
GROWL Scripts: Lightweight Access to Grid
Resources

John Kewley, Adam Braimah and Rob Allan
Science & Technology Facilities Council
Daresbury Laboratory e-Science Centre

r.j.allan@dl.ac.uk and j.kewley@dl.ac.uk

Mark Hayes and Peter Brorsson
Cambridge eScience Centre, University of Cambridge
mah1002@cam.ac.uk and pb396@hermes.cam.ac.uk

Rob Crouchley, Daniel Grose and Ties van Ark
Centre for e-Science, University of Lancaster

r.crouchley@lancaster.ac.uk, d.grose@lancaster.ac.uk and t.vanark@lancaster.ac.uk

Abstract

There are currently many people moving from running jobs on clusters to running jobs on the Grid

using a Globus command line interface. They typically don’t find this transition as simple as they

should: they have problems building the software, have to learn about X509 certificate manipulation,

and run into problems with firewalls. As well as providing a Web Service interface, GROWL addresses

these problems by providing wrapper scripts for Globus and associated tools. While not being as

generally applicable as the GROWL Web Services due to some minor firewall restrictions, GROWL

Scripts are still being used in a variety of projects to ease the transition from cluster to Grid.

1 Background

There are many scientists using clusters as
a vital tool to perform their scientific work.
The promise of true Grid computing should
be highly attractive to such scientists. There
are however many who would shun the cur-
rent plethora of customised Grid portals in
favour of an effective command line interface.
Indeed this is what was first provided by the
Globus team and is in widespread use. There
are however several barriers which are fre-
quently encountered in its use by scientists
who are accustomed to the interfaces pro-
vided by cluster computing.

Firstly, there is the problem of obtaining
the correct client middleware. To be able
to run Grid jobs and copy files to and from
Grid resources, software from several sources
is needed (for example Globus, gsi-enabled
OpenSSH, myproxy and various patches that
must be applied to these). This was consid-
erably simplified with the approach taken by
the Virtual Data Toolkit (VDT), so that the
middleware is obtained from a single location
and you only need to download the compo-

nents you require. Although significantly re-
ducing the effort of installing Grid middle-
ware, the commands to set-up the package
manager used by VDT (pacman) are still non-
trivial and unless you know exactly which
packages to request, you can end up with
more than you need. Another problem here is
that VDT isn’t available on as large a range
of platforms as Globus is. This is because
VDT contains a wider range of middleware
and therefore supports only those that are
common.

Secondly, these computational scientists
are typically unfamiliar with X509 Grid cer-
tificates and the commands that are used to
manipulate them. Instead of logging in to
a remote machine using ssh before submit-
ting their batch jobs, they typically have to
use gsissh. This entails first obtaining a
Grid certificate by application from the ap-
propriate authority (for UK e-Science this is
the UK e-Science Certification Authority [1].
Once this is received, they then must ensure
it is on the correct machine(s) and in the
right format (usually .pem, although some
environments permit leaving it in .p12 for-

r.j.allan@dl.ac.uk
mailto:r.j.allan@dl.ac.uk
j.kewley@dl.ac.uk
mailto:j.kewley@dl.ac.uk
mah1002@cam.ac.uk
mailto:mah1002@cam.ac.uk
pb396@hermes.cam.ac.uk
mailto:pb396@hermes.cam.ac.uk
r.crouchley@lancaster.ac.uk
mailto:r.crouchley@lancaster.ac.uk
d.grose@lancaster.ac.uk
mailto:d.grose@lancaster.ac.uk
t.vanark@lancaster.ac.uk
mailto:t.vanark@lancaster.ac.uk


mat). This has to be repeated each year
when they renew their certificate. Now, each
time before logging in to the remote machine
they must ensure they have a valid proxy
certificate for their session; this is achieved
through the use of either grid-proxy-init

or myproxy-init.
Thirdly, there is the issue of firewalls. If

the users try to use the Globus middleware
to submit batch jobs from their host machine
(rather than logging on to the Grid resource),
they will find that although their submis-
sion is successful, retrieving the results will
be problematic since their site or machine
firewall may well block the incoming connec-
tions coming back from the Grid resource.
The same will be true for interactive jobs.
This encourages them to logon directly to the
remote machine and call the underlying re-
source managers directly, rather than use the
higher level interface provided by Globus.

