row of a child
are in the lower triangular part of the corresponding row in the parent. We use the
global ordering obtained during analysis, that is, the order in which variables would
be eliminated if no numerical pivoting occurs.
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Moreover, it is quite easy to perform a merge of sorted lists efficiently. If we
assume that the list of indices of the contribution block of each child is sorted
then the sorted merge algorithm will be efficient if the indices associated with the
arrowheads are also sorted. Unfortunately, sorting all the arrowheads can be costly.
Furthermore, the number of fully-summed variables (or number of arrowheads) in
a front might be quite large and the efficiency of the merging algorithm might be
affected by the large number of sorted lists to merge. Based on experimental results,
we have observed that it is enough to sort only the arrowhead associated with the
first fully-summed variable of each frontal matrix. The assembly process for the list
of indices of the node is thus described in Algorithm 3.

Algorithm 3 Assembly of indices in a parent node

1. Sorted merge of the sorted lists of the indices of the children and of the first
arrowhead.

2. Build and sort variables belonging only to the other arrowheads (and not found
at step 1)

3. Merge the sorted list built at step 2 with the sorted list obtained at step 1.

The key issue for efficiency of Algorithm 3 is the fact that only a small number of
variables are found at step 2. This has been experimentally validated. For example,
on matrix WANG3, the average number of indices found at step 2 was 0.3. The
numerical assembly can then be performed, row by row.

3.4.2 Factorization of type 1 nodes

Blocked algorithms are used during the factorization of type 1 nodes and, for both
the LU and the LDLT factorization algorithms, we want to keep the possibility
of postponing the elimination of fully-summed variables. Note that classical
blocked algorithms for the LU and LLT factorizations of full matrices (Anderson,
Bai, Bischof, Demmel, Dongarra, DuCroz, Greenbaum, Hammarling, McKenney,
Ostrouchov and Sorensen 1995) are quite efficient, but it is not the case for the
LDLT factorization.

We will briefly compare kernels involved in the blocked algorithms. We then show
how we have exploited the frontal matrix structure to design an efficient blocked
algorithm for the LDL? factorization.

Let us suppose that the frontal matrix has the structure of Figure 3.6, where A
is the block of fully summed variables available for elimination. Note that, in the
code, the frontal matrix is stored by rows.

During LU factorization, a KJI-SAXPY blocked algorithm (Amestoy and Duff
1989, Daydé and Duff 1991) is used to compute the LU factor associated with the
block of fully summed rows (matrices A and C'). The Level 3 BLAS kernel DTRSM
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Figure 3.6: Structure of a type 1 node.

is used to compute the off-diagonal block of L (overwriting matrix B). Updating
the matrix F is then a simple call to the Level 3 BLAS kernel, DGEMM.

During LDLT factorization, a right-looking blocked algorithm is first used to
factor the block column of the fully summed variables. Let L,ss be the off diagonal
block of L stored in place of the matrix B and D 4 be the diagonal matrix associated
with the LD L” factorization of the matrix A. The updating operation of the matrix
FE is then of the form £ < F — LoffDAL?;ff where only the lower triangular part of
E needs to be computed. No Level 3 BLAS kernel is available to perform this type
of operation which corresponds to a generalized DSYRK kernel.

Note that, when we know that no pivoting will occur (symmetric positive definite
matrices), Lofs is computed in one step using the Level 3 BLAS kernel DTRSM.
Otherwise, the trailing part of L,¢; has to be updated after each step of the blocked
factorization, to allow for a stability test for choosing the pivot.

To update the matrix F, we have applied the ideas used by Daydé and Duff (1996)
to design efficient and portable Level 3 BLAS kernels. Blocking of the updating is
done in the following way. At each step, a block of columns of E (E} in Figure 3.7) is
updated. In our first implementation of the algorithm, we stored the scaled matrix

Figure 3.7: Blocks used for updates of the contribution part of a type 1 node.

