CONFIDENCE AND PREDICTION

IN GENERALISED NON LINEAR MODELS:

AN APPLICATION TO OPTION PRICING

Jerome Healy, Maurice Dixon, Brian Read and Fang Fang Cai

Discussion Paper No 03-6

October 2003

A previous version of this paper was presented at the Money Macro and Finance Research Group Workshop on Advances in Econometrics and Finance, London Metropolitan University, London, 4 July 2003. We are grateful to the participants of this workshop for their valuable comments and suggestions. The usual disclaimer applies. This work has benefited from collaboration with the Data Mining programme in the Business Information Technology Department at the Rutherford Appleton Laboratory.

Jerome Healy is a Teaching Researcher at the Mathematical, Economic, and Financial Modelling Research Base, London Metropolitan University, 84, Moorgate, London EC2M 6SQ.

Maurice Dixon is Senior Lecturer in Systems Analysis at London Metropolitan University and Visitor: BITD, CLRC Rutherford Appleton Laboratory, Chilton, DIDCOT, Oxon. OX11 0QX, UK.

Brian Read is Honorary Visiting Scientist at the Mathematical, Economic, and Financial Modelling Research Base, London Metropolitan University, 84, Moorgate, London EC2M 6SQ.

Fang Fang Cai is Principal Lecturer in Databases at London Metropolitan University.

Corresponding author: Maurice Dixon, Department of Computing, Communications Technology, and Mathematics, London Metropolitan University, 31 Jewry Street, London EC3N 2EY. Tel.: 020 7320 1386.

E-mail:M.Dixon@Londonmet.ac.uk

Abstract

There has been a considerable research effort to improve upon the Black-Scholes option pricing model. However, various authors [see e.g. Lajbcygier (1999a)] find generalisations of Black-Scholes and other modern parametric option pricing models, use implausible, inconsistent, implied parameters, and do not out-perform simpler approaches. Non-parametric and computational methods provide an alternative approach to option pricing. These include data intensive model-free approaches, that are often generalisations of better known non-linear regression techniques. This paper describes a robust method for determining prediction intervals for a broad class of such generalised non linear regression techniques. The method is demonstrated by application to a standard synthetic example. It is then applied to obtain prediction intervals for pricing options, using data from LIFFE for the 'ESX' European style FTSE 100 index options. The method uses standard regression procedures to determine local error bars. It is appropriate where errors have heteroskedastistic disturbances.

Keywords: Confidence Interval, Financial Options, Prediction Interval, Pricing

JEL Classification: C12,C14,C45,C52, D80

Erratum 5 Nov 2005

1. Table 1 p19 corrected to be consistent with JH Thesis p91

2. Typographical error p7 corrected viz vector dimensions and variable range.

1
Introduction

The Black-Scholes formula represents the first successful tool for rational valuation of options. It was the first option pricing model where all the parameters were measurable. However, it and its extensions show systematic and substantial bias
. To improve pricing performance, the Black-Scholes formula has been generalized to a class of models referred to here as modern parametric option pricing models. The developers of these modern parametric option pricing models hoped to obtain well-specified models, consistent with the dynamics of the underlying assets, and which were straightforward to estimate and consistently outperformed rival specifications. Arguably, their efforts were largely unsuccessful
. Even the most complex modern parametric models are outperformed by less general simpler models. They often produce parameters inconsistent with the time series of the underlying asset, give inferior hedging performance, and display systematic pricing biases
. To overcome these problems of modern parametric option-pricing, there has been increasing interest among researchers in non parametric techniques
 and in a new class of model-free methods designed to discover/induce a model from data. These new methods are the result of research in the fields of databases, machine learning, pattern recognition, statistics, artificial intelligence, data visualisation, and high performance computing
. The general class of methods is variously referred to as 'learning networks', 'machine learning algorithms' or 'computational knowledge discovery techniques'. A superficially disparate variety of these techniques exist, such as MLPs (multi layer perceptrons), RBF (radial basis function), and PPR (projection pursuit regression). Various authors
 have shown that these techniques possess universal approximation properties and can approximate arbitrarily closely virtually any linear or non-linear function. Moreover, studies
 demonstrate an underlying equivalence among a broad class of such techniques, including those mentioned. Other techniques in this class include: decision trees, vector machines, k-nearest neighbour classifiers, and genetic algorithms. Each method is of course better at approximating some functions than others. What makes these techniques suitable for option pricing is that they effectively function as extremely flexible non-linear, non-parametric, multi-variate regression models.

An essential characteristic of such methods is their independence of the assumptions of finance theory. This can be viewed as a strength or a weakness. It is a strength since it makes no assumptions on the dynamics of the underlying price process, rather it induces the structure of the problem from data. From the perspective of finance theory this may be perceived as a weakness however, as there is no guarantee that the price predictions obtained using these methods will conform to the axioms of rational pricing. This is one reason why these techniques have not won wider popularity in the finance domain. However, this issue can be addressed by the use of domain knowledge in the choice of variables and transformations applied to the raw data, to arrive at a suitable data representation during the initial specification search. Also, suitable constraints can be imposed on the model predictions.

