RAL-TR-1998-052

Preconditioning and Parallel Preconditioning’

[ain S. Duff? and Henk A. van der Vorst?

ABSTRACT

We review current methods for preconditioning systems of equations for their solution
using iterative methods. We consider the solution of unsymmetric as well as symmetric
systems and discuss techniques and implementations that exploit parallelism.

We particularly study preconditioning techniques based on incomplete LU factorization,
sparse approximate inverses, polynomial preconditioning, and block and element by
element preconditioning. In the parallel implementation, we consider the effect of

reordering.

Keywords: preconditioning, parallel computers, sparse matrices, incomplete
factorization, sparse approximate inverses, block methods, element by element
preconditioning.

AMS(MOS) subject classifications: 65F05, 65F50.

IThis paper is a preprint of a Chapter of the book “Numerical Linear Algebra for High-
Performance Computers” by Dongarra, Duff, Sorensen, and van der Vorst that will be

published by STAM Press.

21.S.Duff@rl.ac.uk

3vorst@math.uu.nl, Mathematical Institute, University of Utrecht, The Netherlands.
Current reports available by anonymous ftp from matisa.cc.rl.ac.uk in the directory
“pub/reports”. This report is in file duvoRAL98052.ps.gz. Also published as Technical
Report TR/PA/98/23 from CERFACS.

Department for Computation and Information
Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

July 28, 1998.

Contents
1 The Purpose of Preconditioning

2 Incomplete LU Decompositions

2.1 Efficient Implementations of ILU(0) Preconditioning
2.2 General Incomplete Decompositions
2.3 Variants of ILU Preconditioners
2.4 Some General Comments on ILU

Some Other Forms of Preconditioning

3.1 Sparse Approximate Inverse (SPAI)
3.2 Polynomial Preconditioning
3.3 Preconditioning by Blocks or Domains
3.4 Element by Element Preconditioners

Vector and Parallel Implementation of Preconditioners

4.1 Partial Vectorization Lo oL
4.2 Reordering the Unknowns
4.3 Changing the Order of Computation
4.4 Some Other Vectorizable Preconditioners
4.5 Parallel Aspects of Reorderings
4.6 Experiences with Parallelism

10
13
15

15
15
17
18
20

1 The Purpose of Preconditioning

There are many occasions and applications where iterative methods fail to converge
or converge very slowly. In this paper, we consider methods of preconditioning
systems so that their subsequent solution by iterative methods is made more
computationally feasible.

The general problem of finding a preconditioner for a linear system Az = b is to
find a matrix K (the preconditioner or preconditioning matriz) with the properties
that

1. K is a good approximation to A in some sense.
2. The cost of the construction of K is not prohibitive.
3. The system Kz = b is much easier to solve than the original system.

The idea is that the matrix K ' A may have better properties in the sense that well
chosen iterative methods converge much faster. In this case, we solve the system
K~'Az = K—'binstead of the given system Az = b. Krylov subspace methods need
the operator of the linear system only for computing matrix vector products. This
means that we can avoid forming K 1A explicitly. Instead, we compute v = K 1 Av
by first computing w = Av and then obtain u by solving Ku = w. Note that, when
solving the preconditioned system using a Krylov subspace method, we will get quite
different subspaces than for the original system. The aim is that approximations in
this new sequence of subspaces will approach the solution more quickly than in the
original subspaces.

There are different ways of implementing preconditioning; for the same
preconditioner these different implementations lead to the same eigenvalues for the
preconditioned matrices. However, the convergence behavior is also dependent on
the eigenvectors or, more specifically, on the components of the starting residual in
eigenvector directions. Since the different implementations can have quite different
eigenvectors, we might thus believe that their convergence behavior might be quite
different. Three different implementations are:

1. Left-preconditioning: apply the iterative method to K~'Az = K~1b. We
note that symmetry of A and K does not imply symmetry of KA. However,
if K is symmetric positive definite then [z, y] = (x, Ky) defines a proper inner
product. It is easy to verify that K~!A is symmetric with respect to the new
inner product [,], so that we can use methods like MINRES, SYMMLQ), and
CG (when A is positive definite as well) in this case. Popular formulations of
preconditioned CG are based on this observation.

If we are using a minimal residual method (GMRES or MINRES), we should
note that with left-preconditioning we are minimizing the preconditioned
residual K !(b— Az;), which may be quite different from the residual b — Ax,.

1

This could have consequences for stopping criteria that are based on the norm
of the residual.

2. Right-preconditioning: apply the iterative method to AK 'y = b, with
r = K~'y. This form of preconditioning also does not lead to a symmetric
product when A and K are symmetric. With right-preconditioning we have
to be careful with stopping criteria that are based upon the error: ||y — yi||2
may be much smaller than the error-norm ||z —z; |2 (equal to || K~ (y —u1)||2)
that we are interested in. Right-preconditioning has the advantage that it only
affects the operator and not the right-hand side. This may be useful in the
design of software.

3. Two-sided preconditioning: For a preconditioner K with K = K; K>, the
iterative method can be applied to K;'AK, 'z = K;'b, with 2 = K, 'z.
This form of preconditioning may be used for preconditioners that come in
factored form. It can be seen as a compromise between left- and right-
preconditioning. This form may be useful for obtaining a (near) symmetric
operator for situations where K cannot be used for the definition of an inner
product (as described under left-preconditioning).

The choice of K varies from purely “black box” algebraic techniques which
can be applied to general matrices to “problem dependent” preconditioners which
exploit special features of a particular problem class. Although problem dependent
preconditioners can be very powerful, there is still a practical need for efficient
preconditioning techniques for large classes of problems. One should realize that
working with a preconditioner adds to the computational complexity of an iterative
method, and the use of a preconditioner only pays if there is a sufficient reduction
in the number of iterations. We will discuss this aspect in some more detail.

First, we consider iterative methods with a fixed amount of computational
overhead per iteration step, independent of the iteration number: CG, MINRES,
Bi-CG, CGS, QMR, etc. We denote by t4 the computing time for the matrix-
vector product with A, and the computational overhead per iteration step (for inner
products, vector updates, etc) by tp. The computing time for k iteration steps is
then given by

Ty =]{?(tA + t()).

For the preconditioned process we make the following assumptions with respect to
computing time:

(a) the action of the preconditioner, for instance the computation of K 1w takes
OétA.

(b) the construction costs for the preconditioner are given by tc.

(c) preconditioning reduces the number of iterations by a factor f (f > 1).

2

The computing time for the preconditioned process, to obtain an approximation
comparable to the unpreconditioned process, can be expressed as:

Tp = ;((O& —|— 1)tA —|—t()) —|—tc.

The goal of preconditioning is that T < Ty, which is the case if

(OL+1)tA+tO
tA—{-t()—% '

f>

We see that the construction of expensive preconditioners is pointless if the number
of iterations k for the unpreconditioned process is low. It is thus realistic to consider
only cases where k is so large that the initial costs t¢ play no role: t4 +tp > to/k.
Furthermore, in many cases the matrix-vector products are the most expensive part
of the computation: t4 > tp, so that we only profit from preconditioning if the
reduction f in the number of iteration steps is significantly bigger than a + 1. In
view of the fact that many popular preconditioners are difficult to parallelize, this
requirement is certainly not trivially fulfilled in many situations.

For methods such as GMRES and FOM, the situation is slightly more
complicated because of the fact that the overhead costs increase quadratically with
the number of iterations. Let us assume that we use GMRES(m), and that we
characterize the computational time as:

t 4 for the matrix-vector product with A,
to for the costs of one inner product plus one SAXPY.

Then the computing time for k& cycles of unpreconditioned GMRES(m) is given
roughly by

1
TU = k:(mtA —|— §m2t()).

Again we assume that km is so large that the time for constructing a preconditioner
can be ignored, and that with preconditioning we need f times fewer iterations. The
computing time per action of the preconditioner is again given by at,. Then the
computing time for preconditioned GMRES(m) is given by

k 1
Tp = ?(m(a +1)t4 + 5m%o),
and, after some manipulation, we find that preconditioning only helps to reduce the
computational time if
(Oé —|— 1)tA —|— %mt()

ta+ %‘mt() ’

f>

We see that, if m is small and if ¢ 4 dominates, then the reduction f has to be (much)
bigger than a + 1, in order to make preconditioning practical. If m is so large that

%mto dominates over t4, then obviously a much smaller f may be sufficient to
amortize the additional costs for the preconditioner.

We now say something about the effects of preconditioning. There is very little
theory for what one can expect a prior: with a specific type of preconditioner. It
is well known that incomplete LU decompositions exist if the matrix A is an M-
matrix, but that does not say anything about the potential reduction in the number
of iterations. For the discretized Poisson equation, it has been proved (Sleijpen and
van der Vorst 1995) that the number of iterations will be reduced by a factor larger
than 3.

For systems that are not positive definite, almost anything can happen. For
instance, let us consider a symmetric matrix A that is indefinite. The goal of
preconditioning is to approximate A by K, and a common strategy is to ensure
that the preconditioned matrix K ~'A has its eigenvalues clustered near 1 as much
as possible. Now imagine some preconditioning process in which we can improve
the preconditioner continuously from K = [to K = A. For instance, one might
think of incomplete LU factorization with a drop-tolerance criterion. For K = I,
the eigenvalues of the preconditioned matrix are clearly those of A and thus are at
both sides of the origin. Since eventually when the preconditioner is equal to A all
eigenvalues are exactly 1, the eigenvalues have to move gradually in the direction of
1, as the preconditioner is improved. The negative eigenvalues, on their way towards
1 have to pass the origin, which means that while improving the preconditioner the
preconditioned matrix may from time to time have eigenvalues very close to the
origin. In our chapter on iterative methods, we explained that the residual in the
1-th iteration step can be expressed as

Ty = Pz‘(B)Tm

where B represents the preconditioned matrix. Since the polynomial P; has to
satisfy P;(0) = 1, and since the values of P; should be small on the eigenvalues of B,
this may help to explain why there may not be much reduction for components
in eigenvector directions corresponding to eigenvalues close to zero, if ¢ is still
small. This means that, when we improve the preconditioner, in the sense that
the eigenvalues are getting more clustered towards 1, its effect on the iterative
method may be dramatically worse for some “improvements”. This is a qualitative
explanation of what we have observed many times in practice. By increasing the
number of fill-in entries in ILU, sometimes the number of iterations increases. In
short, the number of iterations may be a very irregular function of the level of the
incomplete preconditioner. For other types of preconditioners similar observations
may be made.

There are only very few specialized cases where it is known a prior:i how to
construct a good preconditioner and there are few proofs of convergence except in
very idealized cases. For a general system, however, the following approach may help
to build up one’s insight into what is happening. For a representative linear system,

4

one starts with unpreconditioned GMRES(m), with m as high as possible. In one
cycle of GMRES(m), the method explicitly constructs an upper Hessenberg matrix
of order m, denoted by H,,. This matrix is reduced to upper triangular form but,
before this takes place, one should compute the eigenvalues of H,,, called the Ritz
values. These Ritz values usually give a fairly good impression of the most relevant
parts of the spectrum of A. Then one does the same with the preconditioned system
and inspects the effect on the spectrum. If there is no specific trend of improvement
in the behavior of the Ritz values, when we try to improve the preconditioner, then
obviously we have to look for another class of preconditioner. If there is a positive
effect on the Ritz values, then this may give us some insight as to how much more
the preconditioner has to be further improved in order to be effective. At all times,
we have to keep in mind the rough analysis that we made in this chapter, and check
whether the construction of the preconditioner and its costs per iteration are still
inexpensive enough to be amortized by an appropriate reduction in the number of
iterations.

2 Incomplete LU Decompositions

Iterative methods converge very fast if the matrix A is close to the identity matrix
in some sense, and the main goal of preconditioning is to obtain a matrix KA
which is close to I. The phrase “in some sense” may have different meanings for
different iterative methods: for the standard unpreconditioned Richardson method
we want ||I — A||2 to be (much) smaller than 1; for many Krylov subspace methods
it is desirable that the condition number of K 1A is (much) smaller than that of A,
or that the eigenvalues of K 1A are strongly clustered around some point (usually
1). In all these situations the preconditioning operator K approximates A.

It is quite natural to start looking at a direct solution method for Az = b, and
to see what variations we can make if the direct approach becomes too expensive.
The most common direct technique is to factorize A as A = LU, if necessary with
permutations for pivoting. One of the main problems with the LU factorization of
a sparse matrix is that often the number of entries in the factors is substantially
greater than in the original matrix so that, even if the original matrix can be stored,
the factors can not.