D ALfff in matrix C', used here as workspace. Because of cache locality issues, the
Megaflop rate was still much lower than that of the LU or Cholesky factorizations.
In the current version of the algorithm, we compute the block of columns of D ALZ} f
(C in Figure 3.7) only when it will be used to update Ej. Furthermore, to increase
cache locality, the same working area is used to store all (), matrices. This was
possible because (), matrices are never reused in the algorithm. Finally, the Level
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3 BLAS kernel DGEMM is used to update the rectangular matrix Fj. This implies
more operations but is more efficient on the IBM SP2 than the updates of the shaded
trapezoidal submatrix of £}, using a combination of DGEMYV and DGEMM kernels.
Our final blocked algorithm is summarized in Algorithm 4.

Algorithm 4 LDLT factorization of type 1 nodes
Blocked factorization of the fully summed columns
do k = 1, nb_blocks

Compute Cy, (block of columns of DoL%; )
B, E), — chk
end do

3.4.3 Parallel factorization of type 2 nodes

The differences between the symmetric and the unsymmetric case come from a
modification of both the frontal matrix structure and the parallel algorithm. The
modification of the matrix structure is illustrated in Figure 3.8. In both algorithms,
the master processor is in charge of all the fully summed rows and the blocked
algorithms used to factor the block of fully-summed rows are the ones described in
the previous subsection.

Unsymmetric Symmetric
% Master
Master (1)
,,,,,,,,,,,,,,,,,,,, I D A
Slave 1

2) Slavel

Contribution

Slave 2 rows

Slave 3

Figure 3.8: Structure of a type 2 node.

In the unsymmetric case, at each block step, the master processor sends the
factorized block of rows to its slave processors and then updates its trailing
submatrix. The behaviour of the algorithm is illustrated in Figure 3.9, where
program activity is represented in black, inactivity in grey, and messages by lines
between processes. The figure is a trace record generated by the VAMPIR package
(Nagel, Arnold, Weber, Hoppe and Solchenbach 1996) from PALLAS. We see that,
on this example, the master processor is relatively more loaded than the slaves.

In the symmetric case, a different parallel algorithm has been implemented. The
master of the node performs a blocked factorization of only the diagonal block of
fully-summed rows. At each block step, its part of the factored block of columns is
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Figure 3.9: VAMPIR trace of an isolated type 2 unsymmetric factorization (Master
is Process 1).

broadcast to all slaves ((1) in Figure 3.8). Each slave can then use this information
to compute its part of the block column of L and to update part of the trailing
matrix. Each slave, apart from the last one, then broadcasts its just computed part
of the block of column of L to the following slaves (illustrated by messages (2) and
(3) in Figure 3.8). Note that, to process messages (2) or (3) at step k of the blocked
factorization, the corresponding message (1) at step k£ must have been received and
processed.

We have chosen a fully asynchronous approach to implement the algorithm.
Messages (1) and (2) might thus arrive in any order. The only property that MPI
guarantees is that messages of type (1) will be received in the correct order because
they come from the same source processor. When a message (2) at step k arrives
too early, we have then to force the reception of all the pending messages of type
(1) for steps smaller than or equal to k. This induces a necessary property in the
broadcast process of messages (1): if at step k, message (1) is sent to slave 1, we
must be sure that it will also be sent to other slaves. In our implementation of
the broadcast, we first check availability of memory in the send buffer (with no
duplication of data to be sent) before starting effective send operations. Thus, if the
asynchronous broadcast starts, it will complete.

Similarly to the unsymmetric case, our first implementation of the algorithm is
based on constant row block size. We can clearly observe from the corresponding
execution trace in Figure 3.10 that the later slaves have much more work to perform
than the others. To balance work between slaves, later slaves should hold less
rows. This has been implemented using a heuristic that aims at balancing the total
number of floating-point operations involved in the type 2 node factorization on each
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Figure 3.10: VAMPIR trace of an isolated type 2 symmetric factorization; constant
row block sizes. (Master is Process 1).

slave. As a consequence, the number of rows treated varies from slave to slave. The
corresponding execution trace is shown in Figure 3.11. We can observe that work on
the slaves is much better balanced and both the difference between the termination
times of the slaves and the elapsed time for factorization are reduced.

L T L T R R T

Figure 3.11: VAMPIR trace of an isolated type 2 symmetric factorization; variable
row block sizes. (Master is Process 1).

