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ABSTRACT

We consider the solution of large sparse systems, sketch their ubiquity, and briefly describe

some of the algorithms used to solve these systems.

The HSL mathematical software library started life in 1963 as the Harwell Subroutine

Library making it one of the oldest such libraries. The main strengths of the Library lie

in packages for large scale system solution. It is particularly strong in direct methods for

sparse matrices and optimization. The Library has been used worldwide by a wide range

of industries.

We briefly discuss the history of the library and its organization and contents. We

discuss the evolution of some of our current packages and the efforts to ensure reliability,

robustness, and efficiency.

We describe in some detail the functionality of one of our most popular sparse direct codes.
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1 Introduction

Sparse systems of linear equations

Ax = b (1.1)

are simply sets of linear equations where the coefficient matrix A has sufficient zero entries to

cause it to be beneficial to exploit this fact. Thus we are not here concerned with any particular

structure or any particular application area. In fact, we emphasize in Section 2 the ubiquity of

sparse systems and illustrate the diversity of their structure. In Section 3, we briefly introduce

the main elements of the direct solution of sparse equations indicating their complexity on a

range of structures. We then discuss the origins, structure, and development of HSL in Section 4

before a brief summary of the paper in Section 5.

2 Sparse matrices

Sparse matrices have arisen naturally in numerical applications since the mid 1960s. Some of

the earliest applications involving the solution of sparse systems with a general structure were in

the solution of ordinary differential equations using backward difference formulae and in linear

programming. The former area was the main driving force in the development of sparse matrix

methods at AERE Harwell in the 1970s. We list some of the major numerical application areas

stimulating and benefiting from sparse matrix research in Table 2.1.

Stiff ODEs ... BDF ... Sparse Jacobian

Linear Programming

..... simplex

..... interior point

Optimization/Nonlinear Equations

Elliptic Partial Differential equations

Eigensystem Solution

Two Point Boundary Value Problems

Least Squares Calculations

Table 2.1: Some numerical applications

In a more general context, we can look at application areas that often make extensive use of

sparse matrices or sparse equation solvers. We show a range of these in Table 2.2. In this list,

standard applications in the hard sciences are listed along with slightly more esoteric applications

in the soft sciences.

We now show some pictures of sparse matrices from various applications in order to illustrate

different structures for sparse matrices. The thermal simulation example exhibits a structure

which is very structured and familiar to most of you. It is typical of a matrix arising in the

finite-difference discretization of a three-dimensional elliptic PDE. In this case, the inclusion of

thermal terms give this matrix, from oil reservoir modelling, interesting properties.
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Physics CFD

Lattice gauge

Atomic spectra

Chemistry Quantum chemistry

Chemical engineering

Civil engineering Structural analysis

Electrical engineering Power systems

Circuit simulation

Device simulation

Geography Geodesy

Demography Migration

Economics Economic modelling

Behavioural sciences Industrial relations

Politics Trading

Psychology Social dominance

Business administration Bureaucracy

Operations research Linear Programming

Table 2.2: Application areas

Thermal Simulation; SHERMAN2

Our so-called weather matrix is somewhat more interesting and models the combination of

chemical kinetics and atmospheric transport. It is in fact a block matrix where each block

is diagonal or tridiagonal and comes from studies in atmospheric pollution, a hot topic in

environmental science.
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Weather Matrix; FS 760 3

The matrix from dynamic calculations is typical of a matrix arising from a finite-element

discretization of a structures problem, in this case in a study of the effect of earthquake vibrations

on a building in the western USA.

Dynamic Calculation in Structures; BCSSTM13

The power system matrix also comes from the western USA. Those with an eagle eye will see

that the matrix is not quite block diagonal but there are only few entries outside the diagonal

blocks that are themselves sparse. The blocks correspond to the power system network for a

single utility and the off-diagonal entries to the much fewer links between the utilities, that often

only carry loads when there is a problem in one utilities capacity.

Power Systems; BCSPWR07

The matrix from the simulation of computing system comes from a Markov model of a

computing system and has the remarkable anti-symmetric property that if there is an entry

aij then the entry aji does not exist, for all i 6= j.
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Simulation of Computing Systems; GRE 1107

The chemical engineering industry is a rich source of unsymmetric sparse matrices that are

particularly challenging for solution by iterative methods. There is certainly a structure to the

matrix but somewhat more irregular than the earlier examples. Notice that the diagonal is nearly

all zero.

Chemical Engineering; WEST0381

The matrix from an econometric input/output model from South East Asia also has

considerable structure but not one that can be exploited like that of the first matrix we displayed.

