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Glossary

f Final dependent variable xm.

fi(x1; x2; : : : ; xi�1) Dependence of xi on previous variables.

h1; h2; : : : ; hn Increment h in x.

i1; i2; : : : ; ir Multi-index i of order r.

i(i) Multi-index in position i of the lexographic order.

r Derivative order.

R Highest order of derivative required.

R Number of distinct derivatives of order � R.

x1; x2; : : : ; xn Independent variables x.

xn+1; xn+2; : : : ; xm Dependent variables.

xi The product xi1xi2 : : : xir .

�xi Adjoint variable
@f
@xi

, i = 1, 2, . . . , m.

yi Derivatives @xi

@xl
, i = 1, 2, . . . , m, 1 � l � n.

�yi Adjoint variables @
@yi

@f
@xl

, i = 1, 2, . . . , m, 1 � l � n.

nCr Binomial coe�cient n!
r!(n�r)!.

Di Derivative operator associated with i.

Ti Taylor coe�cient operator
�(i)
r! Di.

�(i) Number of permutations of i.



Chapter 1

Introduction

Automatic di�erentiation is a means of computing the derivatives of a vari-
able for a given set of values of the independent variables. It does not seek
to construct an analytic formula (symbolic algebra), but works more directly
from the computer code that expresses the value of the variable. We assume
that the independent variables are x1; x2; : : : ; xn and write the calculation as
the sequence of operations

xi = fi(x1; x2; : : : ; xi�1); i = n+1; n+2; : : :m: (1.1)

We take these as the unary or binary operations into which the compiler
divides the expressions in the code (details in Section 3.1), which means
that some of the variables are temporary variables. The notation may seem
clumsy since each fi is a function of only one or two variables xk, but it
covers both the unary and binary cases and allows for generalization.

The dependent variables are xn+1; xn+2; : : : ; xm.1 For now, we suppose
that derivatives are required only of the last computed result f = xm. There
are two basic methods.

In the forwardmethod, for each variable xi, i = 1, 2, . . . ,m, the computer
holds a value and a representation of all the derivatives up to the desired
degree. For each operation (1.1), the derivatives of the result are calculated
from those of the operands by the chain rule

@xi
@xj

=
i�1X
k=1

@fi
@xk

@xk
@xj

; j = 1; 2; : : : ; n: (1.2)

Note that, since fi is unary or binary, the sum in equation (1.2) consists of
a single term or a sum of two terms.

In the backward method, a computational graph (Rall 1981) is constructed
to represent the whole computation with a node i for each variable, xi, i = 1,

1If the code re-uses a variable, we treat each re-use as a fresh dependent variable in
this mathematical description.
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CHAPTER 1. INTRODUCTION 2

2, . . . , m, and links to nodes for the operands of the operation. Associated
with each node is storage for the value and also for the derivative of f with
respect to the node variable. The values xi, i = n+1, n+2, . . . , m, are
calculated in a forward pass. Our code, AD01, does this when it constructs
the graph. Initially, all the variables are regarded as independent so the
derivatives are all zero except at the node for f where the derivative value
is 1. Backwards, one by one, the variables are changed to be dependent
and the derivatives updated by the chain rule. For example, at the node
corresponding to equation (1.1), we �nd

@f

@xk

new

=
@f

@xk

old

+
@f

@xi

@fi
@xk

; k = 1; 2; : : : ; i�1: (1.3)

At a unary node, @fi
@xk

is zero for all but one value of k, so only one such

update is needed. Similarly, only two are needed at a binary node. It can
be seen that the work at a node during the backward pass is independent of
the number of nonzero derivatives, in contrast to the forward method, where
the amount of work involved in the computation (1.2) is proportional to the
number of nonzero derivatives of the xi.

The derivatives of f are also known as adjoints �xk. We �nd it convenient
sometimes to discard the superscripts new and old and use the assignment
notation

�xk := �xk + �xi
@fi
@xk

; k = 1; 2; : : : ; i�1: (1.4)

Whether the forward or backward method is better depends on many fac-
tors, including the number of derivatives required, the degree, the number of
independent variables, and the sparsity of the derivatives. We have therefore
decided to provide both the forward and backward method, with an easy
mechanism for changing from one to the other.

Our work is based on the code DAPRE of Stephens and Pryce (1991)
(see also Davis, Pryce and Stephens 1990). Stephens worked in Fortran
77 and used a pre-processor to convert user code that calculates variables
to code that calculates both variables and derivatives. The output code
makes extensive use of explicit procedure calls and is hard to read. This
approach is similar to that of ADIFOR (Bischof, Carle, Corliss, Griewank
and Hovland 1992), except that ADIFOR generates in-line code to calculate
�rst derivatives. Fortran 90 supports derived types and operator overloading,
which allows the procedure calls to be represented by the same symbols as
for the original calculation of variables.

We have therefore avoided having a pre-processor and instead require the
user to make some easy changes to the source code. All the independent
variables, and appropriate variables that depend on them (see Section 3.4),
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must be declared to be of the derived type ad01 real. We refer to all such
variables as active variables.

We collect the type de�nitions, the associated procedures, and everything
else needed into a module. There are four versions, for forward or backward
di�erentiation in single or double precision arithmetic. We have employed
the same set of names in each, to permit the user to switch from one to
another very easily. In the code, only the use statement needs alteration. For
guidance and examples of the code conversion process, turn to Section 3.4.

Most of the early work of converting DAPRE into AD01 was done by
David Cowey, under an EPSRC CASE PhD studentship supervised by the
authors.

The code itself is included in Release 12 of the Harwell Subroutine Library
(HSL 1995) and is available from AEA Technology, Harwell. The contact is
Mrs Maria Woodbridge, AEATechnology, Building 477, Harwell, Didcot, Ox-
fordshire OX11 ORA, England; email: maria.woodbridge@aeat.co.uk; tele-
phone: (44) 1235 432345; Fax: (44) 1235 432023.

The aim of this paper is to explain the mathematical foundations of this
work and the reasoning behind the design, and to show some examples of
its use. The forward method permits derivatives of any order to be calcu-
lated, subject to limits on time and storage. Other packages, such as ADOL-
C (Griewank, Juedes and Utke 1996), COSY-INFINITY (Berz 1991b, Berz
1991a) and Neidinger's APL implementation (Neidinger 1992), also have this
capability. The backward method computes derivatives up to order two, see
Section 2.2. The approach for this is similar to that of Christianson (1991)
but was developed independently by Stephens.

The paper is organized as follows. We explain the mathematics of our ap-
proach in Chapter 2, with the forward and backward methods in Section 2.1
and Section 2.2, respectively. In Chapter 3, Section 3.1 describes the subset
of Fortran that is supported by the package, and Sections 3.2 and 3.3 describe
support for `subsidiary' di�erentiated calculations. Section 3.4 gives guidance
on the code conversion process. In Chapter 4, Section 4.1 describes the data
structures used in the implementation. Section 4.2 explains how the compu-
tational graph for the backward method is constructed and used. Section 4.3
explains how the forward method computes derivatives of arbitrary order.
Section 4.4 describes the exception-handling features. Chapter 5 describes
the tests of correctness and performance that have been made. Chapter 6
contains our conclusions and plans for further development, as well as thanks
and acknowledgements.



Chapter 2

Mathematical foundations

In this chapter we review the mathematics underlying the forward method
(Section 2.1) and the backward method (Section 2.2).

2.1 The forward method

Any 
oating-point computation can be broken down into a sequence of
unary operations such as �a or sin(b) and binary operations such as a + b
or max(a; b). For each such operation that we support (details in Sec-
tion 3.1), we provide a procedure that implements the operation for one
or two ad01 real objects. For each such object, the module holds in its data
structure (details in Subsections 4.1.1 and 4.1.3) all the required derivatives.
The procedure uses these derivatives to calculate the result of the operation
and all its required derivatives. We begin by considering the case when only
�rst derivatives are wanted.

2.1.1 First derivatives

In the forward method for �rst derivatives, the gradient rxi of each variable
with respect to the n independent variables is stored after being calculated
by equation (1.2). We remind the reader that the sum in equation (1.2) has
only one term for a unary operation and two for a binary operation.

We may take account of sparsity in the derivatives by holding, with each
variable, a list of the independent variables upon which it depends. We
refer to this list as its sparsity pattern. Initially, we have the independent
variables xi, i = 1, 2, . . . , n, each of which depends on no other independent
variables so has only one nonzero derivative, namely rxi = ei, the ith unit
n-vector. Each unary operation preserves the sparsity since it introduces
no additional dependencies. However, the sparsity patterns merge when a
binary operation is applied since the result is dependent on any variable that

4



CHAPTER 2. MATHEMATICAL FOUNDATIONS 5

either of the operands depended upon. Exact cancellation is a possibility,
leading to a zero derivative value being held explicitly, but is unlikely to occur
su�ciently frequently to warrant testing for its occurrence. This merging of
patterns means that we start with very sparse derivatives but must expect
them to become fuller as the calculation progresses. There comes a point
when it is more e�cient to ignore the sparsity, so our codes automatically
switch the storage mode when a threshold is reached. The threshold itself is
discussed in Subsection 4.1.1.

For each unary and binary operation supported (see Section 3.1), we
provide a suitable procedure. Each calculates the derivatives of the result.
In the case of a binary operation, a merge of sparsity patterns may be needed,
too.

2.1.2 Higher-order derivatives

When working with higher-order derivatives, it is convenient to use vector
subscripts and superscripts, which we call multi-indices. If a variable a de-
pends on the independent variables xik , k = 1; 2; : : : ; r, a multi-index is an
integer vector

i = (i1; i2; : : : ; ir); (2.1)

with each index in the range 1 � ik � n, k = 1; 2; : : : ; r. This allows us to
use the notation

Dia =
@ ra

@xi1@xi2:::@xir
(2.2)

for a derivative of order r and the notation

xi = xi1xi2 : : : xir (2.3)

for a monomial of degree r. Since permutations of the indices in a multi-
index have no e�ect on the corresponding derivative or monomial, it su�ces
to store only the derivatives corresponding to the multi-indices satisfying the
inequalities

i1 � i2 � : : : � ir: (2.4)

We use the notation

�(i) (2.5)

for the number of permutations of i (which correspond to identical derivatives
or monomials). For example, (2,1,1) has permutations (1,2,1) and (1,1,2),
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so �((2; 1; 1)) has the value 3. If i has l groups of identical indices and the
number of indices in the groups are n1; n2; : : : ; nl, we �nd the relation

�(i) =
r!

n1!n2! : : : nl!
: (2.6)

The number of multi-indices of order r (distinct derivatives of order r) is

n+r�1Cr =
(n + r � 1)!

r! (n� 1)!
(2.7)

Note that, for large n, this behaves as O(nr=r!), so the storage gain over
holding all derivatives is by a factor of about r!.

The total number of multi-indices of orders up to R is

R =
RX
r=0

n+r�1Cr = n+RCR: (2.8)

It is convenient to order them by increasing degree and according to a lexo-
graphic ordering of multi-indices within each degree. For example, if n = 3,
this corresponds to the following multi-index ordering

(); (1); (2); (3); (1; 1); (2; 1); (2; 2); (3; 1); (3; 2); (3; 3);
(1; 1; 1); (2; 1; 1); (2; 2; 1); (2; 2; 2); : : :

(2.9)

The position of i = (i1; i2; : : : ; ir) in this sequence is

n+r�1Cr�1 +
i1+r�2Cr +

i2+r�3Cr�1 + : : :+ ir�1C1 + 1: (2.10)

It is not often necessary to compute these positions directly, but to speed up
the calculation when they are, an array of binomial coe�cients is precom-
puted when a computation is initialized. We use the notation

i(i) (2.11)

for the i-th multi-index in this sequence; for example, if n = 3, i(5) is the
multi-index (1,1).

We use this order for the derivatives, which we actually hold as Taylor
coe�cients

Tia =
�(i)

r!
Dia (2.12)

because this makes the Taylor expansion take the form

a(x+ h) =
RX
i=1

Ti(i)ah
i(i); (2.13)
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which may also be written as

a(x+h) = a(x) +
RX
i=2

Ti(i)ah
i(i) (2.14)

since i(1) = ().
Sparsity among the derivatives is even more helpful here than when only

�rst derivatives are required (Subsection 2.1.1). If a variable depends on
xi; i = �1; �2; : : : ; �s, we hold the list (�1; �2; : : : ; �s) and each index j in a
multi-index will refer to x�j rather than xj.

