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1 Direct Solution of Sparse Linear Systems

In this paper, we discuss the direct solution of linear systems

Ax = b; (1.1)

where the coe�cient matrix A is large and sparse. Sparse systems arise in very
many application areas. We list just a few such areas in Table 1.1.

Table 1.1: A list of some application areas for sparse matrices

acoustic scattering
air tra�c control
astrophysics
biochemical

chemical eng.
chemical kinetics
circuit physics

computer simulation

4
1
2
2

16
14
1

7

demography
economics
electric power
electrical engineering

�nite elements
uid ow
laser optics

linear programming

3
11
18
1

50
6
1

16

network ow
numerical analysis
oceanography
petroleum engineering

reactor modeling
statistics
structural engineering

survey data

1
4
4
19

3
1
95

11

This table, reproduced from Du�, Grimes and Lewis (1989a), shows the number
of matrices from each discipline present in the Harwell-Boeing Sparse Matrix
Collection. This standard set of test problems is currently being upgraded to a new
Collection called the Rutherford-Boeing Sparse Matrix Collection (Du�, Grimes and
Lewis 1997a) that will include far larger systems and matrices from an even wider
range of disciplines. This new Collection will be available from netlib and the
Matrix Market (http://math.nist.gov/MatrixMarket).

Some of the algorithms that we will describe may appear complicated, but it
is important to remember that we are primarily concerned with methods based on
Gaussian elimination. That is, most of our algorithms compute an LU factorization
of a permutation of the coe�cient matrix A, so that PAQ = LU; where P and Q
are permutation matrices, and L and U are lower and upper triangular matrices,
respectively. These factors are then used to solve the system (1.1) through the
forward substitution Ly = P T b followed by the back substitution U(QTx) = y:
When A is symmetric, this fact is reected in the factors, and the decomposition
becomes PAP T = LLT (Cholesky factorization) or PAP T = LDLT (needed for an
inde�nite matrix). This last decomposition is sometimes called root-free Cholesky.
It is common to store the inverse of D rather than D itself in order to avoid divisions
when using the factors to solve linear systems. Note that we have used the same
symbol L in all three factorizations although they each represent a di�erent lower
triangular matrix.
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The solution of (1.1) can be divided naturally into several phases. Although the
exact subdivision will depend on the algorithm and software being used, a common
subdivision is given by:

1. A preordering phase that exploits structure, for example a preordering to block
triangular or bordered block diagonal form (see Du�, Erisman and Reid (1986),
for example).

2. An analysis phase where the matrix structure is analyzed to produce a suitable
ordering and data structures for e�cient factorization.

3. A factorization phase where the numerical factorization is performed.

4. A solve phase where the factors are used to solve the system using forward
and back substitution.

Some codes combine phases 2 and 3 so that numerical values are available when
the ordering is being generated. Phase 3 (or the combined phase 2 and 3) usually
requires the most computing time, while the solve phase is generally an order of
magnitude faster. Note that the concept of a separate factorization phase, which
may be performed on a di�erent matrix to that originally analyzed, is peculiar to
sparse systems. In the case of dense matrices, only the combined analysis and
factorization phase exists and, of course, phase 1 does not apply.

As we have seen in the earlier chapters, the solution of (1.1) where A, of order
n, is considered as a dense matrix requires O(n2) storage and O(n3) oating-point
arithmetic operations. Since we will typically be solving sparse systems that are
of order several thousand or even several tens or hundreds of thousands, dense
algorithms quickly become infeasible on both grounds of work and storage. The aim
of sparse matrix algorithms is to solve equations of the form (1.1) in time and space
proportional to O(n) +O(�), for a matrix of order n with � nonzeros. It is for this
reason that sparse codes can become very complicated. Although there are cases
where this linear target cannot be met, the complexity of sparse linear algebra is far
less than in the dense case.

The study of algorithms for e�ecting such solution schemes when the matrix A
is large and sparse is important not only for the problem in its own right, but also
because the type of computation required makes this an ideal paradigm for large-
scale scienti�c computing in general. In other words, a study of direct methods
for sparse systems encapsulates many issues that appear widely in computational
science and that are not so tractable in the context of really large scienti�c codes.

The principal issues can be summarized as follows:

1. Much of the computation is integer.

2. The data-handling problem is signi�cant.
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3. Storage is often a limiting factor, and auxiliary storage is frequently used.

4. Although the innermost loops are usually well de�ned, often a signi�cant
amount of time is spent in computations in other parts of the code.

5. The innermost loops can sometimes be very complicated.

Issues 1{3 are related to the manipulation of sparse data structures. The e�cient
implementation of techniques for handling these is of crucial importance in the
solution of sparse matrices, and we discuss this in Section 2. Similar issues arise when
handling large amounts of data in other large-scale scienti�c computing problems.
Issues 2 and 4 serve to indicate the sharp contrast between sparse and non-sparse
linear algebra. In code for large dense systems, well over 98 percent of the time (on
a serial machine) is typically spent in the innermost loops, whereas a substantially
lower fraction is spent in the innermost loops of sparse codes. The lack of dominance
of a single loop is also characteristic of a wide range of large-scale applications.

Speci�cally, the data handling nearly always involves indirect addressing (see
Section 3.2). This clearly has e�ciency implications particularly for vector or parallel
architectures. Much of our discussion on suitable techniques for such platforms is
concerned with avoiding indirect addressing in the innermost loops of the numerical
computation.

Another way in which the solution of sparse systems acts as a paradigm for a
wider range of scienti�c computation is that it exhibits a hierarchy of parallelism
that is typical of that existing in the wider case. This hierarchy comprises three
levels:

� System level. This involves the underlying problem which, for example, may
be a partial di�erential equation (PDE) or a large structures problem. In
these cases, it is natural (perhaps even before discretization) to subdivide the
problem into smaller subproblems, solve these independently, and combine
the independent solutions through a small (usually dense) interconnecting
problem. In the PDE case, this is done through domain decomposition; in
the structures case, it is called substructuring. An analogue in discrete linear
algebra is partitioning and tearing.

� Matrix level. At this level, parallelism is present because of sparsity in the
matrix. A simple example lies in the solution of tridiagonal systems. In a
structural sense no (direct) connection exists between variable 1 in equation 1
and variable n in equation n (the system is assumed to have order n), and so
Gaussian elimination can be applied to both of these \pivots" simultaneously.
The elimination can proceed, pivoting on entry 2 and n� 1, then 3 and n� 2
simultaneously so that the resulting factorization (known in LINPACK as
the BABE algorithm) has a parallelism of two. This is not very exciting,
although the amount of arithmetic is unchanged from the normal sequential
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factorization. However, sparsity allows us to pivot simultaneously on every
other entry; and when this is continued in a nested fashion, the cyclic reduction
(or nested dissection in this case also) algorithm results. Now we have only
logn parallel steps, although the amount of arithmetic is about double that of
the serial algorithm. This sparsity parallelism can be automatically exploited
for any sparse matrix, as we discuss in Section 6.

� Submatrix level. This level is exploited in the same way as for dense matrices
since we are here concerned with eliminations within dense submatrices of the
overall sparse system. Thus, the techniques of the dense linear algebra case
(e.g., Level 3 BLAS) can be used. The only problem is how to organize the
sparse computation to yield operations on dense submatrices. This is easy with
band, variable band, or frontal solvers (Section 5) but can also be extended,
through multifrontal methods, to any sparse system (Section 6).

It is important to stress that the Basic Linear Algebra Subprograms (BLAS) that
we envisage using at the submatrix level are just the dense matrix BLAS discussed
in the earlier chapters of this book. There is much discussion of BLAS standards
for sparse matrices, see for example Du�, Marrone, Radicati and Vittoli (1997b),
but this is aimed at the iterative methods that we discuss in the next chapter rather
than for use in algorithms or software for direct methods.

Throughout this chapter, we illustrate our points by the results of numerical
experiments using computer codes, most commonly from the Harwell Subroutine
Library (HSL) (HSL 1996). Most of the matrix codes in the HSL can be identi�ed
by the �rst two characters \MA" in the subroutine or package name. We sometimes
use arti�cially generated test problems, but most are taken from the Harwell-Boeing
Sparse Matrix Collection (Du�, Grimes and Lewis 1992). These problems can be
obtained by anonymous ftp from the directory pub/harwell boeing of the machine
matisa.cc.rl.ac.uk (130.246.8.22) at the Rutherford Appleton Laboratory. We have
supplemented this test set by some matrices collected by Tim Davis, available by
anonymous ftp from ftp://ftp.cise.ufl.edu/pub/faculty/davis/matrices.

2 Introduction to Direct Methods for Sparse

Linear Systems

The methods that we consider for the solution of sparse linear equations can be
grouped into four main categories: general techniques, frontal methods, multifrontal
approaches, and supernodal algorithms. In this section, we introduce the algorithms
and approaches and examine some basic operations on sparse matrices. In particular,
we wish to draw attention to the features that are important in exploiting vector
and parallel architectures. For background on these techniques, we recommend the
book by Du� et al. (1986).
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The study of sparse matrix techniques is in great part empirical, so throughout
we illustrate points by reference to runs of actual codes. We discuss the availability
of codes in the penultimate section of this chapter.

2.1 Four Approaches

We �rst consider (Section 3) a general approach typi�ed by the HSL code MA48
(Du� and Reid 1996a) or Y12M (Zlatev, Wa�sniewski and Schaumburg 1981). The
principal features of this approach are that numerical and sparsity pivoting are
performed at the same time (so that dynamic data structures are used in the initial
factorization) and that sparse data structures are used throughout|even in the
inner loops. As we shall see, these features must be considered drawbacks with
respect to vectorization and parallelism. The strength of the general approach is
that it will give a satisfactory performance over a wide range of structures and is
often the method of choice for very sparse unstructured problems. Some gains and
simpli�cation can be obtained if the matrix is symmetric or banded. We discuss
these methods and algorithms in Section 4.

Frontal schemes can be regarded as an extension of band or variable-band
schemes and will perform well on systems whose bandwidth or pro�le is small.
The e�ciency of such methods for solving grid-based problems (for example,
discretizations of partial di�erential equations) will depend crucially on the
underlying geometry of the problem. One can, however, write frontal codes so that
any system can be solved; sparsity preservation is obtained from an initial ordering,
and numerical pivoting can be performed within this ordering. A characteristic of
frontal methods is that no indirect addressing is required in the innermost loops and
so dense matrix kernels can be used. We use the HSL code MA42 (Du� and Scott
1993, Du� and Scott 1996) to illustrate this approach in Section 5.