Economic Modelling; ORANI678

Duff and Reid distributed a set of sparse matrices from Harwell in the late 1970s but the main

test collection for many years was the Harwell-Boeing Sparse Matrix Collection. This is available

by anonymous ftp from ftp.numerical.rl.ac.uk in directory pub/harwell boeing or from the

Web page http://www.cse.clrc.ac.uk/nag/hb/hb.shtml

This set was later developed by Duff, Grimes, and Lewis (7 ) to include larger matrices

in a wider range of application areas and to define more language-friendly formats and
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auxiliary files for other matrix properties (for example, eigenvalues) and associated information

(for example, sparsity orderings). The Rutherford-Boeing Sparse Matrix Collection (8 )

will be supported by the GRID-TLSE Project http://www.enseeiht.fr/lima/tlse and is

also available by anonymous FTP to ftp.cerfacs.fr in the directory pub/algo/matrices or

http://www.cerfacs.fr/algor/Softs/RB/index.html

An extended set of test matrices available from Tim Davis at

http://www.cise.ufl.edu/research/sparse/matrices and Matrix market at

http://math.nist.gov/MatrixMarket.

3 Direct Methods

Although equation (1.1) nominally has the solution

x = A−1b

it must be stressed that this should only be thought of notationally. It is really crucial that one

must not use or even think of the inverse of A in this context.

For sparse A, A−1 is usually dense. Indeed, if A is irreducible, one can prove (5 ) that A−1

will always be dense in a structural sense. That is, there exists a set of entries in the original

sparsity pattern of A that make any position in the matrix A−1 nonzero.

Examples of sparse matrices that are very sparse but have dense inverses are tridiagonal and

arrowhead matrices, where an arrowhead matrix has entries only in all positions on the diagonal

and the last row and column. These examples are particularly interesting since, although their

inverses are dense, linear systems involving these as coefficient matrices can be solved with no

extra storage, as we shall shortly show.

If we thus dismiss the use of the inverse, we must propose other methods for solving the

systems of the form (1.1). In some instances, iterative methods (11 , 12 ) can be used, often based

on Krylov sequences, but these are not guaranteed to converge on general systems and usually

require very sophisticated preconditioning so we do not consider them further here. Instead we

look at direct methods for solution (6 ) that involve some matrix factorization representation

of the inverse. The methods that we consider here are all based on Gaussian Elimination, that

generates the factorization:

PAQ → LU (3.2)

where permutations P and Q are chosen to preserve sparsity and maintain stability, and L and

U are lower and upper triangular matrices, respectively. When A is symmetric, the factorization

is of the form

PAPT → LDLT. (3.3)

The solution to equation (1.1) is then easily obtained by solving the lower triangular system

Ly = Pb

followed by the upper triangular system

UQTx = y.
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Clearly, as in the case for dense systems, most of the work is usually in the factorization. The

work in the forward and back substitution is proportional to the number of entries in the factors.

This subdivision of work is reflected in software for sparse direct methods. Although the exact

subdivision of tasks for sparse direct solution will depend on the algorithm and software being

used, a common subdivision is given by:

ANALYSE An analysis phase where the matrix structure is analysed to produce a suitable

ordering and data structures for efficient factorization.

FACTORIZE A factorization phase where the numerical factorization is performed.

SOLVE A solve phase where the factors are used to solve the system using forward and

backward substitution.

We note the following:

• ANALYSE is sometimes preceded by a preordering phase to exploit structure.

• For general unsymmetric systems, the ANALYSE and FACTORIZE phases are sometimes

combined to ensure the ordering does not compromise stability.

• The concept of separate ANALYSE and FACTORIZE phases is not present for dense

systems.

It is crucially important to try to ensure sparsity in the factors L and U. This is done by

choosing an ordering for the elimination. For example, if we pivot down the diagonal of the

matrix in the left-hand side of Figure 3.1 then the resulting matrix of factors will be dense, as

shown on the right-hand side of Figure 3.1.

× × × × ×

× ×

× ×

× ×

× ×

L/U

−→

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

Figure 3.1: Factorization of reverse arrowhead matrix

However, if we permute this matrix symmetrically to put the last row and column to the

end, obtaining the arrowhead matrix shown on the left-hand side of Figure 3.2, then the factors

require no more space than the original matrix as shown on the right-hand side of Figure 3.2.

