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ABSTRACT

We consider the direct solution of sparse skew symmetric matrices. We see that

the pivoting strategies are similar, but simpler, to those used in the factorization of

sparse symmetric indefinite matrices, and we briefly describe the algorithms used in

a forthcoming direct code based on multifrontal techniques for the factorization of

real skew symmetric matrices. We show how this factorization can be very efficient

for preconditioning matrices that have a large skew component.
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1 Introduction

We are concerned with the solution of

Ax = b, (1.1)

when A is an n × n sparse matrix and x and b are vectors of length n.

We are particularly interested in the case when A is skew symmetric although we

will also consider the case when A is a general matrix. We study pivoting strategies for

computing the LDLT factorization of a real skew symmetric matrix where L is a lower

triangular matrix and D is a block diagonal matrix with 2×2 blocks. We consider direct

methods based on a multifrontal technique although many of our comments and analysis

apply to other approaches for direct factorization.

We discuss some elementary properties of skew symmetric matrices in Section 2. We

consider the factorization of skew symmetric matrices in Section 3 and show some numerical

results from a prototype code in Section 4. We then indicate in Section 5 the potential

power of our skew solver when used as a preconditioner. We present some conclusions in

Section 6.

2 Skew symmetric matrices

A skew symmetric matrix can be defined by the relationship

A = − AT (2.2)

so that,

aij = −aji, for i 6= j,

and

aii = 0, for all i,

so that the diagonal is all zero.

From the definition (2.2) it immediately follows that

det(A) = det(−AT ) = (−1)ndet(AT ) = (−1)ndet(A)

so that any skew symmetric matrix of odd order is singular.

Skew symmetric matrices have many other very interesting properties. We list a few

of these below, some of which will be important to us when designing and implementing

our sparse factorization. Each statement can be proved with a one or two line proof that

we leave as a simple exercise for the reader.

• Skew symmetric matrices are normal.

• The inverse of a skew symmetric matrix is skew symmetric.
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• Skew symmetric matrices have all eigenvalues on the imaginary axis.

• Any matrix is uniquely decomposable into the sum of a symmetric and a skew

symmetric matrix.

• If K is skew symmetric, xT Kx = 0, for all x.

We note that the counterpart for complex matrices, called skew Hermitian,

A = − AH

allows the diagonal entries to be pure imaginary. As we will see later, our factorization

techniques rely heavily on the presence of a zero diagonal and so we will not consider

complex matrices in this paper nor will we consider any possible extension of our techniques

to that case. We note, however, that if A is skew Hermitian, then iA is Hermitian and

suggest that this might be the way to treat such matrices for factorization and equation

solving.

Skew symmetric matrices are often ignored by numerical analysts, for example there

is no reference to them in two of the standard texts for numerical linear algebra (Stewart

1973, Golub and Van Loan 1996).

3 Factorization of skew symmetric matrices

Clearly it is not possible to use a 1×1 pivot from the diagonal because all such entries

are zero. However, in the flavour of our work on symmetric indefinite pivoting we can

choose an oxo pivot (Duff, Gould, Reid, Scott and Turner 1991) where both zeros are on

the diagonal. If we do so and we perform Gaussian elimination using this pivot then the

remaining reduced matrix will also be skew symmetric and, in particular, will continue

to have an all zero diagonal. Note that this is another way to observe that an odd skew

symmetric matrix is singular since there must be a 1×1 diagonal pivot with the value zero.

Of course, the oxo pivots in the skew case are of the form

P =

(

0 p

−p 0

)

, (3.3)

that is they are skew 2×2 blocks. Note that if a pivot of this form is used, the reduced

matrix will also be skew symmetric. We see this by partitioning the matrix as:

(

P B

−BT K1

)

where K1 is skew. The reduced matrix after using P as pivot has the form

K1 + BT P−1B
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and

(K1 + BT P−1B)
T

= −K1 + BT P−TB = −(K1 + BP−1B)

so the reduced matrix is also skew symmetric after elimination of the first pivot. Clearly

this holds without loss of generality for subsequent pivots of the form (3.3).

We can then use the same numerical pivoting as is the case for oxo pivots in the

indefinite case. Thus, if our potential 2×2 pivot comes from rows s and t at stage k of

Gaussian elimination, and we define

αk = max
j 6=t

|a
(k)
sj |, βk = max

j 6=s
|a

(k)
tj |,

where the reduced matrix has entries a
(k)
ij , then our threshold test is

max (αk, βk)/|p| ≤ 1/u, (3.4)

where 0 < u ≤ 0.5 to ensure that a pivot can always be chosen when the matrix is fully

summed.

Note that this is exactly a sparse generalization, using a threshold, of the stability test

of Bunch (1982). We note that his analysis shows that partial pivoting for skew symmetric

matrices is more stable than that for symmetric indefinite systems although the potential

for growth is similar in both cases.