The class of techniques that we study in Section 6, is an extension of the frontal
methods termed multifrontal. The extension permits e�ciency for any matrix whose
nonzero pattern is symmetric or nearly symmetric and allows any sparsity ordering
techniques for symmetric systems to be used. The restriction to nearly symmetric
patterns arises because the initial ordering is performed on the sparsity pattern of
the Boolean sum of the patterns of A and AT . The approach can, however, be
used on any system. The �rst example of this was the HSL code MA37 (Du� and
Reid 1984) which was the basis for the later development of a code that uses the
Level 3 BLAS and is also designed for shared memory parallel computers. This
new HSL code is called MA41 (Amestoy and Du� 1993). As in the frontal method,
multifrontal methods use dense matrices in the innermost loops so that indirect
addressing is avoided. There is, however, more data movement than in the frontal
scheme, and the innermost loops are not so dominant. In addition to the use of direct
addressing, multifrontal methods di�er from the �rst class of methods because the
sparsity pivoting is usually separated from the numerical pivoting. However, there
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have been very recent adaptations of multifrontal methods for general unsymmetric
systems (Davis and Du� 1997b) which combine the analysis and factorization phases.

Another way of avoiding or amortizing the cost of indirect addressing is to
combine nodes into supernodes. This technique is discussed in Section 7.

2.2 Description of Sparse Data Structure

We continue this introductory section by describing the most common sparse data
structure, which is the one used in most general-purpose codes. The structure for
a row of the sparse matrix is illustrated in Figure 2.1. All rows are stored in the
same way, with the real values and column indices in two arrays with a one-to-one
correspondence between the arrays so that the real value in position k, say, is in the
column indicated by the entry in position k of the column index array. A sparse
matrix can then be stored as a collection of such sparse rows in two arrays; one
integer, the other real. A third integer array is used to identify the location of the
position in these two arrays of the data structure for each row. If the ith position
in this third array held the position marked \pointer" in Figure 2.1, then entry
ai;j1 would have value �. Clearly, access to the entries in a row is straightforward,
although indirect addressing is required to identify the column index of an entry.

LENGTH

POINTER

values

column indices .............

ξ

j
1

.............

Figure 2.1: Storage scheme for row of sparse matrix

We illustrate this scheme in detail using the example in Figure 2.2. If we consider
the matrix in Figure 2.2, we can hold each row as a packed sparse vector and the

0
BBB@

1 0 0 4
�1 0 3 0
0 2 0 0
0 �2 0 �4

1
CCCA

Figure 2.2: A 4� 4 sparse matrix
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matrix as a collection of such vectors. For each member of the collection, we normally
store an integer pointer to its start and the number of entries. Since we are thinking
in terms of Fortran 77, a pointer is simply an array subscript indicating a position
in an array. Thus, for example, the matrix of Figure 2.2 may be stored in Fortran
arrays as shown in Table 2.1. Here LEN(i) contains the number of entries in row i,
while IPTR(i) contains the location in arrays ICN and VALUE of the �rst entry in
row i. For example, row 2 starts in position 3; referring to position 3 in ICN and
VALUE, we �nd the (2,3) entry has value 3. Since LEN(2) = 2, the fourth position
is also in row 2; speci�cally the (2,1) entry has value �1. Note that, with this
scheme, the columns need not be held in order. This is important because, as we
will see in Section 3, more entries will be added to the pattern of the matrix during
the elimination process (called �ll-in) and this will be facilitated by this scheme. A
detailed discussion of this storage scheme is given by Du� et al. (1989a).

Table 2.1: Matrix of Figure 2.2 stored as a collection of sparse row vectors

Subscripts 1 2 3 4 5 6 7
LEN 2 2 1 2
IPTR 1 3 5 6
ICN 4 1 3 1 2 2 4
VALUE 4. 1. 3. -1. 2. -2. -4.

Note that there is redundancy in holding both row lengths (LEN) and row
pointers (IPTR) when the rows are held contiguously in order, as in Table 2.1.
In general, however, operations on the matrix will result in the rows not being in
order and thus both arrays are required.

2.3 Manipulation of Sparse Data Structures

To give a avor of the issues involved in the design of sparse matrix algorithms, we
now examine a manipulation of sparse data structures that occurs commonly in LU
factorization. The particular manipulation we consider is the addition of a multiple
of one row (the pivot row) of the matrix to other rows (the non-pivot rows) where
the matrix is stored in the row pointer/column index scheme just described. Assume
that an integer array, of length n, IQ say, containing all positive entries is available
(for example, this may be a permutation array), and that there is su�cient space
to hold temporarily a second copy of the pivot row in sparse format. Assume that
the second copy has been made. Then a possible scheme is as follows:

1. Scan the pivot row, and for each entry determine its column index from the
ICN value. Set the corresponding entry in IQ to the negation of the position
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of that entry within the compact form of the pivot row. The original IQ entry
is held in the ICN entry in the second copy of the pivot row.

For each non-pivot row, do steps 2 and 3:

2. Scan the non-pivot row. For each column index, check the corresponding
entry in IQ. If it is positive, continue to the next entry in the non-pivot
row. If the entry in IQ is negative, set it positive, and update the value
of the corresponding entry in the non-pivot row (using the entry from the
pivot row identi�ed by the negation of the IQ entry).

3. Scan the unaltered copy of the pivot row. If the corresponding IQ value is
positive, set it negative. If it is negative, then there is �ll-in to the non-
pivot row. The new entry (a multiple of the pivot row entry identi�ed by
the negated IQ value) is added to the end of the non-pivot row, and we
continue to the next entry in the pivot row.

4. Finally, reset IQ to its original values using information from both copies of
the pivot row.

Figure 2.3 illustrates the situation before each step. Note that it is not necessary
to keep each row in column order when using this scheme. Conceptually simpler
sparse vector additions can result when they are kept in order, but the extra work
to keep the columns in order can lead to ine�ciencies.

The important point about the rather complicated algorithm just described is
that there are no scans of length n vectors. Thus, if this computation is performed
at each major step of Gaussian elimination on a matrix of order n, there are
(from this source) no O(n2) contributions to the overall work. Since our target
in sparse calculations is to develop algorithms that are linear in the matrix order
and number of nonzero entries, O(n2) calculations are a disaster and will dominate
the computation if n is large enough.

In addition to avoiding such scans and permitting the indices to be held in any
order, no real array of length n is needed. Indeed, the array IQ in Figure 2.3 can
be used for any other purpose; our only assumption was that its entries were all
positive. Another bene�t is that we never check numerical values for zero (which
might be the case if we expanded into a full-length real vector), so no confusion
arises between explicitly held zeros and zeros not within the sparsity pattern. This
point can be important when solving several systems with the same structure but
di�erent numerical values.
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Before 1

IQ i1 i2 i3 i4 i5 i6 i7 ::::::: in�1 in

Pivot row
A

ICN
�1 �2 �3

j1 j2 j3
+ second copy

Non-pivot row
A

ICN
�1 �2 �3 �4
j2 j3 j4 j5

Before 2

IQ �2 �1 i3 �3 i5 i6 i7 ::::::: in�1 in

Pivot row unchanged

Second copy of pivot row
A

ICN
�1 �2 �3

i2 i1 i4

No change to non-pivot row

Before 3

IQ 2 �1 i3 3 i5 i6 i7 ::::::: in�1 in

Pivot row unchanged

Non-pivot row
A

ICN
�1 + ��2 �2 + ��3 �3 �4

j2 j3 j4 j5

Before 4

IQ �2 �1 i3 �3 i5 i6 i7 ::::::: in�1 in

Pivot row unchanged

Non-pivot row
A

ICN
�1 + ��2 �2 + ��3 �3 �4 ��1

j2 j3 j4 j5 j1

Figure 2.3: Sketch of steps involved when adding one sparse vector
to another
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3 General Sparse Matrix Methods

We now discuss some fundamental aspects of sparse matrix manipulation and the use
of sparsity exploiting techniques in Gaussian elimination on general sparse matrices.

3.1 Fill-in and Sparsity Ordering

A major concern when the matrix A is sparse is that the factors L and U will
generally be denser than the original A.

After k steps of elimination on a matrix of order n, the reduced matrix is the
lower n� k by n� k matrix modi�ed from the original matrix according to the �rst
k pivots steps. If we denote the entries of the original matrix by a

(1)
ij and those of

the reduced matrix after k stages of Gaussian elimination by a
(k+1)
ij , then �ll-in is

caused in Gaussian elimination if, in the basic operation

a
(k+1)
ij  a

(k)
ij � a

(k)
ik [a

(k)
kk ]

�1
a
(k)
kj ; (3.1)

the entry in location (i; j) of the original A was zero. The ordering of the rows and
columns of A can be important in preserving sparsity in the factors. Figure 3.1 gives
an example of a case where ordering the rows and columns to preserve sparsity in
Gaussian elimination is extremely e�ective. If pivots are chosen from the diagonal
in the natural order, the reordered matrix preserves all zeros in the factorization,
but the original order preserves none.

x x x x x x x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x x x x x x x

Original matrix Reordered matrix

Figure 3.1: Original and reordered matrix

Table 3.1 illustrates the gains one can obtain in the sparse case by ignoring all or
most of the zero entries both in the original matrix and in the ensuing calculation.
The second row of the table gives �gures for sparse elimination without any sparsity-
exploiting reordering, while the third row indicates that further substantial gains can
be made when sparsity-exploiting orderings are used. In larger problems, because
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Table 3.1: Bene�ts of Sparsity on Matrix of Order 2021 with 7353 entries

Total storage Flops Time (secs)
Procedure (Kwords) (106) CRAY J90
Treating system as dense 4084 5503 34.5
Storing and operating 71 1073 3.4
only on nonzero entries
Using sparsity pivoting 14 42 0.9

of the O(n3) and O(n2) complexity of dense codes for work and storage respectively,
we might expect even more signi�cant gains.

Another di�erence between dense and sparse systems arises when we consider
the common case where a subsequent solution is required with a matrix of the same
sparsity structure as a previously factored system. Whereas this has no relevance
in the dense case, it does have a considerable inuence in the sparse case since
information from the �rst factorization can be used to simplify the second. Indeed,
frequently most or all of the ordering and data organization can be done before any
numerical factorization is performed.

Although it would not normally be sensible to use explicit inverses in the solution
of dense systems of equations, it makes even less sense in the sparse case because
(at least in the sense of the sparsity pattern) the computed inverse of an irreducible
sparse matrix is always dense (Du�, Erisman, Gear and Reid 1988), whereas the
factors can often be very sparse. Examples are a tridiagonal matrix and the
arrowhead matrix shown in Figure 3.1. In short, it is particularly important that
one does not use explicit inverses when dealing with large sparse matrices.