Alternative ways to compute high-order multivariate derivatives, by clever
use of univariate Taylor series, are studied by Griewank and Utke (1996), and
by Bischof, Corliss and Griewank (1993).

2.2 The backward method

The backward method for �rst derivatives was explained in Chapter 1. It
may be applied to any dependent variable. That is, f is not restricted to
the �nal variable. In general, we need to set to zero the adjoints (de�ned
in Chapter 1) of all variables that precede f in the computational sequence,
set the adjoint of f to unity, and proceed backwards from the node for f
updating the adjoints using the assignment (1.4). Thus, we can provide a
procedure to calculate the derivatives of any variable, just as for the forward
method. However, here real work has to be done, as opposed to the simple
look up needed for the forward method. The number of derivatives required
therefore a�ects the balance between the e�ectiveness of the two methods.

In Subsection 2.2.1, we give an alternative derivation of the backward
method for �rst derivatives, similar to that of Rall (1981). In Subsection
2.2.2, we explain how the backward method may be extended to second
derivatives.

2.2.1 A matrix view of the backward method

In the forward method at node i, n+1 � i � m, we have the calculation
of equation (1.2). This may be represented as forward substitution on the
matrix equation

L dj = ej; j = 1; 2; : : : ; n; (2.15)

where

dj is the m-vector of derivatives @xk=@xj, k = 1, 2, . . . , m;
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L is the m by m unit lower-triangular matrix whose only nonzero o�-
diagonal entries are l(i; k) = �@fi=@xk, i = n+1, n+2, . . . , m; k = 1,
2, . . . , i�1; and

ej is the jth unit vector of order m.

Only one or two of the o�-diagonal entries in a row are nonzero. L may be
written as

L = Ln+1Ln+2 : : : Lm (2.16)

where Li is the unit lower triangular matrix whose row i is the same as row
i of L and which has no o�-diagonal entries in other rows. L�1i is unit lower
triangular with the same structure as Li, but the signs of the o�-diagonal
entries are reversed. The backsubstitution (2.15) can therefore be written as

dj = L�1m L�1m�1 : : : L
�1
n+1ej: (2.17)

In the forward method, we actually calculate all the derivatives:

D = L�1m L�1m�1 : : :L
�1
n+1

 
I

0

!
(2.18)

where D is the matrix whose j-th column is dj and I has order n. For any
particular variable xk, the derivatives are available as row k of D. Alterna-
tively, they may be calculated directly as

eTk L
�1
k L�1k�1 : : :L

�1
n+1

 
I

0

!
(2.19)

The backward method consists of computing (2.19) from the left:

bTk = eTk (2.20)

bTi = bTi�1L
�1
i ; i = k; k�1; : : : ; n+1: (2.21)

It is clear that the number of arithmetic operations is proportional to the
number of nonzero local derivatives @fi=@xk.

2.2.2 The backward method for second derivatives

To �nd second derivatives, we treat the calculation of the �rst derivative
@f=@xl, 1 � l � n, as a primary calculation to which we apply the backward
method. The approach was devised by Stephens (Stephens and Pryce 1991)
and is similar to that used by Christianson (1991) and Dixon (1991).
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It is simplest to use the forward method as the starting point. Using the
notation

yi =
@xi
@xl

; i = 1; 2; : : : ;m; (2.22)

the forward calculation is

xi = fi (2.23)

yi =
i�1X
k=1

yk
@fi
@xk

; (2.24)

for i = n+1; n+2; : : : ;m. For the backward calculation, we have the adjoint
variables

�xi =
@

@xi

@f

@xl
; �yi =

@

@yi

@f

@xl
; i = 1; 2; : : : ;m: (2.25)

The backward calculations corresponding to equation (2.23) are

�xj := �xj + �xi
@fi
@xj

; j = 1; 2; : : : ; i�1 (2.26)

and those corresponding to equation (2.24) are

�yk := �yk + �yi
@fi
@xk

; k = 1; 2; : : : ; i�1 (2.27)

�xj := �xj + �yiyk
@2fi

@xk@xj
; j; k = 1; 2; : : : ; i�1: (2.28)

for j = m;m�1; : : : ; n+1. Of course, for a unary fi only one of each of the
calculations (2.26) to (2.28) is non-trivial. For a binary fi, only two of each
of the calculations (2.26) and (2.27) and four of (2.28) are non-trivial.

The calculation starts with �ym = 1, �yi = 0, i = 1; 2; : : : ;m�1 and �xi = 0,
i = 1; 2; : : : ;m. The calculation (2.27) is independent of l, so need only be
performed once. Actually, it is the backward method for the �rst derivatives,

so the �yi hold
@f
@xi

at the end.

For each l, 1 � l � n, we therefore perform the forward calculation (2.24)
starting with yl = 1, yi = 0; i = 1; 2; : : : ; n, i 6= l, then set �x = 0 and perform
the calculations (2.26) and (2.28) backwards (j = m;m�1; : : : ; n+1).

Since �y is known, an alternative is to perform the calculation (2.28) for-
wards during the calculation of y, which is what we have chosen to do in
AD01.

The same calculation may be regarded as the backward method applied
to the backward method for �rst derivatives. Now the roles of y and �y are
interchanged, but the calculations are identical.



Chapter 3

The AD01 Interface

3.1 Language supported

Our aim is to support most Fortran 77 programs. Perhaps the biggest ex-
clusion is of complex arithmetic, which was forced upon us by the many
additional procedures that this would have involved. We can also support
many Fortran 90 programs. Derived types and modules present no di�cul-
ties, but we have not had the resources to support the array features or the
new intrinsic procedures.

We provide separate modules for single and double precision arithmetic.
To avoid complicated data structures in the double precision module, we
have chosen to store all its real values in double precision, but we do support
binary operations and assignments between single-precison inactive variables
and active variables (of type ad01 real). The user of a mixed precision
program may therefore use the double precision module by changing the
type of any active variable (single or double) to ad01 real.

Each module provides overloaded procedures for scalar assignments and
intrinsic operations and procedures where they involve one or two active
variables. More details are given in the rest of this section. Note that the
operands may be array elements or structure components.1

Active scalar variables are given values by assignments from expressions
involving active scalar variables whose values have been previously found, and
inactive scalars. The inactive objects may be of type real (single or double
in the double precision module) or integer. They are treated as invariants
for the purpose of di�erentiation, but they may be Fortran variables.

Each module supports the binary operators +, -, *, /, ** for two scalars

1However, the current de�nition of Fortran speci�es an unexpected behaviour for intrin-
sic assignment of a structure with a component of type ad01 real. Intrinsic assignment
will be applied when derived assignment needed. This is expected to be altered in a corri-
gendum, but in the meantime the problem may be averted by the user de�ning assignment
for the type with a component of type ad01 real.

10
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where one is of type ad01 real and the other is of type ad01 real, real,
or integer. This means that for each operation, �ve procedures are needed
in the single precison module and seven procedures are needed in the double
precison module. However, most of them are very short subprograms that
make simple tranformations of the arguments, such as interchanging them
or converting the type of an inactive one, then calling another subprogram.
ad01 also supports the unary operator - for a scalar of type ad01 real. In
all these cases, the result is a scalar of type ad01 real.

Each module supports the binary operators ==, /=, >, >=, <, <= for two
scalars where one is of type ad01 real and the other is of type real, or
integer. The result is always a scalar of type ad01 logical.

Assignment to a scalar of type ad01 real from a scalar of type ad01 real,
real, or integer is accepted, as is assignment to a scalar of type default
integer from a scalar of type ad01 real. However, assignment to real is
not provided since such an assignment is likely to be erroneous; if the user
really means this, the subroutine ad01 value is available to return the real
value of an active variable.

These are all de�ned assignments, even for assigning one ad01 real scalar
to another. This is because an ad01 real is essentially an integer pointer
to where the data is held in a structure. Intrinsic assignment would copy
the pointer, which would be erroneous, instead of copying the data. For this
reason and because AD01 does not yet support whole-array operations, we
have de�ned assignment to an ad01 real array from an ad01 real array or
scalar, since otherwise such an assignment will be interpreted by the compiler
as intrinsic assignment. The de�ned assignment raises an exception (see
Section 4.4) and sets each array element to an unde�ned value.

The functions abs, acos, asin, atan, cos, cosh, exp, log, log10, sin,
sinh, sqrt, tan, and tanh are provided for a scalar of type ad01 real. The
result is of type ad01 real. The functions aint and anint for a scalar of
type ad01 real are provided. The result is of type real.

The functions atan2, max, min, and sign are provided for two scalars of
type ad01 real or one scalar of type ad01 real and one scalar of type real.
The result is of type ad01 real. We have chosen not to go beyond two argu-
ments for max and min because of the large number of explicit subprograms
that would be needed and because the two-argument case is by far the most
common. Also, users can make nested invocations such as min(a,min(b,c)).

The functions int and nint are provided for a scalar of type ad01 real.
The result is of type default integer.

As well as overloading these generic names of intrinsics, we also overload
explicit names such as dlog in the double precision version and alog in the
single precision version. This leads to a total of 122 functions in the double
precision module and 90 functions in the single precision module.
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3.2 Additional unary functions

We permit the user to code additional unary functions u(x). Such a function
must have an ad01 real argument x and return an ad01 real result u. It
must �nd the value of the argument as an ordinary real x, calculate u(x) and
its derivatives u0(x), u00(x), . . . up to the required order and place them in a
real array derv, and �nally make a call of the form

call ad01_user(derv,x,u)

In the backward method, this sets up a new node of the computational graph
and stores the derivatives for it. For the forward method, the derivatives are
calculated (see Subsection 4.3.4 for further details). The function can then
be used exactly like the intrinsics exp, sin, etc.

If such a function is used frequently, this results in considerable savings
of space and time. As an example, consider the evaluation of a polynomial
by Horner's rule:

pn = an; pi�1 = xpi + ai�1; i = n; n�1; : : : ; 1: (3.1)

With forward di�erentiation, storage is needed for all the variables pi and
their derivatives and also for all the intermediate variables xpi and their
derivatives. This may be very substantial if there are many independent
variables and many derivatives are required. The work is proportional to
the storage. With backward di�erentiation, the overheads are not so great,
but all these variables must be recorded in the computational graph. Alter-
natively, the user may calculate the polynomial and its local derivatives, as
shown in Figure 3.2. Now all the intermediate calculations are performed
with real variables. With forward di�erentiation, storage is needed only for
the result and its derivatives. With backward di�erentiation, only one node
need be recorded in the computational graph.

Another application is where the program uses special functions such as
Bessel functions. Here it is usually essential to use the above technique,
for the following reason. The code to compute the special function u(x)
probably uses methods such as economized polynomials, that produce an
approximation p(x) such that ju(x) � p(x)j is guaranteed to be small, but
whose derivatives may bear no relation to those of u(x). The user should
not attempt to di�erentiate the source code even if it is available. Instead, a
recurrence based on the de�ning di�erential equation, or similar, should be
used to calculate the derivatives.

3.3 Subsidiary calculations

It was simple enough to hand code the derivative calculations shown in Fig-
ure 3.2, but in a more complicated case it may be very advantageous to
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function u(x)

! A function in a module that access the required ad01 module

! and provides the integers degree and n and the real array

! coeff.

type(ad01_real) :: u

type(ad01_real), intent(in) :: x

real :: derv(0:degree),rx

! Find the value as a real.

call ad01_value (x,rx)

! Calculate the derivative values

derv(0) = coeff(n)

derv(1:degree) = 0.0

do i = n, 1, -1

do l = degree, 1, -1

derv(l) = l*derv(l-1) + derv(l)*rx

end do

derv(0) = derv(0)*rx + coeff(i-1)

end do

! Pass the derivative values to the ad01 module

call ad01_user(derv, x, u)

end function u

Figure 3.1: Evaluating a polynomial and its derivatives

use automatic di�erentiation. We therefore provide a facility for suspending
the calculation for a subsidiary computation. At a given moment, there is
an active calculation, whose data are held in the module, and any number
of suspended calculations for each of which the data is held in a variable
of a special type called ad01 data. A calculation is suspended by a call
of ad01 store, which stores all the module data in an ad01 data variable.
This allows the user to start a new calculation with an ad01 initialize call
or resume a previous calculation by using an ad01 restore call to restore
the module data from an ad01 data variable. Since pointer assignments are
used, these save and restore operations are not hopelessly expensive.

3.4 Code conversion examples

The full interface speci�cation and more examples are given in the user doc-
umentation (Harwell Subroutine Library 1996), see the Appendix. Our aim
here is to give some guidance on the process of converting code to use AD01.