There is a second reason why these methods have not been more widely popular in finance. Techniques of statistical inference are well defined for the parametric regression methods traditionally employed in financial econometrics. This is not the case however for many of the computational techniques. As a result significance tests and confidence intervals can be difficult to interpret and obtain
.

In this paper we describe a theoretically well-founded, robust method for determining prediction intervals for one of the most popular types of learning network, the form of neural network known as a multi layer perceptron (MLP). We show the method is applicable to a broad class of similar techniques. We test the method empirically using a standard synthetic data set, and compare it with a method specific to the MLP which is not generally applicable. We then apply the method to option market data to assess its performance in a more realistic setting.

The paper is organised as follows. In Section 2 we discuss our motivation for the specific choice of the MLP as the object of study. Section 3 is an exposition of the theory underlying confidence and prediction interval estimation for neural nets. Section 4 reviews the literature on statistical confidence for neural nets. Section 5 outlines the theory and deals with the empirical testing of our proposed method. Section 6 contains a summary, conclusions, and proposals for further research.

2 Motivation

Neural nets are a flexible computational knowledge discovery technique widely used to model high-dimensional real-valued non-linear data. Hornik (1989) et al have shown that an MLP with one hidden layer can approximate arbitrarily closely virtually any linear or non-linear continuous function. They also demonstrate
 that MLP's are twice differentiable so first and second order partial derivatives of the network with respect to its inputs are obtainable. These characteristics suggest MLP's are suitable for applications in option pricing, hedging, and the recovery of probability distributions from option market data. This is supported by Galindo
 who presents evidence that MLP's out-perform other computational knowledge discovery techniques for option pricing.

A number of researchers have applied neural nets to option pricing and report favourable results compared with modern parametric option pricing models
. Surprisingly, there has been little reported for the confidence factors associated with the modelling of option prices using neural nets. Even more surprising is the absence from the literature of standard statistical hypothesis testing
, so comparisons between models are made on measures such as mean-squared-error and R2 which give only an incomplete picture of performance. Amilon's technical report
 is an exception to this. Typical neural net models contain many parameters (weights and biases). The number of parameters normally exceeds the number of input variables so that many of the parameters are unidentified, hence they are often regarded as "black box" models. This may explain the tendency among users to ignore the uncertainty inherent in predictions produced by the networks.

However, like other regression methods, neural net prediction accuracy varies with data density and noise. In our studies of option pricing we observed that a particular model could be statistically acceptable for a set of data but that if the inputs were partitioned then some partitions failed the statistical tests. This led us to the conclusion that consideration of error estimates on a point by point basis to obtain a more complete picture of performance is essential.

3 Theory

3.1
Confidence & Prediction intervals for Regression

In this section, to define terms and develop notation we first review the theory relating to confidence and prediction intervals applied to regression. We then discuss how this theory applies to neural nets.

Regression is the name given to the family of statistical techniques used to model the relationship between a response (or dependent) variable y, and a vector x of explanatory (or independent) variables, the regressors. In the neural net literature the terminology targets for response variables, and inputs for the regressors, with the vector x termed the input vector is used. The following discussion adopts this usage.

In regression it is assumed there is a relationship between the target y and the input vector x. Equation (3.0) shows a possible form this may take.

[image: image1.wmf]()

y

y

me

=+

x

 (3.0)

The relationship has both stochastic and deterministic components. Here (~ N(0,(2) is white noise. The stochastic component consists of the resulting random fluctuation of y about its mean (y(x). The deterministic component is the function relating (y(x) and x. Suppose that the true but unknown function relating (y(x) and x is given by

[image: image2.wmf]

EMBED Equation.DSMT4[image: image3.wmf](

)

()

y

f;

m

=

xx

b

 (3.1)
where (is a set of parameters. Regression attempts to model this relationship by estimating the parameter values from the data set. To achieve this, the values of (are adjusted under the assumption that f is the true function, giving

[image: image4.wmf]
[image: image5.wmf]ˆˆ

ˆ

()()

y

;f;

m

=

xx

bb

 (3.2)

where a hat denotes an estimated value. The right hand side of equation (3.2) is termed a regression function. If
[image: image6.wmf]ˆ

ˆ

()

y

;

m

x

b

 is estimated from a finite sample S, {(x1,y1), (x2,y2), …, (xn,yn) (S}, sampling variation in S will result in variation in
[image: image7.wmf]ˆ

b

and hence variation in
[image: image8.wmf]ˆ

ˆ

()

y

;

m

x

b

. It follows
[image: image9.wmf]ˆ

ˆ

()

y

;

m

0

x

b

 has a sampling distribution about (y(x0), where x0 is a particular value of x. A 95% confidence interval for (y(x0) is an interval [(L(S, x0), (U(S, x0)] such that (y(x0) ([(L(S, x0), (U(S, x0)] in 95% of cases. A 95% prediction interval is an interval [(L(S, x0), (U(S, x0)] such that there is a 95% probability that the unknown value y0 associated with x0 will occur within the interval.