The complexity of LU factorization on a dense matrix of order n is:

2

3
n3 + O (n2) floating-point operations (flops)

n2 storage,

while, for a band matrix (order n, semi-bandwidth k), it is:
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× ×

× ×

× ×

× ×

× × × × ×

L/U

−→

× ×

× ×

× ×

× ×

× × × × ×

Figure 3.2: Factorization of arrowhead matrix

2k2n flops, 2nk storage.

For a five-diagonal matrix (on a k×k grid) as would arise in the finite-difference discretization

of a two-dimensional Laplacian, the complexity is:

O (k3) flops

and

O (k2logk) storage

while, for a tridiagonal or arrowhead matrix, the complexity is:

O (n) work and storage.

Indeed our target complexity for sparse matrix computations is O(n) + O(τ) for a sparse

matrix of order n with τ entries.

4 HSL

4.1 Mathematical software libraries

The benefits and advantages of using high quality mathematical software libraries include:

• Shorten application development cycle, cutting time-to-market and gaining competitive

advantage

• Reduce development costs

• Increase modularity

• More time to focus on specialist aspects of applications

• Improve application accuracy and robustness

4.2 HSL

HSL began life as the Harwell Subroutine Library in 1963 and was originally developed by Mike

Powell and Mike Hopper as an internal library for users of the IBM mainframe at AERE Harwell.

However, the reputation of the Harwell Subroutine Library spread so quickly that it was being

sent out to external users on request as early as 1964. HSL packages are now used worldwide by
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academics and commercial organisations, and are incorporated into a large number of commercial

products.

HSL is now a collection of portable, fully documented and tested packages in standard Fortran,

primarily written and developed by the Numerical Analysis Group at the Rutherford Appleton

Laboratory although some routines have been written by visitors, colleagues and collaborators,

and students of staff at RAL. The particular strengths are currently:

• sparse matrix computations

• optimization

• large-scale system solution.

There are two libraries: HSL 2004 and HSL Archive. HSL Archive consists of superseded

routines and public domain software and is free for non-commercial use. All codes need a licence

although academic and commercial are differentiated.

The most recent version of HSL is called HSL 2004 and was released in January 2004. HSL is

marketed by Hyprotech UK, which was acquired by Aspen Technology in May 2002. For further

details see: www.cse.clrc.ac.uk/nag/hsl

4.3 Organization of HSL

The HSL Library is organized into chapters, each identified by two letters

For example,

• MA: matrix routines (solvers)

• MC: matrix routines (manipulation)

• EB: unsymmetric eigensystems

Within each chapter, each package has a 2-digit identifier, generally allocated chronologically,

for example:

• MA48: package for solving unsymmetric sparse equations

• MA49: package for sparse QR factorization and for solving sparse least-squares.

Following the Fortran 77 convention limiting the length of character strings, each subroutine

has a six character identifier, for example:

• MA48AD: double precision analysis subroutine of MA48 package

• MA57BD: double precision factorize subroutine of MA57 package.

More recently, the prefix HSL (for example, HSL MA48) has been used to identify Fortran 90

or 95 packages.

The number of routines in the main chapters in HSL is shown in Figure 4.3.

Each package has a specification sheet, a short “demo” test program, and an exhaustive test

deck.
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MA Matrix solution 26

MC Matrix manipulation 33

ME Complex matrices 8

MI Iterative solvers and preconditioners 9

MP MPI packages .. all solvers 4

E Eigensystems 8

V Optimization 13

Table 4.3: Number of routines in some major chapters of HSL.

Fortran source code is always provided. Version numbers in the form a.b.c have been recently

introduced to HSL. Changes to c are very minor, perhaps involving changes to comments in the

code. The level b represents minor bug fixes, while at level a we expect more major fixes and

perhaps new entries or facilities.

4.4 Development of HSL

HSL is both revolutionary and evolutionary.

By revolutionary, we mean that codes have been introduced that are radically different in

technique and algorithm design than anything that has preceded them. Examples of this are:

MA18 First sparse direct code 1971

MA27 First multifrontal code 1982

By evolutionary, we mean that some of our codes evolve, sometimes as a result of major

changes in programming paradigm and sometimes because of added functionalities. Examples of

this morphing are:

MA18 −→ MA28 −→ MA48

MA32 −→ MA42 −→

MA37 −→ MA41 −→

MA17 −→ MA27 −→ MA57

We look in more detail at an example of evolution by giving more details for the last example

above, namely our flagship code for symmetric sparse systems. The history of our HSL codes for

solving the symmetric system with A = AT is shown in Figure 4.3.
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• MA17 ... 1971 (Curtis and Reid)

