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Abstract   We address the properties of the cross-section for the magnetic scattering of polarized

neutrons.  Results are given for cross-sections that describe total scattering, diffraction (Bragg

scattering) and inelastic scattering events.  The properties discussed flow from basic principles,

namely the condition of detailed balance in scattering and the invariance of the sample’s

properties to a simultaneous reversal in the directions of time and the polarity of the

magnetization.  Attention is given to features that can arise with a non-collinear arrangement of

the atomic magnetic moments and anisotropic interactions between the moments.
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1. Introduction

The scattering of radiation by a material is a very powerful technique by which to recover

information on the properties of the material at an atomic level of detail.  For magnetic properties

the unrivalled radiation is a beam of neutrons. The information available from an analysis of the

scattered radiation includes the orientation and location of the atomic magnetic moments, and the

frequency spectra of excitations and fluctuations.

The neutron cross-sections for elastic and inelastic events have been derived and

investigated by many authors over a period of several decades [1].  With the growing interest in

properties of complex magnetic materials, some possessing anisotropic interactions and non-

collinear moment configurations, it is, perhaps, timely to address the cross-sections for elastic,

inelastic and total scattering of  polarized neutrons.  We gather properties of these cross-sections

that flow from the condition of detailed balance in scattering events, and time-reversal invariance

applied to the properties of the sample.  We choose to articulate in the language of correlation

functions  and the van Hove spin response function. Also, we have occasion to call on the theory

of linear response.

2.  Identities

The thermal average value of Q, a quantum-mechanical operator, is denoted by angular

brackets.  For an arbitrary operator Q,

Q Q Q
* *( . ) ,= = +Tr ρ (2.1)

where Q+ is the Hermitian conjugate of Q, and ρ is the density matrix that describes the

equilibrium properties of the sample.  The identity (2.1) guarantees that the cross-section is purely

real, as it must be.

Due to the principle of micro-reversibility, the sample’s properties are not changed by the

simultaneous reversal of the direction of time and the polarity of the magnetization.  Let us denote

by Q′ the operator formed from Q by the operation of time reversal alone.  By way of an example,
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let us consider Q = ⋅exp( ) ,ik R p  where p is the momentum operator conjugate to the position

operator R.  One has, ′ = − − ⋅Q exp( ) .ik R p  This result follows because p and R, respectively,

are odd and even with respect to the operation of time reversal, and this operation also changes i

to −i, i.e. it includes complex conjugation.

If we denote the magnetic field acting on the sample by H, time-reversal invariance at the

atomic level requires [2, 3] the identity,

{ }Q Q
H H

= ′
+

−
. (2.2)

Taking Q to be the total magnetic moment of the sample, M, (2.2) gives, M MH H= − − ,

which provides the relation between M Hand . If the sample is paramagnetic the field-induced

magnetization vanishes as the field is reduced to zero.  For a state of spontaneous magnetization

〈M〉 is non-zero in the limit H = 0, and the polarity of the spontaneous magnetization  is

determined by the polarity of H.

For the third, and last, identity that is of interest in connection with our discussion of the

cross-section we consider Q = A(0)B(t), where A(t = 0) and B(t) are Heisenberg operators derived

from arbitrary A and B.  Quantum properties make 〈A(0)B(t)〉 and 〈B(0)A(t)〉 different.  One finds,

A B t B A t( ) ( ) ( ) ( ) ,0 0= −ihβ (2.3)

where β = 1/kB T and T is the temperature.  Often, (2.3) is referred to as the condition of detailed

balance; in fact, one of many guises that the condition can adopt.

3.  Cross-section

The interaction with the nuclei is described by the operator, b n(k). Here, b is the average

value of the scattering length, k is the scattering wave vector and n j( ) exp( ),k k R= ⋅∑ i  where

the sum is over all nuclei.  For the interaction with atomic moments we use the operator [4],
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T k k k R k S k( ) ( ) exp( ){$ ( $ )}.= ⋅∑1
2 gF

a
a ai x x

In this expression, $ / ,k k= k  and g, F(k), R and S are, respectively, the gyromagnetic factor,

atomic form factor, position and spin operator of one of the identical magnetic atoms.  We will

assume that F(k) = F(−k). The foregoing expression for the magnetic interaction operator is

approximate, to the extent that orbital angular momentum is not treated in full.  Instead, orbital

angular momentum is only partially included by allowing the gyromagnetic factor to depart from

its pure-spin value.

If the primary beam of neutrons carries a polarization P the magnetic cross-section is

proportional to,

{ }1

2 0
2

0 0 0
2

π
ω

h −∞

∞
+ + + +∫ − ⋅ + ⋅ + ⋅ + ⋅d i i xt t r t r b n t r b n t r texp( ) ( ) ( ) .T T P T P T P T T( ) ( ) (3.1)

Here, hω is the energy transferred to the sample and r0 = − 0.54. 10−12cm.