We illustrated the e�ect of ordering on sparsity preservation in Figure 3.1. A
simple but e�ective strategy for maintaining sparsity is due to Markowitz (1957).
At each stage of Gaussian elimination, he selects as a pivot the nonzero entry of the
remaining reduced submatrix with the lowest product of number of other entries in
its row and number of other entries in its column.

More precisely, before the kth major step of Gaussian elimination, let r
(k)
i denote

the number of entries in row i of the reduced (n � k + 1)� (n� k + 1) submatrix,

Similarly let c
(k)
j be the number of entries in column j. The Markowitz criterion

chooses the entry a
(k)
ij from the reduced submatrix to minimize the expression

(r
(k)
i � 1)(c

(k)
j � 1); (3.2)

where a
(k)
ij satis�es some numerical criteria also.

This strategy can be interpreted in several ways, for example, as choosing the
pivot that modi�es the least number of coe�cients in the remaining submatrix. It
may also be regarded as choosing the pivot that involves least multiplications and
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divisions. Finally, we may think of (3.2) as a means of bounding the �ll-in at this

stage, because it would be equal to the �ll-in if all (r
(k)
i �1)(c

(k)
j �1) modi�ed entries

were previously zero.
In general, for the Markowitz ordering strategy in the unsymmetric case, we need

to establish a suitable control for numerical stability. In particular, we restrict the
Markowitz selection to those pivot candidates satisfying the inequality

ja(k)kk j � u ja(k)ik j; i � k; (3.3)

where u is a preset threshold parameter in the range 0 < u � 1:
If we look back at equation (3.1), we see that the e�ect of u is to restrict the

maximum possible growth in the numerical value of a matrix entry in a single step
of Gaussian elimination to (1 + 1=u). Since it is possible to relate the entries of the
backward error matrix E (that is, the LU factors are exact for the matrix A + E)
to such growth by the formula

jeij j � 3:01 � n maxa

where � is the machine precision and maxa the modulus of the largest entry
encountered in the Gaussian elimination process then, since the value of maxa can
be a�ected by the value of u, changing u can a�ect the stability of our factorization.
We illustrate this e�ect in Table 3.2 and remark that, in practice, a value of u of 0.1
has been found to provide a good compromise between maintaining stability and
having the freedom to reorder to preserve sparsity.

Table 3.2: E�ect of Variation in Threshold Parameter u
(matrix of order 541 with 4285 entries)

u Entries in Factors Error
in solution

1.0 16767 3� 10�9

0.25 14249 6� 10�10

0.10 13660 4� 10�9

0.01 15045 1� 10�5

10�4 16198 1� 102

10�10 16553 3� 1023

The results in Table 3.2 are without any iterative re�nement, but even with such a
device no meaningful answer is obtained in the case with u equal to 10�10. Note that,
at very low values of the threshold, the number of entries in the factors increases with
decreasing threshold. This is somewhat counter-intuitive but indicates the di�culty
in choosing later pivots because of poor choices made earlier. If in the current
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vogue for inexact factorizations, we consent to sacri�ce accuracy of factorization
for increase in sparsity, then this is done not through the threshold parameter u
but rather through a drop tolerance parameter tol. Entries encountered during the
factorization with a value less than tol, or less than tol times the largest in the row or
column, are dropped from the structure, and an inexact or partial factorization of the
matrix is obtained. We consider this use of partial factorizations as preconditioners
in Du� and van der Vorst (1998).

3.2 Indirect Addressing ... Its E�ect and How to Avoid It

Most recent vector processors have a facility for hardware indirect addressing, and
one might be tempted to believe that all problems associated with indirect addressing
have been overcome. For example, on the CRAY J90, the loop shown in Figure 3.2
(a sparse SAXPY) ran asymptotically at only 5.5 Mop/s when hardware indirect
addressing was inhibited but ran asymptotically at over 80 Mop/s when it was not.

DO 100 I=1,M

A(ICN(I)) = A(ICN(I)) + AMULT * W(I)

100 CONTINUE

Figure 3.2: Sparse SAXPY loop

On the surface, the manufacturers' claims to have conquered the indirect
addressing problem would seem vindicated, and we might believe that our sparse
general codes would perform at about half the rate of a highly tuned dense matrix
code. This reasoning has two aws. The �rst lies in the n1=2 value (Hockney and
Jessup 1988) for the sparse loops (i.e., the length of the loop required to attain
half the maximum performance). This measure is directly related to the startup
time. For the loop shown in Figure 3.2, the n1=2 value on the CRAY J90 is about
50, which|relative to the typical order of sparse matrices being solved by direct
methods (greater than 10,000)|is insigni�cant. However, the loop length for sparse
calculations depends not on the order of the system but rather on the number
of entries in the pivot row. We have done an extensive empirical examination of
this number using the MA48 code on a wide range of applications. We show a
representative sample of our results in Table 3.3. Except for the example from
structural analysis (the second matrix of order 1224 in the table), this length is very
low and, even in this extreme case, is only about equal to the n1=2 value mentioned
above. Thus the typical performance rate for the sparse inner loop is far from the
asymptotic performance.

It should be added that there are matrices where the number of entries in each
row is very high, or becomes so after �ll-in. This would be the case in large structures
problems and for most discretizations of elliptic partial di�erential equations. For
example, the factors of the �ve-diagonal matrix from a �ve-point star discretization
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of the Laplace operator on a q by q grid could have about 6 log2 q entries in each
row of the factors. Unfortunately, such matrices are very easy to generate and are
thus sometimes overused in numerical experiments.

Table 3.3: Statistics from MA48 on a CRAY J90 for various matrices from
di�erent disciplines

Matrix Application area Av. Length of % Time in
Order Entries Pivot Row Inner Loops
680 2646 Atmospheric pollution 3.4 35
838 5424 Aerospace 24.5 49
1005 4813 Ship design 23.0 48
1107 5664 Computer simulation 19.2 53
1176 9874 Electronic circuit analysis 6.5 34
1224 9613 Oil reservoir modeling 12.7 49
1224 56126 Structural analysis 51.4 47
1374 8606 Nuclear engineering 16.7 49
1454 3377 Power systems networks 3.5 33
2021 7353 Chemical engineering 2.8 32
2205 14133 Oil reservoir modeling 4.0 52
2529 90158 Economic modeling 3.4 49

The second problem with the use of hardware indirect addressing in general
sparse codes is that the amount of data manipulation in such a code means that a
much lower proportion of the time is spent in the innermost loops than in code for
dense matrices. Again we have performed an empirical study on MA48; we show
these results in the last column of Table 3.3. The percentage given in that table
is for the total time of three innermost loops in MA48, all at the same depth of
nesting. We see that typically around 40-50 percent of the overall time on a CRAY
J90 is spent in the innermost loops. Thus, even if these loops were made to run
in�nitely fast, a speedup of only at most a factor of two would be obtained: a good
illustration of Amdahl's law.

The lack of locality of reference inherent in indirect addressing means that
performance can also be handicapped or degraded on cache-based computers and
parallel machines. One should mention, however, that more recent work e�ectively
blocks the operations so that the indirect addressing is removed from the inner loops.
If this approach (similar in many ways to the one we discuss in Section 6) is used,
much higher computational rates can be achieved.

We conclude, therefore, that for general matrices vector indirect addressing is
of limited assistance for today's general sparse codes. Even for general systems,
however, advantage can be taken of vectorization by using a hybrid approach,
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where a dense matrix routine is used when �ll-in has caused the reduced matrix to
become su�ciently dense. That is, at some stage, it is not worth paying attention
to sparsity. At this point, the reduced matrix can be expanded as a full matrix, any
remaining zero entries are held explicitly, and a dense matrix code can be used to
e�ect the subsequent decomposition. The resultant hybrid code should combine the
advantages of the reduction in operations resulting from sparsity in the early stages
with the high computational rates of a dense linear algebra code in the latter. The
point at which such a switch is best made will, of course, depend both on the vector
computer characteristics and on the relative e�ciency of the sparse and dense codes.

3.3 Comparison with Dense Codes

Every time there are improvements in algorithms or computer hardware that greatly
improve the e�ciency of dense matrix solvers, there are claims that sparse direct
solvers are now obsolete and that these dense solvers should be used for sparse
systems as well. There are two main reasons why this argument is severely awed.
The �rst is that, although the performance of dense codes is remarkable, even for
fairly modest values of order n of the matrix, the O(n3) complexity of a dense solver
makes such calculations prohibitively expensive, if the O(n2) storage requirements
have not already made solution impossible. However, a far more telling rebuttal is
provided by current sparse direct solvers like the HSL code MA48. We see from
the results in Table 3.4 that MA48 performs much better than the LAPACK code
SGESV on the CRAY Y-MP even for sparse matrices of fairly modest order. Clearly,
the MA48 performance is dependent on the matrix structure, as is evident from the
two runs on di�erent matrices of order 1224, whereas the LAPACK code depends
on the order and shows the expected O(n3) behavior, slightly tempered by the
better performance of the Level 3 BLAS on larger matrices. However, even at its
worst, MA48 comfortably outperforms SGESV. It should also be pointed out that
subsequent factorizations of a matrix of the same pattern are much cheaper for the
sparse code, for example the matrix BCSSTK27 can be refactorized by MA48 in
0.33 seconds, using the same pivot sequence as before.

The �nal nail in the co�n of dense matrix solvers lies in the fact that MA48
monitors the density of the reduced matrix as the elimination proceeds and switches
to dense mode as indicated in Section 3.2. Thus, highly e�cient dense solvers, can
now be incorporated within the sparse code and so a fortiori the dense solvers
can never beat the sparse code. This is not entirely true because there are
some overheads associated with switching, but experiments with such an approach
indicate that the switch-over density for overall time minimization can often be
low (typically 20 percent dense) and that gains of a factor of over four can be
obtained even with unsophisticated dense matrix code (Du� 1984b). Naturally, if
we store the zeros of a reduced matrix, we might expect an increase in the storage
requirements for the decomposition. Although the luxury of large memories on
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some current computers gives us ample scope for allowing such an increase, it is
interesting to note that the increase in storage for oating-point numbers is to some
extent compensated for by the reduction in storage for the accompanying integer
index information.