As an example consider the univariate ordinary least squares (OLS) regression of y on x for a sample S, {(x1,y1), (x2,y2), …, (xn,yn) (S}. The 95% confidence interval for (y(x0) is given by

[image: image10.wmf]2

0

0.025(2)

2

1

()

1

ˆ

ˆ

(;)

()

yny

n

i

i

xx

xts

n

x

mb

-

=

æö

-

ç÷

±+

ç÷

èø

å

 (3.3)

and the 95% prediction interval by

[image: image11.wmf]2

0

0.025(2)

2

1

()

1

ˆ

ˆ

(;)1

()

yny

n

i

i

xx

xts

n

x

mb

-

=

æö

-

ç÷

±++

ç÷

èø

å

 (3.4)

where sy is the standard deviation of the y values and
[image: image12.wmf]x

 is the mean of the x values. In equations (3.3) and (3.4), sy is given by

[image: image13.wmf]2

2

i

y

e

s

n

=

-

å

 (3.5)

where
[image: image14.wmf]00

ˆ

ˆ

((;))

y

exy

mb

=-

are the residuals. This follows from the classical assumptions for OLS under which Var(yi) = Var((i) = (2. An unbiased estimate of (and hence of the standard deviation of the yi is given by equation (3.5).

Equations (3.3) and (3.4) can be generalised to the multivariate case for OLS regression to obtain a (1-()100% confidence interval for (y(x0). In matrix notation this is

[image: image15.wmf](

)

12

0(/2)(1)00

ˆ

ˆ

(;)()

TT

ynky

ts

a

m

-

--

±

xxXXx

b

 (3.6)

and a (1-()100% prediction interval is

[image: image16.wmf](

)

12

0(/2)(1)00

ˆ

ˆ

(;)(1()

TT

ynky

ts

a

m

-

--

±

x+xXX)x

b

 (3.7)

In equations (3.6) and (3.7) x0 is a kx1 column vector of inputs and X is a nxk matrix, containing first a column of ones, and then the kx1 sample values of each of the n row vectors
[image: image17.wmf]T

i

x

. The scalar
[image: image18.wmf]2

y

s

 is the mean squared residual (MSR). It is an unbiased estimate of (2 and hence of the variance of the yi. For equations (3.6) and (3.7),
[image: image19.wmf]2

y

s

is given by

[image: image20.wmf]2

ˆ

1

TTT

y

MSRs

nk

-

==

--

YYXY

b

 (3.8)

In equation (3.8), X is as previously defined, Y is a n x1 vector of target values, and
[image: image21.wmf]ˆ

b

is a k x1 vector of estimated parameters given by
[image: image22.wmf]1

ˆ

()

TT

-

=

XXXY

b

. If the x values in equations (3.3) to (3.8) are continuously valued over the interval [x1, x2], x2 > x1 a continuous confidence band and prediction band are obtained. From equation (3.1),
[image: image23.wmf](

)

()

y

f;

m

=

xx

b

 is the true but unknown function relating (y(x) and x (the true regression). Equation (3.2)
[image: image24.wmf]ˆˆ

ˆ

()()

y

;f;

m

=

xx

bb

is an estimate of this regression. It follows that the confidence intervals (3.3) and (3.6) are for the true regression functions. The prediction intervals (3.4) and (3.7) are for predicted values associated with a new unseen input. The relationship between confidence intervals and prediction intervals can be understood by considering the following equation.

[image: image25.wmf]ˆˆ

[()][()()]()

yf;f;f;

e

-=-+

xxxx

bbb

 (3.9)

Prediction intervals are concerned with the left hand side of this equation, the difference between the target value and its predicted value produced by the estimated regression function. The left hand term decomposes into the two right hand terms. Confidence intervals are concerned with the first of these, the difference between the true and estimated regression functions. This difference is the parameter difference
[image: image26.wmf]ˆ

()

-

bb

. The remaining term on the right hand side is the (sample dependent) random noise term. Neither the noise or the true parameters (can be directly observed. However, the variance of the noise can be estimated as
[image: image27.wmf]¶

2

()

Vars

e

=

, and confidence intervals obtained for the true (.