However, the comparison of Figures 3.9 and 3.11 shows that firstly the number
of messages involved in the symmetric algorithm is much larger than in the
unsymmetric case; secondly, that the master processor performs relatively less work
than in the parallel algorithm for unsymmetric matrices.
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4 Performance

The results presented in this section have been obtained on a 34 processor IBM SP2
located at GMD (Bonn, Germany). Each node of this computer is a 66 MHertz
processor with 128 MBytes of physical memory and 512 MBytes of virtual memory.
An approximate Minimum Degree (AMD) ordering (Amestoy, Davis and Duff 1996)
has been used to permute the initial matrix and all timings are given in seconds.

4.1 The theoretical speed-up of the methods

The maximum theoretical speed-up obtained for each type of parallelism is indicated
in Tables 4.1 and 4.2. In these tables, we use a few typical matrices from our set of
test problems. We do not take into account communication time and the number of
processors available is assumed infinite. No account is taken of changes to the tree
because of numerical pivoting. We compute the maximum theoretical speed-up by
dividing the total number of flops during factorization by the number of flops on
the longest path of the tree; for type 2 nodes, we suppose that the update on the
slave nodes can be done for free. A node is considered to be of type 2 only if its
contribution block is of size at least 200.

We also show speed-ups for the tree without the root in order to show the true
gains from type 2 parallelism. This is masked in the results for the complete tree
because of the amount of work performed at the root.

Complete tree Tree without root
Matrix Type 1 | Type 142 | Type 1+2+3 | Type 1 | Type 1+2
BCSSTK15 1.98 4.58 10.0 2.35 11.1
WANGS3 1.38 3.08 13.8 1.60 11.9
QUER 3.16 7.70 24.5 4.08 25.9

Table 4.1: Estimated speed-up for the unsymmetric solver.

Complete tree Tree without root
Matrix Type 1 | Type 142 | Type 1+2+3 | Type 1 | Type 1+2
BCSSTK15 1.98 5.61 16.7 | 2.35 22.6
WANGS3 1.38 3.67 46.9 1.60 68.1
QUER 3.16 9.68 69.5 4.08 105.6

Table 4.2: Estimated speed-ups for the symmetric solver.

As mentioned in Section 3.2, we notice that the parallelism arising from the tree
is very limited. This can be improved by using some other reordering techniques, for
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example combining nested dissection and minimum degree. We are experimenting
with such reorderings and plan to incorporate some code for this, developed from the
RALPAR partitioning package (Fowler and Greenough 1998), within our analysis
phase. This is also the topic of a collaboration with Roman and Pellegrini (LaBRI,
Bordeaux) and will not be addressed further in this paper. However, we see that a
significant speed-up increase is provided by parallelism of types 2 and 3. Note that
our model is very simple and therefore optimistic. It is also interesting to notice that
type 2 parallelism is better in the symmetric case than in the unsymmetric case.
This is due to the fact that, in the symmetric case, the master process is only in
charge of the diagonal block of fully summed variables whereas in the unsymmetric
case the master also computes the off-diagonal block (block of U factors) of the
frontal matrix.

4.2 Actual performance

We report, in Tables 4.3 and 4.4, some statistics on various test problems: the size
of the factors (both estimated and actual for unsymmetric test problems because
of numerical pivoting), the number of floating-point operations for elimination, the
size of the root node, and the time for analysis.

For some of the symmetric problems, we also give statistics on the corresponding
unsymmetrized problem, as this will allow us to compare the behaviour of the
symmetric and unsymmetric codes.

Nonzeros in Flops Size Time
factors (x10) (x107) of for
Matrix estim. | actual | estim. | actual | root | analysis
WANGS3 11.5 11.5 10.5 10.5 | 1601 7.3
INV-EXTRUSION-1 30.3 31.2 34.3 35.8 | 1913 5.2
MIXING-TANK 38.5 39.1 64.1 64.4 | 2985 5.6

Table 4.3: Statistics for unsymmetric test problems (ordering based on AMD).

We now report on numerical experiments on type 1, 2, and 3 parallelism on the
test problem WANG3, and on two instances of the problem QUER; one symmetric
and the other unsymmetric.

