
Integration of AJAX Technologies into the MaterialsGrid
Portal for Physical Properties Queries

Xiaoyu Yang1, Thomas V. Mortimer-Jones2, Dan J. Wilson3, Martin T. Dove1, Lisa Blanshard2

1. Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ

2. Science and Technology Facilities Council, Daresbury Laboratory , Warrington, Cheshire WA4 4AD

3. Department of Crystallography, J. W. Goethe University, 60438, Frankfurt, Germany

 Abstract

 The query of material's properties via a grid enabled Web portal plays a critical role in the
MaterialsGrid project within eScience. However, developing a normal standard portlet to query
material properties is by no means a perfect solution. Portal page refresh is an expensive action as
one portlet refresh can result in the refreshing of other portlets. In order to address this issue in
material properties queries, the AJAX technique has been adopted. In this paper, we proposed a
development model of using AJAX in a JSR-168 portlet, and discussed the integration of AJAX
into the MaterialsGrid portal for chemical formula search. By using AJAX, users can handle many
queries and only apply the updates to the display of table, without requiring a full page to refresh.
This can improve query performance and bring a more user-friendly interface.

1 Introduction
 MaterialsGrid [1] is UK government funded
project that aims to create a pilot dynamic
database of materials properties based on
quantum mechanical simulations run within grid
computing environments within eScience. As
eScience promotes developing a grid-enabled
Web portal to interface with complex underlying
grid tools and services through a standard Web
browser, a grid portal will be developed as one of
the core components in MaterialsGrid. Queries
of the physical properties of inorganic materials
via grid portal and the display of the returned
information in a user-friendly way play a critical
role in this project.
 Portals can be classified into portlet-based and
non-portlet based [2], and it has been decided to
develop a portlet-based portal for MaterialsGrid.
In order to query properties on a material of
interest, a chemical formula search facility has
been formulated, which can then be used to
develop a query portlet that can be plugged into
the MaterialsGrid portal. The novelty of this
search facility is that it allows users to enter a
partial chemical formula rather than the formula
in a rigid format. For example, it can facilitate
the query by entering a formula containing
wildcards (e.g. Ti*), splitting formula into
components and the number of atoms (e.g.
AlOOH → Al x 1, O x 2, H x 1), or entering a
formula which contains bracket notation (e.g.
Ca (OH)2 → Ca x 1, O x 2, H x 2).

However, as a single portal page may contain

more than one portlet, which supply content to
the portal page, portal page refresh is an
expensive action as one portlet refresh can result
in other portlets refreshing at the same time. This
means developing a normal standard material
properties query portlet cannot be a perfect
solution as properties query each time brings
overhead to the MaterialsGrid portal.

In order to tackle this problem, the AJAX
(Asynchronous JavaScript and XML) technique
has been used in developing the query portlet.
Portlets and Ajax can be a perfect fit, as they are
both focused on using a Web browser as the
vehicle for presenting a user interface to the user
[3]. AJAX is a Web development technique for
creating interactive Web applications, and is one
of the major enabling techniques for Web 2.0 [4].
AJAX can improve the user experience and
make Web pages feel more responsive by
exchanging small amounts of data with the
server behind the scenes, so that the entire Web
page does not have to be reloaded each time the
user makes a request. This is meant to increase
the Web page's interactivity, speed, and usability.

There are some Java/J2EE based AJAX
toolkits/libraries available to facilitate the AJAX
application development. However,
documentation and tutorials provided by these
toolkits/libraries mostly target J2EE Servlets [5].
Due to differences between Servlets and portlets,
many of these AJAX toolkits may not be

explicitly appropriate for portlets, or applying
them to portlets may require additional
configuration or learning. There is a concern that
similar codes which are based on these toolkits
or libraries work fine with servlets but may not
work properly with portlets. Moreover, these
toolkits usually hide the detail of AJAX working
mechanism, which can make it a bit hard for new
AJAX developers to start. In order to facilitate
the integration of AJAX into the portal without
relying on any AJAX toolkits / libraries to avoid
any unpredicted hassles, a development model
for the use of AJAX in JSR-168 [6, 7] portlets
has been proposed with reference to related
work. The development model proposed is then
used in formulating an AJAX-based material
properties query portlet which can be plugged
into the MaterialsGrid portal.