Normally the requirement is to `di�erentiate' a section of code in the
middle of a larger program|it may be purely inline, or may call one or
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more subprograms. As said in Chapter 1, the independent variables and
variables that depend on them must be made active, that is declared to
be of type ad01 real. As a consequence, each operation involving them is
performed by an ad01 procedure. Variables whose values do not depend on
the independent variables should remain as reals. They may be made active,
but this is wasteful since their derivatives are always zero.

Unless there is only one independent variable, AD01 requires the indepen-
dent variables to be collected into a rank-one array. This keeps the interface
simple and does not represent a serious loss of generality since the program-
mer can follow the call to ad01 initialize by assignments to variables of
his or her choice, for example,

:

call ad01_initialize(level,x,xval)

a = x(1)

b = x(2)

c = x(3)

:

A normal run consists of a call to ad01 initialize to initialize the mod-
ule data, specify the order of the highest derivative required, specify the in-
dependent variables, and provide values for the independent variables. There
follows the main computation in which the values of the dependent variables
are calculated. Finally, procedure calls are made to obtain derivative values.
Derivatives of any active scalar variable are available (we can temporarily
regard the computation as having been terminated when the �nal assign-
ment to that variable is made). For cases where few of the independent
variables a�ect a dependent variable, there are facilities to return the deriva-
tives in packed form. If derivatives are required for another set of values of
the independent variables, the process must be repeated, including the call
to ad01 initialize.

3.4.1 A simple approach to conversion

In this subsection, we explain how a code may be converted to use AD01.
For simplicity, we assume here that no components of structures need to be
made active. We discuss that case in Subsection 3.4.2.

The basic rule for making a section of code active is: if the value of
any part of a named variable may depend on the independent variables,
via assignment or via argument association in a procedure call (including
function results), then that named variable must be made active. The active
section may call procedures, which may themselves call further procedures.
This means that, although it is easy in principle, the conversion process needs
some care. It can be described as follows.
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Algorithm 3.4.1 (Making an active section)
1. Make the independent variables active. If there is more than one and

they are not already collected into a rank-one array, declare such an

array and add assignments from this to the independent variables.

2. Starting in the scope where active variables �rst appear,

and recursively through all procedures encountered, do steps 3 to 5.

3. If the right-hand side of an assignment statement is active, ensure that

the left-hand-side variable is active,

4. If a procedure call has an actual argument that is active, ensure that

the corresponding dummy argument is active.

5. If a procedure called has a dummy argument that is active, ensure that

the corresponding actual argument is active.

The compiler can assist in the conversion process, provided the interface
of each procedure involved is explicit (good programming practice anyway),
that is, either the procedure is a module or internal procedure, or it has an
interface block. Then:

� Since assignment real = ad01_real is not supported by AD01, if a
variable on the left-hand side of an assignment needs to be activated,
this will be 
agged by an `unsupported assignment' compiler error.
This includes the case where a function returns an active result.

� Dummy or actual arguments that need to be activated will be 
agged
by an `argument type mismatch' error.

This gives the following method.

Algorithm 3.4.2 (Conversion with compiler help)
1. Start by declaring the independent variables as active. If necessary,

declare an active rank-one array for the independent variables and add

assignments from it.

2. Declare as active any variable that causes an unsupported assignment or

or argument type mismatch compilation error.

3. Continue until there are no errors.

There is a simple way to view the above process in graph terms. In order
to �nd out which named variables need to be made active, de�ne a static
dependency graph G. The nodes of G are the named variables used in the
code and the actual arguments that are expressions other than variables. An
array is treated as a single named variable and each dummy variable has its
own node. The arcs are de�ned as follows. If any part of variable y appears
on the left-hand side of an assignment and any part of variable x appears
on the right-hand side in such a way as to cause the whole right-hand-side
expression to be active, draw an arc x ! y in G. If any part of variable x
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appears on in an actual argument expression in such a way as to cause the
whole expression to be active, draw an arc from x to the expression's node.
The dependency graphs of di�erent scoping units form disjoint subgraphs of
the whole graph G. Each call from scoping unit P to scoping unit Q de�nes
a two-way dependency link between each actual argument that is a variable
or an expression and the corresponding dummy argument. A function result
is regarded as one of the variables in the expression where it appears.

Then, the above rules are equivalent to the rule: a named variable y is
active if and only if there is a path in G from an independent variable to y.

Example 3.4.1 Figure 3.2 shows a simple example with no subprograms.
Interspersed with the original code, the changes needed to incorporate AD01
are shown in comments. !a means add a statement; !r means replace the
previous statement. The program computes Rosenbrock's function (5.1), for
a value of n input by the user, at the point x given by xi = 1 + 1=i, i =
1; : : : ; n. To compute the gradient of f with respect to x at the given point we
declare f;x as active and insert calls to initialize x before evaluating f , and
to extract the required values afterward. The variables xval, fval, g_f

handle this conversion. x is replaced by xval in the loop that de�nes the
input values, then the call to ad01_initialize sets up the vector x of input
active variables. At the end, calls to ad01_value and ad01_grad do the
reverse process.

3.4.2 Structures with active components

We now discuss the case where some active variables are components of
structures. For each such type, we need to declare a new type for which
the real component is replaced by an component of type ad01_real.2 We
refer to this as the active type corresponding to the original inactive type.
The concept may need to be nested, that is, we may need a new type for a
component of derived type that becomes active. With this interpretation of
how a named variable of derived type is made active, the rules of the previous
section su�ce.

3.4.3 Being more selective

There are several reasons for having fewer active variables than the rules
of Subsection 3.4.1 prescribe. It may be, as in this subsection, purely for

2The current de�nition of Fortran speci�es an unexpected behaviour for intrinsic as-
signment of structures with a component of derived type. Intrinsic assignment will be
applied when derived assignment is needed. This is expected to be altered in a corrigen-
dum, but in the meantime the problem may be averted by the user de�ning assignment
for each such type.
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Figure 3.2: Program for Rosenbrock function before and after conversion

program rosen

!a use HSL_AD01_FORWARD_DOUBLE

integer,parameter::wp=kind(0d0)

integer i,n

real(wp) f

!r type(ad01_real):: f = ad01_undefined

!a real(wp) fval

real(wp), allocatable:: x(:)

!r type(ad01_real), allocatable:: x(:)

!a real(wp),allocatable::xval(:),g_f(:)

print*, 'Give n:'

read*, n

allocate(x(1:n))

!a allocate(xval(1:n),x(1:n),g_f(1:n))

! Initialize independent variables

do i=1,n

x(i) = 1.0_wp + 1.0_wp/i

!r x(i) = ad01_undefined

!a xval(i) = 1.0_wp + 1.0_wp/i

end do

!a call ad01_initialize(1,x,xval)

!Compute Rosenbrock function:

f = 0.0_wp

do i=1,n-1

f=f+(10._wp*(x(i+1)-x(i)**2))**2+(x(i)-1.0_wp)**2

end do

! Print results

!a call ad01_value(f, fval)

!a call ad01_grad(f, g_f)

print*, 'Function value f=', f

!r print*, 'Function value f=', fval

!a print*, 'Gradient g_f=', g_f

end
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e�ciency; or, as in the next, that di�erentiating along certain dependency
paths is not what the mathematics requires and may harm an algorithm's
performance.

Here, suppose it is known which variables are to be treated as the depen-
dent (output) variables|there may be others that depend on the inputs but
whose derivatives are not of interest. To avoid needlessly declaring variables
as active, revise the rule for `activating' variables as below. In the following
algorithm, the function ad01_val is a `function version' of the package sub-
routine ad01_value. It is useful in this situation, and we give the code for
it as part of Example 3.4.2 below (but note that this code does not include
a check for an error condition). It is not provided as part of AD01 because
it would not give the user the ability to recover from error conditions.

Algorithm 3.4.3 (Selective activation)
1. Declare as active any named variable that lies on some path from an input

variable to an output variable in the graph G de�ned above.

2. For any assignment y=expr where y is to remain inactive, and expression

expr is active, replace each active variable x by ad01_val(x),

which `de-activates' it.

Warning! This must be done with care. If you break a path of dependency
by wrongly inserting ad01_val() somewhere along it then the derivatives
will be calculated wrongly. Especially if subprogram calls are involved, it is
important to understand the structure of the relevant part of the code and
its information 
ow, before performing this process.

If making changes to the code which may alter the dependency structure,
you are advised to remove all ad01_val() calls and start afresh.

Occurrences of active variables in the condition of an if and similar
situations need not be replaced by their ad01_vals. However if the condition
involves an active expression, such as if (cos(x+y) < 0.0), then evaluating
it with x and y active involves much unnecessary calculation if the number
of independent variables and/or order of derivative is large.

3.4.4 Being more selective: discretizations

When di�erentiating the discretization of a di�erential equation, it is gener-
ally unnecessary and often harmful to di�erentiate aspects of the discretiza-
tion strategy, such as timestep control or adaptive space mesh selection.
Abstractly, the solution can be regarded as a function u = f(p; s) where p
are the parameters whose e�ect on u we seek and will be the active variables,
while s is the data which de�nes the discretization. We have s = s(p) since
the discretization generally changes when the parameters change. But @u=@p
should be computed with s held constant (with a frozen strategy). That is,
we want to compute @f=@p rather than the unnecessarily expensive total
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derivative du
dp

=
@f
@p

+
@f
@s

ds
dp
. A theoretical reason for this was given long

ago by Ortega and Rheinboldt (1970).
We achieve this by `deactivating' input into those parts of the code that

deal with discretization. The next example shows this for a simple code to
solve the initial value problem for an ordinary di�erential equation (ODE)
y0 = f(t;y), where y is an n-vector function of the scalar independent variable
t.

Example 3.4.2 The ODE code in this example uses Euler's method as pre-
dictor, and the trapezoid rule as corrector, to take a step of length h from
computed point (tj;yj) to new computed point (tj+1;yj+1). It is de�ned by
these formulas, where yj; fj are n-vectors:

yp
j+1 = yj + hfj where fj = f(tj;yj) (3.2)

fpj+1 = f(tj+1;y
p
j+1) (3.3)

yj+1 = yj +
h

2
(fj + fpj+1) (3.4)

fj+1 = f(tj+1;yj+1) (3.5)

At each step it takes the di�erence between predicted y and corrected y as
error estimate vector e, compares this against a given tolerance, and adjusts
the stepsize by multiplying it by the factor � where

� =

 
0:9 � TOL � (1 + maxi jyij)

maxi jeij

!1=2

; e = yp
j+1�yj+1, y denotes yj+1:

A simple program which does this for the system y01 = �y2, y02 = y1 is
shown in Figure 3.3 and Figure 3.4, with the alterations to incorporate AD01
given in comments as for the previous example. Subroutine step attempts to
perform one step, rejecting it if the error estimate is too large and accepting it
otherwise. The variables errest, hfactor and h are the `strategy' quantities
which should not be di�erentiated, and have been left inactive using the
technique outlined above. The ad01_initialize call makes the program
di�erentiate (once only) with respect to the two initial values y1; y2. For
brevity we omit: declaration of an n � n array yjac to hold the Jacobian;
calls of ad01_grad to extract its value one row at a time which would be
adjacent to the ad01_value calls; and any print statements. The program is
for example only and omits many aspects of robust ODE solving.