In Incomplete LU factorization, we keep the factors artificially sparse in order
to save computer time and storage for the decomposition. The incomplete factors
are used for preconditioning in the following way. First note that, for all iterative
methods discussed, we never need the matrices A or K explicitly, but we only need
to be able to compute the result of Ay for any given vector y. The same holds
for the preconditioner K, and typically we see in codes that these operations are
performed by calls to appropriate subroutines. We need to be able to compute
efficiently the result of K 'y for any given vector y. In the case of an incomplete
LU factorization, K is given in the form K = LU. Note that, in this chapter, L and

U will denote incomplete factors and the use of L and U will be reserved for the
actual LU factors. z = K1y is computed by solving z from LUz = y. This is done
in two steps: first solve w from Lw = y and then compute z from Uz = w. Note
that these solution steps are simple backsubstitutions and, if the right-hand sides are
not required further in the iterative process, the solution of either back-substitution
may overwrite the corresponding right-hand side, in order to save memory. We hope
that it is not necessary to stress this, but one should never compute the inverse of
K, or of its factors, explicitly, unless the inverse has some very convenient sparse
form (for instance when K is a diagonal matrix).

We shall illustrate the above sketched process for a popular preconditioner
for sparse positive definite symmetric matrices, namely, the incomplete Cholesky
factorization (Golub and Van Loan 1996, Meijerink and van der Vorst 1977,
Meijerink and van der Vorst 1981, Varga 1960) with no fill-in. We will denote
this preconditioner as IC(0). CG in combination with IC(0) is often referred to as
ICCG(0). We shall consider IC(0) for the matrix with five nonzero diagonals, that
arises after the 5-point finite-difference discretization of the 2-dimensional Poisson
equation over a rectangular region, using a grid of dimensions n, by n,. If the
entries of the three nonzero diagonals in the upper triangular part of A are stored
in three arrays a(-,1) for the main diagonal, a(-,2) for the first co-diagonal, and
a(+,3) for the n,-th co-diagonal, then the i-th row of the symmetric matrix A can
be represented as in (2.1).

A= Qi—n,.3 ai—12 Qi1 G2 a; 3 (2.1)

This corresponds to the unknowns over a grid as shown below:

If we write A as A = Lo+diag(A)+ L 4%, in which L, is the strictly lower triangular
part of A, then the IC(0)-preconditioner can be written as

K = (Ls+ D)D (L4 + D).

6

This relation only holds if there are no corrections to off-diagonal non-zero entries
in the incomplete elimination process for A and if we ignore all fill-in outside the
non-zero structure of A. It is easy to do this for the 5-point Laplacian. For
other matrices, we can force the relation to hold only if we ignore also Gaussian
elimination corrections at places where A has non-zero entries. This may decrease
the effectiveness of the preconditioner, because we then neglect more operations in
the Gaussian elimination process.

For IC(0), the entries d; of the diagonal matrix D can be computed from the
relation

diag(K) = diag(A).
For the five-diagonal A, this leads to the following relations for the d;:

di = a1 — ai_yp/di 1 —ai,, 3/di .- (2.2)

Obviously this is a recursion in both directions over the grid. This aspect will be
discussed later when considering the application of the preconditioner in the context
of parallel and vector processing.

The so-called modified incomplete decompositions (Dupont, Kendall and
Rachford Jr. 1968, Gustafsson 1978) follow from the requirement that

rowsum(K) = rowsum(A) + ch’. (2.3)

The term ch? is for grid-oriented problems with mesh-size h. Although in many
applications this term is skipped (that is, one often takes ¢ = 0), this may lead to
ineffective preconditioning or even break-down of the preconditioner, see Eijkhout
(1992). In our context, the rowsum requirement in (2.3) amounts to an additional
correction to the diagonal entries d;, compared to those computed in (2.2).
Axelsson and Lindskog (1986) describe a relaxed form of this modified incomplete

decomposition that, for the five-diagonal A, leads to the following relations for the
d,’l

di = a1 — ai—l,z(aq:—m + OéCLz'—l,S)/di—l
- ai—'nx,3(a1'—nz,3 + aai—nx,Z)/di—nx'

Note that, for &« = 0 we have the standard IC(0) decomposition, whereas for o =
1 we have the modified incomplete Cholesky decomposition MIC(0) proposed by
Gustafsson (1978). It has been observed that, in many practical situations, o = 1
does not lead to a reduction in the number of iteration steps, with respect to o = 0,
but in our experience, taking o = .95 almost always reduces the number of iteration
steps significantly (van der Vorst 1989b). The only difference between the IC(0)
and MIC(0) is the choice of the diagonal D; in fact, the off-diagonal entries of the
triangular factors are identical.

For the solution of systems Kw = r, given by
K 'r = (L3 4+ D) 'D(Ls+ D)™ tr,

it will almost never be advantageous to determine the matrices (L4 + D) ! and
(La + D)1 explicitly, since these matrices are usually dense triangular matrices.
Instead, for the computation of, say, y = (L4 + D) !r, y is solved from the linear
lower triangular system (L4 + D)y = r. This step then leads typically to relations
for the entries y;, of the form

Yi = (7“1' — Q;—1.2Yi—1 — ai—nz,Byi—nz)/dia

which again represents a recursion in both directions over the grid, of the same form
as the recursion for the d;.

For differently structured matrices, we can also perform incomplete LU
factorizations. For efficient implementation, often many of the ideas, shown here for
incomplete Cholesky factorizations, apply. For more general matrices with the same
non-zero structure as the 5-point Laplacian, some other well known approximations
lead to precisely the same type of recurrence relations as for Incomplete LU and
Incomplete Cholesky: for example, Gauss-Seidel, SOR, SSOR (Hageman and Young
1981), and SIP (Stone 1968). Hence these methods can often be made vectorizable
or parallel in the same way as for incomplete Cholesky preconditioning.

Since vector and parallel computers do not lend themselves well to recursions in
a straightforward manner, the recursions just discussed may seriously degrade the
effect of preconditioning on a vector or parallel computer, if carried out in the form
given above. This sort of observation has led to different types of preconditioners,
including diagonal scaling, polynomial preconditioning, and truncated Neumann
series. Such approaches may be useful in certain circumstances, but they tend
to increase the computational complexity (by requiring more iteration steps or by
making each iteration step more expensive). On the other hand, various techniques
have been proposed to vectorize the recursions, mainly based on reordering the
unknowns or changing the order of computation. For regular grids, such approaches
lead to highly vectorizable code for the standard incomplete factorizations (and
consequently also for Gauss-Seidel, SOR, SSOR, and SIP). If our goal is to minimize
computing time, there may thus be a trade-off between added complexity and
increased vectorization. However, before discussing these techniques, we shall
present a method of reducing the computational complexity of preconditioning.

2.1 Efficient Implementations of ILU(0) Preconditioning

Suppose that the given matrix A is written in the form A = L4 + diag(A) + Uy, in
which L4 and Uy, are the strictly lower and upper triangular part of A, respectively.

Eisenstat (1981) has proposed an efficient implementation for preconditioned
iterative methods, when the preconditioner K can be represented as

K =(Ls+ D)D (D +Uy), (2.4)

in which D is a diagonal matrix. Some simple Incomplete Cholesky, incomplete LU,
modified versions of these factorizations, as well as SSOR can be written in this
form. For the incomplete factorizations, we have to ignore all the LU factorization
corrections to off-diagonal entries (Meijerink and van der Vorst 1981); the resulting
decomposition is referred to as ILU(0) in the unsymmetric case, and 1C(0) for the
incomplete Cholesky situation. For the 5-point finite-difference discretized operator
over rectangular grids in 2D, this is equivalent to the incomplete factorizations with
no fill-in, since in these situations there are no Gaussian elimination operations on
non-zero off-diagonal entries.

The first step to make the preconditioning more efficient is to eliminate the
diagonal D in (2.4). We rescale the original linear system Az = b to obtain

D Y2AD Y25 = D 2, (2.5)

or A = b, with A = D™Y24D"Y2 & = D'?z, and b = D~Y%. With A =
L3 + diag(A) + Uy, we can easily verify that

K=(Ly+1)(I+Uy. (2.6)

Note that the corresponding triangular systems, like (L; + I)r = w, are more
efficiently solved, since the division by the entries of D is avoided. We also note

that this scaling does not necessarily have the effect that diag(A) = 1.

The key idea in Eisenstat’s approach (also referred to as Fisenstat’s trick) is to
apply standard iterative methods (that is, in their formulation with K = I) to the
explicitly preconditioned linear system

(Ly+ DA+ Uy = (Lz+ D)7, (2.7)

where y = (I + Uz)Z. This explicitly preconditioned system will be denoted by
Py = c. Now we can write A in the form

A=L;+1+diag(4) -2 +1+U;. (2.8)

This expression, as well as the special form of the preconditioner given by (2.6), is
used to compute the vector Pz for a given z by

Pz=(Ly+1)T"A(I +Up) 2 = (Ly + D)7z + (diag(A) — 21)t) +t, (2.9)

with
t=(I+Up ‘2 (2.10)

9

Note that the computation of Pz is equivalent to solving two triangular systems plus
the multiplication of a vector by a diagonal matrix (diag(A) — 27) and an addition
of this result to z. Therefore the matrix-vector product for the preconditioned
system can be computed virtually at the cost of the matrix-vector product of the
unpreconditioned system. This fact implies that the preconditioned system can
be solved by any of the iterative methods for practically the same computational
cost per iteration step as the unpreconditioned system. That is to say, the
preconditioning comes essentially for free, in terms of computational complexity.

In most situations we see, unfortunately, that while we have avoided the fast
part of the iteration process (the matrix-vector product Ap), we are left with the
most problematic part of the computation, namely, the triangular solves. However,
in some cases, as we shall see, these parts can also be optimized to about the same
level of performance as the matrix-vector multiplies.

2.2 General Incomplete Decompositions

We have discussed at some length the incomplete Cholesky decomposition for the
matrix corresponding to a regular 5-point discretization of the Poisson operator
in 2D. It was shown by Meijerink and van der Vorst (1977) that incomplete LU
factorizations exist for M-matrices with an arbitrary sparsity structure, where fill-
in is only accepted for specified indices.

Let the positions in which corrections to matrix entries may occur (note that
this includes both fill-ins and changes to original entries) be given by the index set
S, that is

lij=0 if >4 or (i,j)¢S; w,;=0 if i>j or (i,5)¢S5 (2.11)

In the previous section, we considered incomplete factorizations with no fill-in
outside the sparsity pattern of A; the corresponding S would have been:

S={,5) | ay#0} (2.12)

Since we want the product, K, of the incomplete factors of A, to resemble A as
much as possible, a typical strategy is to require the entries of K = LU to match
those of A on the set S:

]{37;7'7‘ = Q45 if (Z,]) e S. (213)

The factors L and U, that satisfy the conditions (2.12) and (2.13), can be computed
by a simple modification of the Gaussian elimination algorithm; see Figure 2.1,
following Axelsson (1994). The main difference from the usual LU factorization is
in the innermost j-loop where an update to a, ; is computed only if it is allowed by
the constraint set S. Although we describe the incomplete decomposition for a full
matrix (by referring to all entries @, ;), it should be clear that we will almost never

10

for r := 1 step 1 until n — 1 do
d:=1/a,,
for i := (r + 1) step 1 until n do
if (¢,7) € S then
e:=da;,; i, =€
for j:= (r + 1) step 1 until n do
if (i,7) € S and (r,j) € S then
Q5 = Qi — €Qp 5
end if
end (j-loop)
end if
end (i-loop)
end (7-loop)

Figure 2.1: ILU for an n by n matrix A

do this in practice for a given sparse matrix. In practical cases, we only access the
entries that belong to a given data structure.

After completion of the algorithm, the incomplete LU factors are stored in the
corresponding lower and upper triangular parts of the array A, which means that we
have to make a copy of the array A because we need the original matrix for matrix-
vector products. In special cases this can be avoided, in particular for situations
where we have neglected all elimination corrections to off-diagonal entries in A. This
is sometimes done in order to be able to apply Eisenstat’s trick, see Section 2.1.

If all fill-ins are allowed, that is if S consists of all possible index pairs, then the
above algorithm is simply the usual LU factorization.