In later parts of the paper we are led to consider the signals observed at the geometrical

settings that give scattering wave vectors k and - k,

4.  Interference scattering

If we introduce the mixed response function,

Z k k T kH H
( , ) exp( ) ( , ) ( , )ω

π
ω= − −

−∞

∞

∫
1

2
0

h
d it t n t , (4.1)

the interference contribution to (3.1), induced by the polarization, is proportional to,

{ }P Z k Z kH H⋅ −( (, ) , )ω ω− − (4.2)
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{ }= ( (P Z k Z kH H⋅ + −, ) , ) exp( ) .ω ω ωβ− h (4.3)

The results (4.2) and (4.3) follow from (2.2) and (2.3), respectively, which give,

Z k Z kH H( (, ) , ) exp( ).ω ω ωβ= − −− h (4.4)

Notice we do not assume that the scattered signal is the same at k and − k.  A difference in

the signals can arise if the atomic moments occupy sites that are not centres of inversion

symmetry, or the magnetic long-range order is non-collinear.

The result (4.2) is particularly interesting.  It shows that, the interference scattering is odd

with respect to a simultaneous change in the sign of k and the polarity of the magnetization.

Hence, for some magnetic materials the interference scattering does not merely change sign on

changing the polarity of the magnetization.

The results (4.2) and (4.3) apply to both inelastic and elastic (ω = 0) scattering events.  For

Bragg diffraction (4.3) tells us that the interference scattering is always the same at k and − k, for

a given value of  H.

5.  Purely magnetic scattering

It is useful to introduce a van Hove response function for the spin operaters,

{ } { }S t t S S t S
a b

b a a b
αβ α β βαω

π
ω ω( , ) exp( ) exp ( ) ( , )

*
,k k R R k= − ⋅ − =

−∞

∞

∫ ∑1

2 h
d i i

,

(0) ( ) (5.1)

and the second equality follows from (2.1). In terms of the van Hove function the purely magnetic

part of (3.1) is proportional to,

[ ] [ ]S G A G B
a b

αβ
αβ α β

αβ
αβ α β

αβ αβ αβ

α β
ω δ δ ω ω

,

( , ( ,∑ ∑− + = − +( , ) $ $ ) ( ) $ $ ) ( , ) ( ) ( , ) .
,

k k k P k k k k P k ki

(5.2)
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Here, G G kαβ βα αβγ
γε( ) ( ) ( $ ) $P, k P, k k P= − = ⋅ ∑  where εαβγ is the completely antisymmetric

tensor with three Cartesian indices, and we have introduced the symmetric and antisymmetric

combinations,

A S S Sαβ αβ βα αβω ω ω ω( , ) ( , ) ( , )} Re. ( , )k k k k= + =1
2 { , (5.3)

and

B S S Sαβ αβ βα αβω ω ω ω( , ) ( , ) ( , )} Im. ( , ).k k k k= − = −i
2 { (5.4)

The results (5.3) and (5.4) show that the polarization-dependent and polarization-independent

parts of the purely magnetic cross-section measure quite different magnetic correlations.  We

pursue this feature of the cross-section by expressing Aαβ and Bαβ in terms of the generalized spin-

susceptibility.

It is most convenient to start from the spin response-function, defined as the spatial Fourier

transform of a commutation of two spin operators,

{ } [ ]φαβ α β( , ) exp ( ) ( ), ( ) ,k k R Rt S t S
a b

a b a b= ⋅ −∑i ih
,

0 (5.5)

and it satisfies the identity, { }φ φβα αβ( , ) ( , )
*

.k kt t= − −  The generalized susceptibility is the

Laplace transform of the spin response-function, viz.,

[ ] { }χ ω φ η ωαβ αβk k, ( , ) exp )= − −
∞

∫
0

d ( it t t +

where η → 0 is understood.  For the van Hove response function (5.1) one finds,
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( )S n t t tαβ βαω π ω φ ωk k, ( , ) exp ),=
∞

∞

∫i
2 {1 + ( )} d ( i

−

− (5.7)

with n(ω) = {exp(hωβ) − 1}−1.

The following relations are also quite easy to obtain,

( ) { }A nαβ αβ βαω ω χ ω χ ωπk k k, [ , ] [ , ]= +1
2 {1 + ( )}Im. (5.8)

and,

( ) { }B nαβ αβ βαω ω χ ω χ ωπk k k, [ , ] [ , ] .= −−1
2 {1 + ( )}Re. (5.9)

From this pair of relations it follows that the first and last contributions to the cross-section (3.1),

respectively, are proportional to Im. χαβ [k,ω] and Re. χαβ [k,ω].  In consequence, an experiment

made with a beam of polarized neutrons in principle enables the analytic function χαβ [k,ω] to be

measured.  Let us mention that, while the real and imaginary parts of χαβ [k,ω] do not satisfy a

simple dispersion relation, the linear combinations of the susceptibility in Aαβ and Bαβ do satisfy

such a relation.