3.2
Estimating Confidence & Prediction Intervals for Neural Nets

The theory presented in the previous section can be applied where the right hand side of equation (3.2), the regression function, is a neural net. Existing methods are reviewed in this section. The discussion is confined to the case of a MLP with one hidden layer and an output layer with a single node. In this case, from equation (3.2),

[image: image28.wmf]11

ˆ

ˆ

ˆˆ

()()

HK

yyOhlHhkkhl

hk

;;wwx

mmffww

==

æö

æö

º=++

ç÷

ç÷

èø

èø

åå

xx

bW

 (3.10)

In equation (3.10), the MLP consists of one layer of K input nodes x1, …, xK, a layer of l output nodes, with l = 1 in this instance, and H hidden layer nodes. The functions
[image: image29.wmf]O

f

 and
[image: image30.wmf]H

f

 are termed activation functions. For the hidden layer,
[image: image31.wmf]H

f

 is usually a sigmoid function such as the logistic function or the hyperbolic tangent function. For a continuously valued target variable, the output function
[image: image32.wmf]O

f

 is usually linear and may be the identity. The w are referred to as the weights and the (are constant intercept terms known as the biases. The set of estimated weights and biases is denoted by {
[image: image33.wmf]ˆ

W

, (wKH, (H+l,) (
[image: image34.wmf]ˆ

W

}.

The network is fitted ('trained' in the neural net literature) by estimating
[image: image35.wmf]ˆ

W

 to minimise a cost function. This is done by employing a search algorithm such as gradient descent, conjugate gradient, or quasi-Newton
. These methods require initialisation of the vector
[image: image36.wmf]W

 with a set of small random values. The vector
[image: image37.wmf]ˆ

W

 that minimises the cost function is then iteratively estimated. Because the vector
[image: image38.wmf]ˆ

W

 is typically large, search methods involving computation of the Hessian matrix of second order partial derivatives of the cost function with respect to each of the elements of
[image: image39.wmf]ˆ

W

 are computationally intensive. An iterative search is necessary as in neural nets the error surface is non-convex and may have many local minima. This is because unlike conventional NLLS regression, the non linearity involved is not parametrically defined a priori, and can thus assume any form. In common with other non parametric methods, neural nets can over-fit data. To prevent over-fitting, training is terminated when the error function is minimised on a validation data set (early stopping). Alternatively, some form of regularisation (weighting) can be used.

When the cost function used for (3.10) is the sum of squared errors, the activation functions are not all linear (the usual case), and early stopping is used to prevent over fitting, then the optimisation is effectively a non-linear least squares regression. The theory for estimating standard errors for non-linear regression is thus directly applicable. Hwang & Ding (1997)
 show this theory can be extended to MLPs to obtain asymptotically correct standard errors. The computation of standard errors for MLPs using the Delta Method
 and Sandwich Method
 for non-linear regression is detailed in Appendix A. Alternative bootstrap and Bayesian approaches are detailed in Appendix B.

In the next section we review the literature on the performance of these methods. Recent research aimed at obtaining improved estimates of standard errors, confidence, and prediction intervals for neural nets is also reviewed.

4 Literature Review

Tibshirani (1996)
 has performed tests of seven different standard error estimates for MLPs with single hidden layers and a linear output layer. These were obtained using three variants of the delta method, two variants of the sandwich estimator, and the bootstrap pairs and bootstrap residuals methods. The delta method variants used are the standard, a method using the inverse Hessian matrix, a method using an approximation to the Hessian matrix omitting second order terms, and the delta method with a regularisation term. The sandwich method variants are the standard sandwich method and a variant using an approximate Hessian matrix.

The data set used for these tests consisted of 111 observations on air pollution. For the bootstrap methods, B = 20 bootstrap replicates were used. In these tests, it was found that the bootstrap methods provided the most accurate estimates of standard errors. The delta methods and sandwich estimators missed the substantial variability due to random starting weights. Tibshirani suggests these latter estimators may perform better where there is less sensitivity to the choice of starting weights (initilization parameters), for example with larger data sets where gradient descent is used.

This conjecture is consistent with earlier findings by LeBaron & Weigend (1994)
 who used a training set of 3200 observations on market trading volume at the New York Stock Exchange. This data is relatively noisy, with predictions explaining approximately 0.5 of the variance. They created 2523 bootstrap replicates for both an MLP and a linear model. In order to obtain out-of-sample distributions of the error measure used (1-R2), 2523 bootstrap replicates were also generated on the test set of 1500 observations. For the MLP, 697 networks were also trained on a single sample and initialisation parameters were randomly drawn for each one. It was found that the randomness due to the splitting of the data generated more variability than the randomness due to network initialisation. Indeed no significant correlation was found between the choice of initialisation parameters and network performance. Moreover, the error distributions obtained from the bootstrap procedure on the test set are almost identical for both the linear and MLP models. This suggests that for this data, the MLP is unable to extract non-linear features that generalise out-of-sample from the training set.