Some of these issues have previously
been raised by Chin and Coveney [2], and
Gabriel [3] and a number of projects are now
beginning to address these issues; in the UK
they include AHE [4] and GROWL [5, 6],
the latter was funded by the JISC under its
VRE 1 Programme [7] from 2005–07.

1.1 The GROWL Project

The GROWL Project [8] set out to try and
alleviate these barriers to Grid adoption by
the use of Web Services and a three-tiered ar-
chitecture as described below. This enabled
users to run Grid jobs from within C, C++,
Fortran and R programs.

Since there was not initially a method for
transferring large files as a Web Service (this
functionality is currently being added), shell
scripts were written that wrapped gsiscp

and could be used to transfer such files,
avoiding the transfer of non-ASCII data in
SOAP. This also avoided the copying of files
from client to GROWL Server from where
they needed to be further copied again to
the Grid resource. To these were added
routines to list and remove files and di-
rectories on the Grid Resource. C wrap-
pers were provided so they could be in-
tegrated with the Web Service submission
mechanism and a growl-login script written
which encapsulated both grid-proxy-init

and myproxy-init; this was because to use
both Web Services and gsiscp, proxy certifi-
cates must be on both a MyProxy [9] Server

(so that it can be requested from the central
GROWL Server) and on the local machine.

Once this range of scripts were produced,
it soon became obvious that the only item
missing from the scripts to be able to provide
a fully working environment was a submis-
sion mechanism. This addition led to the for-
mation of the GROWL Scripts as a distinct
entity to the Web Services part of GROWL
(whose architecture is described in subsec-
tion 2.1 below).

1.2 Web Services

A Web Service is an application accessible
using standard Internet protocols. Web Ser-
vices represent black-box functionality that
can be reused without concern for how that
service is implemented, or what language it
is written in and are accessed via ubiquitous
Web protocols (e.g. HTTP) and data formats
such as SOAP, WSDL and XML.

GROWL uses gSOAP [10] to generate the
client side of the Web Services which are then
wrapped by the GROWL API. The gSOAP
compiler tools simplify the development of
Web services by their provision of C and
C++ language bindings for stub and skele-
ton code generation. This results in a flexible
framework that can be also be utilised from
Fortran. This would allow a subsequent ver-
sion of GROWL to provide a Fortran library
rather than providing Fortran wrappers to
the GROWL C library. The gSOAP stub
compiler automatically does all the data con-
version from user-defined C and C++ data
types to equivalent XML data types and vice-
versa.

The client Web Service calls are depicted
in the top left of Figure 1 as the calls from
WS I/F to the GROWL Server.

2 The GROWL Scripts

2.1 Architecture of GROWL

GROWL was initially designed to target
Grid application developers and tool devel-
opers and is envisaged as a toolkit to write
Grid-enabled applications. It uses standard
middleware from Grid developers (such as
Globus) installed on a server, so addresses is-
sues of security, Grid connectivity and proto-
cols and it enables development of rich Grid-
enabled applications to satisfy the require-



Figure 1: GROWL Web Services and Scripts

ments of end users in carrying out their re-
search.

GROWL has one or more servers which
are effectively “part of the Grid”. They are
secure systems with latest software patches
and maintained by system administrators.
The functionality of the server is to be
addressed by developers in the GROWL
project. Application developers access the
server or connect directly to remote Grid re-
sources through the GROWL client toolkit
which is discussed in this paper. HPC ap-
plications and services are installed on Grid
resources and maintained by system admin-
istrators responsible for those resources.

It is well known that such as three-tier ar-
chitecture is an appropriate solution for iso-
lating implementation from client and ser-
vice provider. In addition, it serves to min-
imize the amount of information each re-
source requires about other resources and re-
duces the number of communication path-
ways. This prevents the growth of an un-
manageable “stove pipe” solution that is non
scalable. However, given the large number
of Grid based applications and the extent of
the development community required to de-
velop them, such an architecture needs to be
provided a priori to the application devel-
opment itself. Thus, in the first instance, it
is necessary to develop three tier frameworks

with provide easy to use, open APIs for the
developer community. Such technologies al-
ready exist, such as CORBA, Web Services
and many others. However, none of these, on
an individual basis, fully take into account
the following requirements which seem basic
to a three tier architecture for the Grid:� Multiple service implementations provided

through a common interface where the in-
terface reflects the context of the problem
domain, not the specifics of the Grid mid-
dleware;� Secure communication;� Client identification;� Client lifetime is different form service life-
time, thus services have to be stateful to
be able to efficiently and effectively man-
age job creation, submission, retrieval and
lifetime;� Clients can only communicate through a
limited number of ports;� Common format for communication with
mappings to a number of different lan-
guages.