The total scattering generated by the antisymmetric combination (5.4) is,

{ }
−∞

∞

∫ ∑ ∑ ∑= − + ⋅ −dω ω εαβ αβγ γ α βB S S S
a

a
a b

a b a b( , ) sin ( ) .
,

k k R R1
2

γ
(5.10)

The first term in (5.10) is a direct consequence of the commutation relation for S Sa b
α β , and it is

evidently zero for a magnetic material with no long-range order.  One finds the first term

contributes to the cross-section for total scattering a factor, − ⋅ ⋅( $ )( $ ).k P k M  Hence, the total

scattering contains the projection of the magnetization on k.  This finding contrasts with the

cross-section for Bragg diffraction (a time averaged process whereas the total scattering is an
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instantaneous process), which contains components of the spatial Fourier transform of the

magnetization that are perpendicular to k.

The second term in (5.10) is zero for a material in which the magnetic ions occupy sites that

are centro-symmetric for, in this instance, the two-spin correlation function depends only on |Ra −

Rb|.  In addition, when there is no long-range order and α ≠ β the correlation function S Sa b
α β is

zero unless the spin Hamiltonian contains an anisotropic interaction, e.g. the Dzyaloshinsky-

Moriya exchange interaction.  We conclude that, in the absence of long-range magnetic order in

the target sample the total scattering generated by Bαβ most likely is zero.  Exceptions are various

novel materials, like a dimerized chain with anisotropic exchange interactions.  The second term

in (5.10) contributes to the cross-section for total scattering a factor,

{ }( $ ) sin ( $ .
,

k P k R R k S S⋅ ⋅ − ⋅∑
a b

a b a bx (5.11)

It is interesting to observe that this contains the projection of k on a chiral order-parameter.

The following relations are obtained from the identities in section 3;

{ }B S SH H Hk k kαβ αβ αβω ω ω( , ) ( , ) ( , ) ,= − −−
i
2 (5.12)

from which,

B BH Hk kαβ αβω ω( , ) ( , ) .+ − =− 0 (5.13)

And,

B Bαβ αβω ω ωβ( , ) ( , ) exp( ),k k= − − − h (5.14)

which evaluated for ω = 0 gives,
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B Bαβ αβ( , ) ( , ) .k k0 0 0+ − = (5.15)

Several aspects of these relations merit comment.

In light of (5.12), we can view BH
αβ  as a measure of the chiral signature of excitations.

Consider, for example, H aligned with the z-axis.  In this instance, S xy
H k( , )ω describes excitations

with circular polarization, the corresponding helicity is parallel to the z-axis, and B xy
H k( , )ω is a

difference between the left and right-handed helicity states.  The relation (5.13) shows that, BH
αβ

is possibly different from zero even in the absence of a preferred magnetic axis in the target

sample, given the ions occupy non-centro-symmetric sites and k ≠ 0.  A necessary condition for

this to occur is that the Hamiltonian of the spins is anisotropic with respect to the components of

the spins, e.g. S xy
H k H( , )ω ≠ =0 0for  and no spontaneous ordering of the moments.  Lastly,

from (5.15) we conclude that, if the response function is independent of the sign of k, so the

response is spatially isotropic, the antisymmetric part of it is zero for ω = 0.

6. Conclusions

In our treatment of the subject we have concentrated primarily on those aspects of the

scattering of neutrons which are governed by the polarization P of the neutron. The essential parts

for the contributions to the cross-section, couched in the language of linear response theory, are

represented by a van Hove response function for spin operators or a mixed response function for

purely magnetic or interference scattering, respectively.

The main thrust of our discussion is directed at the consequences of two symmetry

principles impressed on the correlation and response functions, namely the condition of detailed

balance and the time reversal invariance at the microscopic level. We take care not to limit our

treatment to such situations (samples) where the scattering remains the same when the direction

of the scattering vector is reversed. The theory remains, thus, applicable to cases where atomic

moments are not at sites with inversion symmetry or where the sample has non-collinear long-

range order.
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In general the response functions for a certain sample (and experiment) will depend on the

direction of the wave vector transfer k, the applied field H, and the energy transferred in the

scattering process. We note that, the properties and (inter)relations flowing from the

aforementioned symmetry conditions force, in some cases, a reversal of the applied field together

with the reversal of k, in order to arrive at the appropriate combinations for the scattering

function. The interference scattering is, consequently, described by the projection of

{ }Z k Z kH H( , ) ( , )ω ω− −−  onto the polarization P, an expression antisymmetric with respect to a

simultaneous reversal of both k and H. In the case of elastic scattering, with ω = 0, the relevant

expression can be rewritten as { }Z k Z kH H( , ) ( , )0 0+ − , thus showing the symmetry of Bragg

scattering with respect to the reversal from k to −k.

Considering purely magnetic scattering, we find the polarization-dependent contribution

to be proportional to [ ] [ ]{ }Re. , ,χ ω χ ωαβ βαk k−  or { }i
2 S SH Hk kαβ αβω ω( , ) ( , )− −− , if the generalized

susceptibility or the van Hove response function is used, respectively.

And, therefore, …
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