For the test problem WANGS3 (Table 4.5), timings obtained on 1 and 2 working
processors are high because of memory paging when using the virtual memory. For
larger numbers of processors, distribution of memory suppresses this effect. We
estimate the uniprocessor time without memory paging from the CPU time as 71.0
seconds, so speed-up should be compared to that. Comparing these results with the
theoretical study of Table 4.1, we observe that the theoretical speed-up gives a good
estimation of the actual speed-up for type 1 and type 2 parallelism. It shows the
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Nonzeros Flops Size | Time for

Matrix in factors | (x10%) | of root | analysis
(x109)
SYMMETRIC CODE
B5TUER 30 13.2 1435 16.2
BMW3_.2 59 44.9 2495 18.7
BMW7ST_1 31 15.4 1560 9.8
CRANKSEG_1 48 50.2 2161 10.8
CRANKSEG_2 73 101.9 3127 14.5
OILPAN 12 3.8 819 4.5
QUER 12 4.0 1043 3.0
UNSYMMETRIC CODE

B5TUER 52 26.4 1435 25.4
BMWT7ST_1 54 30.7 1560 19.8
CRANKSEG_1 80 100.4 2161 34.9
OILPAN 20 7.6 819 7.1
QUER 20 8.0 1043 5.5

Table 4.4: Statistics for symmetric test problems (ordering based on AMD).

Working Time for factorization (in seconds)

processors | Type 1 | Type 1 + Type 2 | Type 1l +2 + 3
1 206.6 142.4 216.4
2 105.6 81.0 96.5
4 51.1 40.0 24.6
8 46.0 28.6 19.5
12 49.2 28.1 18.8
16 47.4 29.2 17.3
24 46.7 29.7 16.7
32 45.6 27.2 16.6

Table 4.5: Influence of the types of parallelism for WANG3. Estimated sequential
CPU time without paging is 71.0 seconds.
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good overlapping of communication with computation since the estimated speed-
up did not take into account the communication time. For type 3 parallelism, the
estimated speed-up is quite optimistic.

Working Time for factorization

processors | Type 1l | Type 1 + Type 2 | Type 1l + 2 + 3
1 284.1 275.3 299.2
2 113.1 108.0 109.1
4 27.0 22.7 19.1
8 20.7 19.4 15.2
16 18.5 14.8 11.5
24 18.2 12.8 10.1
32 17.6 13.0 10.5

Table 4.6: Influence of the type of parallelism for QUER, treated as unsymmetric.
Estimated sequential CPU time without paging is 64.9 seconds.

Working Time for factorization (in seconds

processors | Type 1 | Type 1 + Type 2 | Type 1l +2 + 3
1 133.5 141.7 150.4
2 31.3 22.6 21.0
4 18.3 15.7 12.9
8 14.4 12.7 9.3
16 12.7 10.5 6.4
24 12.5 8.7 6.6
32 12.1 8.7 5.8

Table 4.7: Influence of the type of parallelism for QUER, treated as symmetric.
Estimated sequential CPU time without paging is 41.1 seconds.

The same data are given in Tables 4.6 and 4.7, for the test problem QUER
treated as symmetric, and unsymmetric (respectively). The estimated uniprocessor
CPU times without paging (64.9 and 41.1 for the unsymmetric and the symmetric
codes respectively) show that the uniprocessor Megaflop rate of the symmetric code
(97 Mflops) is not too far from the uniprocessor Megaflop rate of the unsymmetric
code (122 Mflops). Again, we observe that type 2 and 3 parallelism provide
a significant increase in performance, and that paging has occurred for small
numbers of processors. The higher speed-ups obtained on matrix QUER, treated
as unsymmetric, with type 2 parallelism (5.0) compared with matrix WANGS3
(2.6) reflect the difference in the estimated speed-up shown in Table 4.1. However,
we do not benefit from the larger theoretical speed-up of type 2 parallelism on
symmetric matrices compared with unsymmetric matrices (theoretical speed-up
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of 9.68 compared to 7.70). The effective maximum speed-up obtained with the
symmetric and the unsymmetric codes are in fact comparable being 4.7 and 5.0
respectively. This can be explained by the fact that, as already illustrated in
Figures 3.9 and 3.11, although the master is in charge of relatively less work in the
symmetric case, the parallelism of type 2 involves an increase in the communication
flow and more irregularity of the distribution is required to correctly balance work
on the slaves. Our present modification, illustrated in Figure 3.11, redistributes the
block rows so that the number of flops performed by each slave is balanced but does
not take into account the greater communication with later slaves.