For GROWL we have chosen to use
Web Services for communications between
the client and server, and Grid protocols



(such as Globus) for communications be-
tween server and remote resource. Firewalls
permitting, direct communication between
client and remote resource is also possible us-
ing protocols such as GSI-SSH which are rel-
atively straightforward to install and fit with
GROWL’s “lightweight middleware” philos-
ophy. The Web Service calls to the GROWL
Server and their ensuing calls to the Grid pro-
tocols on the Grid Resource are shown in the
upper part of Figure 1 while the direct calls
from the Client to the Grid Resource using
GROWL Scripts are shown in the lower half.

2.2 Download and Build

Once GROWL Scripts have been downloaded
from the GROWL website [8], they must be
first unpacked using tar -zxvf. This initial
download comprises the build mechanisms
for GROWL Scripts (and for GROWL Web
Services) and the scripts themselves, the Grid
middleware still has to be downloaded and
then built and installed. Two alternative
methods for this are provided.

The first uses VDT and involves down-
loading and installing the package manager
pacman and the VDT packages containing the
Globus Client and other software used by the
GROWL Scripts. In this case ready-built
software is installed using the following com-
mand:

$ make VDT

$

The alternative approach is appropriate
for platforms for which VDT is not sup-
ported. Note one key difference here is that
the downloaded software must be obtained
from several different locations on the Grid
in source form and then built on the client
machine. This method therefore takes con-
siderably longer and uses an alternative make

target:

$ make noVDT

$

Note that before using any of the mid-
dleware utilities installed above or any
of the GROWL Scripts mentioned below,
~/Growl/setup.sh must be “sourced” to set-
up the user’s environment. There is an anal-
ogous script ~/Growl/setup.csh for users of
csh and tcsh.

2.3 Certificate Handling

In order to use a Grid X509 certificate in
many environments it is necessary to convert
it from the .p12 (or .pfx for Windows) for-
mat to .pem using the cryptographic toolkit
OpenSSL. This can be used to split a single
.p12 file into the two files usercert.pem (the
user’s public certificate) and userkey.pem

(the user’s private key, pass-phrase pro-
tected). These files need to be placed in an
appropriate place (typically .globus in the
user’s home directory) and have some restric-
tive file permissions placed on them. This
needs to be done once per year.

The openssl and chmod commands to do
this are as follows (note that <Pass1> is
the pass-phrase used to encrypt usercred.p12
and <Pass2> is the new pass-phrase to encrypt
userkey.pem.):

$ openssl pkcs12 -in usercred.p12 \

-nocerts -out userkey.pem

Import Password: <Pass1>

PEM passphrase: <Pass2>

Verifying: PEM passphrase: <Pass2>

$ openssl pkcs12 -in usercred.p12 \

-clcerts -nokeys -out usercert.pem

Import Password: <Pass1>

$ chmod 400 userkey.pem

$ chmod 444 usercert.pem

$

Note how the pass-phrase <Pass1> needs
to be provided to firstly extract the private
key and then again for producing the public
certificate. Note also how the openssl com-
mands are non-trivial.

GROWL Scripts provide a utility to wrap
all of this into one operation.

$ mk-cert usercred.p12

Passphrase: usercred.p12: <Pass1>

Passphrase: userkey.pem [same]: <Pass2>

$

mk-cert permits the same password as was
used to encrypt the .p12 file to be used to re-
encrypt userkey.pem, or alternatively a differ-
ent one can be provided.

The utility growl-info can be used to con-
firm that your certificate is still valid. It will
also check for valid local proxy certificates
and proxies uploaded to a default MyProxy
server.