Although the ILU preconditioner works quite well for many problems, it can
be easily improved for some PDE problems. For example, when ILU is applied to
elliptic problems, its asymptotic (as the mesh size h becomes small) convergence rate
is only a constant factor better than that of the unpreconditioned A (for an analysis
of this factor for IC(0), see van der Vorst (1982a)). This was already observed by
Dupont et al. (1968) and, for elliptic PDEs, they proposed a simple modification
which dramatically improves the performance as A tends to zero. We shall next
describe the generalization of this modified ILU (MILU) preconditioner to a general
matrix A due to Gustafsson (1978).

The condition for the diagonal entries of K, namely k;; = a;;, is replaced by

> ki;=> ai;+ch? foralli... (2.14)
=1

j=1

11

The addition of the term ch? has been recommended for problems stemming from
discretized second order PDE’s over grids with mesh size h. For more general
matrices, we do not know what to add in order to make the incomplete decomposition
more stable. Moreover, for more general matrices, MILU may not be very successful
because the approximation is tuned so that solutions of equations with the coefficient
matrix A with the property that they are only slowly varying over the grid are also
solutions when A is replaced by K (modulo corrections of the order of ch?). In
popular implementations, one often takes ¢ = 0, but one has to be very careful with
this, see Eijkhout (1992).

For diagonally dominant M-matrices, the condition (2.14) with ¢ # 0 is sufficient
to determine the LU factors in MILU directly. However, in practice it is easier to
compute these LU factors by a simple modification of the ILU algorithm: instead
of dropping the forbidden fill-ins in the ILU algorithm, these terms are added to
the main diagonal of the same row; see Figure 2.2. Again, it can be shown that the
computed LU factors satisfy (2.14). Note that only the j-loop is different from the
ILU algorithm.

for r := 1 step 1 until n do a,, = a,, + ch?
for r := 1 step 1 until n — 1 do
d:=1/a,,
for i := (r + 1) step 1 until n do
if (¢,7) € S then
e:=a;,d;a;, =€
for j:= (r + 1) step 1 until n do
if (r,7) € S then
if (¢,7) € S then
Q5 = Qi 5 — €Ay g
else
Qji 2= Qi3 — €Qp 5
end if
end if
end (j-loop)
end if
end (i-loop)
end (r-loop)

Figure 2.2: Algorithm MILU for a general matrix A

Again, the LU factors overwrite the lower and upper triangular parts of the array

12

A respectively, and A has to be saved prior to this decomposition operation, since
it is required in the iterative process.

Even though MILU produces a better asymptotic condition number bound than
ILU for elliptic problems, in practice MILU does not always perform better than
ILU. This may have to do with the higher sensitivity of MILU to round-off errors
(van der Vorst 1990a). This provides motivation for an interpolated version between
ILU and MILU, see for example Ashcraft and Grimes (1988) and Axelsson and
Lindskog (1986). The idea is that in the MILU algorithm, the update of a;; in the
innermost loop is replaced by:

a”' = am‘ — weam,

where 0 < w < 1 is a user specified relaxation parameter. Obviously, w = 0 and 1
correspond to ILU and MILU respectively. It was observed empirically by van der
Vorst (1990a), and verified using the Fourier analysis method (Chan 1991), that a
value of w = 1 — ch? gives the best results for some classes of matrices coming from
elliptic problems. The optimal value of ¢ can be estimated and is related to the
optimal value of ¢ in the DKR method of Dupont et al. (1968). Notay (1994) gave
strategies for choosing w = w; ; dynamically in order to improve the robustness and
performance for anisotropic problems.

2.3 Variants of ILU Preconditioners

Many variants on the theme of incomplete or modified incomplete decomposition
have been proposed in the literature. These variants are designed to either reduce
the total computational work or to improve the performance on vector or parallel
computers. We will describe some of the more popular variants and give references
to where more details can be found for other variants.

A natural approach is to allow more fill-in in the LU factor (that is a larger
set S), than those allowed by the condition (2.12). Several possibilities have been
proposed. The most obvious variant is to allow more fill-ins in specific locations in
the LU factors, for example allowing more nonzero bands in the L and U matrices
(that is larger stencils) (Axelsson and Barker 1984, Gustafsson 1978, Meijerink and
van der Vorst 1981). The most common location-based criterion is to allow a set
number of levels of fill-in, where original entries have level zero, original zeros have
level co and a fill-in in position (7, j) has level determined by

Level,; = min {Level;, + Levely; + 1}.
1<k<INin(i,j)

In the case of simple discretizations of partial differential equations, this gives a
simple pattern for incomplete factorizations with different levels of fill-in. For
example, if the matrix is from a five-point discretization of the Laplacian in two-
dimensions, level 1 fill-in will give the original pattern plus a diagonal inside the

13

outermost band (for instance, see Meijerink and van der Vorst (1981) and Watts-III
(1981)).

The other main criterion for deciding which entries to omit is to replace the
drop-by-position strategy in (2.12) by a drop-by-size one. That is, a fill-in entry is
discarded if its absolute value is below a certain threshold value. This drop tolerance
strategy was proposed by Munksgaard (1980), @sterby and Zlatev (1983), and Zlatev
(1991). For application to fluid flow problems, see D’Azevedo, Forsyth and Tang
(1992) and Young, Melvin, Johnson, Bussoletti, Wigton and Samanth (1989). For
the regular problems just mentioned, it is interesting that the level fill-in and drop
strategies give a somewhat similar incomplete factorization, because the numerical
value of successive fill-in levels decreases markedly, reflecting the characteristic decay
in the entries in the factors of the LU decomposition of A. For general problems,
however, the two strategies can be significantly different. Since it is usually not
known a priori how many entries will be above a selected threshold, the dropping
strategy is normally combined with restricting the number of fill-ins allowed in each
column (Saad 1994). When using a threshold criterion, it is possible to change it
dynamically during the factorization to attempt to achieve a target density of the
factors (Axelsson and Munksgaard 1983, Munksgaard 1980).

Although the notation is not yet fully standardized, the nomenclature commonly
adopted for incomplete factorizations is ILU(k), when k levels of fill-in are allowed
and ILUT (e, f), for the threshold criterion when entries of modulus less than « are
dropped and the maximum number of fill-ins allowed in any column is f. There
are many variations on these strategies and the criteria are sometimes combined.
In some cases, constraining the row sums of the incomplete factorization to match
those of the matrix, as in MILU, can help (Gustafsson 1978).

Shifts can be introduced to prevent break down of the incomplete factorization
process. It was proved by Meijerink and van der Vorst (1977) that incomplete
decompositions exist for general M-matrices. It is well known that they may not
exist if the matrix is positive definite, but does not have the M-matrix property.
Manteuffel (1980) considered incomplete Cholesky factorizations of diagonally
shifted matrices. He proved that if A is symmetric positive definite, then there
exists a constant « > 0, such that the incomplete Cholesky factorization of A + af
exists. Since we make an incomplete factorization for A + al, instead of A, it is
not necessarily the case that this factorization is also efficient as a preconditioner;
the only purpose of the shift is to avoid breakdown of the decomposition process.
Whether there exist suitable values for « such that the preconditioner exists and is
efficient is a matter of trial and error.

Another point of concern is that for non M-matrices the incomplete factors
of A may be very ill-conditioned. For instance, it has been demonstrated by van
der Vorst (1981) that, if A comes from a 5-point finite-difference discretization of
Au+B(u, +u,) = f, then for 8 sufficiently large, the incomplete LU factors may be
very ill conditioned even though A has a very modest condition number. Remedies

14

for reducing the condition numbers of I and U have been discussed by Elman (1989)
and van der Vorst (1981).

2.4 Some General Comments on ILU

The use of incomplete factorizations as preconditioners for symmetric systems has
a long pedigree (Meijerink and van der Vorst 1977) and good results have been
obtained for a wide range of problems. An incomplete Cholesky factorization where
one level of fill-in is allowed (IC(1)) has been shown to provide a good balance
between reducing the number of iterations and the cost of computing and using the
preconditioning. Although it may be thought that a preordering that would result
in low fill-in for a complete factorization (for example, minimum degree) might
be advantageous for an incomplete factorization, it is not true in general (Duff
and Meurant, 1989 and Eijkhout, 1991) and sometimes the number of iterations of
ICCG(0) (=CG+IC(0)-preconditioning) can double if a minimum degree ordering
is used. This effect of reordering is not so apparent for ILUT preconditioners.

The situation with symmetric M-matrices has been analyzed and is well
understood. For more general symmetric matrices, the analysis is not as refined,
but there is much recent effort to develop preconditioners that can be computed and
used on parallel computers. Most of this work has, however, been confined to highly
structured problems from discretizations of elliptic partial differential equations in
two and three dimensions, see for example van der Vorst (1989b). Experiments
with unstructured matrices have been reported by Heroux, Vu and Yang (1991) and
Jones and Plassmann (1994), with reasonable speed-ups being achieved by Jones
and Plassmann (1994).

The situation for unsymmetric systems is, however, much less clear. Although
there have been many experiments on using incomplete factorizations and there
have been studies of the effect of orderings on the number of iterations (Benzi,
Szyld and van Duin 1997, Dutto 1993), there is very little theory governing the
behavior for general systems and indeed the performance of ILU preconditioners is
very unpredictable. Allowing high levels of fill-in can help but again there is no
guarantee, as we have argued in Section 1.

3 Some Other Forms of Preconditioning

3.1 Sparse Approximate Inverse (SPAI)

Of course, the LU factorization is one way of representing the inverse of a sparse
matrix in a way that can be economically used to solve linear systems. The main
reason why explicit inverses are not used is that, for irreducible matrices, the inverse
will always be structurally dense. That is to say, sparse techniques will produce a
dense matrix even if some of its entries are zero (Duff, Erisman, Gear and Reid 1988).

15

However, this need not be a problem if we follow the flavor of ILU factorizations and
compute and use a sparse approximation to the inverse. Perhaps the most obvious
technique for this is to solve the problem

m}i{n||[— AK]||z,t (3.1)

where K has some fully or partially prescribed sparsity structure. One advantage of
this is that this problem can be split into n independent least-squares problems
for each of the n columns of K. FEach of these least-squares problems only
involves a few variables (corresponding to the number of entries in the column
of K) and, because they are independent, they can be solved in parallel. With
these techniques it is possible (Cosgrove, Diaz and Griewank 1992) to successively
increase the density of the approximation to reduce the value of (3.1) and so, in
principle, ensure convergence of the preconditioned iterative method. The small
least-squares subproblems can be solved by the standard (dense) QR factorizations
(Cosgrove et al. 1992, Gould and Scott 1998, Grote and Huckle 1997). In a further
attempt to increase sparsity and reduce computational costs in the solutions of
the subproblems, it has been suggested to use a few steps of GMRES to solve the
subsystems (Chow and Saad 1994). A recent study indicates that the computed
approximate inverse may be a good alternative for ILU (Gould and Scott 1998),
but it is much more expensive to compute both in terms of time and storage, at
least if computed sequentially. This means that it is normally only attractive to use
this technique if the computational costs for the construction can be amortized by
using the preconditioner for more right-hand sides. One other problem with these
approaches is that, although the residual for the approximation of a column of K
can be controlled (albeit perhaps at the cost of a rather dense column in K), the
nonsingularity of the matrix K is not guaranteed. The singularity of K does not
prevent us from multiplying by this preconditioner but will cause us problems if
the solution vector has components in the null-space of K. Partly to avoid this, it
was proposed to approximate the triangular factors of the inverse (Kolotilina and
Yeremin 1993). The non-singularity of the factors can be easily controlled and,
if necessary, the sparsity pattern of the factors may also be controlled. Following
this approach, it has been suggested to generate sparse approximations to an A-
biconjugate set of vectors using drop tolerances (Benzi, Meyer and Tuma 1996, Benzi
and Tuma 1998b). In a scalar or vector environment, it is also much cheaper to
generate the factors in this way than to solve the least-squares problems for the
columns of the approximate inverse (Benzi and Ttma 1998a).