The paper structure is as follows: Section 2
introduces the chemical formula search facility.
Section 3 proposes a development model for the
use of AJAX in JSR-168 portlets. Section 4
details the integration of AJAX into the
MaterialsGrid portal for properties query using
the development model proposed. In Section 5,
the MaterialsGrid portal prototype is discussed.

2 Chemical Formula Search
 As one of the requirements, chemical formula
search should allow users to enter chemical
formula with a fair degree of flexibility rather
than just to enter a chemical formula in a rigid
format. In many cases, the user may not know
the exact chemical composition of the materials
that they are interested in. Furthermore, scientists
have their practice in writing some chemical
formulas which do not follow this rigid format.
For example, people like to write as “Ca(OH)2”
rather than as “CaO2H2”, write as “FeOOH”
rather than as “FeO2H”, and write as
“CaAl2Si2O7(OH)2 (H20)”1 (a mineral
Lawsonite) rather that as “CaAl2Si2O10H4”.
 However, this flexibility in chemical formula
search is not very common. For example, search
the ICSD (Inorganic Crystal Structure Database),
which is the world’s most extensive database on
inorganic crystal structures [8], is not very
flexible. In order to accommodate these needs in
MaterialsGrid, a chemical formula search facility
has been developed. Major flexibilities of the
search facility formulated are introduced as
follows.

1 Mineralogists do differentiate between element O on its
own, O as part of the OH, and O as part of H2O.

 The user can enter either a whole or partial
chemical formula, which is used to query the
database in order to return information on
materials that may be of interest. The elements in
the search string are totalled and used to search
the database for matching structures. For
instance a user interested in the properties of
Quartz would enter "SiO2" into the search box
and would receive back data about materials that
contain one silicon atom and two oxygen atoms,
plus any other elements, in its asymmetric unit
cell. Different ways of writing the chemical
formula are allowed - for example, the different
ways of writing the formula of hydrated iron
oxide, “FeOOH” and “FeO2H”, result in the
same search being performed. Bracket notation
can be used to group together repeating groups of
chemical structure. For example searching for
calcium hydroxide, "Ca(OH)2", will return
materials containing one calcium, two oxygen
and two hydrogen atoms. If the user does not
know the exact chemical composition of the
materials that they are interested in, they can use
'*' as a wildcard to specify that they are
interested in materials with any number of that
element. A user interested in titanium containing
materials would enter “Ti*” into the search box
and would receive back data about all of the
materials contained in the database that contain
at least one titanium atom.
 The analysis and design of this search facility
is briefly described as follows. When the
calculated properties of a material are entered
into the database the contents of the asymmetric
unit cell needs to be stored. Having a column for
every element in the periodic table to store, how
many occurrences of that element are contained
in the materials asymmetric unit cell was
discounted. It was decided to have another table
to hold this information on the frequency of
elements within the material. This table contains
a row for each element in a material, which holds
the element symbol, the frequency and a
reference to the material in which it belongs.
 When the user enters a search, a query is
constructed that creates multiple joins between
the main material information table and the table
containing the element frequencies - one for each
of the specified elements. This query will return
only those materials that contain the specified
elements. If the user has specified the number of
elements, rather than using a wildcard, a clause is
added to the query, which restricts the results to
records that have the right frequency of elements.
Once this query has been executed it is returned
to the portal to be displayed.

User
Interface AJAX Web

Server
Data

Persistency

Java Script

DHTML +CSS

HTTP
Request

XML
Data

Client-side Web browser Server-side

 Figure 1. AJAX interaction mechanism

3 Development Model for the
Use of AJAX in a Portlet

 In order to facilitate the development of an
AJAX-based material properties query portlet
based on the chemical formula search facility, a
development model for the use of AJAX in JSR-
168 portlets has been proposed.

3.1 AJAX Core Mechanism
 AJAX is a combination of techniques such as
JavaScript, DOM, XML, and HTML/DHTML,
etc., which allows a Web browser to update parts
of a Web page asynchronously by
communicating with a Web server using
JavaScript through an XMLHttpRequest
component.
 Currently, most of Web applications adopt
Browser/Server (B/S) architecture. In B/S mode,
only a Web-browser is needed at the client side
to view the process result from server, which is
known as the so-called thin client mode. The
Web server sends an HTML page which contains
the data and HTML structure/frame to the client-
side Web browser over the network (i.e. the
internet). However, the major hidden problem
with this approach is that each time the HTML
structure /frame is also transferred to the client
side, which overloads the networks. These
HTML structure / frame can actually be
generated locally within the Web browser.
Moreover, each time a new HTTP request must
be made to reload the whole page to view the
different datasets.
 By using AJAX, only the data or the content
is transferred over the networks where the
data/content is marshalled in XML format. The
HTML structure and frame are created locally
within the Web browser using JavaScript. As
each time only the data is delivered rather than
the whole Web page, users do not have to reload
the whole page to get a different dataset. An
AJAX mechanism is illustrated in Figure 1.