$ growl-info

Certificate Information (including validity)

--------------------------------------------

subject=/C=UK/O=eScience/.../CN=john kewley

notBefore=Jun 15 16:10:35 2006 GMT

notAfter=Jun 15 16:10:35 2007 GMT

Local proxy certificate(s)

--------------------------

subject : /C=UK/.../CN=john kewley/...

issuer : /C=UK/.../CN=john kewley

identity: /C=UK/.../CN=john kewley

type : Proxy draft (pre-RFC) ...

strength: 512 bits

path : /tmp/x509up_u13445

timeleft: 10:52:01

MyProxy proxy certificate(s)

----------------------------

username: jmk27

owner: /C=UK/O=eScience/.../CN=john kewley

timeleft: 41:15:13 (1.7 days)

$

2.4 Filestore manipulation

To provide all the functionality needed for
basic work-flows, GROWL Scripts provides a
variety of scripts which can be used to manip-
ulate the files on the Grid resource without
having to logon to the machine. File and di-
rectory removal, copying, renaming and list-
ing are provided along with some other util-
ities. These work in a similar way to their
Unix/Linux counterparts but take a compul-
sory initial parameter which is the hostname
of the Grid resource (a future version of these
scripts will also support caching this host-
name for simplicity).

Provided scripts are growl-ls, growl-rm,
growl-mkdir, growl-mv and growl-cp. The
copying utlity growl-cp has some limited sup-
port for managing third party copying (i.e.,
copying to/from a Grid resource from/to an-
other machine which is not the client). When
asked to transfer from one Grid resource to
another, it tries the following in order, pro-
ceeding to the following option if that one
fails (note that due to the built-in timeouts
in gsissh this can take some time if there are
firewalls between the two machines):

1. logs on to the first machine and tries to
copy from there to the second

2. logs on to the second machine and tries to
copy to it from the first machine

3. copies the file to the client from the first
machine and then copies it from there to
the second machine.

One simple script that has been found
useful is growl-pwd which simply states the
home directory of the user on that machine.
This enables you to build up full directory
path names of files that you have installed
on the Grid resource.

2.5 Job Submission

For instance to submit a job to run hostname
to the batch system on scarf.rl.ac.uk, the
following should be run.

$ growl-submit scarf.rl.ac.uk hostname

https://scarf.rl.ac.uk:64001/...

$

Note the following:� The user must have authorisation to
run Grid jobs on the machine given
as the first of the positional param-
eters, this requires the user’s Dis-
tinguished Name to be present in
that machine’s “gridmap” file (usually
/etc/grid-security/grid.mapfile) to link
it to the account to use for the job;� The executable as given must exist on
the user’s path on the remote machine.
growl-submit will fail if the executable is
not in your path on that machine when
you submit the job. This can be tested
in advance using growl-which (as described
briefly in paragraph 2.6 below);� growl-submit tries to extract the jobman-
ager name for the given Grid resource. It
will use the first one it finds. If this is not
appropriate, you will have to specify the
jobmanager when submitting a batch job
(see also growl-get-jobmanager in para-
graph 2.6 below);� To submit a job to run on the Grid
resource head-node, you must append
jobmanager-fork to the resource name.

2.5.1 Checking the status of a Grid
job

growl-status is used to check whether a job
has completed or not



$ growl-status https://scarf.rl.ac.uk...

PENDING

$ growl-status https://scarf.rl.ac.uk...

PENDING

$ growl-status https://scarf.rl.ac.uk...

ACTIVE

$ growl-status https://scarf.rl.ac.uk...

ACTIVE

$ growl-status https://scarf.rl.ac.uk...

DONE

$

2.5.2 Retrieving standard output and
standard error

Once the job has completed (DONE),
growl-get-output can be used to retrieve
either the standard output or standard error
of the job as follows:

stdout
$ # Get standard output

$ growl-get-output https://scarf.rl...

scarf.rl.ac.uk

$

stderr
$ # standard error (in this case, empty)

$ growl-get-output -e https://scarf...

$

2.6 Miscellaneous

There is an option (-c) for growl-submit

which affects the calls to the other scripts
in the preceding subsection. This caches
the return string from growl-submit in /tmp;
any subsequent calls to growl-status or
growl-get-output will take this cached value
as a default. This is extremely useful for test-
ing purposes when the lines are being typed
in by hand and when only one job is current
per shell. Due to the way the file is named,
it is not robust enough for more complicated
use.