One of the main reasons for the interest in sparse approximate inverse
preconditioners is the difficulty of parallelizing ILU preconditioners, not only in
their construction but also in their use, which requires a sparse triangular solution.
However, although almost every paper on approximate inverse preconditioners states

We recall that || ||z denotes the Frobenius norm of a matrix viz. ||A||r = V2o 9

16

that the authors are working on a parallel implementation, it is only quite recently
that papers on this have appeared (Barnard, Bernardo and Simon 1997, Barnard and
Clay 1997). For highly structured matrices, some experiences have been reported
by Grote and Simon (1993). Gustafsson and Lindskog (1995), have implemented a
fully parallel preconditioner based on truncated Neumann expansions (van der Vorst
1982b) to approximate the inverse SSOR factors of the matrix. Their experiments
(on a CM-200) show a worthwhile improvement over a simple diagonal scaling.
Note that, because the inverse of the inverse of a sparse matrix is sparse, there
are classes of dense matrices for which a sparse approximate inverse might be a
very appropriate preconditioner. This may be the case for matrices that arise from
inverse problems (Alleon, Benzi and Giraud 1997). For some classes of problems, it
may be attractive to construct the explicit inverses of the LU factors, even if these
are considerably less sparse than the factors L and U, because such a factorization
can be more efficient in parallel (Alvarado and Schreiber 1993). An incomplete form
of this factorization for use as a preconditioner has been proposed by Alvarado and

Dag (1994).

3.2 Polynomial Preconditioning

Of course it is, in theory, possible to represent the inverse by a polynomial in
the matrix and one could use this polynomial as a preconditioner. However, one
should realize that iterative Krylov subspace methods, such as GMRES, CG, etc.,
construct approximate solutions in a Krylov subspace. This means that the solutions
can be interpreted as polynomials in the (preconditioned) matrix, applied to the
right-hand side. Since the Krylov methods construct such solutions with certain
optimality properties (for instance minimal residual), it is not so obvious why an
additional polynomial might be effective as a preconditioner. The main motivation
for considering polynomial preconditioning is to improve the parallel performance
of the solver, since the matrix-vector product is often more parallelizable than other
parts of the solver (for instance the inner products). The main problem is to find
effective low degree polynomials. One approach, reported by Dubois, Greenbaum
and Rodrigue (1979), is to use the low order terms of a Neumann expansion of
(I — B)™1,if A can be written as A = [— B and the spectral radius of B is less than
1. Tt was suggested by Dubois et al. (1979) to use a matrix splitting A = K — N
and a truncated power series for K !N when the condition on B is not satisfied.
More general polynomial preconditioners have also been proposed (see, for example,
Ashby, 1991, Johnson, Micchelli and Paul, 1983, Saad, 1985). Because the iterative
solvers implicitly construct (optimal) polynomial approximations themselves, using
spectral information obtained during the iterations, it is not easy to find effective
alternatives without knowing such spectral information explicitly. This may help
explain why the experimental results are not generally very encouraging and have
been particularly disappointing for unsymmetric problems.

17

3.3 Preconditioning by Blocks or Domains

Another whole class of preconditioners that use direct methods are those where
the direct method, or an incomplete version of it, is used to solve a subproblem of
the original problem. This is often used in a domain decomposition setting, where
problems on subdomains are solved by a direct method but the interaction between
the subproblems is handled by an iterative technique.

If the system is reducible and the matrix is block diagonal, then the solution to
the overall problem is just the union of the solution of the subproblems corresponding
to the diagonal blocks. Although the overall problem may be very large, it is
possible that the subproblems are small enough to be solved by a direct method.
This solution is effected by a block Jacobi factorization and the preconditioned
blocks of this matrix are just the identity. In general, our system will not be
reducible, but it might still be appropriate to use the block Jacobi method as a
preconditioner. For general systems, one could apply a block Jacobi preconditioning
to the normal equations which would result in the block Cimmino algorithm (Arioli,
Duff, Noailles and Ruiz 1992). A similar relationship exists between a block SOR
preconditioning and the block Kaczmarz algorithm (Bramley and Sameh 1992).
Block preconditioning for symmetric systems is discussed by Concus, Golub and
Meurant (1985); in Concus and Meurant (1986), incomplete factorizations are used
within the diagonal blocks. Attempts have been made to preorder matrices to
put large entries into the diagonal blocks so that the inverse of the matrix is well
approximated by the block diagonal matrix whose block entries are the inverses of
the diagonal blocks (Choi and Szyld 1996).

In a domain decomposition approach, the physical domain or grid is decomposed
into a number of overlapping or non-overlapping subdomains on each of which an
independent complete or incomplete factorization can be computed and applied
in parallel. The main idea is to obtain more parallelism at the subdomain level
rather than at the grid-point level. Usually, the interfaces or overlapping region
between the subdomains must be treated in a special manner. The advantage of
this approach is that it is quite general and different methods can be used within
different subdomains.

Radicati di Brozolo and Robert (1989) used an algebraic version of this approach
by computing ILU factors within overlapping block diagonals of a given matrix
A. When applying the preconditioner to a vector v, the values on the overlapped
region are averaged from the two values computed from the two overlapping ILU
factors. The approach of Radicati and Robert has been further refined by De Sturler
(1994), who studies the effects of overlap from the point of view of geometric domain
decomposition. He introduces artificial mixed boundary conditions on the internal
boundaries of the subdomains. In De Sturler (1994):Table 5.8, experimental results
are shown for a decomposition into 20x20 slightly overlapping subdomains of a
200x400 mesh for a discretized convection-diffusion equation (5-point stencil). Using
an ILU preconditioning on each subdomain, it is shown that the complete linear

18

system can be solved by GMRES on a 400-processor distributed memory Parsytec
system with an efficiency of about 80% (that means that, with this domain adapted
preconditioner, the process is about 320 times faster than ILU preconditioned
GMRES for the unpartitioned linear system on a single processor).

In Tan (1995), Tan studied the interface conditions along boundaries of
subdomains and forced continuity for the solution and some low order derivatives
at the interface. He also proposed including mixed derivatives in these relations, in
addition to the conventional tangential and normal derivatives. The parameters
involved are determined locally by means of normal mode analysis, and they
are adapted to the discretized problem. It is shown that the resulting domain
decomposition method defines a standard iterative method for some splitting
A = K — N, and the local coupling aims to minimize the largest eigenvalues of
I — AK~!. Of course this method can be accelerated, and impressive results for
GMRES acceleration are shown by Tan (1995). Some attention is paid to the case
where the solutions for the subdomains are obtained with only modest accuracy per
iteration step.

Chan and Goovaerts (1990) showed that the domain decomposition approach can
actually lead to improved convergence rates, at least when the number of subdomains
is not too large. This is because of the well known divide and conquer effect when
applied to methods with superlinear complexity such as ILU: it is more efficient to
apply such methods to smaller problems and piece the global solution together.

Recently, Washio and Hayami (1994) employed a domain decomposition
approach for a rectangular grid in which one step of SSOR is performed for the
interior part of each subdomain. In order to make this domain-decoupled SSOR
more like global SSOR, the SSOR iteration matrix for each subdomain is modified
by premultiplying it by a matrix (I — X) ! and postmultiplying it by (I — Xy) .
The SSOR preconditioner, with relaxation parameter w, can then be expressed as

-1

et (2o (2) (Proe)

In this expression, D represents the diagonal of the given matrix A and Lp, Up
represent the strict lower and upper triangular parts of A, respectively, in which
connections to neighboring domains are set to zero. The idea is to choose X, and
Xy in order to correct for these neglected couplings, and so that K is equal to the
full SSOR decomposition. Let Ly, Uy represent the neglected couplings in the lower
and upper triangular parts of A, respectively, then one approach is to compute the

correction matrices as)

D
XL:LN<_+LB>)
w

D -1
XU:<_+(]B> UN.
w

19

In order to further improve the parallel performance, the inverses in these expressions
are approximated by low-order truncated Neumann series. A similar approach is
suggested by Washio and Hayami (1994) for a block modified ILU preconditioner.
Experimental results have been reported for a 32-processor NEC Cenju distributed
memory computer.

3.4 Element by Element Preconditioners

In finite-element problems, it is not always possible or sensible to assemble the
entire matrix, and hence preconditioners are required that can be constructed at
the element level. The first to propose such element by element preconditioners
were Hughes, Levit and Winget (1983). The main idea in these element by
element preconditioners is that the element matrices are decomposed into their LU
factors and that the back and forward sweeps associated with the (incomplete) LU
factorizations are replaced by a series of mini-sweeps for the element factorizations.
We will explain this in more detail.

Let Az = b denote the global assembled system in the finite-element model. The
matrix A is assembled from the local element matrices A., and we have

e

A=Y A,
e=1

where n. denotes the number of elements.

In many codes, the assembly of A is avoided, which may help to reduce memory
storage and/or communication with secondary storage. Instead, all computations
are done with the local A,. The preconditioners that we discussed earlier are,
however, based on the structure of the global matrix A. Hughes et al proposed
a local element preconditioning matrix P, as follows:

P, =1+ D Y*A,—D,)D 2

in which D denotes the diagonal of A, and D, denotes the diagonal of A,. It is easy
to construct D from the A., and it is not necessary to assemble A completely for
this. The idea is that

Ne

pP=]]~.,
e=1
may be viewed as an approximation for the scaled matrix D~ Y2AD1/2, and this
matrix P is taken as the element by element preconditioner. In iterative solvers, we
then have to solve systems like Pw = z, and this is simply done by computing w
from .
w= [] Pz,

e=n,

20

that is, a small system with P, is solved for each relevant section of the right-hand
side z (in fact the components of 2 corresponding to the e element).

For symmetric positive definite problems, there is a problem, since the product
of symmetric matrices is not necessarily symmetric, so that P cannot be used
in combination with, for instance, Conjugate Gradients. Hughes et al suggest
circumventing this problem by first making a Cholesky decomposition of P.:

P, =L.LT.

The preconditioner is then taken as P =LL7, defined by

Ne

L=1]]Le.
e=1

In van Gijzen (1994), the parallel implementation of the element by element
preconditioner has been discussed. Note that we are free to choose the order in
which we number the elements; although each ordering leads formally to a different
preconditioner. We may use this ‘freedom’ to select an ordering that admits some
degree of parallelism, and in van Gijzen (1994) it is proposed to subdivide the set of
elements into n, groups, each of n., nonadjacent elements. It is easily verified that
the subproduct of element preconditioning matrices for each group can be written
as a sum:
Neg Neg
(H PJ) 2= Pz,
eg=1 eg=1
and each term in this sum can be processed in parallel.
A slightly different idea is suggested by Gustafsson and Lindskog (1986). In that
paper it is suggested, for symmetric positive-definite A, to decompose each A, as
A, = L.LT and to construct the preconditioner as K = LLT, with

e

L=Y L.
e=1

Since L is not necessarily a lower triangular matrix, this has to be forced explicitly
by performing the local node numbering so that increasing local node numbers
correspond to increasing global node numbers. Since the L, may be singular, it is
further suggested to improve the numerical stability of L (by increasing the values
of the diagonal entries relative to the off-diagonal entries), by replacing L with L:

L+ (1+¢h)Dy,

Le =
$T1+4¢h

where L denotes the off-diagonal part of L, Dy, represents the diagonal of L, h is a
measure for the size of the finite elements, and ¢ is a user defined value of order 1.
Also for this approach, we can treat non-adjacent elements in parallel.

21

There may be other reasons for considering element by element inspired
preconditioners. In many realistic models there is some local problem, for instance
the formation of cracks under the influence of point forces in concrete or other
materials. It may then seem logical to assemble the elements, around the place
where some particular effect is expected, into some super-element. We can then form
either complete or incomplete decompositions of these super-elements, depending
on their size or complexity, and repeat the above procedure with the mix of super-
elements and remaining regular elements. This approach bridges the gap between
element by element preconditioning and the (incomplete) LU factorization of the
fully assembled matrix, and it seems plausible that the effect of the preconditioning
based on super-elements will more and more resemble the preconditioning based
on the fully assembled matrix as the super-elements grow in size. Some promising
results have been obtained by this super-element technique (see, for instance, Daydé,
L’Excellent and Gould, 1997, van Gijzen, 1994), but the selection of appropriate
super-elements is still an open question.