 AJAX is made up of the following major
technologies/components [9]:

1) JavaScript - JavaScript is the essential
ingredient in AJAX allowing the building of
client-side functionality. JavaScript is used
to write functions that are embedded or
included in HTML pages and interact with
the Document Object Model (DOM) of the
page to perform tasks.

2) DOM (Document Object Model) – DOM is
a platform and language independent
standard object model for representing
HTML or XML and related formats. DOM
is used heavily in JavaScript functions to
manipulate parts of the HTML page.

3) XMLHttpRequest - The XMLHttpRequest
object enables JavaScript to access the
server asynchronously, so that the user can
continue working whilst functionality is
performed in the background. Accessing the
server simply means making a simple HTTP
request for a file or script located on the
server. HTTP requests are easy to make and
usually do not cause any firewall-related
problems.

4) Server-side component - A server-side
technology is required to handle the requests
that come from the JavaScript client. This
may involve retrieving data from database,
handling the data retrieved and marshalling
them in XML or text as a response to
JavaScript. Apart from marshalling data
using XML/text, another data marshalling
mechanism is to use JavaScript Object
Notation (JSON)[10].

3.2 Servlets and Portlets
 Knowing the similarities and differences
between portlets and servlets can help in
understanding the integration of AJAX into
portal.

JSR-168 Portlet

JSP page

JavaScriptData
Persistency

Ajax
Callback

1b. Ajax call
Data

Access
Object

Servlet

2. Marshalled data

doView()

3. Extracted value

include

1a. Definition

Serialisation

AJAX mechanism

 Figure 2. Development model of using AJAX in portal application

 Servlets and portlets are Java components that
run at server side to handle client requests to
generate dynamic content [11]. They both use
request and response objects, and their lifecycles
are managed by containers. The packaging and
deployment of both servlets and portlets are
essentially the same. The portal needs to be run
inside a servlet container such as IBM
WebSphere Application Server (WPS) or
Apache Tomcat [11].
 Servlets and portlets also have got notable
differences. With servlets, there is one request
per response, i.e. a browser asks for a URL and
the servlet container processes the HTTP request.
The servlet normally calls its doGet() or doPost()
method to generate a response, which is sent
back to the client’s Web browser. With portals,
there can be more than one portlet supplying
content for each Web page. Even though the end
user submits a form for only one portlet at a
time, the other portlets may still need to refresh
their content to reflect any changes [11]. Servlets
can provide complete Web pages, whereas
portlets only provide fragments, which are
aggregated by the portal to form a complete Web
page. Portlets are not allowed to generate HTML
code that contains tags such as base, body,
frame, frameset, head, html, or title. The user
cannot access a portlet directly using a URL in
the way that a servlet is accessed. Instead, the
URL points to the page containing the
aggregated content on one page. All these
differences have impact on the methods of
building AJAX-based J2EE applications.

3.3 A Development Model
 There are a number of open-source AJAX
toolkits available such as DWR (Direct Web
Remoting) [12], Dojo [13], Google Web Toolkit
[14], Microsoft Atlas [15], Open Rico [16],
Yahoo AJAX Library [17], and Zimbra’s Kabuki

AJAX Toolkit [18]. These tools offer a number
of extremely useful user interface widgets and
background tools for simplifying the process of
building an AJAX application. However, in
terms of a J2EE environment, most
documentation and tutorials of these toolkits
focus on building AJAX applications using
servlets rather than portlets. Therefore, using
these toolkits in portlets may cause some
unexpected hassles as the differences between
Servlets and portlets may result in similar codes
which are based on these toolkits or libraries
working fine with Servlets but not working
properly with portlets. In order to facilitate the
use of AJAX in a portlet application without
depending on any AJAX toolkits / libraries to
avoid any unpredicted hassles, we proposed a
development model for the use of AJAX in JSR-
168 portlets with reference to some related work
[19, 20, and 3]. This model gives a clear view of
how AJAX works, which is not always explicitly
clear in AJAX toolkits, and makes it easy for
new AJAX developers to start. The model
indicates that in order to incorporate AJAX into
the portlet the action request which should be
handled by the processAction() method in JSR-
168 portlet is now handled by a servlet. The
development model is illustrated as follows:
1) Create a JSP page which is rendered through