There are also other wrapper scripts in-
cluding the following:

growl-cancel and growl-clean: used for
cancelling and cleaning up after a job.

growl-get-jobmanager: queries the Grid re-
source to try and ascertain which job man-
ager is running so the user need not specify
it.

growl-which: tests whether a given exe-
cutable is in your path on the destination
machine and, if so, returns where it is lo-
cated.

growl-login: this will ensure that you have
both a valid local proxy certificate and one
lodged with the default MyProxy server.
If both are valid, it does nothing; If the
MyProxy certificate is valid, it generates a
local proxy certificate from it; otherwise it
generates both.

3 In Conclusion

3.1 Benefits

There are several benefits of using GROWL
Scripts over the Globus provided scripts di-
rectly:� the facility for growl-get-output to re-

trieve standard output from a Grid re-
source even if a site or machine firewall
prevents incoming connections. This is not
possible with globus-job-get-output;� conversion of certificates using mk-cert;� the ability for growl-submit to work
out the appropriate jobmanager whereas
globus-job-submit and globus-submit

need that provided. In fact growl-submit

defaults to the jobmanager on the Grid
resource rather than jobmanager-fork as
with the Globus commands;� the transparency offered by growl-submit

by prefixing the full path to the executable
and checking its existence;� for those who need local proxies and
MyProxy proxies, growl-login will provide
both requesting a minimum of passwords.
growl-logout and growl-info will both op-
erate on both types of proxy;� the possibility of performing third party
file transfers, although note the dis-
claimers above regarding ssh timeouts if
there are firewalls between the two Grid
resources;� the caching of the job contact string by
growl-submit when testing.



3.2 Current Usage

There are currently four usage levels of
GROWL Scripts:

1. use of GROWL Scripts to provide an easy
to install way of getting the minimum tools
to access Grid resources: grid-proxy-init

and gsi-ssh;

2. as above, but also use of mk-cert annually
to convert certificates;

3. as above, but using a wide set of the
Globus middleware directly. This will typ-
ically only work if some firewall rules are
relaxed. This is the Globus client we
install for the back-end of the GROWL
Server which is used to handle GROWL
Web Services requests;

4. using the file manipulation and job sub-
mission wrappers provided by GROWL
Scripts from the client machine rather
than logging onto the target Grid resource.

Most of our current users are in the first
and second categories. At our recent NW-
GRID Training event [11, 12], users were
shown this method of installing and running
Globus software successfully. It has also been
used by the CCP1GUI [13] project.

3.3 Restrictions

Note that there are two main caveats when
considering whether to use GROWL Scripts
or not. Firstly, although the problem of fire-
walls blocking incoming ports to the Client is
effectively removed, there are still the follow-
ing firewall requirements:� outgoing ports must be open on the client

machine (this is the usual behaviour);� incoming ports on the Grid resource must
be open for gsissh and globus-job-submit

for the client. The latter of these isn’t al-
ways guaranteed, and indeed some Grids
are now restricting access to the former as
well.

3.4 Future Work

If this client toolkit is to be successful, it re-
ally needs to be available on the Windows
platforms. This possibility is currently be-
ing evaluated and it is hoped to build upon
the work of the Java Commodity Grid (CoG)

kit [14] and the GSI-SSHTerm [15] projects so
a gsissh for Windows can be produced. Note
that while GSI-SSHTerm can currently give
a terminal window on the remote resource,
it does not yet provide a command-line pro-
gram (gsissh drop-in replacement) which can
be used to send commands to the remote ma-
chine.