3.4.5 Other cases

Another important situation where it is harmful to di�erentiate code as it
stands is an iteration to convergence which is intended to solve one or more
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Figure 3.3: Simple ODE solver before and after conversion

program ode

!a use HSL_AD01_FORWARD_DOUBLE

integer,parameter :: wp=kind(0d0),n=2

real(wp),parameter :: pi=3.14159265358979_wp

real(wp)::h,t,tend,tol

real(wp),dimension(1:n) :: f,y

!r type(ad01_real) :: f(1:n)=ad01_undefined, y(1:n)=ad01_undefined

!a real(wp) yval(1:n)

t=0._wp

tend=2.0_wp*pi

y = (/1._wp,0._wp/)

!r call ad01_initialize(1,y,(/1._wp,0._wp/))

call fcn(t,y,f)

tol=0.001_wp

h=0.01_wp

!a call ad01_value(y,yval)

do while(t<tend)

call step(t,y,f,h,tol)

!a call ad01_value(y,yval)

end do

contains

subroutine step(t,y,f,h,tol)

real(wp)::h,t,tol

real(wp)::f(1:n),y(1:n)

!r type(ad01_real)::f(1:n),y(1:n)

integer i

real(wp)::err_actual, err_target,hfactor

real(wp),dimension(1:n):: errest

real(wp),dimension(1:n)::f_pred,y_pred,y_trial

!r type(ad01_real),dimension(1:n)::f_pred=ad01_undefined, &

!a y_pred=ad01_undefined,y_trial=ad01_undefined

do i=1,n

y_pred(i)=y(i) + h*f(i)

end do

call fcn(t,y_pred,f_pred)
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Figure 3.4: Simple ODE solver before and after conversion, continued

do i=1,n

y_trial(i)=y(i) + (h*0.5_wp)*(f(i) + f_pred(i))

errest(i)=y_trial(i)-y_pred(i)

!r errest(i)=ad01_val(y_trial(i))-ad01_val(y_pred(i))

end do

err_target=tol* (maxval(abs(y))+1_wp)

!r err_target=tol* (maxval(abs(ad01_val1(y)))+1._wp)

err_actual=maxval(abs(errest))

if (err_actual <= err_target) then

t=t+h

y=y_trial

call fcn(t,y,f)

end if

hfactor=(0.9_wp * err_target/err_actual)**0.5_wp

h=h*min(2._wp,hfactor)

end subroutine step

subroutine fcn(t,y,f)

real(wp)::t

real(wp)::y(1:n),f(1:n)

!r type(ad01_real)::y(1:n),f(1:n)

f(1)=-y(2)

f(2)=y(1)

end subroutine fcn

function ad01_val(x) !when x is a scalar

real(wp) ad01_val

type(ad01_real) x

call ad01_value(x,ad01_val)

end function ad01_val

function ad01_val1(x) !when x is a rank-one array

type(ad01_real) x(:)

real(wp) ad01_val1(1:size(x))

call ad01_value(x,ad01_val1)

end function ad01_val1

end
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equations. Typically these may have the form g(x; y; p) = 0 to be solved
to give y = f(x; p) where the derivative @y=@p is sought. The iteration
should be ignored and the derivative obtained by di�erentiating the under-
lying system g followed by solving a linear system. Fuller descriptions for
backward and forward methods respectively are given by Christianson (1998),
Bartholomew-Biggs (1998).



Chapter 4

Implementation

4.1 Data structures

The backward method requires that a representation of the calculation be
stored. We have chosen a data structure that resides in the module and
represents the computational graph (see Subsection 4.1.3 for more details).
This is built by a sequence of unary and binary overloaded operators. Each
must be able to �nd the nodes of its operand or operands. We have chosen
to do this with an integer �eld in the derived type. The integer �eld also
permits us to locate the node from which the backward method is to be
applied when �rst or second derivatives are wanted.

For the forward method, we could have held the data directly in pointer
components of the derived type. We have chosen not to do so for consis-
tency with the backward method and because the extra allocations would be
likely to slow the computation and would leave us with little control over the
management of storage. We again use an integer to locate the data.

This data structure means that, for both methods, we can discard the
module data and reuse the storage whenever a computation is complete. The
user indicates this by calling ad01 initialize. All the ad01 real variables
now need to be regarded as unde�ned. We decided that it was essential to
have a mechanism to label variables as unde�ned, both for safety (in case
the user inadvertently uses such a value in an expression) and because in the
forward method we need to distinguish between a �rst assignment when its
data is established and a subsequent assignment when its data is overwritten.
We therefore hold a second integer in the derived type to indicate the case.
If this di�ers from the case in hand, we regard the variable as unde�ned. On
each call of ad01 initialize, the case value is incremented by one, which
immediately renders all the existing variables with their smaller case values
unde�ned.

When the data of a subsidiary calculation (see Section 3.3) is restored,

23
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the case value is also restored so that its variables are restored to validity.
Thus the mechanism also prevents the accidental mixing of data from two
problems.

Another use for the case value is to distingish between anonymous tem-
porary variables and permanent variables. We negate the case value if the
variable is temporary. For example, when the statement

a = abs(b + c)

is executed, a temporary variable is created by the procedure for +. In
the forward method, execution of the procedure for abs then creates a new
temporary variable by changing the data for the old temporary variable. In
the backward method, the node created for the temporary variable is reused
by modifying the values of the local derivatives, see Section 4.2. In the
forward method, we are sometimes left with discarded temporary variables
that are no longer needed (for example, if a binary operation is applied to two
temporary variables). Such discarded data is marked as dead, which means
that the storage can be reused.

The result of these considerations is that the type ad01 real has two
integer components, which we have named p and case. The components are
private and accessible only within the module.

4.1.1 Data structures for the forward method

For the forward method, the code DAPRE of Stephens and Pryce (1991)
stores all the derivatives for each variable in sparse mode. That is, an index
list of the indices of the independent variables upon which the variable de-
pends is stored, and only derivatives with respect to these variables are held.
This avoids the calculation and storage of derivatives that are known to be
zero. On the other hand, it requires additional memory to store the index
lists and complicates binary operations, which have to merge these lists and
expand the data of both operands to �t the merged list.

An alternative is to use the full mode, where all derivatives are held
explicitly and no index list is stored. The sparse mode is ideal for one of
the original (independent) variables, since its only dependency is upon itself.
As dependent variables are calculated, their index lists grow steadily longer.
Therefore we decided to use both modes. The sparse mode is employed if
the index list is shorter than a threshold t. By default, t takes the smallest
value for which the full mode doubles the required storage (which depends
on the order of derivatives being found), unless n � 5 in which case the
default value of t is 0 (forcing the full mode to be used all the time). The
user is also permitted to specify t directly in the ad01 initialize call. For
example, the choice t = 0 forces the full mode to be used all the time and
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the choice t � n forces the sparse mode to be used all the time. Note that
the sparse mode ensures that each variable's index list speci�es exactly those
independent variables upon which the variable depends.

To permit the reuse of storage as temporary variables are no longer needed
and to accommodate the varying lengths of the index lists and the associated
sets of derivatives, we manage two heaps. The integers are held in the array
iheap and the reals are held in the array rheap. Associated with each
variable is the following �xed-length data:

nvars The length of the index list.

ipont The starting position of the index list in iheap.

rleng The size of the real data.

rptr The starting position of the real data in rheap.

Four integer pointer arrays are used to hold this data, and the entries are
accessed through the integer component p of a variable of type ad01 real.
The arrays are initially allocated to have targets of size 1000 (held as the
constant heap size). If necessary, the size of each is doubled by allocat-
ing a temporary array of twice the current size, copying the data into it,
deallocating the old array, and making the new array be the pointer target.

The �rst n locations in the array iheap contain the numbers 1 to n to
provide an index list for any variable using full mode storage.

The function and derivative information for each variable is stored as
explained in Subsection 2.1.2.

4.1.2 Garbage collection in the forward method

The indices of dead variables are linked in a chain (using ipont) so that
when a new index is needed, it is taken from the head of the chain whenever
the chain is non-empty. Thus no garbage collection is needed for the arrays
nvars, ipont, rleng, and rptr.

Garbage collection is needed for the heap arrays rheap and iheap. First,
a list of the indices of the active variables in the order of their data in rheap

is formed (the data is in the same order in iheap). Then the data for each
variable is moved forward in the arrays iheap and rheap one at a time in
the order of this list, altering the corresponding indices in ipont and rptr

at the same time.
To avoid frequent garbage collections, we check the free space after each

collection. If more than 10% of iheap is in use, we increase its size to the
greater of double its present size and �ve times the size in use. We do the
same for rheap.
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4.1.3 Data structures for the backward method

In the backward method when only �rst derivatives are required, the follow-
ing information is needed at a node:

rval The value of the variable xj .

onum The number of operands.

iptrs The indices k of the operands.

rvals The local derivatives
@fj
@xk

.

Since most nodes are binary, we have decided to hold this data in the form
of �xed-length components of a derived type node. Storage for three inte-
gers and three reals is required. The whole graph is held as a pointer array
graph of type node. This is initially allocated to have size 10,000 (held as
the constant init max nodes). If necessary, its size is doubled by allocat-
ing a temporary array of twice the current size, copying the data into it,
deallocating the old array, and making the new array be the pointer target.

If second derivatives are required, we also need to store the local second

derivatives
@2fj

@xk@xi
. At a unary node, we use the second component of rvals,

since this is otherwise unused. At a binary node, we again use a �xed-length
component of a derived type. The type is second deriv and we hold a
pointer array der2 of this type, keeping its size the same as that of the array
graph. The type has only one component, der, which is an array of size 3.

4.2 Backward method evaluation and graph

construction

The computational graph is constructed by the execution of the code. Every
operation involving an ad01 real variable results in either a new node being
created in the graph or an old node being altered.

Binary operations with one ad01 real and one real or integer variable
are represented as unary nodes. An assignment of a real or integer to an
ad01 real gives rise to a node with no operands, which we call a nonary
node. The assignment of an ad01 real variable to an ad01 real variable
does not require a new node.

When a unary operation is applied to a temporary variable, a new node
is not created, but the derivatives are modi�ed. The method is similar to
that used by Griewank and Reese (1991) and called node-condensing. Let
the old node be l and the new node be j. If node l is unary, the combined
function is

Fj(xi) = fj(fl(xi)); (4.1)
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which has derivatives

@Fj

@xi
= f 0j

@fl
@xi

; (4.2)

@2Fj

@x2i
= f 00j

 
@fl
@xi

!2

+ f 0j
@2fl
@x2i

: (4.3)

If node l is binary, the combined function is

Fj(xi; xk) = fj(fl(xi; xk)): (4.4)

The equations (4.2) and (4.3) still apply, and there are similar equations for
the derivatives with respect to xk. For the cross derivative, we have

@2Fj

@xi@xk
= f 00j

@fl
@xi

@fl
@xk

+ f 0j
@2fl

@xi@xk
: (4.5)

For functions such as 3.0*x, abs(x) and x/2.0, the second derivative f 00

is always zero. For functions such as x + 2.0 and x - 2.0, the �rst deriva-
tive f 0 is always unity. We treat such functions as special cases, avoiding the
unnecessary computations of the general case.

4.3 High derivatives

We now consider the evaluation of high derivatives in the forward method.
These are held as Taylor coe�cients, for which the associated notation was
explained in Subsection 2.1.2.

4.3.1 Addition, subtraction, and multiplication

Given the Taylor coe�cients of degree up to R for two variables a and b, the
Taylor expansion for a+ b is

RX
i=1

Ti(i)ah
i(i) +

RX
i=1

Ti(i)bh
i(i): (4.6)

Here i(i), i = 1; : : : ;R is the sequence of multi-indices, see (2.8), (2.9) and
(2.11). Each Taylor coe�cient is found by adding the corresponding coe�-
cients for a and b. Similarly, the Taylor coe�cients for the di�erence a � b
are found by subtraction.

The Taylor coe�cients for the product a � b, may be obtained by per-
forming the multiplication

 
RX
i=1

Ti(i)ah
i(i)

! 
RX
i=1

Ti(i)bh
i(i)

!
: (4.7)
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and collecting monomial terms, discarding any of degree greater than R.
An outer loop runs over the coe�cients of a, and an inner loop runs over
the coe�cients of b. The corresponding multi-indices must be merged. For
example,

(1; 3; 4) + (3; 5) = (1; 3; 3; 4; 5) (4.8)

and corresponds to
h1h3h4 � h3h5 = h1h

2
3h4h5: (4.9)

Since the degrees of the multi-indices in the sequence i(i), i = 1; : : : ;R are
monotonic, we may terminate the inner loop as soon as the degree exceeds
R. Since we expect the cases R = 1 and R = 2 to be wanted far more often
than R > 2, we have coded these specially, avoiding a nested loop.

4.3.2 Division

For division, d = a=b, we need to solve the equation 
RX
i=1

Ti(i)bh
i(i)

! 
RX
i=1

Ti(i)dh
i(i)

!
=

RX
i=1

Ti(i)ah
i(i): (4.10)

Separating out the �rst term of the �rst sum and noting that Ti(1) is the
identity, we �nd the equation

b
RX
i=1

Ti(i)dh
i(i) =

RX
i=1

Ti(i)ah
i(i) �

 
RX
i=2

Ti(i)bh
i(i)

! 
RX
i=1

Ti(i)dh
i(i)

!
: (4.11)

Multiplication by  
RX
i=2

Ti(i)bh
i(i)

!
(4.12)

raises the degree since there is no constant term. Therefore, once the Taylor
coe�cients Ti(i)d for degree less than r have been found, equation (4.11) may
be used to calculate those of degree r. These equations are multi-dimensional
versions of those of Rall (1981). Again, for e�ciency, we code the cases R = 1
and R = 2 specially.