Since all pivots are of the form (3.3) and the stability is related to the value of p, it

makes sense to use the idea of Duff and Pralet (2004) (that we will call CMP after Duff and

Pralet (2005b)) to first compress the graph by identifying a pair of nodes of the graph with

an oxo pivot and then obtain the reduced graph by fusing the two nodes. We follow the

earlier work by identifying the blocks using a symmetrized version of MC64 as discussed by

Duff and Gilbert (2002) and Duff and Pralet (2004). The added benefit of this approach

is that the 2×2 blocks thus chosen have as off-diagonal entries a set that maximises their

product. It is thus likely that these pivots will satisfy the threshold test (3.4).

Indeed, in our current implementation, we use a static pivoting strategy similar to that

adopted by Duff and Pralet (2005a). They found, similarly to Li and Demmel (2003) and

Schenk and Gärtner (2004), that a preprocessing strategy involving the preselection of

large entries as potential pivots is very beneficial in enabling reasonable stability for static

pivoting.

We briefly discuss our matching and graph collapsing algorithm in Section 3.1 and the

subsequent factorization in Section 3.2.

3.1 Matching and graph collapsing

If the matrix is structurally nonsingular, MC64 will identify a set of n entries, no two in

the same row or the same column, such that the product of the moduli of these entries is

maximised over all possible such sets. We then follow Duff and Gilbert (2002) by using an

algorithm similar to that of Duff and Pralet (2005a) to identify 2×2 blocks by decomposing
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Figure 3.1: Example of selection of 2×2 pivots in an odd cycle (from Duff and Pralet(2004).

the permutation into cycles. Clearly for skew symmetric matrices there are no cycles of

length one. Cycles of length two correspond immediately to a 2×2 block. Longer cycles of

even parity of length 2k, say, can be divided into k 2×2 blocks and cycles of odd parity,

2k+1, say, can be split into k 2×2 blocks and an odd entry. As this entry corresponds to a

zero diagonal (see Figure 3.1), it is not suitable as a pivot. In this prototype implementation

we assign it to the root node where we know it will combine with other single blocks to

permit the factorization to complete (we assume that the original matrix is structurally

nonsingular).

3.2 Numerical factorization

Our strategy is then to perform an ordering to reduce fill-in on the matrix corresponding

to the reduced graph and then to expand the ordering to the original matrix.

We then use this ordering and the corresponding assembly tree to perform the numerical

factorization using a multifrontal scheme very similar to that used in the symmetric

indefinite case (Duff 2004). In particular, we use essentially the static pivoting strategy

of Duff and Pralet (2005b) where we always choose the pivots as recommended by the

analysis so that the work and storage required for the factorization are as predicted in the

analysis. At the root node we employ the threshold pivoting strategy (3.4), where u could

be set to 0.5.

4 Numerical results from prototype code

We have developed a prototype code for the direct solution of skew symmetric systems using

a multifrontal method with the approach described in Section 3. We call this prototype

code SK57 for the purposes of this paper, but we intend to include a more polished version

in HSL 2007 under the name MA63.

All of the experimental runs for this paper are performed on a 3.05Mhz Dell Precision

650 Workstation with 4 Gbytes of RAM. The programs used are coded in Fortran and
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compiled with the NAG Fortran compiler although they have also all been run using the

public domain g95 compiler.

When comparing our new code against other codes, we run into two problems. First

there is a lack of skew symmetric problems in the usual sparse matrix data bases. There

are only two in the Rutherford-Boeing test set (Duff, Grimes and Lewis 1997), and these

two are all that appear in the collection of Tim Davis in Florida (Davis 2004). The second

issue is that we do not know of any other skew symmetric code with which to compare our

new code.

To resolve the first problem we have generated random skew matrices of various orders

and densities. There is not an option in the HSL code YM11 to generate skew matrices, so

we generate a symmetric matrix in triangular form, remove the diagonal, and interpret the

form as skew. We have run with a range of values for the matrix order and the number

of entries. We only show four sets here (each is the average of five runs) but they are

representative of a much larger set.

To resolve the second problem, we use the HSL code MA48 that is designed for general

sparse matrices and so can solve skew symmetric systems.

Order 3000 3000 5000 5000

Entries 197000 297000 195000 395000

Time for analysis

MA48 1.68 1.92 8.42 9.90

SK57 0.26 0.34 0.73 0.67

Time for factorize

MA48 25.11 28.66 104.67 126.74

SK57 17.09 19.68 71.83 77.06

Time for solve

MA48 0.03 0.03 0.07 0.08

SK57 0.05 0.05 0.12 0.12

Entries in factors

MA48 8010 8388 20007 22499

SK57 4255 4338 11199 11865

Scaled residual

MA48 5.3−14 3.7−14 1.4−13 8.5−14

SK57 2.2−11 7.3−12 6.3−12 3.5−11

Table 4.1: Comparison of MA48 and SK57 on skew systems. Times in seconds on our DELL

workstation.