4 Vector and Parallel Implementation of
Preconditioners

4.1 Partial Vectorization

A common approach for the vectorization of the preconditioning part of an algorithm
is known as partial vectorization. In this approach, the nonvectorizable loops are
split into vectorizable parts and nonvectorizable remainders. Schematically, this
approach can be explained as follows. If we assume that the preconditioner is written
in the form K = LU, where L is lower triangular and Uis upper triangular then, as
we discussed before, solving w from Kw = r consists in solving Ly = r and Uw = Y
successively. Both systems lead to similar vectorization problems, and therefore we
consider only the partial vectorization of the computation of y from Ly = r. The
first step is to regard L as a block matrix with blocks of suitably chosen sizes (not
all the blocks need to have equal size):

Lig
Loq Lag
7o L3y Lzo L33
Ln.l Ln,2 . . Ln,n

Next, we partition the vectors y and r conformally in subvectors y; and r;, so that
the vector length of the ith subvector is equal to the block size of L, ;. The subvector
y; 1s then the solution of

22

Liyi =7 — (Liavh + Lisya + - + Liio1Yi-1)-

Note that the amount of work for computing all the partitions of y successively
is equal to the amount of work for solving Ly =7in a straightforward manner.
However, by rearranging the loops for the subblocks, we see that computations for
the right-hand side, for each subvector y;, can be vectorized.

For the five-point finite-difference matrix A, we take the block size equal to n,,
the number of grid points in the z-direction. In that case the standard incomplete
decomposition of A leads to a factor L for which the L;; are lower bidiagonal
matrices, the L;,_; are diagonal matrices, and all of the other L;; vanish. Hence,
the original nonvectorizable three-term recurrence relations are now replaced by
two-term recurrence relations of length n,, and vectorizable statements of length n,
also.

We have thus vectorized half of the work in the preconditioning step, so that
the performance of this part almost doubles. In practice, the performance is often
even better because, for many machines, optimized software is available for two-term
recurrence relations and the Fortran compiler often automatically replaces this type
of computation by the optimized code.

We illustrate the effect of partial vectorization by an example. If our five-diagonal
model problem is solved by the preconditioned CG algorithm, and the vectors are of
length n, the operation count per iteration step is roughly composed as follows: 6n
flops for the three vector updates, 4n flops for the two inner products, 9n flops for
the matrix-vector product, and 8n flops for solving Kw = r, if we assume that A has
been scaled such that the factors of K have unit diagonal. Assuming that the first
19n flops are executed at a very high vector speed and that the preconditioning part
is not vectorized and runs at a speed of S Mflop/s, we conclude, using Amdahl’s law,
that the Megaflop rate for one preconditioned CG iteration step is approximately
given by

27/(8/S) ~ 3.4S Mflop/s.

Since for most existing vector computers S is rather modest, the straightforward
preconditioned CG algorithm (as well as other iterative methods) has a
disappointingly low performance. Note that applying Eisenstat’s trick (Section 2.1)
does not lower the CPU time noticeably in this case, since the preconditioning is
really the bottleneck. With partial vectorization, we find that the Megaflop rate
will be approximately

27/(4/S1) ~ 6.851 Mflop/s,

where S; is the Megaflop rate for a two-term recursion. For many computers, Sy
can be twice as large as S. In practice, the modest block size of the subblocks
L;;—; will also often inhibit high Megaflop rates for the vectorized part of the

23

preconditioning step. Nevertheless, it is not uncommon to observe in practice that
partial vectorization more than doubles the performance.

For most parallel computers and many preconditioners, the performance of the
preconditioned CG process is so low that the reduction in the number of iteration
steps (because of preconditioning) is not reflected by a comparable reduction in
CPU time, with respect to the unpreconditioned process. In other words, we have
to seek better parallelizable or vectorizable preconditioners in order to beat the
unpreconditioned CG process with respect to CPU time (see also Section 1).

4.2 Reordering the Unknowns

A standard trick for exploiting parallelism is to select all unknowns that have no
direct relationship with each other and to number them first. This is repeated
for the remaining unknowns. For the five-point finite-difference discretization
over rectangular grids, this approach is known as a red-black ordering. For more
complicated discretizations, graph coloring techniques can be used to decouple the
unknowns in large groups. In either case, the effect is that the matrix is permuted
correspondingly and can be written, after reordering, in block form as

Al,l A1,2 A1.3 - Al,s
A2,1 A2,2 A2.3 - A2,5
A= AS,l A3,2 A3.3 - AS,s
As,l As,2 As,3 — As,s

such that all the block matrices A;; are diagonal matrices, with the exception of
irregularly structured problems when A, may not be diagonal. For example, for
red-black ordering we have s = 2. Then the incomplete LU factorization K of the
form

K= (Ls+ D)D" Us+ D)

with L4 and Uy equal to the strict lower and strict upper triangular part of A,
respectively, leads to factors Ly + D and Uy + D that can be represented by the
same nonzero structure, for example

Dia
As1 Do
L= As1 Azp Ds3
Ag1 Ago . .. Dy

24

The corresponding triangular system (L4 + D)y = 7 can be solved in an obvious
way by exploiting the block structure on a vector or parallel computer. The required
matrix-vector products for the subblocks A;; can be optimized as in Section 4.1
(with, of course, smaller vector lengths than for the original system).

For the five-point finite-difference matrix A, the red-black ordering leads to a very
vectorizable (and parallel) preconditioner. The performance of the preconditioning
step is as high as the performance of the matrix-vector product. This implies that the
preconditioned processes, when applying Eisenstat’s trick, can be coded so that an
iteration step of the preconditioned algorithm takes approximately the same amount
of CPU time as for the unpreconditioned method. Hence any reduction in the
number of iteration steps, resulting from the preconditioner, translates immediately
to almost the same reduction in CPU time.

One should realize, however, that in general the factors of the incomplete LU
factorization of the permuted matrix A are not equal to the similarly permuted
incomplete factors of A itself. In other words, changing the order of the unknowns
leads in general to a different preconditioner. This fact should not necessarily
be a drawback, but often the reordering appears to have a rather strong effect
on the number of iterations, so that it can easily happen that the parallelism or
vectorizability obtained is effectively degraded by the increase in (iteration) work.
Of course, it may also be the other way around—that reordering leads to a decrease
in the number of iteration steps as a free bonus to the parallelism or vectorization
obtained. For standard five-point finite-difference discretizations of second-order
elliptic PDEs, Duff and Meurant (1989) report on experiments that show that most
reordering schemes (including nested dissection and red-black orderings) lead to a
considerable increase in iteration steps (and hence in computing time) compared
with the standard lexicographical ordering®. For an analysis of these effects, see
Eijkhout (1991) and Doi (1991). As noted before, this may work out differently in
other situations, but one should be aware of these possible adverse effects.

For red-black ordering, it can be shown that the condition number of the
preconditioned system is only about one quarter that of the unpreconditioned system
for ILU, MILU and SSOR, with no asymptotic improvement as h tends to zero (Kuo
and Chan 1990).

One way to obtain a better balance between parallelism and fast convergence
is to use more colors (Doi 1991). In principle, since there is not necessarily any
independence between different colors, using more colors decreases the parallelism
but increases the global dependence and hence the convergence. In Doi and Hoshi
(1992) up to 75 colors are used for a 762 grid on the NEC SX-3/14 resulting in a
2 Gflop/s performance, which is much better than that for the wavefront ordering,
see Chapter 4.3. With this large number of colors the speed of convergence for the

2An exception seems to be a class of parallel orderings introduced by van der Vorst (1987).
This will be described in Section 4.5

25

preconditioned process is virtually the same as with lexicographical ordering (Doi
1991).

The concept of multi-coloring has been generalized to unstructured problems by
Jones and Plassmann (1994). They propose effective heuristics for the identification
of large independent subblocks in a given matrix. For problems large enough to get
sufficient parallelism in these subblocks, their approach leads to impressive speed-
ups on parallel computers, in comparison with the natural ordering on one single
processor.

Meier and Sameh (1988) report on the parallelization of the preconditioned CG
algorithm for a multivector processor with a hierarchical memory (for example the
Alliant FX series). Their approach is based on a red-black ordering in combination
with forming a reduced system (Schur complement).

4.3 Changing the Order of Computation

In some situations it is possible to change the order of the computations (by
implicitly reordering the unknowns) without changing the results. This means that
bitwise the same results are produced, with the same roundoff effects. The only
effect is that the order in which the results are produced may differ from the standard
lexicographical ordering. A prime example is the incomplete LU preconditioner for
the five-point finite-difference operator over a rectangular grid.

We now number the vector and matrix entries according to the position in the
grid, that is y; ; refers to the component of y corresponding to the ¢, j-th grid point
(¢ in 2-direction and j in y-direction). The typical expression in the solution of the
lower triangular system zy =ris

Yij = (rij —i1j2% 15— Gij13Y%ii-1)/dij

where y; ; depends only on its previously computed neighbors in the west and south
directions over the grid:

Yi—1,5 Yi,j (4‘1)

Yij—1

26

Hence the unknowns y; ; corresponding to the grid points along a diagonal of the
grid, that is ¢+ + § = constant, depend only on the values of y corresponding
to the previous diagonal. Therefore, if we compute the unknowns in the order
corresponding to these diagonals over the grid, for each diagonal the y-values can
be computed independently, or in vector mode.

A number of complications arise, however. If we do not wish to rearrange the
unknowns in memory explicitly, then a non-unit stride is involved in the vector
operations; typically this non-unit stride is n, — 1, where n, denotes the number of
grid points in z-direction. For some computers a non-unit stride is not attractive
(for instance, for machines with a relatively small cache), while on others one might
encounter a severe degradation in performance because of memory bank conflicts.

The other problem is that the vectorizable length for the preconditioning part
is only min(n,,n,) at most, and many of the loops are shorter. Thus, the average
vector length may be quite small, and it really depends on the ny /5 value whether the
diagonal approach is profitable on a given architecture. Moreover, there are typically
more diagonals in the grid than there are grid lines, which means that there are about
ng +n, — 1 vector loops, in contrast to only min(n,,n,) (unvectorized) loops in the
standard lexicographical approach. Some computers have well optimized code for
recursions over one grid line. Again, it then depends on the situation whether the
additional overhead for the increased number of loops offsets the advantage of having
(relatively short) vector loops. Therefore, it may be advisable to explicitly reorder
the unknowns corresponding to grid diagonals.

In three-dimensional problems, there are even more possibilities to obtain
vectorizable or parallel code. For the standard seven-point finite-difference
approximation of elliptic PDEs over a rectangular regular grid, the obvious extension
to the diagonal approach in two dimensions is known as the hyperplane ordering.
We now explain this in more detail. From now on, the unknowns as well as the
matrix coefficients will be indicated by three indices 1, j, k, so that i refers to the
index of the corresponding grid point in the z-direction, and j and k likewise in the
y and z-directions. The typical relation for solving the lower triangular system in
three dimensions is as follows:

Yijhk = (7’7:,]',1: - Qi1 k2Yi-145k — Qij-1k3Yij-1k
i 1,4 Yijo—1) [dij k- (4.2)

The hyperplane H™ is defined as the collection of grid points for which the triples
(1,7,k) have equal sum 7 + j + £ = m. Then it is obvious that all unknowns
corresponding to H™ can be computed independently (that is in vector mode or in
parallel) from those corresponding to H™~!. This approach leads to vector lengths
of O(N?%3), where the grid is N x N x N, but the difficulty is that the unknowns
required for two successive hyperplanes are not located as vectors in memory, and
indirect addressing is the standard technique to identify the unknowns over the
hyperplanes.

27

On all supercomputers, indirect addressing degrades the performance of the
computation. Sometimes this is because of the overhead in computing indices, in
other cases it is because of the fact that cache memories cannot be used effectively. In
van der Vorst (19890), the reported performance for ICCG(0) in three dimensions
shows that this method, with the hyperplane ordering, can hardly compete with
standard conjugate gradient applied to the diagonally scaled system, because of the
adverse effects of indirect addressing. However, in Schlichting and van der Vorst
(1989) and van der Vorst (19894a) ways are presented that may help to circumvent
these degradations in performance. The main idea is to rearrange the unknowns
explicitly in memory, corresponding to the hyperplane ordering, where the ordering
within each hyperplane is chosen suitably. The more detailed description that follows
has been taken from Schlichting and van der Vorst (1989).