4.3.3 Other binary operations

The exponentiation a**bmay be implemented as exp(log(a)*b). The func-
tion atan2(a,b) di�ers by a constant from either atan(b/a) or -atan(a/b).
We therefore copy the derivatives of atan(b/a) if abs(b) < abs(a) or of
-atan(a/b) otherwise, and use the Fortran intrinsic itself for the value. The
functions max, min, and sign involve straightforward copying of the deriva-
tives of one of the arguments, perhaps with a change of sign, apart from
exceptional cases such as x = y in max(x,y). These lead to warnings and
are discussed in Section 4.4.
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4.3.4 Unary operations

Given the Taylor coe�cients of degree up to R for a variable a, we wish to
calculate the Taylor coe�cients for v = u(a), when the value and local Taylor
coe�cients

ur(a) =
1

r!

dru

dar
; r = 0; 1; : : : ; R (4.13)

are known.
The Taylor expansion of u(a+ �) is

u(a+ �) = u(a) + u1(a)� + u2(a)�
2 + : : :+ uR(a)�

R: (4.14)

Into this we need to substitute the Taylor expansion of equation (2.14):

� =
RX
i=2

Ti(i)ah
i(i): (4.15)

As for the case of multiplication in Subsection 4.3.1, we collect monomial
terms, discarding any of degree greater than R.

The present implementation, which was originally in Fortran 77, is a
recursion, with the stack being managed `by hand' rather than by the system.

Each recursion adds in a term t involving dru
dar

, then calls itself for each term

involving dr+1u
dar+1

with a multi-index that includes that of t. Informal Fortran
90 coding for this is shown in Figure 4.1.

The Taylor coe�cients Ti(i)v of the result, i = 2; 3; : : : ;R; are initialized
to zero and calculated by

call calc (0, (), 2, 1, 0)

Note that this works with the derivatives dru
dar

, rather that the Taylor co-
e�cients. The terms added in are therefore r! fact ur(a). Where all the
multi-indices di�er, this is because we add in only one representative of r!
identical terms. Where there are repetitions among the multi-indices, fact
will have been suitably scaled during the recursive calls.

In fact, the algorithm we have just described is unnecessarily complicated
and a straightforward alternative exists. Namely, we may evaluate the Taylor
expansion of equation (4.14) by nested multiplication up to the desired order
R as

u(x+ �) := uR(x) (4.16)

u(x+ �) := u(x+ �)� � + uR�r(x); r = 1; 2; : : : ; R: (4.17)

The calculation can be made more e�cient by noting that, since � has zero
constant term, each multiplication by � raises the least degree of a multino-
mial by 1; thus, one may discard terms of order > r from the assignment



CHAPTER 4. IMPLEMENTATION 30

Figure 4.1: Pseudo-code for a unary operation

recursive subroutine calc(r;m; l; fact; no same)

! r is the recursion depth.
! m is the multi-index i(i1)+ i(i2)+ : : : i(ir), with i1 � i2 � : : : ir,
! where + for multi-indices refers to merging, see equation (4.8),
! and ik is the do index at level k of the recursion, k = 1; 2; : : : ; r.
! l holds ir
! fact holds the factor for the next term
! no same is the number of repetitions of ir in ir; ir�1; : : :

Tmv = Tmv + fact �
dru

dar
same = no same+ 1
do i = l;R

if (degree(m)+degree (i(i)) > R) exit
call calc(r+ 1;m+ i(i); i; fact� Ti(i)a=same; same)
same = 1

end do

end subroutine calc

(4.17). The multiplications and additions may be performed as explained in
Subsection 4.3.1.

Preliminary tests of this method showed good performance and it will
probably replace the present method in the next version of the package.

4.4 Exceptions

An exception is an event that makes it either impossible to continue the
calculation, or likely that invalid results will be obtained. We have decided
to distinguish between two kinds of exceptions. A serious exception, such
as insu�cient storage (failure of an allocate statement), is treated as an
error. For a less serious exception, we give a warning. Our main criterion
for choosing the category is whether it is possible to continue the calcula-
tion. Our errors are all organizational: invalid call of ad01 initialize or
ad01 restore, procedure call ahead of �rst call of ad01 initialize, and
insu�cient storage.

We provide the user with control over whether execution always continues,
stops after an error, or stops after either an error or a warning. The default is
to stop only after an error. We also provide control over whether a message
is printed for each error or warning, only for an error, or not at all. The
default is to print a message only for an error.
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Execution following an error is needed for robust software that recovers
from an exception. For example, the software may use an alternative al-
gorithm that is slower. Since the module data cannot be as intended, the
module is placed in a `motoring' mode, where most procedure calls do noth-
ing. This continues until the module is re-initialized by an invocation of
ad01 initialize or a previous calculation is resumed by an invocation of
ad01 restore (see Section 3.3).

It would slow the execution too much to check for the ordinary 
oating-
point exceptions such as over
ow and divide by zero, so this is left as the
user's responsibility. Our assumption is that we do not need to diagnose
situations, such as sqrt(x) for negative x, that would be invalid in the
original Fortran code. Also, we do not attempt to diagnose problems whose
root cause is inadequate exponent range. Thus the user who is writing robust
software must check for the occurrence of 
oating-point exceptions during use
of the AD01 package.

This philosophy led us to diagnose x**y for ad01 real variables as an
error when x is not positive, even if the value of y is a positive integer. This
is because any perturbation of y gives a result that is not real. Similarly,
sqrt(x) and x**s for s real with a non-integer value is diagnosed when x is
zero because any negative perturbation of x gives a result that is not real.

Sometimes the function is not continuous but both one-sided derivatives
are valid. This happens for int(x) and aint(x) when x is a ad01 real

variable with an integer value. Since both one-sided derivatives of aint(x)
are zero, we treat this as if it had a zero derivative. Similar considerations
apply to nint(x) and anint(x) when the value di�ers from an integer by 1

2.
When x has the value zero, the function abs(x) is continuous but has

di�erent left and right derivatives. Here, we issue a warning and take the
derivative to be a random number between the two derivatives. Such a ran-
dom choice is required for non-di�erentiable optimization calculations when
bundle methods, see Lemar�echal and Zowe (1994), are in use. Similar con-
siderations apply to sign(x,y) when either x or y is a ad01 real variable
with the value zero, and to max(x,y) and min(x,y) when either a x or y is
an ad01 real variable and x and y have the same value.

We provide a warning for any comparison (with a logical operator) be-
tween an ad01 real variable x and an object with the same value. This is
because any perturbation of x (or any perturbation of a particular sign) may
cause a di�erent control 
ow through the program and hence discontinuities.
Of course, here there is no mechanism for taking a random combination.

If any procedure is given an input ad01 real variable with an unde�ned
value, we issue a warning and return an unde�ned result. Finally, a warning is
issued if a call of a subroutine that extracts function or derivative values from
an ad01 real variable is erroneous, for example, if higher-order derivatives
are requested than are being calculated.
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Testing

5.1 Correctness testing

We describe the program written for testing the correctness of the forward
package. That for the backward package is similar, the main di�erence being
that it lacks the tests of the higher derivatives which are done only for the
forward package. The aim has been to test each individual facility, as well
as various extended calculations.

Each of the intrinsic unary functions f is put though a battery of tests,
which includes

1. Compare f; f 0; f 00 with directly computed values, with various values
of the maximum degree R set by ad01_initialize.

2. Check correct operation when the input is an array of zero size.

All these are done for both sparse and full storage. The unary functions
tested, include intrinsic binary functions where one argument is a constant.
A similar battery is applied to each of the arithmetic operations +, -, *, /, **,
as well as intrinsic binary functions max, min, etc, and the relational binary
operations ==, /=, and so on.

The following general tests are done:

� Make each of the 7 error conditions and 26 warning conditions occur.

� Test assignment between ad01_real and constant values of types double,
real and integer.

� Test a unary function de�ned using ad01_user.

� Test the node-condensing feature, Section 4.2.

� Test the ad01_store and ad01_restore facility for interrupting and
resuming a calculation.

32
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� Test the ability to allocate more memory, and to garbage collect, in
larger computations.

More extended calculations include computing Rosenbrock's function

f =
n�1X
i=1

n
(10(xi+1 � x2i ))

2 + (xi � 1)2
o

(5.1)

for n = 500 and checking its gradient against an independent calculation.

5.2 Performance testing

Our performance results are from execution in double precision arithmetic
on a 143 MHz Sun Ultra 1 using the Fujitsu Fortran Compiler Version 4.0 of
Dec 25 1997 with default optimization.

The MINPACK-2 test problem collection Averick, Carter, Mor�e and Xue
(1992) contains Fortran 77 codes for calculating functions, gradients, and
Hessians. We have used several of these to verify that AD01 is working cor-
rectly and to compare its performance with hand-coded di�erentation. For
AD01, we removed all the hand-coded di�erentation and made the appropri-
ate changes of type.

5.2.1 Rosenbrock's function

For our �rst performance test, we consider computing the value of Rosen-
brock's function (5.1) and its gradient. We use the subroutine

subroutine dfun(x,f)

real(kind(0d0)) x(:),f

real(kind(0d0)) s1,s2

integer i

f = 0.0d0

do i = 1, n-1

s1 = 10.0d0*(x(i+1)-x(i)**2)

s2 = 1.0d0 - x(i)

f = f + s1**2 + s2**2

end do

end subroutine dfun

to calculate f itself. A similar subroutine uses AD01 and has the same
executable statements. A third routine has added hand-coded statements
for calculating the gradient analytically. We show in Table 5.1 timings for
several values of n.

It may be seen that the forward method is particlarly slow in this case.
When the second addition of the expression
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f + s1**2 + s2**2

is performed, a temporary variable is set up. When the assignment is per-
formed, the old f is discarded and the temporary variable is used for the new
f. Because separate procedures are used for the addition and assignment, the
code has no way of knowing that is should have simply updated f. Since f
has progressively more nonzero derivatives as the code progresses, the copy-
ing overheads become severe. We have considered adding new operators such
as .eqplus., so that the statement becomes

f .eqplus. s1**2 + s2**2

but there would need to be several such operators. Great generality is avail-
able with a single subroutine that tells AD01 that the variable's value is only
going to be used once, so it can be given the same status as a temporary
variable used in expression evaluation. The code becomes

call ad01_temp(f)

f = f + s1**2 + s2**2

and the addition function will not create a new temporary. Note that both
syntaxes involve a change to the source code. We show the result of this
modi�cation in Table 5.1.

It may be seen that

� the use of ad01_temp speeds up the forward mode dramatically on this
problem,

� the backward method is superior to the forward method, even if ad01_temp
is in use,

� the time to calculate the function and derivative by the backward
method is proportional to the time to calculate the function alone,
and

� automatic di�erentiation using the backward method is about 33 times
slower than analytic di�erentiation; most of the time (more than 80%)
is spent constructing the graph.

5.2.2 MINPACK ept - elastic-plastic torsion

Our next test is ept from the MINPACK-2 test problem collection. It is an
elastic-plastic torsion problem and involves a rectangular grid in which each
rectangle is divided into two triangles by a NW to SE diagonal. On each
triangle, a non-linear element function is de�ned, and this depends on the
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Table 5.1: Times in �secs for Rosenbrock's function
n t1 t2 t3

t1
t3
t2

t4
t2

t5
t1

t5
t2

t6
t2

100 13 39 2533. 858. 209. 97. 33. 27.
200 19 71 4903. 1343. 233. 123. 35. 28.
400 34 150 8960. 2030. 218. 141. 33. 27.
800 63 326 17201. 3320. 212. 159. 33. 27.
1600 118 609 35308. 6851. 204. 165. 32. 26.

t1: function only using reals
t2: function and derivative using reals
t3: function and derivative using forward AD01
t4: function and derivative using ad01 temp

t5: function and derivative using backward AD01
t6: function using backward AD01

grid values at the three vertices. The objective function f is a weighted sum
of all these element functions.

In the test results shown in Table 5.2, the grid is n by n. For large n the
work of one f evaluation is proportional to n2. This begins to be visible in
the column labelled t1. The other columns show ratios which compare the
times of handcoded function and �rst and second derivative with those of
AD01. It is notable that the adtemp amendment, mentioned above, speeds
up the forward mode so much that it beats the backwards mode on some
values of n.