In tests using synthetic data with an input-dependant noise variance, Bishop & Qazaz (1995)
 demonstrate the Bayesian approach can give an improved estimate of noise variance compared with maximum likelihood based approaches. However, it is arguable whether the improvement justifies the extra computational cost involved
.
Heskes (1997)
 proposes a method based on bootstrap pairs for obtaining prediction intervals for a pair {(x0, y0) (
[image: image40.wmf]Boot

b

S

, b = 1 to B} using the relationship in equation (3.9), and equations (B.1) and (B.2) given in Appendix B. To achieve this a separate neural net
[image: image41.wmf](

)

2

c

X

is trained to model the noise variance Var((). The targets for this network are residuals satisfying

[image: image42.wmf](

)

(

)

¶

(

)

2

22

((;)),0

Boot

vBootv

rMaxeSEf

=-

v

XXX

W

 (4.1)

obtained from the validation sets used for training the B networks used in the bootstrap ensemble (B.2). Alternatively, these may be obtained by applying (B.2) to an independent test set. In equation (4.1),
[image: image43.wmf](

)

(

)

2

2

,

ˆ

()

BootvyBoot

ey

m

=-

v

XX

, the residuals from (B.2) when applied to the validation sets. The cost function used for training the auxiliary network is the negative log likelihood function, hence the use of the Max((,0) function in (4.1). The resulting bootstrap prediction interval is

[image: image44.wmf]¶

(

)

(

)

,(/2)

ˆ

()((;))

Boot

yBootB

tSEf

a

mc

±+

XXX

W

 (4.2)
The prediction interval (4.2) offers the advantage that it allows for the uncertainty of the regression function as well as that of the noise. Also, it does not rely on the assumption that the network is an unbiased estimator of the conditional mean of the target value (i.e. that the error due to bias is negligible compared with the error due to variance).

Nix & Weigand (1995)
 have proposed a novel method of computing prediction intervals for neural nets. The method uses a NN with two output nodes, one for
[image: image45.wmf]ˆ

ˆ

()

y

;

m

x

W

, the predicted value, and a second for
[image: image46.wmf]2

ˆ

ˆ

()

y

;

s

xU

, the variance of the predicted value. The network has a non-standard structure, with a second hidden layer for
[image: image47.wmf]2

ˆ

ˆ

()

y

;

s

xU

 receiving inputs from both the hidden layer for
[image: image48.wmf]ˆ

ˆ

()

y

;

m

x

W

 and from the input layer. A negative log likelihood cost function is used, modified by inclusion of the input-dependent variance term
[image: image49.wmf]2

ˆ

()

y

s

i

x

. Normally
[image: image50.wmf]2

ˆ

()

s

X

is assumed constant and drops out after differentiation. A linear transfer function is specified for the
[image: image51.wmf]ˆ

ˆ

()

y

;

m

x

W

 output unit. To ensure only positive outputs, an exponential transfer function is specified for the
[image: image52.wmf]2

ˆ

ˆ

()

y

;

s

xU

 output unit. A hyperbolic tangent transfer function is used for the hidden layer units. Using these transfer functions, differentiating the cost function with respect to the network weights gives weight update equations containing terms
[image: image53.wmf]2

ˆ

1/()

y

s

x

 which act as a form of weighted regression. The result is an improved fit in low noise regions of the input space. The output obtained from this network for
[image: image54.wmf]2

ˆ

ˆ

()

y

;

s

xU

 is equivalent to training separate networks and using the squared residuals from
[image: image55.wmf]ˆ

ˆ

()

y

;

m

x

W

as targets.

The Nix-Weigend network requires a three phase training process. In Phase I the network is trained on a training set A for the output
[image: image56.wmf]ˆ

ˆ

()

y

;

m

x

W

. This is equivalent to normal network training using a sum of squares cost function with early stopping to prevent over fitting. In Phase II, the weights trained in Phase I are frozen and the second hidden layer for
[image: image57.wmf]2

ˆ

ˆ

()

y

;

s

xU

 added. The squared residuals from Phase I are used as targets for the second output node
[image: image58.wmf]2

ˆ

ˆ

()

y

;

s

xU

. The network is now trained for the output
[image: image59.wmf]2

ˆ

ˆ

()

y

;

s

xU

using the validation set B from Phase I as the training set, with set A as the validation set. In Phase III (weighted regression), the available data are re-split into a new training set A' and validation set B'. All network weights are unfrozen, and the network is re-trained for both output nodes on training set A', using B' as the validation set. Training is now considered complete.

The Nix-Weigend method has the advantage that it provides prediction intervals without bootstrap resampling or inversion of the Hessian matrix. In addition, by using a form of weighted regression, it gives improved performance in low noise regions of the input space. However, weighted regression introduces local minima in the error surface, complicating learning. Moreover, since the method requires use of a special non-standard architecture, and other features specific to neural networks, it is not a generally applicable method. In tests of the Nix-Weigend method using both synthetic data with added non-uniform Gaussian noise, and real-world data with uniform non-Gaussian noise, it produces improved prediction intervals compared with the use of a separate network to estimate the variance as proposed by Satchwell (1994)
 or used by Heskes (1997).