We see, however, that parallelism of type 3 for symmetric matrices provides
relatively larger speed-up increases than for unsymmetric matrices. As a result, on
32 processors, the factorization time of the symmetric code is almost half that of
the unsymmetric code. The Megaflop rate for the symmetric and the unsymmetric
factorizations is thus comparable (around 750 Mflops).

More results on all the large symmetric problems of our set are reported in
Table 4.8. Results with the unsymmetric code are shown in Table 4.9. Some of the
symmetric matrices could not be processed with the unsymmetric code because of
the increase in memory requirements.

In these two tables, the time for distribution is the time for distributing the
permuted initial matrix from the host processor onto the other processors; then
the times for factorization and for solve are reported for various numbers of working
processors. The analysis is sequential and so the time, reported in Tables 4.3 and 4.4,
is independent of the number of processors. The distribution of the initial matrix
is relatively time consuming because the same processor is in charge of sending
pieces of the input matrix to all other processors and the communication network
quickly gets saturated. Furthermore, if the initial matrix is large, paging can occur
at this step, for example for CRANKSEG_1 or BMWT7ST_1 when treated as
unsymmetric. Using an initially distributed matrix on entry could lead to a better
redistribution time and could avoid paging problems during this phase, especially
in the case where the initial matrix does not fit in the physical memory of the host
processor, but this would also require a more complicated interface to enable the
user to provide a distributed matrix.

For the symmetric matrices appearing in both Tables 4.8 and 4.9, we can compare
the performance of the symmetric and unsymmetric codes. We see that, even if the
most important phases (assembly, factorization of types 1 and 2 nodes) of the LDL”
factorization are intrinsically more complicated than during LU factorization, the
LDLT gets full benefit from the symmetry and is usually almost twice as fast as
the LU factorization. This was not the case in an earlier version of the symmetric
code and much effort has been spent on optimizing low-level kernels for symmetric
matrix calculations.

On large matrices and on a small number of processors, the problem of page
swapping can have a somewhat extreme influence on the time for solution. This is
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Working | Time for | Time for | Time for
Matrix processors distrib facto solve
B5TUER 4 12.0 151.05 122.67
B5TUER 8 12.6 31.18 2.16
B5TUER 16 13.9 17.81 1.92
B5TUER 24 17.4 14.71 1.59
B5TUER 32 18.4 12.46 2.16
BMW7ST_1 5 17.7 258.05 193.88
BMWT7ST_1 8 13.6 47.40 27.32
BMW7ST_1 16 12.4 19.51 2.02
BMW7ST_1 24 15.4 17.85 1.99
BMW7ST_1 32 30.3 15.21 1.42
OILPAN 2 6.3 40.75 19.3
OILPAN 4 6.4 13.61 0.96
OILPAN 8 7.3 8.96 0.92
OILPAN 16 7.3 7.18 0.77
OILPAN 24 6.8 6.46 0.73
OILPAN 32 7.4 6.06 0.72
QUER 1 4.5 150.41 142.58
QUER 2 4.5 21.00 0.93
QUER 4 4.4 12.97 0.76
QUER 8 4.5 9.27 0.73
QUER 16 4.8 6.41 0.59
QUER 24 5.1 6.63 0.64
QUER 32 5.4 5.85 0.54
BMW3_2 8 129.8 369.52 237.74
BMW3_2 16 124.6 125.50 47.98
BMW3_2 24 145.2 45.17 5.60
BMW3_2 32 134.5 32.87 6.82
CRANKSEG_1 8 77.0 480.22 170.51
CRANKSEG_1 16 90.1 252.11 24.37
CRANKSEG_-1 24 96.8 65.53 2.32
CRANKSEG_1 32 125.4 59.68 2.92
CRANKSEG_2 16 159.4 | 1045.34 90.33
CRANKSEG_2 24 249.7 457.26 39.39
CRANKSEG_2 32 222.6 139.66 11.13