Table 5.2: Times in �secs for MINPACK ept

Reals Backward Forward ad01 temp

n t1 t2
t1

t3
t1

t4
t1

t5
t1

t6
t3

t4
t1

t5
t1

t6
t3

t4
t1

t5
t1

t6
t3

2 49 1.15 2. 6. 8. 14. 25. 32. 17. 17. 19. 10.
4 67 1.34 7. 11. 14. 17. 53. 329. 54. 32. 183. 31.
8 127 1.65 35. 19. 23. 18. 84. 748. 42. 54. 339. 14.
16 347 1.92 252. 25. 31. 16. 112. 1961. 69. 71. 506. 9.
32 1210 2.14 1868. 29. 36. 11.
t1: time for function evaluation, handcoded
t2: time for function and gradient, handcoded
t3: time for function, gradient and hessian, handcoded
t4: time for function evaluation, AD01
t5: time for function and gradient, AD01
t6: time for function, gradient and hessian, AD01
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5.2.3 CFD calculation - steady supersonic 3D 
ow

The next performance test comes from a CFD calculation by Shaun Forth
at RMCS. The model is of steady supersonic 3D 
ow in a fairly arbitrary
region using a �nite volume discretization, and the solution is computed by
space-marching in the downwind direction.

There are �ve variables describing the 
ow on the face of each volume
element, from which the 
ux can be calculated. Thus at each space-step, a
system F (X) = 0 of 5N nonlinear equations in 5N variables has to be solved
where N is the number of element faces on the current cross-section across
the 
ow.

The function F is assembled from N evaluations of a local function f
| a `CFD 
ux function' due to Roe (1981) | which relates the 
ux of
conserved quantities (mass, energy, momentum) at a cell face to the 
ow
variables either side of the face. The Jacobian of F is assembled in a similar
way from Jacobians of f .

The code for f is a routine ROE FLUX of about 200 lines with no loops
and a few branches. Values of f and its Jacobian are required millions of
times in a typical run and account for a large proportion of the overall runtime
of the 
ow solver. ROE FLUX is typical of many such 
ux functions in use
worldwide. Tests show that exact Jacobians give much faster convergence of
the Newton iterations involved than do �nite di�erence approximations to
the Jacobian. Thus there is considerable interest in automatic generation of
fast, exact Jacobian code for CFD kernels of this kind.

Table 5.3 gives timings for executing ROE FLUX in various ways:

1. The raw code, with Jacobian J approximated by di�erencing.

2. ROE FLUX converted to use the AD01 forward module.

3. ROE FLUX converted to use the AD01 backward module.

4. ROE FLUX converted to use a forward AD package specially written
by Forth for this application, in which all arrays of derivatives are of
�xed size.

5. ROE FLUX with ADIFOR. For this, George Corliss in Milwaukee con-
verted ROE FLUX from Fortran 90 to Fortran 77 and passed it through
the ADIFOR processor, which outputs a Fortran routine with added
code to compute derivatives. The resulting code uses the Reverse
method at statement level and the forward mode overall.

Considering the extra generality of AD01, its timings compare favourably
with those of Forth's package, though ADIFOR comes out well on top, show-
ing the bene�t of source-text translation approaches to AD.
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Method Time (�secs)

Raw Code + �nite di�s 84
AD01 forward Code 972
AD01 backward Code 679
Forth's AD Code 456
ADIFOR Code 102

Table 5.3: Timings (average over 1000 repetitions in each case) for
ROE FLUX computing function and Jacobian by various methods. Fujitsu
4.0 compiler on a Sun Ultra Sparc 143MHz.
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Conclusions

AD01 has proved robust and reliable on the applications on which we have
tested it. Its speed is somewhat disappointing compared with the theoreti-
cal estimates of computational complexity, but from our tests, the ratios of
(time to evaluate di�erentiated code):(time to evaluate original code) appear
comparable with those of other packages based on operator overloading such
as ADOL-C.

Though aimed originally at Fortran 77 programs, AD01 can di�erentiate
Fortran 90 code provided it does not use Fortran 90 array features. There
is no problem with architectural aspects such as modules and internal pro-
cedures, nor with new control 
ow features, nor with storage management
features such as allocatable, pointers etc. We believe it is currently the
only AD package for general Fortran use which is so general, as well as o�er-
ing both forward (with derivatives to arbitrary order) and reverse methods.

Developments planned are aimed primarily at large problems. Among
these are: whole array assignments (see the discussion in Section 3.1); pro-
viding some other array features, which should greatly reduce the memory
requirement for the reverse method; the better algorithm described in Subsec-
tion 4.3.4 for unary operations in the forward method; speed improvements
by use of sparse-matrix techniques; support for Taylor series generation for
di�erential systems; and a Fortran 95 version that takes advantage of its
better data initialization features.

We acknowledge with thanks the work of our CASE PhD student David
Cowey, who completed the initial implementation of AD01, evaluated the
merits of various alternative data structures, and wrote the suite of correct-
ness tests. We also thank EPSRC for its support of David Cowey under
grant 9450007X and we thank George Corliss, Shaun Forth, Nick Gould, and
Andreas Griewank for discussions that have led to improvments to AD01 and
this report.
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HSL HSL_AD01
HARWELL SUBROUTINE LIBRARY SPECIFICATION Release 13 (1998)

1 SUMMARY

This Fortran 90 package provides automatic differentiation facilities for variables specified by Fortran code. Each
independent variable and each variable whose value depends on the value of any independent variable must be
declared to be of type AD01_REAL instead of default REAL (double precision REAL in the DOUBLE version). Note that
Fortran variables of type default REAL (double precision REAL in the DOUBLE version) and default INTEGER may enter
the computation provided their values do not vary with the values of the independent variables. Both the backward
and the forward method are available.

ATTRIBUTES — Versions: HSL_AD01_FORWARD_SINGLE, HSL_AD01_FORWARD_DOUBLE,
HSL_AD01_BACKWARD_SINGLE, HSL_AD01_BACKWARD_DOUBLE. Calls: KB07. Origin: J. K. Reid, Rutherford
Appleton Laboratory and D. Cowey, RMCS Shrivenham. Date: October 1995. Language: Fortran 90. Conditions on
external use: (i), (ii), (iii) and (iv).

2 HOW TO USE THE PACKAGE

Access to the package requires a USE statement such as

Forward method, single precision version
USE HSL_AD01_FORWARD_SINGLE

Forward method, double precision version
USE HSL_AD01_FORWARD_DOUBLE

Backward method, single precision version
USE HSL_AD01_BACKWARD_SINGLE

Backward method, double precision version
USE HSL_AD01_BACKWARD_DOUBLE

If it is required to use more than one module at the same time, the types AD01_REAL (Section 2.1.1) and AD01_DATA
(Section 2.4.1), the constant AD01_UNDEFINED (Section 2.1.1), the variable AD01_FLAG (Section 2.5), and the
subroutine AD01_CONTROL (Section 2.6) must be renamed on all but one of the USE statements. The procedures
described in Sections 2.1 to 2.4 are generic so do not need to be renamed.

Each module contains a derived type called AD01_REAL whose components are private. Dependent variables must
be declared to be of this type instead of default REAL (double precision REAL in the DOUBLE version) and initialized
with the value AD01_UNDEFINED, which is a constant that is defined in the module. Independent variables must also
be of this type. A normal run consists of a call to AD01_INITIALIZE to initialize the pointer work arrays in the
module, say how many derivative are wanted, declare the independent variables, and provide values for the
independent variables. There follows the main computation in which the values of the dependent variables are
calculated, using the language features specified in Section 2.2, which include most of the Fortran 77 intrinsic
functions. The name of an intrinsic function called with an AD01_REAL argument must not be given the INTRINSIC
attribute. Finally, procedure calls may be made to obtain derivative values. For cases where few of the independent
variables affect a dependent variable, there are facilities to return the derivatives in packed form.

If derivatives are required for another set of values of the independent variables, the process must be repeated,
including the call to AD01_INITIALIZE.

A facility is included to permit the user to add further unary functions to the set of functions supported. For a
(1) (r)function f(x), code must be provided that when given a real value x calculates f(x), f (x), ..., f (x) where r is the order

of derivatives wanted. The module itself may be used to calculate the derivatives of f (see Section 2.4).

For futher explanation of how to convert codes, see Pryce and Reid (1998).

Pryce, J. D. and Reid, J. K. (1998). AD01, a Fortran 90 code for automatic differentiation. Report RAL-TR-1998-057,



HSL Release 13 (1998) 43 HSL_AD01

Rutherford Appleton Laboratory.

2.1 Argument lists and calling sequences of principal subroutines

There are five principal subroutines:

1. The subroutine AD01_INITIALIZE must be called prior to commencing the evaluation of the dependent
variables.

2. The subroutine AD01_VALUE provides the value of an independent or a dependent variable.

3. The subroutine AD01_GRAD provides the first derivatives of a dependent variable.

4. The subroutine AD01_HESSIAN provides the Hessian matrix (second derivatives) and optionally the first
derivatives of a dependent variable.

5. The subroutine AD01_DERIVS provides derivatives of a dependent variable in packed form as Taylor
coefficients (see Section 2.7).

2.1.1 The derived data type for dependent and independent variables

The independent and dependent variables must be declared to be of type AD01_REAL instead of default REAL (double
precision REAL in the DOUBLE version). The module contains a constant AD01_UNDEFINED of type AD01_REAL to
represent undefined values. All dependent variables must be initialized with this value in one of the following ways:

1. In a data statement or on a type declaration statement:

USE HSL_AD01_FORWARD_SINGLE
TYPE (AD01_REAL) :: F=AD01_UNDEFINED, G
DATA G/AD01_UNDEFINED/

2. By a procedure call:

CALL AD01_UNDEFINE(F)

F is of any rank, intent(out), and of type AD01_REAL. A scalar is given a special initial value. For any
array, every element is given the special value.

3. By the statement

F=AD01_UNDEFINED

where F is scalar and of type AD01_REAL.

The second or third form of initialization must be used for a function result of type AD01_REAL.

If an actual argument is an expression of type AD01_REAL and the corresponding dummy argument is referenced
more than once, it must be copied to a local variable, as in the following example

SUBROUTINE SUB(ARG_A,B)
TYPE (AD01_REAL), INTENT(IN) :: ARG_A
TYPE (AD01_REAL), INTENT(OUT) :: B
TYPE (AD01_REAL) :: A=AD01_UNDEFINED

A = ARG_A
: ! Unchanged code. A was a dummy argument and is now local

For safety, this change may be made to all input arguments of type AD01_REAL.

If the user has a derived type with a component of type AD01_REAL, for example:

TYPE USER_TYPE
TYPE (AD01_REAL) :: A
INTEGER :: I

END TYPE USER_TYPE

an intrinsic assignment to an object of type USER_TYPE will involve an intrinsic assignment for the component of type
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AD01_REAL. Since this would be erroneous, the user must define assignment for USER_TYPE:

INTERFACE ASSIGNMENT(=)
MODULE PROCEDURE ASSIGN

END INTERFACE
:
SUBROUTINE ASSIGN (L,R)

TYPE (USER_TYPE), INTENT(OUT) :: L
TYPE (USER_TYPE), INTENT(IN) :: R
L%A = R%A
L%I = R%I

END SUBROUTINE ASSIGN

This must be done for any type that has a component of type AD01_REAL at any level of component selection.

2.1.2 The storage mode (forward method only)

The forward method has two storage modes. Let the number of independent variables be n and suppose a variable
depends on m of these variables. If the derivatives are held in packed storage, only the derivatives with respect to
these m variables are held; otherwise, all derivatives are held. The packed mode saves storage for reals unless m = n,
but needs integer storage for the list of dependencies. The full mode saves computing time when n is small or if m/n is
reasonably large. A threshold t is maintained and packed storage is used if m < t. The default value of t is 0 if n ≤ 5;
otherwise, it is the smallest value of m for which the full mode doubles the required storage (which depends on the
order of derivatives being found). However, the value may be set explicitly on a call to AD01_INITIALIZE (see next
section). If the packed mode is required throughout, t ≥ n should be chosen. Note that this is necessary if it is desired to
know exactly which are the dependent variables (see INDEX in Section 2.1.7). If the full mode is required throughout,
t ≤ 0 should be chosen.

2.1.3 To start a computation

CALL AD01_INITIALIZE(DEGREE,X,VALUE,FULL_THRESHOLD)

DEGREE is scalar, intent(in), and of type default INTEGER. It specifies the order of the highest derivative required.
Restriction: DEGREE ≥ 0. For backward differentiation (HSL_AD01_BACKWARD_SINGLE/DOUBLE), DEGREE ≤ 2.