5 Robust Practical Prediction Intervals

5.1 Background & Theory

Existing methods for computing standard errors, confidence, and prediction intervals for neural nets are of two types. First, the delta method, sandwich method, and their variants, which use the Hessian matrix of second order partial derivatives of the cost function with respect to the weights and biases. Second, methods using bootstrap resampling. Empirical tests suggest that methods of the first type do not perform as well as methods of the second type, at least for small samples. Moreover, it is not always possible to use the delta and sandwich methods. Where there is over-fitting the required matrix inversions may fail, making the necessary computations impossible. Methods based on bootstrap resampling are reported to give more accurate estimates by Tibshirani (1996). While the bootstrap can provide confidence intervals for the true regression function, on its own it cannot provide prediction intervals for an unseen target variable. Heskes (1997) has sought to overcome this limitation by proposing a method which uses a separate neural network to model the noise, in conjunction with bootstrap resampling. However, the naïve bootstrap does not provide heteroskedasticity consistent standard errors
. For these the use of a more complex wild bootstrap is required. The method proposed by Nix & Weigand (1995) does not have any of these limitations, and can provide standard errors, confidence intervals, and prediction intervals for network estimates. Unfortunately, it is specific to one technique, the MLP, and is not generally applicable.

We now describe a method for obtaining standard errors, confidence, and prediction intervals which is applicable not only to MLP's, but to any non linear regression method of comparable generality. The method is robust to heteroskedasticity and practical to implement. It calculates the prediction interval directly and avoids the bootstrapping that is a practical necessity in obtaining the confidence intervals for the true regression.

Our model has two outputs; one output is the target variable and the other is the squared error. It differs from the Nix & Weigend (1995) model because a) It deploys a standard NN architecture and b) It uses a sum of squares cost function and does not assume a Gaussian noise distribution c) It uses independent training and validation sets, rather than interchanging validation sets. We follow Heskes (1997) who suggests that it is desirable that the training set for fitting the squared errors is independent of the set used for training and validating the model for the target variable. The reason is, since training is stopped on the training set when the sum of squared errors is minimised on the validation set, the two are associated and thus not truly independent. Before discussing details of the model implementation and it's empirical performance, we outline the theoretical foundations.

The object in training (fitting) a MLP is not to memorise features specific to the training set, but to model the underlying data generating process so that when presented with a new input vector x, the trained network gives the best possible estimate of the target value. The most comprehensive description of the data generating process is a statistical one, in terms of the joint probability density P(x,d) of the input vector x and the target vector d. This density can be expressed as the product of the conditional distribution P(d | x) of the target vector d conditioned on the input vector x, and the unconditional distribution P(x) of the input vector

P(x,d) = P(d | x)P(x) (5.1)

where
[image: image60.wmf]()(,)

PPd

=

ò

xxdd

 (5.2)

An MLP trained by minimising a sum-of-squares error defined over a training set, approximates the means of the elements of a target vector d conditioned on a corresponding input vector x. The optimisation results in estimation of a vector
[image: image61.wmf]ˆ

W

 of weights and biases that minimises the cost function. The function to be minimised takes the form

[image: image62.wmf]2

11

1

ˆ

[f(;)]

2

nm

jij

ij

d

==

-

åå

i

x

W

 (5.3)

In equation (5.3) dij is the jth element of the ith target vector.
[image: image63.wmf]ˆ

f(;)

j

i

x

W

is the corresponding network estimate. Asymptotically, as the size n of the data set tends to infinity and assuming the function
[image: image64.wmf]ˆ

f(;)

j

i

x

W

 has sufficient flexibility (i.e. degrees of freedom), bias and variance tend to zero yielding the optimum least squares solution. In the limit the summation over n in (5.3) becomes an integral over the joint probability density

[image: image65.wmf]2

11

1

ˆ

Lim [f()]

2

nm

LS

jij

n

ij

Cd

n

®¥

==

=-

åå

i

x

,W

 (5.4)

[image: image66.wmf]2

1

1

ˆ

 [f()]()()

2

m

jjjj

j

dPdPddd

=

=-

å

òò

x,|xxx

W

 (5.5)

where 1/n in (5.4) is a convergence factor. The cost function can be minimised using functional differentiation with respect to
[image: image67.wmf]ˆ

f(,)

j

x

W

and setting the derivative to zero.