Table 3.4: Comparison between MA48 and LAPACK (SGESV) on range
of matrices from the Harwell-Boeing Sparse Matrix Collection. Times for
factorization and solution are in seconds on one processor of a CRAY Y-MP

Matrix Order Entries MA48 SGESV
FS 680 3 680 2646 0.06 0.96
PORES 2 1224 9613 0.54 4.54
BCSSTK27 1224 56126 2.07 4.55
NNC1374 1374 8606 0.70 6.19
WEST2021 2021 7353 0.21 18.88
ORSREG 1 2205 14133 2.65 24.25
ORANI678 2529 90158 1.17 36.37

3.4 Other Approaches

In this section, we have concentrated on the approach typi�ed by the codes MA48
(Du� and Reid 1996a) and Y12M (Zlatev et al. 1981). While these are possibly
the most common codes used to solve general sparse systems arising in a wide
range of application areas, there are other algorithmic approaches and codes for
solving general unsymmetric systems. One technique is to preorder the rows, then
to choose pivots from each row in turn, �rst updating the incoming row according to
the previous pivot steps and then choosing the pivot by using a threshold criterion
on the appropriate part of the updated row. If the columns are also preordered
for sparsity, then an attempt is �rst made to see whether the diagonal entry in the
reordered form is suitable. This approach is used by the codes NSPFAC and NSPIV
of Sherman (1978). It is similar to the subsequent factorizations using the main
approach of this section, and so is simple to code. It can, however, su�er badly
from �ll-in if a good initial ordering is not given or if numerical pivoting forbids
keeping close to that ordering. Some of the multifrontal and supernodal approaches
to sparse system solution also su�er in this way.

Another approach is to generate a data structure that, within a chosen column
ordering, accommodates all possible pivot choices (George and Ng 1985). It is
remarkable that this is sometimes not overly expensive in storage and has the bene�t
of good stability but within a subsequent static data structure. There are, of course,
cases when the storage penalty is high.
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Methods using a sparse QR factorization can be used for general unsymmetric
systems. These are usually based on work of George and Heath (1980) and �rst
obtain the structure of R through a symbolic factorization of the structure of the
normal equations matrix ATA. It is common not to keep Q but to solve the system
using the semi-normal equations

RTRx = AT b;

with iterative re�nement usually used to avoid numerical problems. A QR
factorization can, of course, be used for least-squares problems and implementations
have been developed using ideas similar to those discussed later in Section 6 for
Gaussian elimination. Further discussion of QR and least squares is outside the
scope of this chapter.

Another approach particularly designed for unsymmetric matrices has been
developed by Davis and Yew (1990). Here a set of pivots is chosen simultaneously
using Markowitz and threshold criteria so that if the set is permuted to the upper
part of the matrix, the corresponding block will be diagonal and all operations
corresponding to these pivots can be performed simultaneously. Indeed, it is possible
to design an algorithm to perform the pivot search in parallel also. Subsequent sets of
independent pivots are chosen in a similar manner until the reduced matrix becomes
dense enough to switch to dense code, as discussed in Section 3. Alaghband (1989)
proposes a similar type of scheme.

One possibility for exploiting parallelism by general sparse direct methods is to
use partitioning methods and, in particular, the bordered block triangular form (Du�
et al. 1986). This approach is discussed by Arioli and Du� (1990), who indicate that
reasonable speedups on machines with low levels of parallelism (4{8) are obtained
fairly easily even on very di�cult systems.

4 Methods for Symmetric Matrices and Band

Systems

Elementary graph theory has been used as a powerful tool in the analysis and
implementation of diagonal pivoting on symmetric matrices (see, for example,
George and Liu (1981)). Although graph theory is sometimes overused in sparse
Gaussian elimination, in certain instances it is a useful and powerful tool. We shall
now explore one such area. For this illustration, we consider �nite undirected graphs,
G(V, E), which comprise a �nite set of distinct vertices (or nodes) V and an edge set
E consisting of unordered pairs of vertices. An edge e 2 E will be denoted by (u; v)
for some u; v 2 V. The graph is labeled if the vertex set is in 1-1 correspondence with
the integers 1; 2; :::; jVj, where jVj is the number of vertices in V. In this application
of graph theory, the set E, by convention, does not include self-loops (edges of the
form (u; u), u 2 V) or multiple edges. Thus, since the graph is undirected, edge
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Figure 4.1: Symmetric matrix and associated graph

(u; v) is equal to edge (v; u), and only one is held. A subgraph H(U, F) of G(V, E)
has vertex set U � V, and edge set F � E. H(U, F) is fully connected if (u; v) 2 F for
all u; v 2 U. With any symmetric matrix, of order n say, we can associate a labeled
graph with n vertices such that there is an edge between vertex i and vertex j (edge
(i; j)) if and only if entry aij (and, by symmetry, aji) of the matrix is nonzero. We
give an example of a matrix and its associated graph in Figure 4.1. If the pattern ofA
is symmetric and we can be sure that diagonal pivots produce a stable factorization
(the most important example is when A is symmetric and positive de�nite), then
two bene�ts occur. We do not have to carry numerical values to check for stability,
and the search for the pivot is simpli�ed to �nding i such that

r
(k)
i = min

t
r
(k)
t

and using a
(k)
ii as pivot, where r

(k)
t , is the number of entries in row t of the

reduced matrix, as in Equation (3.2). This scheme was introduced by Tinney
and Walker (1967) as their Scheme 2 and is normally termed the minimum degree
algorithm because of its graph theoretic interpretation: in the graph associated
with a symmetric sparse matrix, this strategy corresponds to choosing for the next
elimination the vertex that has the fewest edges connected to it. Surprisingly (as we
shall see later in this section), the algorithm can be implemented in the symmetric
case without explicitly updating the sparsity pattern at each stage, a situation that
greatly improves its performance.

The main bene�ts of using such a correspondence can be summarized as follows:

1. The structure of the graph is invariant under symmetric permutations of the
matrix (they correspond merely to a relabeling of the vertices).

2. For mesh problems, there is usually a correspondence between the mesh and
the graph of the resulting matrix. We can thus work more directly with the
underlying structure.
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3. We can represent cliques (fully connected subgraphs) in a graph by listing the
vertices in a clique without storing all the interconnection edges.

4.1 The Clique Concept in Gaussian Elimination

To illustrate the importance of the clique concept in Gaussian elimination, we show
in Figure 4.2 a matrix and its associated graph (also the underlying mesh, if,
for example, the matrix represents the �ve-point discretization of the Laplacian
operator). If the circled diagonal entry in the matrix were chosen as pivot
(admittedly not a very sensible choice on sparsity grounds), then the resulting
reduced matrix would have the dashed (pivot) row and column removed and have
additional entries (�ll-ins) in the checked positions and their symmetric counterparts.
The corresponding changes to the graph cause the removal of the circled vertex and
its adjacent edges and the addition of all the dashed edges shown.
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Figure 4.2: Use of cliques in Gaussian elimination

Thus, after the elimination of vertex 7, the vertices 3,6,8,11 form a clique because
all vertices of the graph of the reduced matrix that were connected to the vertex
associated with the pivot will become pairwise connected after that step of the
elimination process. Although this clique formation has been observed for some
time (Parter 1961), it was more recently that techniques exploiting clique formation
have been used in ordering algorithms. Our example clique has 4 vertices and 6
interconnecting edges; but, as the elimination progresses, this di�erence will be

19



more marked, since a clique on q vertices has q(q� 1)=2 edges corresponding to the
o�-diagonal entries in the associated dense submatrix.

If we are using the clique model for describing the elimination process then,
when a vertex is selected as pivot, the cliques in which it lies are amalgamated. We
illustrate clique amalgamation in Figure 4.3 where the circled element is being used
as a pivot and the vertices in each rectangle are all pairwise connected. We do not
show the edges internal to each rectangle, because we wish to reect the storage and
data manipulation scheme that will be used.

41 2 3 5 6

7 8 9

10 11 12 13 14 15

Figure 4.3: Clique amalgamation

The two cliques (sometimes called elements or generalized elements by analogy
with elements in the �nite-element method) are held only as lists of constituent
vertices (1,2,3,4,7,8,10,11,12,13) and (4,5,6,8,9,13,14,15). The result of eliminating
(that is pivoting on) vertex 8 is to amalgamate these two cliques. That is, after
the elimination of vertex 8, the variables in both of these cliques will be pairwise
connected to form a new clique given by the list (1,2,3,4,5,6,7,9,10,11,12,13,14,15).
Not only is a list merge the only operation required, but the storage after elimination
(for the single clique) will be less than before the elimination (for the two cliques).
Since such a clique amalgamation can be performed in a time proportional to the
number of vertices in the cliques concerned, both work and storage are linear rather
than quadratic in the number of vertices in the cliques.

To summarize, two important aspects of this clique-based approach make it very
signi�cant and exciting. Earlier codes for computing minimum degree orderings
mimicked the Gaussian elimination process. That is, they performed the elimination
symbolically without doing any oating-point arithmetic. With the clique-based
approach, we do not have to mimic the Gaussian elimination operations during
this ordering phase, and �nding the ordering can be signi�cantly faster than the
actual elimination. The second|and in many ways more important|aspect is
that of storage, where the ordering can be implemented so that it requires only
slightly more storage (a small multiple of n) over that for the matrix itself. Since
the storage required for computing the ordering is independent of the �ll-in and is
known in advance, we can ensure that su�cient storage is available for successful
completion of this phase. Thus, even for very large problems whose decomposition
must necessarily be out-of-core, it may be possible to do an in-core ordering.
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When computing the ordering we can determine the storage and work required for
subsequent factorization. This forecast could be crucial if we wish to know whether
the in-core solution by a direct method is feasible or whether an out-of-core solver
or iterative method must be used.

The dramatic e�ect of using a clique amalgamation approach in the
implementation of minimum degree can be seen very clearly in the performance
of the two HSL codes MA17 and MA27. The former code, written before clique
amalgamation techniques were developed, runs two orders of magnitude slower than
the HSL code MA27 which uses clique amalgamation. The improvement in minimum
degree codes over the decade 1970 to 1980 is shown by Du� et al. (1986).

4.2 Further Comments on Ordering Schemes

Researchers have added numerous twists to the minimum degree scheme. Many of
these are implementation re�nements; they are discussed in a review by George and
Liu (1989). Others are developed to compromise a strict minimum degree so that
some other property is enhanced|for example, so that the ordering produced retains
the good reduction in work a�orded by minimum degree while, at the same time,
yields an ordering more amenable to parallel implementation than strict minimum
degree (Du�, Gould, Lescrenier and Reid 1990, Liu 1988).