References

[1] UK e-Science Certificate Authority
(CA)
ca.grid-support.ac.uk

[2] Jonathan Chin and Peter Coveney, To-

wards tractable toolkits for the Grid: a

plea for lightweight, usable middleware,
June 2004,
www.realitygrid.org/lgpaper21.pdf

[3] R.P. Gabriel, The Rise of “Worse is Bet-

ter”

www.jwz.org/doc/worse-is-better.html

[4] P.V. Coveney, R.S. Saksena, S.J. Za-
sada, M. McKeown and S. Pick-
les The Application Hosting Environ-

ment: Lightweight Middleware for Grid-

Based Computational Science, Compu-
tational Physics Communications, Vol-
ume 176, Issue 6, March 2007, pp 406–
18; doi:10.1016/j.cpc.2006.11.011

[5] Mark Hayes, Lorna Morris, Rob Crouch-
ley, Daniel Grose, Ties van Ark, Rob
Allan and John Kewley. GROWL: A

Lightweight Grid Services Toolkit and

Applications. In Simon Cox and David
W. Walker, editors, Proceedings of
the UK e-Science All Hands Meet-
ing 2005. EPSRC, September 2005.
epubs.cclrc.ac.uk/bitstream/920/460.pdf

[6] Rob Crouchley, Ties van Ark, John
Pritchard, John Kewley, Rob Allan,
Mark Hayes, and Lorna Morris. Putting

Social Science Applications on the Grid.
In Proceedings of the First International
Conference on e-Social Science. National
Centre for e-Social Science, June 2005.
epubs.cclrc.ac.uk/bitstream/1453/NCeSS.pdf

[7] JISC VRE Programmes
www.jisc.ac.uk/index.cfm?name=programme vre

[8] The GROWL Project,
www.growl.org.uk/

ca.grid-support.ac.uk
http://ca.grid-support.ac.uk
www.realitygrid.org/lgpaper21.pdf
http://www.realitygrid.org/lgpaper21.pdf
www.jwz.org/doc/worse-is-better.html
http://www.jwz.org/doc/worse-is-better.html
epubs.cclrc.ac.uk/bitstream/920/460.pdf
http://epubs.cclrc.ac.uk/bitstream/920/460.pdf
epubs.cclrc.ac.uk/bitstream/1453/NCeSS.pdf
http://epubs.cclrc.ac.uk/bitstream/1453/NCeSS.pdf
www.jisc.ac.uk/index.cfm?name=programme_vre
http://www.jisc.ac.uk/index.cfm?name=programme_vre
www.growl.org.uk/
http://www.growl.org.uk/


[9] Jim Basney, Marty Humphrey, Von
Welch The MyProxy online credential

repository, Software: Practice and Expe-
rience, Volume 35, Issue 9, 2005, pages
801-816, John Wiley & Sons

[10] Robert A. van Engelen and Kyle
A. Gallivan The gSOAP Toolkit

for Web Services and Peer-

To-Peer Computing Networks

www.cs.fsu.edu/∼engelen/soappaper.html

[11] The North West Grid
www.nw-grid.ac.uk/

[12] Induction to Grid Computing and the
North West Grid
www.nw-grid.ac.uk/?q=seminar/dares-250107

[13] J. Thomas, J Kewley, RJ Allan, JM
Rintelman, P Sherwood, CL Bailey, S
Mukhopadhyay, A Wander, BG Searle,
NM Harrison, A Trewinry, GR Dar-
ling, AI Cooper Experiences with dif-

ferent middleware solutions on the NW-

GRID, to appear.

[14] Java Cog Kit
wiki.cogkit.org

[15] GSI-SSHTerm
www.grid-support.ac.uk/content/view/81/62

www.cs.fsu.edu/~engelen/soappaper.html
http://www.cs.fsu.edu/~engelen/soappaper.html
www.nw-grid.ac.uk/
http://www.nw-grid.ac.uk/
www.nw-grid.ac.uk/?q=seminar/dares-250107
http://www.nw-grid.ac.uk/?q=seminar/dares-250107
wiki.cogkit.org
http://wiki.cogkit.org
www.grid-support.ac.uk/content/view/81/62
http://www.grid-support.ac.uk/content/view/81/62

	1 Background
	1.1 The GROWL Project
	1.2 Web Services

	2 The GROWL Scripts
	2.1 Architecture of GROWL
	2.2 Download and Build
	2.3 Certificate Handling
	2.4 Filestore manipulation
	2.5 Job Submission
	2.5.1 Checking the status of a Grid job
	2.5.2 Retrieving standard output and standard error

	2.6 Miscellaneous

	3 In Conclusion
	3.1 Benefits
	3.2 Current Usage
	3.3 Restrictions
	3.4 Future Work