the doView() method of a JSR-168 portlet.
2) Write AJAX code in JavaScript, and include

this JavaScript in the JSP page. The
procedures of writing AJAX code within
JavaScript is summarised as follows:
a) Initialise the XMLHttpRequest
b) Define a call-back function, which

processes the server-side response
c) Make AJAX call. This actually makes

an HTTP request to the server by
calling the open() and send() methods of
the XMLHttpRequest object.

3) Develop a server-side component (i.e. a
Servlet) to handle the request from the
AJAX call. Usually this involves the
operation of retrieving data from a back-end
database. The retrieved data is marshalled in
XML and sent back to the defined AJAX
call-back function.

4) Parse the XML within the call-back function
using DOM and DHTML technologies.

4 Integration of AJAX
Technologies into the Material
Properties Query

 The integration of AJAX into the
MaterialsGrid portal adopts the development
model proposed. Some of the challenges
presented are discussed.

4.1 Server-side Data Process
 Many of the materials properties (e.g. atomic
population, stress) involve complex data types
(e.g. vector, matrix) and are stored in the form of
XML. Oracle2 has a dedicated XML data type
called XMLTYPE, which is a system-defined
opaque type for handling XML data [21]. It is
made up of a CLOB to store the original XML
data and a number of member functions to make
the data available to SQL. One of the main
challenges on the server side is how to query the
XML data stored in Oracle and marshal them
with other data types into XML which will be
sent back to the AJAX call-back function.
 In order to tackle these problems, we have
developed a software component which can
retrieve the XML-type data from Oracle working
with a Data Access Object (see Section 4.2) and
marshal the data obtained into XML by
employing Oracle XML DB [22] and JDOM
[23].

4.2 Data Access Object and Data
Persistency

 One of the major requirements of
MaterialsGrid is that it should provide a barter
system to allow customers to offer data or
computing resources in exchange for system
access credit. This means that the MaterialsGrid
may connect to different data persistence offered
by customers such as relational database, XML
dictionary, and flat files. In order to decouple
object persistence and data access logic from any
particular persistence mechanism, a J2EE pattern

2Oracle is adopted as the back-end database in MaterialsGrid.

Data Access Object (DAO) [24] has been
employed in the integration of AJAX into the
MaterialsGrid. It is a layer between the servlet
and specific data persistency (see Figure 2). By
using the DAO layer, the change of data
persistent storage has minimal rippling impact on
the whole system. The Servlet only interacts with
the DAO to retrieve the data of material
properties regardless of the specific data source.

4.3 Client-side JavaScript Functions
The AJAX call-back function is the main

client-side JavaScript function which is usually
responsible for parsing the XML sent back from
the servlet, extracting the data and present the
data extracted in an HTML table. The DOM
technology is heavily used within JavaScript to
manipulate the HTML and display the data in the
table. The key operations in the call-back
function are discussed as follows:
1) Display “ Retrieving data …” message

After the HTTP request is sent out, AJAX
keeps checking the state of the request changes.
The XMLHttpRequest defines the ready state as
one of five levels: 0-uninitialised, 1-data loading,
2-data loaded, 3-interactive, and 4-completed.
The data loading may take some time, and it is
always good practice to display such a message
as “Retrieving / loading data …” to the end user
while the browser is waiting for the response
[19]. Without the message, the end user may
think that nothing is happening.
2) Read XML to the table
 This operation is responsible for the parsing of
the XML, extracting data and presenting data in
an HTML table. DOM technology and DHTML
are used to dynamically update the HTML
selected contents.
3) Clear display data

This operation is not often used in B/S mode
where the whole page is refreshed. In AJAX, the
whole Web page is not refreshed and only the
particular part is updated. This “clear data
display” sub-function is invoked to clear the data
display area before the next data is displayed.

In addition to the call-back function, another
major client-side JavaScript function is required
which handles wrapping the form data in XML
as part of the HTTP request and sending it to the
server.