[image: image68.wmf]0

ˆ

f(,)

LS

j

C

d

d

=

x

W

 (5.6)

Substituting (5.5) into (5.6) and using (5.1) yields the following solution for the minimising function

[image: image69.wmf]ˆ

f(,)(|)()

jj

Edd

==

j

xxx

W

 (5.7)

Thus the output of the network function corresponds to the conditional means of the elements of the target vector d, conditioned on the input vector x. The result (5.7) depends only on the generality of the non linear mapping represented by the network function. It does not specifically require use of a MLP and thus extends to any comparable non-linear mapping of sufficient generality.

The (global) conditional variance corresponding to the conditional mean (5.7) is given by

[image: image70.wmf]2

1

(|)

(1)

n

ij

i

j

e

Vard

nk

=

=

--

å

X

 (5.8)

where X is the matrix of input data,
[image: image71.wmf]2

ij

e

 is the squared residuals for
[image: image72.wmf]j

d

(xi) at the minimum of the cost function, and k is the applicable degrees of freedom. Given these statistics the conditional distribution of the target P(dj | xi) is characterised by a two parameter distribution with a mean given by
[image: image73.wmf]ˆ

f(,)

j

x

W

 and a (global) variance given by
[image: image74.wmf](|)

j

Vard

X

. The use of a least squares cost function does not require the assumption that this distribution is Gaussian. If the conditional distribution of the target data is assumed to be Gaussian however, the result (5.7) can be derived using maximum likelihood
. Under the Gaussian assumption P(dj | x) can be written as

[image: image75.wmf]2

2

ˆ

[f(;)]

1

(|)exp

2

jj

j

d

Pd

s

ps

2

æö

-

=-

ç÷

ç÷

2

èø

x

x

W

 (5.9)

where
[image: image76.wmf]2

s

 is a global variance parameter which can be estimated by (5.8). This is easily extended to give a more general distributional assumption allowing estimation of a separate variance parameter for each target dj conditioned on the corresponding input vector x

[image: image77.wmf]2

1/22

ˆ

[f(;)]

1

(|)exp

(2)()()

jj

j

jj

d

Pd

pss

æö

-

=-

ç÷

ç÷

2

èø

x

x

xx

W

 (5.10)

Maximising the likelihood is equivalent to minimising the negative log likelihood. Forming the negative log likelihood of (5.10) and omitting constants gives

[image: image78.wmf]2

2

11

ˆ

[f(,)]

 ()

2()

nm

jij

LL

j

ij

j

d

CLn

s

s

-

==

æö

-

=+

ç÷

ç÷

èø

åå

i

i

i

x

x

x

W

 (5.11)

Taking the limit as before gives the integral form

[image: image79.wmf]2

2

1

ˆ

[f()]

 ()(|)()

2()

m

jj

LL

jjj

j

j

d

CLnPdPddd

s

s

-

=

æö

-

=+

ç÷

ç÷

èø

å

òò

x,

xxxx

x

W

 (5.12)

The function
[image: image80.wmf]2

()

j

s

x

 is modelled by adding additional output nodes to the MLP trained to fit the squared residuals of dj(xi). Functional differentiation is again used to minimise the errors for the network outputs for the mean and variance functions. For the mean

[image: image81.wmf]ˆ

[f()]

0()(|)

ˆ

()

f(,)

LL

jj

jj

j

d

C

PPddd

d

s

d

-

-

==

ò

2

j

x,

xx

x

x

W

W

 (5.13)

Rearranging and simplifying (5.13) gives the standard result of equation (5.7). For the variance, (5.12) is minimised with respect to the function
[image: image82.wmf]()

j

s

x

giving

[image: image83.wmf]2

23

ˆ

[f()]

1

0()(|)

()()()

LL

jj

jj

jjj

d

C

PPddd

d

dsss

-

æö

-

==-

ç÷

ç÷

èø

ò

x,

xx

xxx

W

 (5.14)

Using (5.7) again and solving for
[image: image84.wmf]2

()

j

s

x

gives

[image: image85.wmf]22

()[{(|)}|](|)

jjjj

EdEdVard

s

=-=

xxxx

 (5.15)

This approach is based on maximum likelihood and gives a biased estimate of the variance, because it makes use of an estimated mean rather than the (unknown) true mean. The relationship between the true variance and its estimate obtained under maximum likelihood is given by

[image: image86.wmf]2222

1

ˆˆ

, hence

1

nkn

nnk

ssss

--

==

--

 (5.16)

where k is the appropriate degrees of freedom. Thus, we have shown that a MLP with two output nodes, one trained to fit a target value, and the other trained to fit squared residuals of the target, can produce an estimate of the mean and variance of the conditional distribution of the target in the maximum likelihood framework. The maximum liklihood derivation shown requires the assumption that the conditional distribution of the target data is Gaussian. We do not make this assumption for our proposed method. However, the maximum likelihood and least squares estimators are equivalent where a least squares cost function is used. Moreover, the result (5.7) which is central to our method relies only on the use of a least squares cost function.
5.2 Empirical Tests

Practical application of the proposed technique requires the use of a special training algorithm as follows;

1)
Phase I:

Randomly split the training data into two data sets, Set A and Set B. Using Set A, train a NN model on the target variable d(x). Run the trained NN model on Set B, to obtain a set of squared residuals. By using squared residuals on a test set (Set B) as the second target for Phase II, over fitting and consequent underestimation of the standard error is avoided.