With respect to the hyperplane ordering, equation (4.2) is replaced by the set of
equations in Figure 4.3.

for m =4,5,6,...,n, +n, +n,
for (i,j,k) € H™:

(a) Yijk = Tighk — G jk—14Yijk—1
(b) Yighk = Yijk — Qij—1k3Yij—1k
(C) Yijk = Yijhk — CG—15k2Yi—1jk
(d) Yighk = yi,j,k/di,j,k

Figure 4.3: Hyperplane dependencies

We have separated step (c). In practical implementations, it is advisable to scale
the given linear system such that d, ;, = 1 for all (7, j, k). We shall discuss only part
(c); the others can be vectorized similarly. Part (c) is rewritten as in Figure 4.4.
This scheme defines the ordering of the unknowns within one hyperplane. The
obvious way to implement the algorithm in Figure 4.4 is to store y; ;1 and a;_1 ;2
in the order in which they are required over H™. This has to be done only once at
the start of the iteration process. Of course, this suggests that we have to store the
matrices twice, but this is not really necessary, as we have shown by using Fisenstat’s
trick, in Section 2.1.

Although the entries of y and a(*,2) have been reordered, indirect addressing
is still required for the entries y; 1, corresponding to H™™!. Schematically the
algorithm in Figure 4.4 can be implemented by the following steps:

1. The required entries y;_; j ; are gathered into an array V, in the order in which
they are required to update the y; ;; over H". The “gaps” in V', when H™ is
larger than H™ !, are left zero.

28

for ¢ = max(2, m — n, — n,),...,min(n,, m — 2)
for j = max(l,m —¢—n,),...,min(n,,m —i — 1)

k=m-—i—j
Yijk = Yijk — Gi-15k2Yi—15k
end j

end i

Figure 4.4: Hyperplane dependencies, step (c)

2. The entries of V' are multiplied by the a;_1 ;1 2, which are already in the desired
order.

3. The result from the previous step is subtracted component-wise from the y; ;
corresponding to H™.

It was reported by Schlichting and van der Vorst (1989) and van der Vorst (1989a)
that this approach can lead to a satisfactory performance; such a performance has
been demonstrated for machines that gave a bad Megaflop rate for the standard
hyperplane approach with indirect addressing. For the CM-5 computer a similar
approach was developed by Berryman, Saltz, Gropp and Mirchandaney (1990). The
hyperplane approach can be viewed as a special case of the more general wavefront
ordering, for general sparse matrices, discussed by Radicati di Brozolo and Vitaletti
(1986). The success of the wavefront ordering approaches depends very much on
how well a given computer can handle indirect addressing. In general, the wavefront
ordering approach gives too little control for obtaining efficient forms of parallelism.

4.4 Some Other Vectorizable Preconditioners

Of course, many suggestions have been made for the construction of vectorizable
preconditioners. The simplest is diagonal scaling, where the matrix A is scaled
symmetrically so that the diagonal of the scaled matrix has unit entries. This is
known to be quite effective, since it helps to reduce the condition number (Forsythe
and Strauss 1955, van der Sluis 1969) and often has a beneficial influence on the
convergence behavior. On some vector computers, the computational speed of the
resulting iterative method (without any further preconditioning) is so high that it is
often competitive with many of the approaches that have been suggested in previous
sections (Hayami and Harada 1985, van der Vorst 1989b).

Nevertheless, in many situations more powerful preconditioners are needed, and
many vectorizable variants of these have been proposed. One of the first suggestions

29

was to approximate the inverse of A by a truncated Neumann series (Dubois et al.
1979). When A is diagonally dominant and scaled such that diag(A) = I, then it
can be written as A = I — B, and A~! can be evaluated in a Neumann series as

Al=(I-B)y'=I+B+B*+B*+---. (4.3)

Dubois et al. Dubois et al. (1979) suggest taking a truncated Neumann series as the
preconditioner, that is approximating A~! by

K'=I+B+B>+---+B". (4.4)

By observing that this preconditioner, K~!, can be written as a pth degree
polynomial P in A, it is obvious that all the iterative methods now lead to iteration
vectors z; in the Krylov subspace that is formed with P(A)A (instead of A, as for the
unpreconditioned methods). That is, after m iteration steps we arrive at a Krylov
subspace of restricted form: it contains only powers of P(A)A times the starting
residual. This is in contrast with the regular Krylov subspace that is obtained
after m(p + 1) iteration steps with the unpreconditioned method, and that contains
also all intermediate powers of A. In both cases, the amount of work spent in
matrix-vector multiplications is the same; hence, at the cost of more iterations,
the unpreconditioned process can lead, in theory, to a better approximation for
the solution, since it has a larger subspace at its disposal. Therefore polynomial
preconditioning will seldom lead to significant savings. Any possible gain is due to
the fact that the overhead in the polynomial preconditioned case may be smaller.

More sophisticated polynomial preconditioners are obtained when arbitrary
coefficients are allowed in the polynomial expansion for A~! (Johnson et al.
1983, Saad 1985). They still suffer from the same disadvantage in that they
generate approximate solutions in Krylov subspaces of a restricted form, at the
cost of the same number of matrix-vector products for which the unpreconditioned
method generates a “complete” Krylov subspace. However, they can certainly be of
advantage in a parallel environment, since they reduce the effect of synchronization
points in the method. Another advantage is that they may lead to an “effective”
Krylov subspace (that is, containing only the powers of A that really matter) in
fewer iteration steps with less loss of orthogonality. As far as we know, this point
has not yet been investigated.

Obviously, the inverse of A is better approximated by a truncated Neumann
series of a fixed degree when A is more diagonally dominant. This is the idea
behind a truncated Neumann series approach suggested by van der Vorst (1982b).
First, an incomplete factorization of A is constructed. To simplify the description,
we assume that A has been scaled such that the diagonal entries in the factors of
the incomplete decomposition are equal to 1 (see Section 2.1):

K=(L+1)(I+70). (4.5)

30

Then the factors are written in some suitable block form, as in Section 4.1, viz.

Ll,l
L2,1 L2,2
~ L L L
L'/n,l L'm,2 . . . L'm,'/n

If the computation of L ;i were an efficient vectorizable operation, then the

complete process of solvmg (L + I)z = r could be vectorized, because segments
z; of z, of dimension equal to the order of L,;, are obtained from the equation:

Zi = L;il(riﬂ; — L,-,Z-_lzi_l — . — Liﬁlzl) (46)

(assuming that the operations L, jz; are vectorizable operatlons) In many relevant
situations it happens that the factors L 4+ I and I + U are diagonally dominant
when A is diagonally dominant, and one may then expect that the subblocks L, ;
are even more diagonally dominant. van der Vorst (1982b) has proposed using
truncated Neumann series only for the inversion of these diagonal blocks of L (and
U). He has shown both theoretically and experimentally that only a few terms in
the Neumann series, say two or three, suffice to get an efficient (and vectorizable)
process, for problems that come from five-point finite-difference approximations in
two dimensions. In most situations, there is a price to be paid for this vectorization,
in that the number of iteration steps increases slightly and also the number of
floating-point operations per iteration step increases by 4N (for the 2-term truncated
variant). van der Vorst (1982b) has shown for a model problem that the increase in
iteration steps is modest when only two terms in the Neumann series are used. In
van der Vorst (1989b), this approach is extended to the three-dimensional situation,
where I + L can be viewed as a nested block form. The resulting method, which has
the name “nested truncated Neumann series”, leads to rather long vector lengths
and can be attractive for some special classes of problem on some parallel computers.

Finally, we comment on a vectorizable preconditioner that has been suggested
by Meurant (1984a). The starting point is a so-called block preconditioner, that is
a preconditioner of the form

K =(L+ B)B YB+7U), (4.7)

in which B itself is a block diagonal matrix. This type of preconditioner has been
suggested by many authors (Concus et al. 1985, Kettler 1987, Meijerink 1983). Most
of these block preconditioners differ in the choice of B. They are reported to be
quite effective in two-dimensions (in which case A is block tridiagonal) in that they
significantly reduce the number of iteration steps for many problems. However, in
three-dimensions, experience leads to less favorable conclusions (see, for example,

31

Kettler, 1987). Moreover, for vector computers, they share the drawback that the
inversion of the diagonal blocks of B (which are commonly tridiagonal matrices) can
lead to rather poor performance. Meurant (1984a) has proposed a variant to a block
preconditioner introduced by Concus et al. (1985), in which he approximates the
inverses of these tridiagonal blocks of B by some suitably chosen band matrices. He
reports on results for some vector computers (CRAY-1, CRAY X-MP, and CYBER
205) and shows that this approach leads often to lower CPU times than the truncated
Neumann series approach.

4.5 Parallel Aspects of Reorderings

By reordering the unknowns, a matrix structure can be obtained that allows for
parallelism in the triangular factors representing the incomplete decomposition. The
red-black ordering, for instance, leads to such a highly parallel form. As has been
mentioned before, this reordering often leads to an increase in the number of iteration
steps, with respect to the standard lexicographical ordering.

Of more interest is the effort that has been put into constructing a parallel
preconditioner, since these attempts are also relevant for the other iterative methods.

Let us write the triangular factors of K in block bidiagonal form:

Lp,p— 1 Lp,p

For p not too small, Seager (1986) suggests setting some of the off-diagonal blocks
of L to zero (and to do so in a symmetric way in the upper triangular factor ﬁ)
Then the back substitution process is decoupled into a set of independent back
substitution processes. The main disadvantage of this approach is that often the
number of iteration steps increases, especially when more off-diagonal blocks are
discarded.

Another approach, suggested by Meurant (1984b), exploits the idea of the two-
sided (or twisted) Gaussian elimination procedure for tridiagonal matrices (Babuska
1972, van der Vorst 1987). This is generalized for the incomplete factorization. In
this approach, K is written as ST, where S takes the (twisted) form

32

Si1
So1 Sao
Sz2 S33
S,

p—1p

Sp,p Sp,p+1

Sptiprl Sptipt2

Sq,q

(and T has a block structure similar to ST). This approach can be viewed as starting
the (incomplete) factorization process simultaneously at both ends of the matrix A.
This factorization is discussed in Chapters 7.4 and 7.5 of the LINPACK Users’ Guide
(Dongarra, Bunch, Moler and Stewart 1979) where it is attributed to Jim Wilkinson.
It is colloquially referred to as the BABE algorithm (for Burn At Both Ends).

van der Vorst (1987) has shown how this procedure can be done in a nested
way for the diagonal blocks of S (and T'). For the two-dimensional five-point finite-
difference discretization over a rectangular grid, the first approach comes down to
reordering the unknowns (and the corresponding equations) as

1 3 5 7 9 11
13 15 17 19 21 23
_>

(4.8)

e
24 22 20 18 16 14
12 10 8 6 4 2

while the nested (twisted) approach is equivalent to reordering the unknowns as

1 5 9 13 14 10 6 2
17 21 25 29 30 26 22 18
33 37 41 45 46 42 38 34
(4.9)
35 39 43 47 48 44 40 36
19 23 27 31 32 28 24 20
3 7 11 15 16 12 8 4

That is, we start numbering from the four corners of the grid in an alternating
manner. It is obvious that the original twisted approach leads to a process that can
be carried out almost entirely in two parallel parts, while the nested form can be done
almost entirely in four parallel parts. Similarly, in three dimensions, the incomplete

33

decomposition, as well as the triangular solves, can be done almost entirely in eight
parallel parts. Van der Vorst (1987,1989a) reports a slight decrease in the number
of iteration steps for these parallel versions, with respect to the lexicographical
ordering. Duff and Meurant (1989) have compared the preconditioned conjugate
gradient method for a large number of different orderings, such as nested dissection
and red-black, zebra, lexicographical, Union Jack, and nested parallel orderings.
The nested parallel orderings are among the most efficient; thus, they are good
candidates even for serial computing, and parallelism here comes as a free bonus.

At first sight, there might be some problems for parallel vector processors
because, in the orderings we have just sketched, the subsystems are in lexicographical
order and hence not completely vectorizable. Of course, these subgroups could be
reordered diagonally:

1 5 13 25 | 28 16 7 2

6 14 26 37 | 39 29 17 8

15 27 38 45 | 46 40 30 18 (4.10)
21 33 42 47 | 48 44 36 24 ‘
10 20 32 41 | 43 35 23 12

3 9 19 31 | 34 22 11 4

which then leads to vector code as shown in Section 4.3. The disadvantage is that
in practical situations the vector lengths will only be small on average. In van der
Vorst (1989a), alternative orderings are suggested, based on carrying out the twisted
factorization in a diagonal fashion. For example, in the two-dimensional situation
the ordering could be

1 3 7 13
5 9 15
11 17
19 .
0 (4.11)
.18 12
16 10 6
14 8 4 2

which leads to a process that can be done almost entirely in parallel (except for the
grid diagonal in the middle, which is coupled to both groups), and each group can be
done in vector mode, just as shown in Section 4.3. Of course, this can be generalized
to three dimensions, leading to four parallel processes, each vectorizable. The
twisted factorization approach can also be combined with the hyperplane approach
in Section 4.3.