X is scalar or rank-one, intent(out), and of type AD01_REAL. It identifies the independent variables and is given the
value VALUE. The value of X must not be altered except by calling this subroutine afresh.

VALUE is of intent(in) and type default REAL (double precision REAL in the DOUBLE version). It must be scalar or have
the same shape as X and must be set by the user to the value for X.

FULL_THRESHOLD is optional, of intent(in), and of type default INTEGER. It is ignored when the backward method is
in use. If it is present when the forward method is in use, the value of the threshold t that controls packed
storage mode is used (see Section 2.1.2) is set to min (SIZE(X), FULL_THRESHOLD).

N.B. A call to this subroutine releases any module data used by previous calculations. In general, it is therefore better
to break a long calculation into a sequence of shorter calculations, each commencing with a call to this subroutine.
However, the module data is released without taking account of the SAVE attribute for variables of type AD01_REAL.
Such data may, however, be stored and restored (see Section 2.4).

2.1.4 To obtain the real value of an independent or a dependent variable

CALL AD01_VALUE(A,VALUE)

A is scalar or of rank one, of intent(in), and of type AD01_REAL. It specifies the independent or dependent variable
whose value is required.

VALUE is of intent(out) and of type default REAL (double precision REAL in the DOUBLE version). It must have the
same shape as A and returns the value of A.
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2.1.5 To obtain the first derivatives of a dependent variable

CALL AD01_GRAD(A,GRAD)

A is scalar, intent(in), and of type AD01_REAL. It specifies the dependent variable whose derivatives are required.

GRAD is intent(out) and of type default REAL (double precision REAL in the DOUBLE version) whose shape must be that
of the argument X of the AD01_INITIALIZE call. It returns the gradient of A with respect to X.

Note: If the Hessian is wanted too and the backward method is in use, it is more efficient to call AD01_HESSIAN.

2.1.6 To obtain the second derivatives of a dependent variable

CALL AD01_HESSIAN(A,HESSIAN,GRAD)

A is scalar, intent(in), and of type AD01_REAL. It specifies the dependent variable whose derivatives are required.

HESSIAN is of intent(out) and type default REAL (double precision REAL in the DOUBLE version). It must be scalar if X
is scalar and of shape (SIZE(X),SIZE(X)) if X is a rank-one array, where X is the argument X of the
AD01_INITIALIZE call. It returns the Hessian (second derivative matrix) of A with respect to X.

GRAD is intent(out), optional, and of type default REAL (double precision REAL in the DOUBLE version) whose shape is
that of X. It returns the gradient of A with respect to X.

Note: If a single diagonal entry of the Hessian is wanted, we recommend that the calculation be performed separately
with only one independent variable. The whole diagonal can be found by successive calculations of this kind.

2.1.7 To obtain the derivatives of a dependent variable in packed form

CALL AD01_DERIVS(A,R,INDEX,DERIVS)

A is scalar, intent(in), and of type AD01_REAL. It specifies the dependent variable whose derivatives are required.

R is scalar, intent(in), and of type default INTEGER. It specifies the order of derivatives required. Restriction: 0 ≤
R ≤ DEGREE, where DEGREE is the argument DEGREE of the AD01_INITIALIZE call.

INDEX is a rank-one array pointer of type default INTEGER. For the forward method when the derivatives are held in
packed storage (see Section 2.1.2), INDEX is allocated a target of size m, the number of elements of X upon
which A is dependent, where X is the argument X of the AD01_INITIALIZE call. The indices of these elements
are placed in INDEX. For example, if A has been calculated by the statement

A = X(1) + X(3)*X(7)/X(8)

INDEX may take the value (/1,3,7,8/). For full storage with the forward method or for the backward method,
the value (/ (I,I=1,SIZE(X)) /) is returned.

DERIVS is a rank-one array pointer of type default REAL (double precision REAL in the DOUBLE version). If X is scalar,
m+r−1DERIVS is allocated a target of size 1. If X is an array, DERIVS is allocated a target of size ifCr

m = SIZE(INDEX) and r is the order of derivatives required. Its value is the vector of all Taylor coefficients
(scaled derivatives, see Section 2.7) of order exactly r of A with respect to X(INDEX). Only one copy of each
Taylor coefficient is held, namely the one with ordered multi-index

i = (i , i , ..., i ), m ≥ i ≥ i ≥ ... ≥ i ≥ 1r 1 2 r 1 2 r

and they are ordered lexicographically. For example, when r = 3, the ordering corresponds to the multi-index
ordering

(1 1 1), (2 1 1), (2 2 1), (2 2 2), (3 1 1), (3 2 1), (3 2 2), (3 3 1), (3 3 2), (3 3 3), (4 1 1), ... .

In the case r = 2, it corresponds to holding the lower triangle of the Hessian by rows, in packed form suppressing
the values that are bound to be zero and with the diagonal entries halved.

Note: If a single diagonal entry of the tensor of derivatives is wanted, we recommend that the calculation be
performed separately with only one independent variable. The whole diagonal can be found by successive
calculations of this kind.
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2.2 The language supported

All dependent variables (of type AD01_REAL) are given values by assignments from expressions involving
independent variables (also of type AD01_REAL), dependent variables whose values have been previously found, and
default REAL (double precision REAL in the DOUBLE version) or INTEGER data objects that are treated as invariants for
the purpose of differentiation.

The SAVE attribute for an AD01_REAL variable refers to positions within the module arrays of data associated with
the variable. These module data are released by a call of AD01_INITIALIZE, but may be stored beforehand and
restored later (see Section 2.4).

The following operations and procedures for the type AD01_REAL are supported:

1. The operators +, –, *, /, and ** for two scalars of types

(i) both AD01_REAL,
(ii) one AD01_REAL and one default REAL (default REAL or double precision REAL in the DOUBLE version),

or
(iii) one AD01_REAL and one default INTEGER,

and the result is of type AD01_REAL.

2. The operator – for a scalar of type AD01_REAL. The result is of type AD01_REAL.

3. The operators ==, /=, >, >=, <, and <= for two scalars of types

(i) both AD01_REAL,
(ii) one AD01_REAL and one default REAL (default REAL or double precision REAL in the DOUBLE version),

or
(iii) one AD01_REAL and one default INTEGER,

and the result is of type default LOGICAL.

4. Assignment to a scalar of type AD01_REAL from a scalar of type AD01_REAL, default REAL (default REAL or
double precision REAL in the DOUBLE version), or default INTEGER.

5. Assignment to a scalar of type default INTEGER from a scalar of type AD01_REAL. Note that assignment to REAL
is not provided since such an assignment is likely to be erroneous.

6. The functions ABS, ACOS, ASIN, ATAN, COS, COSH, EXP, LOG, LOG10, SIN, SINH, SQRT, TAN, and TANH for a
scalar of type AD01_REAL. The result is of type AD01_REAL.

7. The functions AINT and ANINT for a scalar of type AD01_REAL. The result is of type default REAL (double
precision REAL in the DOUBLE version).

8. The functions DABS, DACOS, DASIN, DATAN, DBLE, DCOS, DCOSH, DEXP, DLOG, DLOG10, DSIN, DSINH, DSQRT,
DTAN, and DTANH for a scalar of type AD01_REAL (DOUBLE version only). The result is of type AD01_REAL.

9. The functions DINT and DNINT for a scalar of type AD01_REAL (DOUBLE version only). The result is of type
double precision REAL.

10. The functions ALOG and ALOG10 for a scalar of type AD01_REAL (single precision version only). The result is of
type AD01_REAL.

11. The functions ATAN2, MAX, MIN, and SIGN for two scalars of type AD01_REAL or one scalar of type AD01_REAL
and one scalar of type default REAL (default REAL or double precision REAL in the DOUBLE version). The result
is of type AD01_REAL.

12. The functions DATAN2, DMAX1, DMIN1, and DSIGN for two scalars of type AD01_REAL or one scalar of type
AD01_REAL and one scalar of type double precision REAL (DOUBLE version only). The result is of type
AD01_REAL.

13. The functions AMAX1 and AMIN1 for two scalars of type AD01_REAL or one scalar of type AD01_REAL and one
scalar of type default REAL (single precision version only). The result is of type AD01_REAL.

14. The functions INT and NINT for a scalar of type AD01_REAL. The result is of type default INTEGER.
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15. The functions IDINT and IDNINT for a scalar of type AD01_REAL (DOUBLE version only). The result is of type
default INTEGER.

2.2.1 To provide an additional unary function

To provide an additional unary function f(x) the user must write a function of the form:

FUNCTION F(X)
USE HSL_AD01_FORWARD_SINGLE
TYPE(AD01_REAL) :: F
TYPE(AD01_REAL), INTENT(IN) :: X
INTEGER, PARAMETER :: DEGREE=2
REAL D(0:DEGREE),VALUE_X
CALL AD01_VALUE (X,VALUE_X)
.... ! Code to evaluate f(x) in D(0) and its derivatives

! in D(1), .... , D(DEGREE)
CALL AD01_USER(D, X, F, 'F') ! The final argument is optional

END FUNCTION F

The subroutine AD01_USER has the form

CALL AD01_USER(D, X, F, NAME)

D is of intent(in) and type default REAL (double precision REAL in the DOUBLE version). It is a rank-one array with
bounds 0:DEGREE, where DEGREE has the same value as the argument DEGREE of the AD01_INITIALIZE call.
It must be set to hold the function value and the values of its derivatives.

X is a scalar, intent(in), and of type AD01_REAL. It specifies the dependent or independent variable whose function
value is being found.

F is a scalar, intent(out), and of type AD01_REAL. It is set by the subroutine to the required function value.

NAME is optional. It is scalar, intent(in), and of type CHARACTER with assumed length. If present, it is included in any
warning messages that result from calling the function with an undefined argument value. If absent, AD01_USER
is used in the message.

2.3 Improving the performance of the forward method

The performance of the forward method can sometimes be dramatically improved if the value of a variable of type
AD01_REAL is repeatedly updated, as in the example

DO I = 1, N-1
S1 = 10.0D0*(X(I+1)-X(I)**2)
S2 = 1.0D0 - X(I)
F = F + S1**2 + S2**2

END DO

by inserting, ahead of the statement that performs the update, the call

CALL AD01_TEMP(F)

F is scalar, intent(inout), and of type AD01_REAL. It is given the status of ‘temporary’, which means that its value
is used at most once before it is changed.

2.4 Storing and restoring the module data

There are situations that make it appropriate to suspend the main calculation while a subsidiary calculation takes place
and restore it once the subsidiary calculation is complete. For this purpose, a derived type called AD01_DATA, whose
components are again private, is provided. A scalar of this type must be declared and initialized by a call to
AD01_UNDEFINE. A call to AD01_STORE transfers the module data to it (this is not expensive since pointer assignment
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is used for the arrays). The inner calculation can now take place (starting with a call to AD01_INITIALIZE) and when
it is complete, the module data can be restored by a call to AD01_RESTORE. Any variables of type AD01_REAL that
were defined when the AD01_STORE was executed and were not accessed during the inner calculation will have their
previous values restored, but any that were accessed during the inner calculation become undefined. It is safest to use
separate variables for the inner calculation.

An example of the utility of this is when the user adds a unary function to the set of functions supported. For a
(1) (r)function f(x), code must be provided that when given a real value x calculates f(x), f (x), ..., f (x) where r is the order

of derivatives wanted. The module itself may be used to calculate the derivatives of f as a subsidiary calculation. This
process will be more efficient than calling the inner procedure as a part of the main calculation.

2.4.1 The derived data type for storing module data

A scalar of type AD01_DATA must be declared to hold the module data and given a special initial value. An example is:

USE HSL_AD01_FORWARD_SINGLE
TYPE (AD01_DATA) DATA
CALL AD01_UNDEFINE(DATA)

There are three procedures for user calls:

1. The subroutine AD01_UNDEFINE initializes a scalar of type AD01_DATA.

2. The subroutine AD01_STORE stores the module data ready for a fresh calculation.

3. The subroutine AD01_RESTORE restores the module data.

2.4.2 To initialize

CALL AD01_UNDEFINE(DATA)

DATA is scalar, intent(out), and of type AD01_DATA. It is given a special initial value.

2.4.3 To store the module data ready for a fresh calculation

CALL AD01_STORE(DATA)

DATA is scalar, intent(inout), and of type AD01_DATA. It is given the values of all the module data. The module data
are set to special null values. Any arrays associated with DATA on entry are deallocated.

2.4.4 To restore the module data

CALL AD01_RESTORE(DATA)

DATA is scalar, intent(inout), and of type AD01_DATA. It must have previously been given the values of all the module
data by a call of AD01_STORE. Its data is given to the module and it is then set to the special value used by
AD01_UNDEFINE. Any arrays associated with the module on entry are deallocated.