 Figure 3. MaterialsGrid portal prototype screenshot 1 - material properties query in AJAX

5 MaterialsGrid Portal Prototype
 The MaterialsGrid portal prototype has been
developed, and major functionalities include: (i)
the query of materials properties, (ii) the
visualisation of the cell structure, and (iii) the
submission of simulation job(s) to a GridSam
resource manager [25]3.
 A JSR-168 AJAX-based material properties
query portlet has been primarily developed
utilising the development model proposed. Two
JSR-168 compliant portlet containers (i.e.
GridSphere and IBM WebSphere Portal) have
been used to test this portlet [2]. It has been
demonstrated that this portlet can successfully
work in both GridSphere [26] and IBM
WebSphere Portal [27] frameworks. The
properties query portlet supports chemical
formula search by entering a partial chemical
formula, and makes the query in an
asynchronous mode. A screenshot showing the
retrieval of properties for all available materials
within the database is illustrated in Figure 3.
 The Jmol [28] Java Applet has been
employed in the MaterialsGrid portal for unit cell
visualisation. The structure visualisation
involves several operations: (i) the user provides
cell parameters and atomic coordinates, (ii) the
portal exports them in CML format [29], and (iii)
the CML document is loaded into the Jmol. A
screenshot of visualising the structure of unit cell
of diaspore is shown in Figure 4.

3 A workflow will soon be developed in MaterialsGrid.

6 Discussions
 The integration of AJAX into the
MaterialsGrid portal for properties query adopts
the development model proposed. The main
advantages of using this model include: (i) the
development does not rely on any third-party
AJAX toolkits or libraries. There are no third
party toolkits /libraries
downloading/installation/configuration/learning
involved, which could be a time-consuming job,
especially in the case that many of these toolkits
target servlets rather than portlets, or their usage
specification is poorly documented. By
referencing the development model, new AJAX
developers can start using AJAX in portlet
straightaway. (ii) the model presents a detailed
view of an AJAX working mechanism, and (iii)
the model gives a straightforward workflow
showing how to integrate AJAX into a portal.
 However, using this model for AJAX-based
portlet development requires a lot of client-side
JavaScript coding, especially using DOM to
interact with DHTML, which can be quite
tedious and may cause JavaScript cross-browser
problems. For example, the material properties
query portlet currently does not support IE6
(Internet Explorer) (it supports IE7, Firefox, and
Safari). Hence for experienced AJAX
developers, the integration of AJAX into the
portal can partially or wholly use some third-
party AJAX toolkits or libraries. For example, it
has been shown that DWR (Direct Web
Remoting) can be used in AJAX-based portlet
development although it involves extra
configuration and usage learning.

 Figure 4. MaterialsGrid portal prototype screenshot 2 - structure visualisation

7 Conclusions
 A chemical formula search facility has been
formulated which can support the properties
query by entering partial chemical formula. In
order to tackle the problem that one portlet
refresh can in the meantime result in other
portlets to refresh, the AJAX technique has
been employed and a development model of
using AJAX in JSR-168 portlet has been
proposed with reference to the related work. The
development model proposed has been applied in
developing a JSR-168 portlet for the query of
materials properties. It has been demonstrated
that, by using AJAX, users can handle many
queries and only apply the updates to the display
of a table, without requiring a full page refresh.
This improves query performance and brings a
more user-friendly interface.

Acknowledgement
 The authors would like to acknowledge the
UK government DTI funded MaterialsGrid
project.

References
[1] MaterialsGrid http://www.materialsgrid.org
[2] X. Yang, M., Dove, M., M., Hayes, M.,

Calleja, L. He, P. Murray-Rust “Survey of
Tools and technologies for Grid-enabled

Portals”. UK e-Science All Hands on
conference, 2006, UK.

[3] S. Salkosuo “DWR makes interportlet
messaging with Ajax easy”, IBM
developerWorks, 14, July, 2006.
http://www-
128.ibm.com/developerworks/web/library/j-
ajaxportlet/index.html

[4] T. O'Reilly “What is Web2.0”
http://www.oreillynet.com/pub/a/oreilly/tim/
news/2005/09/30/what-is-web-
20.html?page=1

[5] Java Servlets
http://java.sun.com/products/servlet/

[6] JSR168 and JSR 286
http://developers.sun.com/portalserver/refere
nce/techart/jsr168/

[7] Alejandro, H. Stefan. (2003, Oct 7). Java
Portlet Specification. Available:
http://jcp.org/aboutJava/communityprocess/f
inal/jsr168/index.html

[8] ICSD http://www.fiz-
karlsruhe.de/ecid/Internet/en/DB/icsd/

[9] C. Darie et al, “AJAX and PHP: Building
Responsive Web Applications”, Packt
Publishing, Feb. 2006.