Additionally, techniques have been developed to use an approximate minimum
degree to further reduce the computation times for �nding an ordering. The
approximate minimum degree (AMD) algorithm of Amestoy, Davis and Du� (1996)
is often much faster than the best implementation of minimum degree and produces
an ordering of comparable quality.

There has been much work very recently in developing dissection techniques
that produce orderings resulting in lower �ll-in and operation count for a subsequent
Cholesky factorization (Rothberg 1996) over a wide range of problems. Much of this
is motivated by �nding good orderings for the elimination on parallel computers.

5 Frontal Methods

Frontal methods have their origins in the solution of �nite-element problems from
structural analysis. One of the earliest computer programs implementing the frontal
method was that of Irons (1970). He considered only the case of symmetric positive-
de�nite systems. The method can, however, be extended to unsymmetric systems
(Hood 1976) and need not be restricted to �nite-element applications (Du� 1981).

The usual way to describe the frontal method is to view its application to �nite-
element problems where the matrix A is expressed as a sum of contributions from
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the elements of a �nite-element discretization. That is,

A =
mX
l=1

A[l]; (5.1)

where A[l] is nonzero only in those rows and columns that correspond to variables
in the lth element. If aij and a

[l]
ij denote the (i; j)th entry of A and A[l], respectively,

the basic assembly operation when forming A is of the form

aij ( aij + a
[l]
ij : (5.2)

It is evident that the basic operation in Gaussian elimination

aij ( aij � aip[app]
�1apj (5.3)

may be performed as soon as all the terms in the triple product (5.3) are fully
summed (that is, are involved in no more sums of the form (5.2)). The assembly
and Gaussian elimination processes can therefore be interleaved and the matrix A is
never assembled explicitly. This allows all intermediate working to be performed in
a dense matrix, termed the frontal matrix, whose rows and columns correspond to
variables that have not yet been eliminated but occur in at least one of the elements
that have been assembled.

For non-element problems, the rows of A (equations) are added into the frontal
matrix one at a time. A variable is regarded as fully summed whenever the equation
in which it last appears is assembled. The frontal matrix will, in this case, be
rectangular. A full discussion of the equation input can be found in Du� (1984a).

We now describe the method for element input. After the assembly of an element,
if the k fully summed variables are permuted to the �rst rows and columns of the
frontal matrix, we can partition the frontal matrix F in the form

F =

 
B C
D E

!
; (5.4)

where B is a square matrix of order k and E is of order r � r. Note that k + r is
equal to the current size of the frontal matrix, and k � r, in general. Typically, B
might have order 10 to 20, while E is of order 200 to 500. The rows and columns
of B, the rows of C, and the columns of D are fully summed; the variables in E are
not yet fully summed. Pivots may be chosen from anywhere in B. For symmetric
positive-de�nite systems, they can be taken from the diagonal in order but in the
unsymmetric case, pivots must be chosen to satisfy a threshold criteria. This is
discussed in Du� (1984a).

It is also possible to view frontal methods as an extension of band or variable-
band schemes. We do this in the following section.

22



5.1 Frontal Methods ... Link to Band Methods and

Numerical Pivoting

A common method of organizing the factorization of a band matrix of order n with
semibandwidth b is to allocate storage for a dense b� 2b� 1 matrix, which we call
the frontal matrix, and to use this as a window that runs down the band as the
elimination progresses. Thus, at the beginning, the frontal matrix holds rows 1 to b
of the band system. This con�guration enables the �rst pivotal step to be performed
(including pivoting if this is required); and, if the pivot row is then moved out of the
frontal matrix, row b + 1 of the band matrix can be accommodated in the frontal
matrix. One can then perform the second pivotal step within the frontal matrix.
Typically, a larger frontal matrix is used since greater e�ciency can be obtained by
moving blocks of rows at a time. It is then usually possible to perform several pivot
steps within the one frontal matrix. The traditional reason for this implementation
of a banded solver is for the solution of band systems by out-of-core methods since
only the frontal matrix need be held in main storage. This use of auxiliary storage
is also one of the principal features of a general frontal method.

This \windowing" method can be easily extended to variable-band matrices.
In this case, the frontal matrix must have order at least maxaij 6=0fji � jjg: Further
extension to general matrices is possible by observing that any matrix can be viewed
as a variable-band matrix. Here lies the main problem with this technique: for any
arbitrary matrix with an arbitrary ordering, the required size for the frontal matrix
may be very large. However, for discretizations of partial di�erential equations
(whether by �nite elements or �nite di�erences), good orderings can usually be
found (see, for example, Du�, Reid and Scott (1989b) and Sloan and Randolph
(1983)). In fact, recent experiments by Du� and Scott (1997) show that there is a
reasonably wide range of problems for which a frontal method could be the method
of choice, particularly if the matrix is expressed as a sum of element matrices in
unassembled form.

We limit our discussion here to the implementation of Gaussian elimination on
the frontal matrix. The frontal matrix is of the form (5.4). The aim at this stage is
to perform k steps of Gaussian elimination on the frontal matrix (choosing pivots
from B), to store the factors LBUB of B, DB�1, and C on auxiliary storage, and
to generate the Schur complement E � DB�1C for use at the next stage of the
algorithm.

As we mentioned earlier, in the unsymmetric case, the pivots can be chosen
from anywhere within B. In our approach (Du� 1984a), we use the standard sparse
matrix technique of threshold pivoting, where bij 2 B is suitable as pivot only if

jbij j � umax(max
s
jbsjj;max

s
jdsjj); (5.5)

where u is a preset parameter in the range 0 < u � 1:
Notice that, although we can only choose pivots from the block B, we must test
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potential pivot candidates for stability by comparing their magnitude with entries
from B and from D. This means that large entries in D can prevent the selection of
some pivots from B. Should this be the case, k1 � k steps of Gaussian elimination
will be performed, and the resulting Schur complement E �DB�11 C, where B1 is a
square submatrix of B of order k1, will have order r + k � k1. Although this can
increase the amount of work and storage required by the algorithm, the extra cost is
typically very low, and all pivotal steps will eventually be performed since the �nal
frontal matrix has a null E block (that is, r = 0).

An important aspect of frontal schemes is that all the elimination operations are
performed within a dense matrix, so that kernels and techniques (including those
for exploiting vectorization or parallelism) can be used on dense systems. It is also
important that k is usually greater than 1, in which case more than one elimination
is performed on the frontal matrix and Level 2 and Level 3 BLAS can be used as the
computational kernel. Indeed, on some architectures (for example the SGI Power
Challenge), it can be bene�cial to increase the size of the B block by doing extra
assemblies before the elimination stage, even if more oating-pont operations are
then required to e�ect the factorization (Cli�e, Du� and Scott 1998).

5.2 Vector Performance

We now illustrate some of the points just raised with numerical experiments. For the
experimental runs, we use as our standard model problem an arti�cial �nite-element
problem designed to simulate those actually occurring in some CFD calculations.
The elements are nine-node rectangular elements with nodes at the corners, mid-
points of the sides, and center of the element. A parameter to the generation routine
determines the number of variables per node which has been set to �ve for the runs
in this chapter. The elements are arranged in a rectangular grid whose dimensions
are given in the tables.

A code for frontal elimination, called MA32, was included in the Harwell
Subroutine Library in 1981 (Du� 1981). This code was used extensively by people
working with �nite-elements particularly on the CRAY-2, then at Harwell. The
MA32 code was substantially improved to produce the HSL code MA42 (Du� and
Scott 1993) that has a very similar interface and functionality to its predecessor
but makes more extensive use of higher Level BLAS than the earlier routine. On a
machine with fast Level 3 BLAS, the performance can be impressive. We illustrate
this point by showing the performance of our standard test problem on one processor
of a CRAY Y-MP, whose peak performance is 333 Mop/s and on which the Level 3
BLAS matrix-matrix multiply routine SGEMM runs at 313 Mop/s on su�ciently
large matrices. It is important to realize that the Megaop rates given in Table 5.1
include all overheads for the out-of-core working used by MA42.

Although, as we see in Table 5.1, very high Megaop rates can be achieved with
the frontal scheme, this is often at the expense of more ops than are necessary
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Table 5.1: Performance (in Mop/s) of MA42 on one processor of a CRAY
Y-MP on our standard test problem

Dimension of element grid 16 x 16 32 x 32 48 x 48 64 x 64 96 x 96
Max order frontal matrix 195 355 515 675 995
Total order of problem 5445 21125 47045 83205 186245
Mop/s 145 208 242 256 272

to perform the sparse factorization. The usefulness of the frontal scheme is very
dependent on this trade o� between ops and Mop/s. It may be possible to reorder
the matrix to reduce the op count and extend the applicability of frontal methods,
using reordering algorithms similar to those for bandwidth reduction of assembled
matrices (Du� et al. 1989b). As an example of the e�ect of reordering, the matrix
LOCK3491 from the Harwell-Boeing Sparse Matrix Collection can be factorized by
MA42 at a rate of 118 Mop/s on a CRAY Y-MP. If the matrix is �rst reordered
using the HSL subroutine MC43, the frontal code then runs at only 89 Mop/s
but the number of oating-point operations is reduced substantially so that only
1.07 seconds are now required for the factorization compared with 9.69 seconds for
the unordered problem. This is a graphic illustration of the risk of placing too
much emphasis on computational rates (Mop/s) when evaluating the performance
of algorithms. Additionally, although the e�ect of reordering can be quite dramatic,
it is very similar to bandwidth reduction and so will not enable the e�cient use of
frontal schemes on general systems.

In addition to the problem that far more arithmetic can be done than is required
for the numerical factorization, a second problem with the frontal scheme is that
there is little scope for parallelism other than that which can be obtained within the
higher level BLAS. Indeed, if we view the factorization in terms of a computational
tree where nodes correspond to factorizations of frontal matrices of the form (5.4)
and edges correspond to the transfer of the Schur complement data, then the
computational tree of the method just described is a chain. Since all the data must
be received from the child before work at the parent node can complete, parallelism
cannot be exploited at the tree level. These de�ciencies can be at least partially
overcome through allowing the use of more than one front. This permits pivot
orderings that are better at preserving sparsity and also gives more possibility for
exploitation of parallelism through working simultaneously on di�erent fronts.

5.3 Parallel Implementation of Frontal Schemes

This way of exploiting parallelism when using frontal methods is similar to domain
decomposition, where we partition the underlying \domain" into subdomains,
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perform a frontal decomposition on each subdomain separately (this can be done in
parallel) and then factorize the matrix corresponding to the remaining \boundary"
or \interface" variables (the Schur complement system), perhaps by also using a
frontal scheme, as in Du� and Scott (1994), or by any suitable solver. This strategy
corresponds to a bordered block diagonal ordering of the matrix and can be nested.
More recently, a class of algorithms have been designed (Ashcraft and Liu 1996) that
combine di�erent ordering strategies on the subdomain and the interface variables.