In van der Vorst (1987), it has been mentioned that these twisted incomplete
factorizations can be implemented in the efficient manner proposed by Eisenstat

34

(1981) (see also Section 2.1), since they satisfy the requirement that the entries in
corresponding locations in A be equal to the off-diagonal entries of S and 7" in

K =((S+D)D YD +T1), (4.12)
with S+ D=SD Y2 DYV =D+T.

4.6 Experiences with Parallelism

Although the problem of finding efficient parallel preconditioners has not been fully
solved, it may be helpful to discuss some experimental results for some of the
previously discussed approaches. All of the results have been reported for the nicely
structured systems coming from finite-difference discretizations of elliptic PDEs over
two-dimensional and three-dimensional rectangular grids.

Radicati di Brozolo and Robert (1989) suggest partitioning the given matrix A
in (slightly) overlapping blocks along the main diagonal, as in Figure 4.5.

Figure 4.5: Overlapping blocks in A

Note that a given nonzero entry of A is not necessarily contained in one of these
blocks. However, experience suggests that this approach is more successful if these
blocks cover all the nonzero entries of A. The idea is to compute in parallel local
preconditioners for all of the blocks, for example

Then, when solving Kw = 7 in the preconditioning step, we partition r in
(overlapping) parts 7;, according to A;, and we solve the systems L;D, Wiw; =
in parallel. Finally we define the components of w to be equal to corresponding
components of the w;’s in the nonoverlapping parts and to the average of them in
the overlapped parts.

Radicati di Brozolo and Robert (1989) report on timing results obtained on
an IBM 3090-600E/VF for GMRES preconditioned by overlapped incomplete LU

35

decomposition for a two-dimensional system of order 32,400 with a bandwidth of
360. For p processors (1 < p < 6) they subdivide A into p overlapping parts, the
overlap being so large that these blocks cover all the nonzero entries of A. They
found experimentally that an overlap of about 360 entries was optimal for their
problem. This approach led to a speedup of roughly p. In some cases the parallel
preconditioner was slightly more effective than the standard one, so that this method
is also of interest for applications on serial computers.

Meurant (1989) reports on timing results obtained on a CRAY Y-MP/832, using

an incomplete repeated twisted block factorization for two-dimensional problems. In
his experiments, the L of the incomplete factorization has a block structure as shown
below.
X
X X
X X

X X

X X
X

X

X X
X X

X X
X X
X

X

X X
X X

X X
X

X
X

Specifically, L has alternatingly a lower block diagonal, an upper one, a lower one,
and (finally) an upper one. For this approach Meurant reports a speedup, for
preconditioned CG, close to 6 on the 8-processor CRAY Y-MP. This speedup has
been measured relative to the same repeated twisted factorization process executed
on a single processor. Meurant also reports an increase in the number of iteration
steps as a result of this repeated twisting. This increase implies that the effective
speedup with respect to the non-parallel code is only about 4. In De Sturler (1994),
Meurant’s approach has been combined with the approach of Radicati and Robert.
For three-dimensional problems on a two-processor system we have used the
blockwise twisted approach in the z-direction. That is, the (z, y)-planes in the grid
were treated in parallel from the bottom and top inwards. Over each plane we used
ordering by diagonals, in order to achieve high vector speeds on each processor.

36

On a CRAY X-MP/2 this led, for a preconditioned CG, to a reduction by a
factor of close to 2 in wall clock time with respect to the CPU time for the non-
parallel code on a single processor. For the microtasked code, the wall clock time
on the 2-processor system was measured for a dedicated system, whereas for the
non-parallel code the CPU time was measured on a moderately loaded system. In
some situations we even observed a reduction in wall clock time by a factor of
slightly more than two, because of the better convergence properties of the twisted
incomplete preconditioner.

As suggested before, we can apply the twisted incomplete factorization in a
nested way. For three-dimensional problems this can be exploited by twisting also
the blocks corresponding to (x,y) planes in the y-direction. Over the resulting
blocks, corresponding to half (x,y) planes, we may apply diagonal ordering in order
to fully vectorize the four parallel parts. With this approach we have been able
to reduce the wall clock time by a factor of 3.3, for a preconditioned CG, on the
4-processor Convex C-240. In this case, the total CPU time used by all of the
processors is roughly equal to the CPU time required for single-processor execution.
For more details on these and some other experiments, see van der Vorst (1990b).

As has been shown in Section 4.3, the hyperplane ordering can be used to realize
long vector lengths in three-dimensional situations—at the expense, however, of
indirect addressing. A similar approach has been followed by Berryman et al. (1990)
for parallelizing standard ICCG on a Thinking Machines CM-2. For a 4K-processor
machine they report a computational speed of 52.6 Mflop/s for the (sparse) matrix-
vector product, while 13.1 Mflop/s has been realized for the preconditioner with the
hyperplane approach. This reduction in speed by a factor of 4 makes it attractive
to use only diagonal scaling as a preconditioner, in certain situations, for massively
parallel machines like the CM-2. The latter approach has been followed by Mathur
and Johnsson (1989) for finite-element problems.

We have used the hyperplane ordering for preconditioned CG on an Alliant FX /4,
for three-dimensional systems with dimensions n, = 40,n, = 39, and n, = 30. For 4
processors this led to a speedup of 2.61, compared with a speedup of 2.54 for the CG
process with only diagonal scaling as a preconditioner. The fact that both speedups
are far below the optimal value of 4 must be attributed to cache effects. These cache
effects can be largely removed by using the reduced system approach suggested by
Meier and Sameh (1988). However, for the three-dimensional systems that we have
tested, the reduced system approach led, on average, to about the same CPU times
as for the hyperplane approach on Alliant FX/8 and FX/80 computers.

Acknowledgment

We would like to thank Michele Benzi of Los Alamos and Nick Gould of the
Rutherford Appleton Laboratory for helpful comments on an earlier draft.

37

References

Alleon, G., Benzi, M. and Giraud, L. (1997), ‘Sparse approximate inverse
preconditioning for dense linear systems arising in computational
electromagnetics’, Numerical Algorithms 16(1), 1-15.

Alvarado, F. and Dag, H. (1994), Incomplete partitioned inverse preconditioners,
Technical report, Department of Electrical and Computer Engineering,
University of Wisconsin, Madison.

Alvarado, F. and Schreiber, R. (1993), ‘Optimal parallel solution of sparse triangular
systems’, SIAM J. Scientific Computing 14, 446-460.

Arioli, M., Duff, I. S., Noailles, J. and Ruiz, D. (1992), ‘A block projection method
for sparse matrices’, SIAM J. Scientific and Statistical Computing 13, 47-70.

Ashby, S. F. (1991), ‘Minimax polynomial preconditioning for Hermitian linear
systems’, SIAM J. Matriz Analysis and Applications 12, 766-789.

Ashcraft, C. and Grimes, R. (1988), ‘On vectorizing incomplete factorizations and
SSOR preconditioners’, SIAM J. Scientific and Statistical Computing 9, 122—
151.

Axelsson, O. (1994), [Iterative Solution Methods, Cambridge University Press,
Cambridge.

Axelsson, O. and Barker, V. (1984), Finite Element Solution of Boundary Value
Problems. Theory and Computation, Academic Press, New York, NY.

Axelsson, O. and Lindskog, G. (1986), ‘On the eigenvalue distribution of a class of
preconditioning methods’, Numerische Mathematik 48, 479-498.

Axelsson, O. and Munksgaard, N. (1983), Analysis of incomplete factorizations with
fixed storage allocation, in D. Evans, ed., ‘Preconditioning Methods - Theory
and Applications’, Gordon and Breach, New York, pp. 265-293.

Babuska, I. (1972), ‘Numerical stability in problems of linear algebra’, SIAM J.
Numerical Analysis 9, 53-77.

Barnard, S. T. and Clay, R. L. (1997), A portable MPI implementation of the
SPAI preconditioner in ISIS++4, n M. Heath, V. Torczon, G. Astfalk, P. E.
Bjorstad, A. H. Karp, C. H. Koebel, V. Kumar, R. F. Lucas, L. T. Watson and
D. E. Womble, eds, ‘Proceedings of the Eighth SIAM Conference on Parallel
Processing for Scientific Computing’, SIAM Press, pp. xxx-yyy.

38

Barnard, S. T., Bernardo, L. M. and Simon, H. D. (1997), An MPI implementation
of the SPAI preconditioner on the T3E, Technical Report LBNL-40794 UC405,
Lawrence Berkeley National Laboratory.

Benzi, M. and Tuma, M. (1998a), ‘Numerical experiments with two sparse
approximate inverse preconditioners’, BIT 38, 234-241.

Benzi, M. and Tuma, M. (1998b), ‘A sparse approximate inverse preconditioner for
nonsymmetric linear systems’, SIAM J. Scientific Computing 19(3), 968-994.

Benzi, M., Meyer, C. D. and Tuma, M. (1996), ‘A sparse approximate inverse
preconditioner for the conjugate gradient method’, SIAM J. Scientific
Computing 17, 1135-1149.

Benzi, M., Szyld, D. B. and van Duin, A. C. N. (1997), Orderings for incomplete
factorization preconditioning of nonsymmetric problems, Technical Report 97-
91, Temple University, Department of Mathematics, Philadelphia, PA.

Berryman, H., Saltz, J., Gropp, W. and Mirchandaney, R. (1990), ‘Krylov methods
preconditioned with incompletely factored matrices on the CM-2’, J. Par. Dist.
Comp. 8, 186-190.

Bramley, R. and Sameh, A. (1992), ‘Row projection methods for large nonsymmetric
linear systems’, SIAM J. Scientific and Statistical Computing 13, 168-193.

Chan, T. F. (1991), ‘Fourier analysis of relaxed incomplete factorization procedures’,
SIAM J. Scientific and Statistical Computing 12, 668-680.

Chan, T. F. and Goovaerts, D. (1990), ‘A note on the efficiency of domain
decomposed incomplete factorizations’, SIAM J. Scientific and Statistical
Computing 11, 794-803.

Chan, T. F. and van der Vorst, H. A. (1997), Approximate and incomplete
factorizations, in D. Keyes, A. Sameh and V. Venkatakrishnan, eds, ‘Parallel
Numerical Algorithms’, ICASE/LaRC Interdisciplinary Series in Science and
Engineering, Kluwer, Dordrecht, pp. 167-202.

Choi, H. and Szyld, D. (1996), Threshold ordering for preconditioning nonsymmetric
problems with highly varying coefficients, Technical Report 96-51, Department
of Mathematics, Temple University, Philadelphia.

Chow, E. and Saad, Y. (1994), Approximate inverse preconditioners for general
sparse matrices, Technical Report Research Report UMSI 94/101, University
of Minnesota Supercomputing Institute, Minneapolis, Minnesota.

Concus, P. and Meurant, G. (1986), ‘On computing INV block preconditionings for
the conjugate gradient method’, BIT pp. 493-504.

39

Concus, P., Golub, G. H. and Meurant, G. (1985), ‘Block preconditioning for
the conjugate gradient method’, SIAM J. Scientific and Statistical Computing
6, 220-252.

Cosgrove, J. D. F., Diaz, J. C. and Griewank, A. (1992), ‘Approximate inverse
preconditionings for sparse linear systems’, Int J. Computer Mathematics
44, 91-110.

Daydé, M. J., L’Excellent, J.-Y. and Gould, N. I. M. (1997), ‘Element-by-element
preconditioners for large partially separable optimization problems’, STAM J.
Scientific Computing 18(6), 1767-1787.

D’Azevedo, E. F., Forsyth, P. A. and Tang, W. P. (1992), ‘Drop tolerance
preconditioning for incompressible viscous flow’, Int J. Computer Mathematics
44, 301-312.

De Sturler, E. (1994), Iterative methods on distributed memory computers, PhD
thesis, Delft University of Technology, Delft, the Netherlands.

Doi, S. (1991), ‘On parallelism and convergence of incomplete LU factorizations’,
Applied Numerical Math. 7, 417-436.

Doi, S. and Hoshi, A. (1992), ‘Large numbered multicolor MILU preconditioning on
SX-3/14°, Int J. Computer Mathematics 44, 143-152.

Dongarra, J. J., Bunch, J., Moler, C. and Stewart, G. (1979), LINPACK Users’
Guide, SIAM Pub., Philadelphia.