[10] P. McCarthy “AJAX for Java Developers:
Java Object Serialisation for AJAX”, IBM
developerWorks, 04,October, 2005.

[11] J.Linwood and D.Minter “Building Portals
with the Java Portlet API”, Apress,2004

[12] DWR http://getahead.org/dwr
[13] Dojo http://dojotoolkit.org/

http://www.materialsgrid.org/
http://www-128.ibm.com/developerworks/web/library/j-ajaxportlet/index.html
http://www-128.ibm.com/developerworks/web/library/j-ajaxportlet/index.html
http://www-128.ibm.com/developerworks/web/library/j-ajaxportlet/index.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1
http://java.sun.com/products/servlet/
http://developers.sun.com/portalserver/reference/techart/jsr168/
http://developers.sun.com/portalserver/reference/techart/jsr168/
http://jcp.org/aboutJava/communityprocess/final/jsr168/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr168/index.html
http://www.fiz-karlsruhe.de/ecid/Internet/en/DB/icsd/
http://www.fiz-karlsruhe.de/ecid/Internet/en/DB/icsd/
http://getahead.org/dwr
http://dojotoolkit.org/

[14] Google Web Toolkit
http://code.google.com/webtoolkit/

[15] MircoSoft Atlas
http://ajax.asp.net/Default.aspx

[16] Open Rico http://www.openrico.org/
[17] Yahoo Ajax Library

http://developer.yahoo.com/yui/
[18] Zimbra’s Kabuki AJAX Toolkit

http://www.zimbra.com/community/kabuki_
ajax_toolkit_download.html

[19] K.Bishop, D.Philips “Building an Ajax
portlet for WebSphere Portal”, IBM
developerWorks, 16 August, 2006.

[20] K.Bishop, D.Philips “Using Ajax with
WebSphere Portal”, IBM developerWorks,
28 June, 2006.

[21] Oracle-Base http://www.oracle-
base.com/articles/9i/XMLTypeDatatype.php

[22] Oracle XML DB
http://www.oracle.com/technology/tech/xml/
xmldb/index.html

[23] JDOM http://www.jdom.org/
[24] Data Access Object

http://java.sun.com/blueprints/corej2eepatter
ns/Patterns/DataAccessObject.html

[25] L. He, M. Dove, M. Hayes, M. Calleja, X.
Yang, P. Murray-Rust “Developing
Lightweight Application Execution
Mechanism in Grids” UK e-Science All
Hands on conference, 2006, UK

[26] GridSphere http://www.gridsphere.org
[27] IBM WebSphere Portal: http://www-

306.ibm.com/software/genservers/portal/
[28] Jmol http://jmol.sourceforge.net/
[29] P. Murray-Rust, C. Leach and H. S. Rzepa,

Henry S. Chemical Markup language, Book
of Abstracts, 210th ACS National Meeting,
Chicago, IL, August 20-24 (1995), (Pt. 1),
COMP-040.

http://code.google.com/webtoolkit/
http://ajax.asp.net/Default.aspx
http://www.openrico.org/
http://developer.yahoo.com/yui/
http://www.zimbra.com/community/kabuki_ajax_toolkit_download.html
http://www.zimbra.com/community/kabuki_ajax_toolkit_download.html
http://www.oracle-base.com/articles/9i/XMLTypeDatatype.php
http://www.oracle-base.com/articles/9i/XMLTypeDatatype.php
http://www.oracle.com/technology/tech/xml/xmldb/index.html
http://www.oracle.com/technology/tech/xml/xmldb/index.html
http://www.jdom.org/
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://www.gridsphere.org/
http://www-306.ibm.com/software/genservers/portal/
http://www-306.ibm.com/software/genservers/portal/
http://jmol.sourceforge.net/
http://jmol.sourceforge.net/

	Introduction
	Chemical Formula Search
	Development Model for the Use of AJAX in a Portlet
	AJAX Core Mechanism
	Servlets and Portlets
	A Development Model

	Integration of AJAX Technologies into the Material Propertie
	Server-side Data Process
	Data Access Object and Data Persistency
	Client-side JavaScript Functions

	MaterialsGrid Portal Prototype
	Discussions
	Conclusions
	Acknowledgement
	References