Although the main motivation for using multiple fronts is usually to exploit
parallelism, it is also important that the amount of work can be signi�cantly changed
by partitioning the domain, and in some cases can be much reduced. For example,
suppose we have a 5-point �nite-di�erence discretization on a 2N x 2N grid, resulting
in a matrix of order 4N2 and semibandwidth 2N . Then straightforward solution
using a frontal scheme requires 32N4 +O(N3) oating-point operations whereas, if
the domain is partitioned into four subdomains each of size N x N , the operation
count can be reduced to 18:6N4 + O(N3). Note that the ordering within each
subdomain is important in achieving this performance.

We illustrate this change in the number of oating-point operations by running
a multiple-front code on our model problem on a 48 x 48 element grid on a single
processor of a CRAY Y-MP (Du� and Scott 1994). With a single domain, the
CPU time is 69.4 secs and there are 16970 million oating-point operations in the
factorization, while the corresponding �gures using four subdomains are 48.4 and
10350. If we partition further, the �gures reduce to 40.3 and 8365, when using 8
subdomains.

We have examined the performance of this approach in two parallel environments:
on an eight processor shared-memory CRAY Y-MP8I and on a network of �ve DEC
Alpha workstations using PVM (Du� and Scott 1994). In each case, we divide the
original problem into a number of subdomains equal to the number of processors
being used. It is di�cult to get meaningful times in either environment because we
cannot guarantee to have a dedicated machine. The times in Table 5.2 are, however,
for lightly loaded machines.

The results on the CRAY are encouraging and show good speedup. Those on
the Alpha farm are quite comparable and indicate that the overheads of PVM
and communication costs do not dominate and good speedups are possible. We
should add that it is important that disk i/o is local to each processor. The
default on our Alpha system was to write all �les centrally and this increased data
tra�c considerably, gave poor performance, and varied greatly depending on system
loading.

We also observe that the speedup obtained when increasing the number of
subdomains from 2 to 4 is greater than 2. This apparent superlinear behavior is
caused by the reduction in the number of oating-point operations for the four
subdomain partitioning as discussed earlier.

Other work on the parallel implementation of a frontal elimination has been
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Table 5.2: Multiprocessor performance of MA42 on CRAY Y-MP and
DEC Alpha farm on 48 x 48 grid for our standard test problem

CRAY Y-MP DEC Alpha farm
Number of Wall clock Speedup Wall clock Speedup
subdomains time (secs) time (secs)

1 98.8 - 1460.3 -
2 64.6 1.5 1043.0 1.4
4 30.7 3.2 457.5 3.2
8 15.3 6.5 - -

carried out by Benner, Montry and Weigand (1987) using large-grain parallelism
on a CRAY X-MP and an ELXSI, and by Lucas, Blank and Tiemann (1987) on a
hypercube.

6 Multifrontal Methods

If one takes the techniques discussed in the previous section to their logical
conclusion, then many separate fronts can be developed simultaneously and can be
chosen using a sparsity preserving ordering such as minimum degree. We call such
methods \multifrontal" methods. The idea is to couple a sparsity ordering with the
e�ciency of a frontal matrix kernel so allowing good exploitation of high performance
computers. Multifrontal methods are described in some detail by Du� et al. (1986),
and their potential for parallelism is discussed by Du� (1986a,1986b,1989a).

In this section, we shall work through a small example to give a avor of the
important points and to introduce the notion of an elimination tree. An elimination
tree, discussed in detail by Du� (1986a) and Liu (1990), is used to de�ne a precedence
order within the factorization. The factorization commences at the leaves of the tree,
and data is passed towards the root along the edges in the tree. To complete the
work associated with a node, all the data must have been obtained from the children
of the node, otherwise work at di�erent nodes is independent. We use the example
in Figure 6.1 to illustrate both the multifrontal method and its interpretation in
terms of an elimination tree.

The matrix shown in Figure 6.1 has a nonzero pattern that is symmetric. (Any
system can be considered, however, if we are prepared to store explicit zeros.) The
matrix is ordered so that pivots will be chosen down the diagonal in order. At
the �rst step, we can perform the elimination corresponding to the pivot in position
(1,1), �rst \assembling" row and column 1 to get the submatrix shown in Figure 6.2.
By \assembling", we mean placing the entries of row and column 1 into a submatrix
of order the number of entries in row and column 1. Thus the zero entries a12
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Figure 6.1: Matrix used to illustrate multifrontal scheme
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Figure 6.2: Assembly of �rst pivot row and column

and a21 cause row and column 2 to be omitted in Figure 6.2, and so an index
vector is required to identify the rows and columns that are in the submatrix. The
index vector for the submatrix in Figure 6.2 would have entries (1,3,4) for both the
rows and the columns. Column 1 is then eliminated by using pivot (1,1) to give a
reduced matrix of order two with associated row (and column) indices 3 and 4. In
conventional Gaussian elimination, updating operations of the form

aij ( aij � ai1[a11]
�1a1j (6.1)

would be performed immediately for all (i; j) such that ai1a1j 6= 0: However, in this
formulation, the quantities

ai1[a11]
�1a1j (6.2)

are held in the reduced submatrix, and the corresponding updating operations are
not performed immediately. These updates are not necessary until the corresponding
entry is needed in a later pivot row or column. The reduced matrix can be stored
until that time.

Row (and column) 2 is now assembled, the (2,2) entry is used as pivot to eliminate
column 2, and the reduced matrix of order two|with associated row (and column)
indices of 3 and 4|is stored. These submatrices are called frontal matrices. More
than one frontal matrix generally is stored at any time (currently we have two
stored). This is why the method is called \multifrontal". Now, before we can
perform the pivot operations using entry (3,3), the updating operations from the �rst
two eliminations (the two stored frontal matrices of order two) must be performed on
the original row and column 3. This procedure is e�ected by summing or assembling
the reduced matrices with the original row and column 3, using the index lists to
control the summation. Note that this gives rise to an assembled submatrix of order
2 with indices (3,4) for rows and columns. The pivot operation that eliminates
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Figure 6.3: Elimination tree for the matrix of Figure 6.1
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Figure 6.4: Assembly tree for the matrix of Figure 6.1 after node
amalgamation

column 3 by using pivot (3,3) leaves a reduced matrix of order one with row (and
column) index 4. The �nal step sums this matrix with the (4,4) entry of the original
matrix. The sequence of major steps in the elimination is represented by the tree
in Figure 6.3.

The same storage and arithmetic are needed if the (4,4) entry is assembled at the
same time as the (3,3) entry, and in this case the two pivotal steps can be performed
on the same submatrix. This procedure corresponds to collapsing or amalgamating
nodes 3 and 4 in the tree of Figure 6.3 to yield the tree of Figure 6.4. On typical
problems, node amalgamation produces a tree with about half as many nodes as
the order of the matrix. We call this tree the assembly tree. Additional advantage
can be taken of amalgamations which do not preserve the number of arithmetic
operations, that is where there are variables in the child node that are not present in
the parent. This is sometimes called \relaxed amalgamation". Du� and Reid (1984)
employ node amalgamation to enhance the vectorization of a multifrontal approach,
and much subsequent work has also used this strategy for better vectorization and
exploitation of parallelism (for example, Ashcraft (1987) and Liu (1990)).

The computation at a node of the tree is simply the assembly of information
concerning the node, together with the assembly of the reduced matrices from its
children, followed by some steps of Gaussian elimination. Each node corresponds
to the formation of a frontal matrix of the form (5.4) followed by some elimination
steps, after which the Schur complement is passed on for assembly at the parent
node.

Viewing the factorization using an assembly tree has several bene�ts. Since
only a partial ordering is de�ned by the tree, the only requirement for a numerical
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factorization with the same amount of arithmetic is that the calculations must be
performed for all the children of a node before those at the parent node can complete.
Thus, many di�erent orderings with the same number of oating-point operations
can be generated from the elimination tree. In particular, orderings can be chosen
for economic use of storage, for e�ciency in out-of-core working, or for parallel
implementation (see Section 6.3). Additionally, small perturbations to the tree and
the number of oating-point operations can accommodate asymmetry, numerical
pivoting, or enhanced vectorization.

Liu (1990) presents a survey of the role of elimination trees in Gaussian
elimination and discusses the e�cient generation of trees (in time e�ectively linear
in the number of entries in the original matrix) as well as the e�ect of di�erent
orderings of the tree and manipulations of the tree that preserve properties of the
elimination. For example, the ordering of the tree can have a signi�cant e�ect
on the storage required by the intermediate frontal matrices generated during the
elimination. Permissible manipulations on the tree include tree rotations, by means
of which the tree can, for example, be made more suitable for driving a factorization
that exploits parallelism better (Simon, Vu and Yang 1989).

The multifrontal method can be used on inde�nite systems and on matrices
that are symmetric in pattern but not in value. The HSL codes MA27 and MA47
are designed for symmetric inde�nite systems (Du� and Reid 1982) and provide
a stable factorization by using a combination of 1 � 1 and 2 � 2 pivots from the
diagonal (Bunch, Kaufman and Parlett 1976). The HSL code MA41 (Amestoy and
Du� 1989) will solve systems for which the matrix is unsymmetric but it bases its
original analysis on the pattern formed from the Boolean summation of the matrix
with its transpose. Although this strategy could be poor, it even works for systems
whose pattern is quite unsymmetric, as we show in Table 6.7. For matrices which
are very structurally unsymmetric (like those in the last two columns of Table 6.7),
Davis and Du� (1997b) have developed an approach that generalizes the concept
of elimination trees and performs a Markowitz style analysis on the unsymmetric
pattern while retaining the e�ciency of a multifrontal method. We will discuss this
further in Section 6.5.

6.1 Performance on Vector Machines

Because multifrontal methods have identical kernels to the frontal methods, one
might expect them to perform well on vector machines. However, the dense matrices
involved are usually of smaller dimension. There is also a greater amount of data
handling outside the kernel, and it is important to consider not only the performance
of the kernel but also the assembly operations involved in generating the assembled
frontal matrix.