2.5 Error handling

The modules contain an integer array called AD01_FLAG for error and warning flags. The first 4 components are for
errors and the rest are for warnings. It initially has the the value 0 and the statement

AD01_FLAG = 0

may be used to reset it to zero. In the event of an error or warning, the corresponding component is incremented by
one. The components are for the following:

1. Invalid call of AD01_INITIALIZE.
2. Procedure call without prior AD01_INITIALIZE call.
3. Insufficient storage (failure of an ALLOCATE statement).
4. Invalid call of AD01_RESTORE.

5. SQRT(A) when A is of type AD01_REAL and has value 0.
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6. A**B when A and B are of type AD01_REAL, and A has a non-positive value.
7. A**B when A is of type AD01_REAL, B is of type REAL (double precision REAL in the DOUBLE version), A has

value 0, and B has a non-integer value less than DEGREE.
8. SIGN(A,B) when B is of type AD01_REAL and has value 0.
9. ABS(A) or SIGN(A,B) when A is of type AD01_REAL and has value 0.

10. INT(A) when A is of type AD01_REAL and has an integer value.
11. AINT(A) when A is of type AD01_REAL and has an integer value.
12. NINT(A) when A is of type AD01_REAL and has a value n + 0.5, where n is an integer.
13. ANINT(A) when A is of type AD01_REAL and has a value n + 0.5, where n is an integer.
14. MAX(A,B) when at least one of A and B is of type AD01_REAL and A has the same value as B.
15. MIN(A,B) when at least one of A and B is of type AD01_REAL and A has the same value as B.
16. A==B when at least one of A and B is of type AD01_REAL and A has the same value as B.
17. A/=B when at least one of A and B is of type AD01_REAL and A has the same value as B.
18. A>B when at least one of A and B is of type AD01_REAL and A has the same value as B.
19. A<B when at least one of A and B is of type AD01_REAL and A has the same value as B.
20. A>=B when at least one of A and B is of type AD01_REAL and A has the same value as B.
21. A<=B when at least one of A and B is of type AD01_REAL and A has the same value as B.
22. Call of AD01_VALUE with VALUE of the wrong size.
23. Call of AD01_VALUE when A has value AD01_UNDEFINED.
24. Call of AD01_GRAD with DEGREE < 1.
25. Call of AD01_GRAD with GRAD of the wrong size.
26. Call of AD01_GRAD when A has value AD01_UNDEFINED.
27. Call of AD01_DERIVS with R < 0 or R > DEGREE.
28. Call of AD01_DERIVS when A has value AD01_UNDEFINED.
29. Call of AD01_HESSIAN with DEGREE < 2.
30. Call of AD01_HESSIAN with HESSIAN of the wrong shape.
31. Call of AD01_HESSIAN with GRAD of the wrong size.
32. Call of AD01_HESSIAN when A has value AD01_UNDEFINED.
33. Execution of function for value AD01_UNDEFINED.
34. Assignment to an array of type AD01_REAL.

By default, execution continues following a warning and stops following an error, but other choices are available
(see Section 2.6). If execution continues following a warning, an appropriate default action is taken and subsequent
execution is normal. If execution continues following an error, subsequent invocations of any module procedure will
result in an immediate return unless the procedure is AD01_INITIALIZE, AD01_UNDEFINE, AD01_STORE, or
AD01_RESTORE. Execution is normal after a call to AD01_INITIALIZE and after a call to AD01_RESTORE if execution
was normal when the corresponding AD01_STORE was executed. While running in the immediate return mode, any
function result or defined assignment of type AD01_REAL has value AD01_UNDEFINED, any of type REAL or INTEGER
has value zero, and any of type LOGICAL has value true.

2.6 Error control

By default, execution continues following a warning and stops after an error. Messages are printed on unit 6 and
warning messages are suppressed. These choices may be altered by:

CALL AD01_CONTROL(LP,MP,PRINT_LEVEL,STOP_LEVEL)

LP is optional, scalar, intent(in), and of type default INTEGER. If it is present, subsequent error messages will be
sent to unit LP.

MP is optional, scalar, intent(in), and of type default INTEGER. If it is present, subsequent warning messages will be
sent to unit MP.

PRINT_LEVEL is optional, scalar, intent(in), and of type default INTEGER. If it is present, subsequent error and
warning messages are controlled according to the value of PRINT_LEVEL:

0. No printing.
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1. Printing of error messages.
2. Printing of error and warning messages.

STOP_LEVEL is optional, scalar, intent(in), and of type default INTEGER. If it is present, subsequent errors are
controlled according to the value of STOP_LEVEL:

0. Continue in execution.
1. Continue after a warning, but stop after an error.
2. Stop after a warning or an error.

2.7 The Taylor expansion in many variables

When working with high-order derivatives, it is convenient to use vector subscripts, or multi-indices. If the variable a
depends on the distinct independent variables x , i = 1, 2, ..., m, a multi-index of order r isINDEX(i)

i = (i , i , ..., i ),r 1 2 r

where the indices lie in the range

1 ≤ i ≤ m, k = 1, 2, ..., rk

and need not be distinct. The multi-index is ordered if the inequalities

i ≥ i ≥ ... ≥ i1 2 r

hold. Let σ (i ) be the number of different multi-indices that are permutations of i . The single ordered multi-index isr r

a representative of this set. For example, (2 1 1) represents the set {(2 1 1), (1 2 1), (1 1 2)} and σ ( (2 1 1) ) has the
value 3.

For a derivative, we use the notation

r∂ a
D a = ,i r ∂x ... ∂xINDEX(i ) INDEX(i )1 r

and the D a with ordered i is a single representative of σ (i ) identical derivatives. To save storage, the packagei r rr

stores derivatives only for ordered multi-indices. It scales them to the Taylor coefficients

σ (i )rT a = D ai ir rr!
for convenience in Taylor expansions. This makes the Taylor expansion of order R have the form

R r

a(x + h) = a(x) + T a h∏i INDEX(i )∑ r k∑
k=1orderedr=1

i r

It can be shown that if an ordered i has l groups of identical indices and the number of indices in the groups are n ,r 1
n , ..., n , the relation2 l

σ (i ) 1r =
r! n ! n ! ... n !1 2 l

is true.

3 GENERAL INFORMATION

Use of common: None.

Other routines called directly: calls KB07AI (forward method only).
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Restrictions:

DEGREE ≥ 0, DEGREE ≤ 2 (HSL AD01 BACKWARD SINGLE/DOUBLE), 0 ≤ R ≤ DEGREE.

4 METHOD

In the forward method, for each independent variable and each dependent variable, the module holds a
representation of the values of the variable and all the desired derivatives of it. For each elementary operation, the
desired derivatives of the result are calculated from those of the primaries by the chain rule. For example, if

a = b∗c,

we have

∂a ∂b ∂c= c + b .∂x ∂x ∂x

All the derivatives are calculated at the same time as the values.

In the backward method, a tree is constructed to represent the whole computation, with a node i for each
independent variable, i = 1, 2, ..., m, and a node i for the result of each elementary operation, i = m+1, 2, ..., with links
to nodes for the primaries of the operation. The nodes are in execution-order sequence, so the links are always to
nodes with lesser indices. Only the values are constructed initially in the forward pass that constructs the tree. Let

∂f
us use the notation x for the value at node i and suppose that derivatives of f = x are required. As well as x , isi n i ∂xi

held at node i, i = 1, 2, ..., n. The derivatives are calculated when one of the subroutines AD01_GRAD, AD01_HESSIAN,
or AD01_DERIVS is called. Initially, all the variables are regarded as independent so that all the derivatives are zero
except at node n where the derivative value is 1. One by one, from n backwards to m+1, the variables are changed
to be dependent and the derivatives updated by the chain rule. For example, if

a = g(b,c),

when a is changed to dependent, we have

new old old∂f ∂f ∂f ∂g= + .∂b ∂b ∂a ∂b

The forward method is likely to be best if the number of independent variables is small, since then the extra work
and storage to compute and hold all the derivatives as the computation proceeds is modest. For a large number of
independent variables, the forward method becomes impractical, but the work of the backward method is bounded
by a small fixed multiple of the work needed for the values themselves. The disadvantage of the backward method
is that the whole computational tree has to be stored, which is not practical for very long computations.

For further details, see Pryce and Reid (1998).

Pryce, J. D. and Reid, J. K. (1998). AD01, a Fortran 90 code for automatic differentiation. Report RAL-TR-1998-
057, Rutherford Appleton Laboratory.
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5 EXAMPLES OF USE

5.1 Simple example
4 2 3To calculate the derivatives and Hessian of the function (x − 3) + x :1 2

PROGRAM TEST
USE HSL_AD01_FORWARD_DOUBLE
INTEGER :: DEGREE=2
DOUBLE PRECISION VALUE(2),FUN,GRAD(2),HESSIAN(2,2)
TYPE (AD01_REAL) :: X(2),F=AD01_UNDEFINED

READ(5,*) VALUE

CALL AD01_INITIALIZE(DEGREE,X,VALUE)

WRITE(6,'(A,2ES12.4)') 'At X =',VALUE

F = (X(1)**4 - 3D0)**2 + X(2)**3

CALL AD01_VALUE(F,FUN)
WRITE(6,'(A,2ES12.4)') 'F =',FUN
CALL AD01_GRAD(F,GRAD)
WRITE(6,'(A,2ES12.4)') 'Grad(F) =',GRAD
CALL AD01_HESSIAN(F,HESSIAN)
WRITE(6,'(A/(T12,2ES12.4))') 'Hessian(F) =',HESSIAN

END PROGRAM TEST

Given the input
2.0 3.0

the output would be
At X = 2.0000E+00 3.0000E+00
F = 1.9600E+02
Grad(F) = 8.3200E+02 2.7000E+01
Hessian(F) =

3.2960E+03 0.0000E+00
0.0000E+00 1.8000E+01
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5.2 Use of two modules at once

Here is the example of Section 5.1 using both methods.
PROGRAM TEST

USE HSL_AD01_FORWARD_DOUBLE
USE HSL_AD01_BACKWARD_DOUBLE,AD01B_UNDEFINED=>AD01_UNDEFINED,&

AD01B_REAL=>AD01_REAL, &
AD01B_CONTROL=>AD01_CONTROL

INTEGER :: DEGREE=2
DOUBLE PRECISION VALUE(2),FUN,GRAD(2),HESSIAN(2,2)
TYPE (AD01_REAL) :: X(2),F=AD01_UNDEFINED
TYPE (AD01B_REAL) :: XB(2),FB=AD01B_UNDEFINED

READ(5,*) VALUE

! Forward method
CALL AD01_INITIALIZE(DEGREE,X,VALUE)
WRITE(6,'(A,2ES12.4)') 'At X =',VALUE
F = (X(1)**4 - 3D0)**2 + X(2)**3
CALL AD01_VALUE(F,FUN)
WRITE(6,'(A,2ES12.4)') 'F =',FUN
CALL AD01_GRAD(F,GRAD)
WRITE(6,'(A,2ES12.4)') 'Grad(F) =',GRAD
CALL AD01_HESSIAN(F,HESSIAN)
WRITE(6,'(A/(T12,2ES12.4))') 'Hessian(F) =',HESSIAN

! Backward method
CALL AD01_INITIALIZE(DEGREE,XB,VALUE)
WRITE(6,'(A,2ES12.4)') 'At XB =',VALUE
FB = (XB(1)**4 - 3D0)**2 + XB(2)**3
CALL AD01_VALUE(FB,FUN)
WRITE(6,'(A,2ES12.4)') 'FB =',FUN
CALL AD01_HESSIAN(FB,HESSIAN,GRAD)
WRITE(6,'(A,2ES12.4)') 'Grad(FB) =',GRAD
WRITE(6,'(A/(T12,2ES12.4))') 'Hessian(FB) =',HESSIAN

END PROGRAM TEST

Given the input
2.0 3.0

the output would be
At X = 2.0000E+00 3.0000E+00
F = 1.9600E+02
Grad(F) = 8.3200E+02 2.7000E+01
Hessian(F) =

3.2960E+03 0.0000E+00
0.0000E+00 1.8000E+01

At XB = 2.0000E+00 3.0000E+00
FB = 1.9600E+02
Grad(FB) = 8.3200E+02 2.7000E+01
Hessian(FB) =

3.2960E+03 0.0000E+00
0.0000E+00 1.8000E+01
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