– Sparse symmetric

– LDLT .. 1 × 1 pivots only

– linked lists

• MA27 ... 1982 (Duff and Reid)

– Sparse symmetric indefinite

– LDLT .. 1 × 1 and 2 × 2 pivots

– Multifrontal

• MA47 ... 1995 (Duff and Reid)

– Sparse symmetric indefinite structured

– LDLT .. 1 × 1 and 2 × 2 pivots, with
× ×

× 0
and

× ×

× 0
pivots

– Multifrontal

• MA57 ... 2000 (Duff)

– See Section 4.5

Figure 4.3: Example of evolution

4.5 HSL code MA57

To show the sophistication of our recent codes, we show the features of our current flagship code

for solving sparse symmetric equations MA57 in Figure 4.4.

• Analysis (ordering and symbolic factorization)

– AMD (Approximate Minimum Degree) ordering

• Factorization (PAP T −→ LDLT )

– Factorizes singular matrices

– Pivoting options (including Schnabel-Eskow)

– Stop and restart (or discard factors)

– Option to return or alter pivots

• Solve (Fwd/Bwd substitution)

– Several entries for error analysis and iterative refinement

– Multiple rhs (using level 3 BLAS)

– Partial solve (using L, D, or LT )

Figure 4.4: MA57 features.

Additions made to Version 3.x.y of MA57 are:
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• MeTiS nested dissection ordering available as an option

• Automatic choice of ordering ... decision made from matrix characteristics

• Built-in option for scaling matrix (transparent to user)

• Static pivoting option

We show the first and second pages of the specification sheet for MA57 in Figures 4.5 and 4.6.

The first page shows that the structure of the code follows the subdivision of direct solution

methods that we discussed earlier. On the second page, we see details of the call for the

analysis entry where the number of parameters are reduced by combing control and information

parameters into arrays. In a Fortran 90 code, of course, the work arrays can be made internal

and dynamic and derived data types can be used to create more structure and further reduce the

parameter list.
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Figure 4.5: First page of MA57 specification sheet
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Figure 4.6: Second page of MA57 specification sheet
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4.6 Parallel codes in HSL

In recent years, we have introduced some parallel codes to HSL. The earliest parallel code was

an OpenMP version of MA41.

Work on this code (1 ) was later developed by teams originally at RAL and CERFACS and

now also at Lyon, ENSEEIHT-IRIT, and Bordeaux to produce the much downloaded MUMPS

package (2 ). Note that this package is freely available by request to mumps@cerfacs.fr but is

not in HSL.

MPI-based routines that are available in HSL are in the MP chapter:

HSL MP42 Multiple front method .. equation entry

HSL MP43 Multiple front method .. element entry

HSL MP62 Symmetric element entry multiple front

HSL MP48 General unsymmetric using singly bordered block diagonal form

4.7 HSL summary

It is impossible to discuss in detail the many sparse codes in HSL in an article of this kind but

we present a list of HSL sparse codes in Table 4.4.

Package System solved Algorithm

MA38 Unsymmetric assembled Multifrontal

MA41 Unsymmetric assembled Multifrontal

MA42 Unsymmetric assembled and unassembled Frontal

MA43 Unsymmetric assembled Frontal

MA45 Weighted least squares Normal equations

MA46 Unsymmetric unassembled Multifrontal

MA48 Unsymmetric assembled Markowitz-Threshold

MA49 Rectangular assembled Multifrontal QR

MA55 Symmetric positive definite Variable band

MA57 Symmetric indefinite assembled Multifrontal

MA62 Symmetric definite unassembled Frontal

MA67 Symmetric indefinite structured Zero-tracking

Table 4.4: Some of the sparse matrix codes in HSL that use direct methods. In many cases there

is also a version for complex matrices. There are parallel versions of MA41, using OpenMP, and of

MA42, MA43, MA62, and MA48 using MPI. An out-of-core multifrontal code will soon be available.

5 Summary

The twin aims of our talk are to emphasize the ubiquity of sparse matrices and the availability of

high quality codes for solving sparse systems with HSL. We should stress that there are several

packages available elsewhere, for example the already mentioned MUMPS, although we do not know

of a greater concentration of codes than in HSL.

To sum up:

• Sparse matrices occur in very many application areas.
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• Sparse direct methods can be used to robustly solve large sparse problems.

• There are many packages available that implement direct methods.

• There are several packages implementing direct methods in HSL

(www.cse.clrc.ac.uk/nag/hsl).
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