Table 4.8: Results for the symmetric version of the code.
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Working | Time for | Time for | Time for
Matrix Processors distrib facto solve
B5TUER 8 164.2 111.45 58.9
B5TUER 16 181.2 29.35 3.77
B5TUER 24 177.7 26.72 3.15
B5TUER 32 168.0 26.40 2.67
WANGS3 1 0.6 216.44 133.03
WANGS3 2 0.7 96.54 36.09
WANGS3 4 0.6 24.58 0.70
WANGS3 8 0.6 19.47 0.77
WANG3 12 0.6 18.99 0.67
WANGS3 16 0.6 17.35 0.70
WANGS3 24 0.6 16.68 1.04
WANGS3 32 0.7 16.62 0.78
INV-EXTRUSION-1 4 5.79 546.42 123.71
INV-EXTRUSION-1 8 6.27 131.26 17.25
INV-EXTRUSION-1 16 6.8 54.6 1.17
INV-EXTRUSION-1 24 8.2 54.9 1.40
INV-EXTRUSION-1 32 9.6 55.6 1.39
BMWT7ST_1 8 209.9 163.07 106.99
BMWT7ST_1 16 195.5 37.96 3.60
BMWT7ST_1 24 177.0 35.13 3.50
BMWT7ST_1 32 202.1 33.99 3.72
MIXING-TANK 8 7.0 321.07 87.32
MIXING-TANK 16 8.0 68.61 1.73
MIXING-TANK 24 9.6 61.36 1.25
MIXING-TANK 32 11.6 60.87 1.23
OILPAN 2 10.4 119.69 157.60
OILPAN 4 11.0 21.11 0.74
OILPAN 8 10.8 15.35 0.72
OILPAN 16 11.1 12.54 0.68
OILPAN 24 12.6 11.63 0.72
OILPAN 32 13.0 11.55 0.79
QUER 1 8.5 299.19 340.16
QUER 2 13.7 109.09 97.35
QUER 4 8.5 19.11 0.79
QUER 8 8.9 15.23 0.60
QUER 16 14.6 11.54 0.57
QUER 24 9.2 10.13 0.73
QUER 32 14.2 10.50 1.33
CRANKSEG_1 32 333.8 168.07 9.83

Table 4.9: Results for the unsymmetric version of the code (symmetric matrices are
expanded).
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due to the fact that computational time is dominated by memory access time due to
page swapping. Therefore, accessing the relatively large matrix of the factors twice,
as is done in the solve phase, is more critical than the number of actual floating-point
operations.

Generally, we observe that our distributed memory approaches correctly exploit
the memory available leading to superlinear speed-ups. They also exploit well the
parallelism of the assembly tree and, even if additional tuning might still be done
on type 2 parallelism, the overall speed-up of the codes is satisfactory. Finally one
of the main properties of our parallel LDL” factorization is that its Megaflop rate
is comparable to that of the parallel LU factorization.

5 Conclusions and perspectives

From the results of Section 4, we can conclude that the current version of our
MUMPS code does parallelize well and produces comparable speed-ups to shared
memory variants, at least on a small number of processors. It is difficult to fully
assess the scalability because of memory effects on small numbers of processors and
insufficiently large problems for many processors. Certainly the Achilles heel for the
code, as for all direct methods, is that of storage, somewhat exacerbated for the
current code because of the need to estimate storage requirements in advance. This
is one aspect on which we plan to work further. Certainly we plan to test the code
on the ORIGIN 2000 computer in Bergen that has a far larger memory that should
mitigate against paging effects.

We are currently studying other orderings including the use of dissection
algorithms and their combination with minimum degree. Not only should this help
the parallelism but often the overall number of floating-point operations is reduced.

We also plan to investigate further the dynamic scheduling of tasks from type 2
nodes based on estimates of the load on each processor.

Our current symmetric code has been developed from a code for unsymmetric
matrices and has retained the capability of postponing eliminations for numerical
reasons. This functionality can help in detecting rank and in developing an algorithm
for null-space detection and determination of the null-space basis which will be
needed by our code when used within PARASOL as a local solver within the domain
decomposition codes, for example when using the Neumann-Neumann algorithm as

described by Mandel (1993).
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