Since a characteristic of frontal schemes is that, even for a matrix of irregular
structure, the eliminations are performed using direct addressing and indirect
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Figure 6.5: E�ect of amalgamation on size of factors and number of nodes

addressing is only performed at the assembly stage, it is possible to a�ect the balance
of these operations by performing more assemblies before performing eliminations.
This node amalgamation was �rst suggested in the original paper of Du� and Reid
(1983) where it was recommended as an aid to performance on vector machines.
They parameterized this amalgamation by coalescing a parent node with its eldest
child if the number of eliminations originally scheduled for the parent was less than
a speci�ed amalgamation parameter. Naturally, as this amalgamation parameter
increases, the number of nodes will monotonically decrease although, because there
is not a complete overlap of the variables in the parent and child, the operations for
factorization and number of entries in the factors will increase. We show this e�ect
in Figure 6.5 where the runs were performed by Amestoy using the MA41 code on
test matrix BCSSTK15.

The intended e�ect of node amalgamation with respect to increased e�ciency
on vector machines is to reduce the number of costly indirect addressing operations
albeit at the cost of an increase in the number of elimination operations. We show
this e�ect in Figure 6.6 where we note that, as the amalgamation parameter is
increased, there is a much greater reduction in indirect operations than the increase
in direct operations so that we might expect amalgamation to be very bene�cial
on machines where indirect operations are more costly than directly addressed
operations. This we illustrate in Figures 6.7 and 6.8. The e�ect is very marked
on the CRAY C90 vector computer (Figure 6.7) but is also noticeable on RISC

31



0 4 8 12 16 20 24 28 32 36 40 44 48
Amalgamation parameter

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

P
er

ce
nt

ag
e 

in
cr

ea
se FLOPS during Assembly 

FLOPS during Elimination

Figure 6.6: E�ect of amalgamation on number of indirect and direct
operations

workstations (Figure 6.8) where the use of indirect addressing causes problems for
the management of the cache.

Amestoy and Du� (1989) have used BLAS kernels in both assembly and
elimination operations to achieve over 0.75 Gop/s on one processor of the CRAY
C98 for the numerical factorization of problems from a range of applications. This
high computational rate is achieved without incurring a signi�cant increase in
arithmetic operations. Ashcraft (1987) also reports on high computational rates
for the vectorization of a multifrontal code for symmetric systems.
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Figure 6.7: E�ect of amalgamation on factorization time on CRAY C90
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6.2 Performance on RISC machines

When we were discussing indirect addressing in Section 3, we remarked that its use in
the innermost loops can be ine�cient on machines with cache memory. Conversely,
dense kernels allow good use of memory hierarchies of the kind found in the modern
generation of RISC architecture based machines. We illustrate this with the results
shown in Table 6.1.

Table 6.1: Performance in Mop/s of multifrontal code MA41 on matrix
BCSSTK15 on range of RISC processors

Computer Peak DGEMM MA41
DEC 3000/400 AXP 133 49 34
HP 715/64 128 55 30
IBM RS6000/750 125 101 64
IBM SP2 (Thin node) 266 213 122
MEIKO CS2-HA 100 43 31

In this table, we show the performance of a tuned version of DGEMM on
the machine. This is the Level 3 BLAS routine for (dense) matrix-by-matrix
multiplication and is usually the fastest non-trivial kernel for any machine. We
feel this is a more meaningful yardstick by which to judge performance than the
peak speed, although we show this also in Table 6.1. The MA41 performance ranges
from 50 to 70% of the DGEMM performance showing that good use is being made
of the Level 3 BLAS.

6.3 Performance on Parallel Machines

Du� and Reid (1983) considered the implementation of multifrontal schemes on
parallel computers with shared memory. In this implementation, there are really
only three types of tasks, the assembly of information from the children, the selection
of pivots, and the subsequent eliminations, although he also allows the eliminations
to be blocked so that more than one processor can work on the elimination operations
from a single pivot. He chooses to store all the tasks available for execution in a
single queue with a label to identify the work corresponding to the task. When a
processor is free, it goes to the head of the queue, selects the task there, interprets the
label, and performs the appropriate operations. This process may in turn generate
other tasks to be added to the end of the queue. This model was used by Du�
in designing a prototype parallel code from the HSL code MA37 and we show, in
Table 6.2, speedup �gures that he obtained on the Alliant FX/8 (Du� 1989b). It
was this prototype code that was later developed into the code MA41.
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Table 6.2: Speedup on Alliant FX/8 of Five-Point Discretization of Laplace
on a 30� 30 grid

No. processors Time Speedup
1 2.59 -
2 1.36 1.9
4 .74 3.5
6 .57 4.5
8 .46 5.6

The crucial aspect of multifrontal methods that enables exploitation of
parallelism is that work at di�erent nodes of the assembly tree is independent and
the only synchronization required is that data from the child nodes must be available
before the computation at a node can be completed. The computation at any leaf
node can proceed immediately and simultaneously. Although this provides much
parallelism near the leaf nodes of the tree, there is less towards the root and, of
course, for an irreducible problem there is only one root node. If the nodes of the
elimination tree are regarded as atomic, then the level of parallelism reduces to one
at the root and usually increases only slowly as we progress away from the root. If,
however, we recognize that parallelism can be exploited within the calculations at
each node (corresponding to one or a few steps of Gaussian elimination on a dense
submatrix), much greater parallelism can be achieved. This loss of parallelism by
regarding nodes as atomic is compounded by the fact that most of the oating-
point arithmetic is performed near the root so that it is vital to exploit parallelism
also within the computation at each node. We illustrate the amount of parallelism
available from the assembly tree by the results in Table 6.3, where we show the
size and number of tree nodes at the leaves and near the root of the tree. Thus we
see that while there is much parallelism at the beginning of the factorization, there
is much less near the root, if the tree nodes are regarded as atomic. Furthermore,
about 75% of the work in the factorization is performed within these top three levels.
However, the size of the frontal matrices are much larger near the root so we can
exploit parallelism at this stage of the factorization by, for example, using parallel
variants of the Level 3 BLAS for the elimination operations within a node. The
e�ect of this is seen clearly in the results from Amestoy, Dayd�e, Du� and Mor�ere
(1995) shown in Table 6.4, where the increased speedups in columns (2) are due to
exploiting parallelism within the node.

The code used in the experiments in Table 6.4 was the MA41 code (Amestoy and
Du� 1993, Amestoy and Du� 1997) which was developed for shared memory parallel
computers. It should be emphasized that, because of the portability provided
through the use of the BLAS, the MA41 code is essentially identical for all shared
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Table 6.3: Statistics on front sizes in tree

Leaf nodes Top 3 levels
Matrix Order Tree nodes Number Av. size Number Av. size
BCSSTK15 3948 576 317 13 10 376
BCSSTK33 8738 545 198 5 10 711
BBMAT 38744 5716 3621 23 10 1463
GRE1107 1107 344 250 7 12 129
SAYLR4 3564 1341 1010 5 12 123
GEMAT11 4929 1300 973 10 112 148

Table 6.4: Performance summary of the multifrontal factorization using
MA41 on 7 processors of a CRAY C98. In columns (1) we exploit only
parallelism from the tree; in columns (2) we combine the two levels of parallelism

(1) (2)
Matrix order entries Mop/s (speedup) Mop/s (speedup)

WANG3 26064 177168 1062 (1.42) 3718 (4.98)

WANG4 26068 177196 1262 (1.70) 3994 (5.39)
BBMAT 38744 1771722 2182 (3.15) 3777 (5.46)
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Figure 6.9: Speedup graph

memory machines. MA41 will also run with relatively minor changes on a virtual
shared memory machine although it is bene�cial to make more signi�cant changes for
e�ciency. This is seen in Figure 6.9, where a signi�cant modi�cation to the virtual
shared memory implementation was to perform some explicit copying of subarrays
into the private memories and to use BLAS locally on each processor (Amestoy et
al. 1995).

Multifrontal codes have also been developed for distributed memory machines.
An e�cient data parallel version of a multifrontal code has been implemented by
Conroy, Kratzer and Lucas (1994). The most impressive times and speedups of which
we are aware have been obtained by Gupta and Kumar (1994) for an implementation
of a multifrontal code on a 1024-processor nCUBE-2 machine. We include some of
their results for the matrix BCSSTK15 in Table 6.5. For larger matrices, they
show even better performance with a speedup of over 350 on 1024 processors for
matrix BCSSTK31 of order 35588 with about 6.4 million entries. In subsequent
experiments, Gupta, Karypis and Kumar (1996) have implemented versions of their
algorithms on a CRAY T3D, using SHMEM for message passing, and have obtained
a high performance and good speedup on this machine also.

Clearly the parallelism available through the elimination tree depends on the
ordering of the matrix. In general, short bushy trees are preferable to tall thin ones
since the number of levels determines the inherent sequentiality of the computation.
Two common ordering strategies for general sparse symmetric systems are minimum
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Table 6.5: Performance of code of Gupta and Kumar on nCUBE on matrix
BCSSTK33. Times in seconds. Results taken from Gupta and Kumar (1994)

Number of processors 1 4 16 64 256
Time 103.7 26.7 8.3 3.2 1.5
Speedup 1.00 3.9 12.5 32.4 67.8
E�ciency % 100 97 78 51 27
Load balance % 100 98 91 87 84

degree and nested dissection (see, for example, Du� et al. (1986) and George and
Liu (1981)). Although these orderings are similar in behavior for the amount of
arithmetic and storage, they give fairly di�erent levels of parallelism when used
to construct an elimination tree. We illustrate this point in Table 6.6, where the
maximum speedup is computed from a simulation of the elimination as the ratio of
the number of operations in the sequential algorithm to the number of sequential
operations in the parallel version, with account taken of data movement as well as
oating-point calculations (Du� and Johnsson 1989).

Table 6.6: Comparison of two orderings for generating an elimination tree
for multifrontal solution (the problem is generated by a 5-point discretization of
a 10� 100 grid)

.

Minimum Nested
Ordering degree dissection
Number of levels in tree 52 15
Number of pivots on longest path 232 61
Maximum speedup 9 47

6.4 Exploitation of Structure

The multifrontal methods that we have just described generate the assembly tree and
corresponding guiding information for the numerical factorization without access to
numerical values and assume that the pivot order thus selected will be numerically
suitable. For matrices which are not positive de�nite, this is not necessarily the
case, so the numerical factorization must be able to tolerate enforced changes to
the predicted sequence by performing additional pivoting. For general symmetric
systems, this is usually not much of a problem and the overheads of the additional
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pivoting are fairly low. However, symmetric systems of the form 
H A
AT 0

!
; (6.3)

called augmented systems, occur frequently in many application areas (Du� 1994).
It is necessary to exploit the structure during the symbolic analysis so that pivots
are not chosen from the zero block and it is preserved during the factorization. The
e�ect of taking this structure into account can be very dramatic. For example,
on a matrix of the form (6.3) with H a diagonal matrix of order 1028 with 504
ones and 524 zeros and A the 1028 x 524 matrix FFFFF800 from the collection
in Gay (1985), an earlier multifrontal code which does not exploit the zero-block
structure (namely HSL code MA27) forecasts 1.5 million oating-point operations
but requires 16.5 million. The HSL code MA47 (Du� and Reid 1995, Du� and
Reid 1996b), however, forecasts and requires only 7,954 ops. Unfortunately, the
new code is much more complicated and involves more data movement since frontal
matrices are not necessarily absorbed by the parent and can percolate up the tree.
Additionally, the penalty for straying from the forecast pivot sequence can be very
severe.