From the results of Table 4.1 we see that the analyse times for SK57 are much less than

for MA48 by a factor of up to nearly 15. This is because SK57 uses all the technology of

multifrontal methods and, in particular, does not have to perform a numerical factorization

during the analysis phase which is the case with MA48. The factorization time is also much

quicker as might be expected because the skew solver only performs elimination operations
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on half the matrix. Likewise the storage is greatly reduced, not quite by half as MA48 has

the freedom to choose unsymmetric pivots and can potentially gain a little on fill-in because

of this. MA48 does well in the solve phase because the skew code needs to process the factors

twice. While the scaled residual of SK57 is acceptable for most purposes, we see that the

a priori selection of pivots means that we do not obtain as good a scaled residual as when

threshold pivoting (with u = 0.1 in equation (3.4)) is used throughout.

5 The use of a skew symmetric solver as a

preconditioner

Our logic in this section is that if a matrix is close to being skew symmetric, say of the

form

A = αS + K, (5.5)

with S symmetric and K skew, where ‖S‖ and ‖K‖ are similar and α � 1, then it makes

sense to approximate the solution of (1.1) by a direct solution using K and then to complete

the solution of (1.1) using an iterative method. In our case, we use the implementation of

GMRES (Saad and Schultz 1986) by Frayssé, Giraud, Gratton and Langou (2003).

We thus solve Ax = b, where A is as in (5.5) using a straight application of GMRES

on the matrix preconditioned by K−1 or at least by the factors of K−1 obtained from our

direct skew solver. In the experiments that follow we use preconditioning from the right

but we have tried left and two-sided preconditioning with essentially identical results.

For our tests, we again use random matrices and have again averaged the results, this

time over three runs. From the results in Table 5.2 we see that our scheme is indeed very

good even for a not too small value of α.

α 0.0 10−8 10−2 10−1 1.0

Order Entries

100 400 1 2 9 21 100

200 1200 1 2 9 23 203

300 1800 1 2 21 27 313

Table 5.2: Number of iterations for preconditioned GMRES

Of course, any square matrix (A) can be split into the sum of a symmetric (S) and a

skew matrix (K) and that decomposition is unique, viz.

A = S + K =
1

2
(A + AT ) +

1

2
(A − AT ),

so the algorithm that we have just outlined could be considered for solving a general

unsymmetric system. However, there is no guarantee that either component is nonsingular

so our attempts at using this as a general strategy did not meet with much success.
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We should note that we also tried to use a direct method on the symmetric part as a

preconditioner and this was just as unsuccessful.

We then performed some experiments by permuting and scaling A to try to obtain a

healthily nonsingular skew component. The algorithm that we use to do this first selects

a transversal using MC64 and then further permutes the columns so that no transversal is

on the diagonal of the permuted matrix. We then scan the columns in order and follow

chains of columns determined by the maximum transversal entries. We scale the first

column in the chain by one and then scale each column in the chain in the following way

until we return to the first column of the chain (this corresponds to finding cycles in the

permutation). From a current column in the chain, the next column in the chain is the

one corresponding to the row of the transversal entry in the current column. We let the

scaling on the current column be sc1 and the value of the transversal entry a1. If the

symmetrically placed entry to this in the next column has value a2, then we choose the

scaling for the next column to be −(a1 × sc1)/a2. Thus we generate skew pairs in the

matrix so that the skew part of the matrix is at least structurally nonsingular (if A is) and

has a good chance (because of the use of MC64) of being nonsingular. Sad to say, this also

only works marginally better than an unpreconditioned run of GMRES and not always so.

Of course the unique skew component of a general matrix will not necessarily be the

best skew approximation for the matrix (of course the other component will no longer be

symmetric) so there may be better ways to select a skew matrix to use as a preconditioner,

for example one could just take the lower triangle of the matrix to represent the skew

component.

Finally, there are practical cases where the skew part should be dominant, for example

in convection-diffusion equations that are highly convection dominated. We have done

some initial experiments on this with Andy Wathen of Oxford but without a great deal

of success. On further investigation it turned out that, although he was modelling highly

convective equations, the skew part of the matrix was not that dominant because of the

artificial viscosity terms to avoid problems with spurious oscillations of the numerical

solution. We plan to investigate further the use of a skew preconditioner on formulations

of highly convective equations where this has not been done.

6 Conclusions

We have presented pivoting strategies for skew symmetric matrices and shown their

efficacy in a prototype code. We have illustrated the strengths and weaknesses of such a

factorization and have shown how it could be useful in preconditioning systems, particularly

those with a large skew component.
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