Dubois, P. F., Greenbaum, A. and Rodrigue, G. H. (1979), ‘Approximating the
inverse of a matrix for use in iterative algorithms on vector processors’,
Computing 22, 257-268.

Duff, 1. S. and Meurant, G. A. (1989), ‘The effect of ordering on preconditioned
conjugate gradient’, BIT 29, 635-657.

Duff, I. S., Erisman, A. M., Gear, C. W. and Reid, J. K. (1988), ‘Sparsity structure
and Gaussian elimination’, SIGNUM Newsletter 23(2), 2-8.

Dupont, T., Kendall, R. P. and Rachford Jr., H. H. (1968), ‘An approximate
factorization procedure for solving self-adjoint elliptic difference equations’,
SIAM J. Numerical Analysis 5(3), 559-573.

Dutto, L. (1993), ‘The effect of ordering on preconditioned GMRES algorithm for
solving the Navier-Stokes equations’, Int J. Numerical Methods in Engineering
36, 457-497.

40

Eijkhout, V. (1991), ‘Analysis of parallel incomplete point factorizations’, Linear
Algebra and its Applications 154-156, 723-740.

Eijkhout, V. (1992), Beware of unperturbed modified incomplete point
factorizations, in R. Beauwens and P. de Groen, eds, ‘Iterative Methods in
Linear Algebra’, IMACS Int. Symp., Brussels, Belgium, 2-4 April, 1991, North-
Holland, Amsterdam, pp. 583-591.

Eisenstat, S. C. (1981), ‘Efficient implementation of a class of preconditioned
conjugate gradient methods’, SIAM J. Scientific and Statistical Computing
2(1), 1-4.

Elman, H. C. (1989), ‘Relaxed and stabilized incomplete factorizations for non-self-
adjoint linear systems’, BIT 29, §890-915.

Forsythe, G. E. and Strauss, E. G. (1955), ‘On best conditioned matrices’,
Proc. Amer.Math.Soc. 6, 340-345.

Golub, G. H. and Van Loan, C. F. (1996), Matriz Computations. Third Edition, The
Johns Hopkins University Press, Baltimore.

Gould, N. I. M. and Scott, J. A. (1998), ‘Sparse approximate-inverse
preconditioners using norm-minimization techniques’, SIAM J. Scientific
Computing 19(2), 605-625.

Grote, M. and Huckle, T. (1997), ‘Parallel preconditionings with sparse approximate
inverses’, SIAM J. Scientific Computing 18, 838-853.

Grote, M. and Simon, H. (1993), Parallel preconditioning and approximate inverses
on the connection machine, in R. Sincovec, D. Keyes, M. Leuze, L. Petzold and
D. Reed, eds, ‘Proceedings of the Sixth STAM Conference on Parallel Processing
for Scientific Computing’, SIAM, Philadelphia, pp. 519-523.

Gustafsson, 1. (1978), ‘A class of first order factorization methods’, BIT 18, 142-156.

Gustafsson, I. and Lindskog, G. (1986), ‘A preconditioning technique based on
element matrix factorizations’, Comput. Methods Appl. Mech. FEng. 55, 201—
220.

Gustafsson, I. and Lindskog, G. (1995), ‘Completely parallelizable preconditioning
methods’, Numerical Linear Algebra with Applications 2, 447-465.

Hageman, L. A. and Young, D. M. (1981), Applied Iterative Methods, Academic
Press, New York.

41

Hayami, K. and Harada, N. (1985), The scaled conjugate gradient method on vector
processors, in K. P. Kartashev and I. S. Kartashev, eds, ‘Supercomputing
Systems’; St. Petersburg, FL.

Heroux, M., Vu, P. and Yang, C. (1991), ‘A parallel preconditioned conjugate
gradient package for solving sparse linear systems on a CRAY Y-MP’, Applied
Numerical Math. 8, 93—-115.

Hughes, T., Levit, I. and Winget, J. (1983), ‘An element-by-element solution
algorithm for problems of structural and solid mechanics’, J. Comp. Methods
in Appl. Mech. Eng. 36, 241-254.

Johnson, O. G., Micchelli, C. A. and Paul, G. (1983), ‘Polynomial preconditioning
for conjugate gradient calculations’, SIAM J. Numerical Analysis 20, 363-376.

Jones, M. T. and Plassmann, P. E. (1994), The efficient parallel iterative solution
of large sparse linear systems, in A. George, J. Gilbert and J. Liu, eds, ‘Graph
Theory and Sparse Matrix Computations’, IMA Vol 56, Springer Verlag, Berlin.

Kettler, R. (1987), Linear multigrid methods in numerical reservoir simulation, PhD
thesis, Delft University of Technology, Delft.

Kolotilina, L. Y. and Yeremin, A. Y. (1993), ‘Factorized sparse approximate inverse
preconditionings’, SIAM J. Matriz Analysis and Applications 14, 45-58.

Kuo, J. C. C. and Chan, T. F. (1990), ‘Two-color fourier analysis of iterative
algorithms for elliptic problems with red/black ordering’, STAM J. Scientific
and Statistical Computing 11, 767-793.

Manteuffel, T. A. (1980), ‘An incomplete factorization technique for positive definite
linear systems’, Mathematics of Computation 31, 473-497.

Mathur, K. K. and Johnsson, S. L. (1989), ‘The finite element method on a data
parallel computing system’, Int J. High Speed Computing 1(1), 29-44.

Meier, U. and Sameh, A. (1988), The behavior of conjugate gradient algorithms on
a multivector processor with a hierarchical memory, Technical Report CSRD
758, University of Illinois, Urbana, IL.

Meijerink, J. A. (1983), Iterative methods for the solution of linear equations based
on incomplete factorisations of the matrix, Technical Report Shell Publication
643, KSEPL, Rijswijk.

Meijerink, J. A. and van der Vorst, H. A. (1977), ‘An iterative solution method
for linear systems of which the coefficient matrix is a symmetric M-matrix’,
Mathematics of Computation 31, 148-162.

42

Meijerink, J. A. and van der Vorst, H. A. (1981), ‘Guidelines for the usage of
incomplete decompositions in solving sets of linear equations as they occur
in practical problems’, J. Comp. Phys. 44, 134-155.

Meurant, G. (1984a), ‘The block preconditioned conjugate gradient method on
vector computers’, BIT 24, 623-633.

Meurant, G. (1984b), Numerical experiments for the preconditioned conjugate
gradient method on the CRAY X-MP/2, Technical Report LBIL-18023,
University of California, Berkeley, CA.

Meurant, G. (1989), The conjugate gradient method on vector and parallel
supercomputers, Technical Report CTAC-89, University of Brisbane.

Munksgaard, N. (1980), ‘Solving sparse symmetric sets of linear equations by
preconditioned conjugate gradient method’, ACM Trans. Math. Softw. 6, 206—
219.

Notay, Y. (1994), ‘DRIC: a dynamic version of the RIC method’, Numerical Linear
Algebra with Applications 1, 511-532.

Osterby, O. and Zlatev, Z. (1983), Direct methods for sparse matrices, number 157
in ‘Lecture Notes in Computer Science’;, Springer Verlag, Berlin, Heidelberg,
New York.

Radicati di Brozolo, G. and Robert, Y. (1989), ‘Parallel conjugate gradient-
like algorithms for solving sparse non-symmetric systems on a vector
multiprocessor’, Parallel Computing 11, 223-239.

Radicati di Brozolo, G. and Vitaletti, M. (1986), Sparse matrix-vector product and
storage representations on the IBM 3090 with Vector Facility, Technical Report
513-4098, IBM-ECSEC, Rome.

Saad, Y. (1985), ‘Practical use of polynomial preconditionings for the conjugate
gradient method’, SIAM J. Scientific and Statistical Computing 6, 865-881.

Saad, Y. (1994), ‘ILUT: A dual threshold incomplete LU factorization’, Numerical
Linear Algebra with Applications 1, 387-402.

Schlichting, J. J. F. M. and van der Vorst, H. A. (1989), ‘Solving 3D block bidiagonal
linear systems on vector computers’, J. Comput. Appl. Math. 27, 323-330.

Seager, M. K. (1986), ‘Parallelizing conjugate gradient for the CRAY X-MP’,
Parallel Computing 3, 35-47.

43

Sleijpen, G. L. G. and van der Vorst, H. A. (1995), ‘Maintaining convergence
properties of BICGSTAB methods in finite precision arithmetic’, Numerical
Algorithms 10, 203-223.

Stone, H. S. (1968), ‘Iterative solution of implicit approximations of
multidimensional partial differential equations’, SIAM J. Numerical Analysis
5, 530-558.

Tan, K. H. (1995), Local coupling in domain decomposition, PhD thesis, Utrecht
University, Utrecht, the Netherlands.

van der Sluis, A. (1969), ‘Condition numbers and equilibration of matrices’,
Numerische Mathematik 14, 14-23.

van der Vorst, H. A. (1981), ‘Iterative solution methods for certain sparse linear
systems with a non-symmetric matrix arising from PDE-problems’, J. Comp.
Phys. 44, 1-19.

van der Vorst, H. A. (1982a), Preconditioning by Incomplete Decompositions, PhD
thesis, Utrecht University, Utrecht, The Netherlands.

van der Vorst, H. A. (19820b), ‘A vectorizable variant of some ICCG methods’, STAM
J. Scientific and Statistical Computing 3, 86-92.

van der Vorst, H. A. (1987), ‘Large tridiagonal and block tridiagonal linear systems
on vector and parallel computers’, Parallel Computing 5, 45-54.

van der Vorst, H. A. (1989a), ‘High performance preconditioning’, STAM J. Scientific
and Statistical Computing 10, 1174-1185.

van der Vorst, H. A. (19895), ‘ICCG and related methods for 3D problems on vector
computers’, Computer Physics Communications 53, 223-235.

van der Vorst, H. A. (1990q), The convergence behaviour of preconditioned CG and
CG-S in the presence of rounding errors, in O. Axelsson and L. Y. Kolotilina,
eds, ‘Preconditioned Conjugate Gradient Methods’, Nijmegen 1989, Springer
Verlag, Berlin. Lecture Notes in Mathematics 1457.

van der Vorst, H. A. (1990b), ‘Experiences with parallel vector computers for sparse
linear systems’, Supercomputer 37, 28-35.

van Gijzen, M. B. (1994), Iterative solution methods for linear equations in finite
element computations, PhD thesis, Delft University of Technology, Delft, the
Netherlands.

44

Varga, R. S. (1960), Factorizations and normalized iterative methods, in R. E.
Langer, ed., ‘Boundary Problems in differential equations’, University of
Wisconsin Press, Madison, WI, pp. 121-142.

Washio, T. and Hayami, K. (1994), ‘Parallel block preconditioning based on SSOR
and MILU’, Numerical Linear Algebra with Applications 1, 533-553.

Watts-III, J. W. (1981), ‘A conjugate gradient-truncated direct method for the
iterative solution of the reservoir simulation pressure equation’, Society of
Petroleum Engineers J. 21, 345-353.

Young, D. P., Melvin, R. G., Johnson, F. T., Bussoletti, J. E., Wigton, L. B.
and Samanth, S. S. (1989), ‘Application of sparse matrix solvers as effective
preconditioners’, STAM J. Scientific and Statistical Computing 10(6), 1186—
1199.

Zlatev, 7. (1991), Computational methods for general sparse matrices, Kluwer Acad.
Pub., Dordrecht, Boston, London.

45

	Title page for RAL-TR-1998-052
	ABSTRACT
	Contents
	1 The Purpose of Preconditioning
	2 Incomplete LU Decompositions
	2.1 Efficient Implementations of ILU(0) Preconditioning
	2.2 General Incomplete Decompositions
	2.3 Variants of ILU Preconditioners
	2.4 Some General Comments on ILU

	3 Some Other Forms of Preconditioning
	3.1 Sparse Approximate Inverse (SPAI)
	3.2 Polynomial Preconditioning
	3.3 Preconditioning by Blocks or Domains
	3.4 Element by Element Preconditioners

	4 Vector and Parallel Implementation of
	4.1 Partial Vectorization
	4.2 Reordering the Unknowns
	4.3 Changing the Order of Computation
	4.4 Some Other Vectorizable Preconditioners
	4.5 Parallel Aspects of Reorderings
	4.6 Experiences with Parallelism

	Acknowledgment
	References