6.5 Unsymmetric Multifrontal Methods

Although the multifrontal schemes that we have just described are designed for
structurally symmetric matrices, structurally unsymmetric matrices can be handled
by explicitly holding zero entries. It is more complicated to design an e�cient
multifrontal scheme for matrices that are asymmetric in structure. The main
di�erence is that the elimination cannot be represented by an (undirected) tree but
a directed acyclic graph (DAG) is required (Eisenstat and Liu 1992). The frontal
matrices are, of course, no longer square and, as in the case discussed in the previous
section, they are not necessarily absorbed at the parent node and can persist in the
DAG. Finally the complication of a posteriori numerical pivoting is even more of a
problem with this scheme so that the approach adopted is normally to take account
of the real values when computing the DAG and the pivot order.

An unsymmetric multifrontal code by Davis and Du�, based on this approach,
is included as subroutine MA38 in the Harwell Subroutine Library. We show a
comparison, taken from Davis and Du� (1997b), of this code with the \symmetric"
HSL code MA41 in Table 6.7.

The problems in Table 6.7 are arranged in order of increasing asymmetry, where
the asymmetry index is de�ned as

Number of pairs such that aij = 0; aji 6= 0

Total number of o�-diagonal entries
; (6.4)

so that a symmetric matrix has asymmetry index 0.0. These results show clearly
the bene�ts of treating the asymmetry explicitly.
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Table 6.7: Comparison of \symmetric" (MA41) and \unsymmetric"
(MA38) code

Order 13535 62424 26064 22560 120750 36057
Entries 390607 1717792 177168 1014951 1224224 227628
Index of asymmetry (6.4) 0.00 0.00 0.00 0.36 0.76 0.89

Floating-point ops (109)
MA41 0.3 2.3 10.4 2.9 38.2 0.6
MA38 3.8 5.3 62.2 9.0 7.0 0.2

Factorization time

(seconds on Sun ULTRA)
MA41 8 46 174 81 809 19

MA38 85 127 1255 226 220 11

We show a comparison of the HSL MA38 code with HSL codes MA41 and MA48
in Table 6.8, taken from Davis and Du� (1997a). These results show that the new
code can be very competitive, sometimes outperforming the other codes.

Table 6.8: Comparison of MA38 with MA48 and MA41 on a few test
matrices. Times in seconds on a Sun ULTRA-1 workstation

Matrix Order No entries Factorization Time
MA38 MA48 MA41

AV41092 41092 1683902 1618 1296 254
PSMIGR 1 3140 543162 198 179 188
ONETONE1 36057 341088 57 110 189

LHR71 70304 1528092 93 287 996

7 Other Approaches for Exploitation of

Parallelism

Although we feel that the multifrontal approach is very suitable for exploitation
of parallelism, it is certainly not the only approach being pursued. Indeed, the
Cholesky algorithm viewed as a left-looking algorithm can be implemented for
sparse systems and can also be blocked by using a supernodal formulation similar
to the node amalgamation that we discussed in Section 6. A code based on this
approach attained very high performance on some structural analysis and arti�cially
generated problems on a CRAY Y-MP (Simon et al. 1989). A variant of the
standard column-oriented sparse Cholesky algorithm has also been implemented
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on hypercubes (George, Heath, Liu and Ng 1988, George, Heath, Liu and Ng 1989).
Highly e�cient codes based on a supernodal factorization for MIMD machines, in
particular for an INTEL Paragon, have been developed by Rothberg (1994).

The supernodal concept has recently been extended to unsymmetric systems by
Demmel, Eisenstat, Gilbert, Li and Liu (1995). It is now not possible to use Level 3
BLAS e�ciently. However, Demmel et al. (1995) have developed an implementation
that performs a dense matrix multiplication of a block of vectors and, although these
cannot be written as another dense matrix, they show that this Level 2.5 BLAS
has most of the performance characteristics of Level 3 BLAS since the repeated
use of the same dense matrix allows good use of cache and memory hierarchy. In
Table 7.1 we compare their code, SuperLU, with the multifrontal approach on a
range of examples. The multifrontal code MA41 was used if the asymmetry index
of the matrix was less than 0.5 and the code MA38 was used otherwise. This seems
to support the premise that the simpler multifrontal organization performs better
although it is important to use the very unsymmetric code, MA38, when the matrix
is very structurally asymmetric.

Table 7.1: Comparison of multifrontal against supernodal approach. Times
in seconds on a Sun ULTRA-1 workstation

Matrix Order Entries Analyze and Factorize Entries in
Time (secs) LU factors (106)

SuperLU Multif SuperLU Multif

ONETONE2 36057 227628 9 11 1.3 1.3
TWOTONE 120750 1224224 758 221 24.7 9.8

WANG3 26024 177168 1512 174 27.0 11.4
VENKAT50 62424 1717792 172 46 18.0 11.9
RIM 22560 1014951 78 80 9.7 7.4

GARON2 13535 390607 60 8 5.1 2.4

A quite di�erent approach to designing a parallel code is more related to the
general approach discussed in Section 3. In this technique, when a pivot is chosen
all rows with entries in the pivot column and all columns with entries in the pivot
row are marked as ineligible and a subsequent pivot can only be chosen from the
eligible rows and columns. In this way, a set of say k independent pivots is chosen.
This set of pivots not a�ect each other and can be used in parallel. In other words,
if the pivots were permuted to the beginning of the matrix, this pivot block would
be diagonal. The resulting elimination operations are performed in parallel using
a rank k update. This is similar to the scheme of Davis and Yew discussed in
Section 3.4. We show some results of this approach taken from van der Stappen,
Bisseling and van de Vorst (1993) in Table 7.2, where it is clear that good speedups
can be obtained.
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Table 7.2: Results from van der Stappen, Bisseling and van de Vorst
(1993) on a PARSYTEC SuperCluster FT-400. Times in seconds for LU
factorization.

Matrix Order Entries Number of processors
1 16 100 400

SHERMAN 2 1080 23094 1592 108 32.7 15.6
LNS 3937 3937 25407 2111 168 37.9 23.7

8 Software

Although much software is available that implements direct methods for solving
sparse linear systems, little is within the public domain. There are several reasons
for this situation, the principal ones being that sparse software often is encapsulated
within much larger packages (for example, for structural analysis) and that much
work on developing sparse codes is funded commercially so that the fruits of this
labor often require licenses. There are also several research codes that can be
obtained from the authors but, since these usually lack full documentation and
often require the support of the author, we do not discuss these here.

Among the public domain sparse software are some routines from the Collected
Algorithms of ACM (available from netlib), mostly for matrix manipulation (for
example, bandwidth reduction, ordering to block triangular form) rather than for
equation solution, although the NSPIV code from Sherman (1978) is available as
Algorithm 533.

Both Y12M and the HSL code MA28, referenced in this chapter, are available
from netlib, although people obtaining MA28 in this way are still required to sign
a license agreement, and use of the newer HSL code MA48 is recommended. A freely
available research version of MA38, called UMFPACK, which includes a version for
complex matrices, is available in netlib as is the C code SuperLU implementing
the supernodal factorization of Demmel et al. (1995). There is also a skeleton sparse
LU code from Banks and Smith in the misc collection in netlib, and Joseph Liu
distributes his multiple minimum-degree code upon request.

Among the codes available under license are those from the Harwell Subroutine
Library that were used to illustrate many of the points in this chapter, a subset
of which is also marketed by NAG under the title of the Harwell Sparse Matrix
Library. Contact details for these organizations can be found in Appendix A.2.
The IMSL Library also has codes for the direct solution of sparse systems, and a
sparse LU code is available in the current release of ESSL for the IBM RS/6000
and SP2 computers. Sparse linear equation codes are also available to users of Cray
computers upon request to Cray Research Inc.

Other packages include the SPARSPAK package, primarily developed at the
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University of Waterloo (George, Liu and Ng 1980), which solves both linear systems
and least-squares problems, and routines in the PORT library from Bell Labs
(Kaufman 1982), details of which can be obtained from netlib. Versions of
the package YSMP, developed at Yale University (Eisenstat, Gursky, Schultz and
Sherman 1982), can be obtained from Scienti�c Computing Associates at Yale, who
also have several routines implementing iterative methods for sparse equations.

A public domain version of SuperLU for shared memory parallel computers,
SuperLU MT, is available from the Berkeley and the MA41 code from HSL
that we have discussed in this paper, also has a version for shared memory
computers. The only public domain software for distributed memory machines
that we are aware of is the CAPSS code by Heath and Raghavan (1995,1997),
which is included in the SCALAPACK package. Gupta is freely distributing a
non-machine speci�c source code version of the WSSMP code (Gupta, Joshi and
Kumar 1997) that is available under license for the IBM SP2. Koster and Bisseling
(1994) plan a public release of their parallel Markowitz/threshold solver, SPLU,
designed for message passing architectures, while the EU LTR Project PARASOL
(http://192.129.37.12/parasol/) plans to develop a suite of direct and iterative sparse
solvers for message passing architectures that are primarily targeted at �nite-element
applications.

It should be stressed that we have been referring to fully supported products.
Many other codes are available that are either at the development stage or are
research tools (for example, the SMMS package of Fernando Alvarado at Wisconsin
(Alvarado 1989)) and the SPARSKIT package of Yousef Saad at Minneapolis (Saad
1994).

9 Brief Summary

We have discussed several approaches to the solution of sparse systems of equations,
with particular reference to their suitability for the exploitation of vector and parallel
architectures. We see considerable promise in both frontal and multifrontal methods
on vector machines and reasonable possibilities for exploitation of parallelism
by supernodal and multifrontal methods. A principal factor in attaining high
performance is the use of dense matrix computational kernels, which have proved
extremely e�ective in the dense case.

Finally, we have tried to keep the narrative owing in this presentation by
avoiding an excessive number of references. For such information, we recommend
the recent review by Du� (1997), where 215 references are listed.
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