2)
Phase II:

Using Set B for training, train a second NN with two output nodes. The target for the first output node is the variable d(x); the target for the second output node is the squared residuals obtained in Phase I from set B using the model trained on Set A.

3)
Phase III (optional):

Using Set A for training, train a further NN with two output nodes. The target for the first output node is the variable d(x); the target for the second output node is squared residuals for the estimate d*(x) obtained in Phase II using the model trained on Set B. Training is now complete.

Set A is itself randomly split into a training and a validation portion; as is Set B. Testing of each Phase is performed on an independent test set, Set C.

5.2.1 Synthetic Example

Nix & Weigend (1995) defined a univariate synthetic example to demonstrate the effectiveness of their model. For comparison purposes our proposed training algorithm and network is applied to the same univariate synthetic example, called Example #1 in their paper and here. This example uses a one-dimensional data set where y(x) the true regression, and
[image: image87.wmf]2

()

s

x

, the variance of the noise, are known. The true regression y(x), is given by the equation
[image: image88.wmf]()(3)(5)

ySinxSinx

=

x

, where x is a uniformly distributed random number from the interval [0, (/2]. Heskes (1997) used similar trigonometric functions for the true regression and the noise variance. The noise n(x) consists of numbers from the normal distribution
[image: image89.wmf]2

[0,()]

N

s

x

, where
[image: image90.wmf]22

()0.020.25[1(5)]

Sinx

s

=+-

x

. The target value for training is d(x) = y(x) + n(x).

We then adopted the following procedure. We used the same number of hidden nodes as Nix and Weigend for regression and for noise variance. For Phase I, a network with a single input node, 10 hidden layer nodes and a single output node is used. Phases II and III use a network with a single input node, 20 hidden layer nodes and 2 output nodes, one for d(x) = y(x) + n(x) and one for
[image: image91.wmf]2

()

s

x

. Fig. 1 shows a plot of the data points, the true regression y(x), and the approximate prediction band obtained on a test set, for our Phase III model. The effect of Phase III was to reduce the distance between predictions and the true values, measured on the y axis.

[image: image92]
Fig. 1
Prediction Bands for Example#1

[image: image93.wmf]-4

-2

0

2

4

0

0.5

1

1.5

x

y(x)

y(x)

d*(x)

L

U

trueL

trueU

d(x)

In Fig. 1 y(x) is the true regression, d(x) are the target data points, d*(x) is the estimate of the true regression, L and U are the true upper and lower prediction intervals and L* and U* are the estimated prediction intervals obtained using the network estimate *2(x) for the noise variance.

Table I shows the results of statistical tests for the performance of the proposed network in predicting the true regression, the true noise variance function, and the target data points d(x) and actual squared errors for Example #1; d*(x) is the estimate of the target. The results show that the network produces unbiased estimates of the mean and the variance of both the true regression function y(x), and the noise variance function
[image: image94.wmf]2

()

s

x

.

The approximate upper and lower prediction intervals calculated from the estimated noise variance function are also unbiased estimates of the true upper and lower prediction intervals. For comparison of the proposed network performance with that of the Nix-Weigend network we have computed, and show in Table II, the statistics used by Nix & Weigend (1995).

Table II
Results for Example#1: Methods Compared

[image: image95.wmf]Table II

Results for Example#1: Methods Compared

This Work

Nix-Weigend

row

Test Set

 (n=10

4

)

Test Set

 (n=10

5

)

Target d

E

NMS

Our Mean Cost

E

NMS

NW Mean Cost

1

Phase I

0.764

0.454

0.593

0.882

2

Phase II

0.577

0.344

0.593

0.566

3

Phase III

0.578

0.344

0.570

0.462

4

n(x) (exact additive noise)

0.575

0.343

0.563

0.441

Target e

2

r

(PIII)

r

(PII)

r

(PIII)

r

(PII)

5

r(s*

(x), residual errors)

0.571

0.569

0.548

N/a

6

r(s

(x), residual errors)

0.586

0.585

0.584

N/a

Distribution P(III)

1 std.

2 std.

1 std.

2 std.

7

% of errors <

s

*(x); 2

s

*(x)

67.4

93.1

67.0

94.6

8

% of errors <

s

(x); 2

s

(x)

66.9

95.0

68.4

95.4

9

(exact Gaussian)

68.3

95.4

68.3

95.4

In Table II ENMS is the mean squared error normalised by the (global) variance of the target d. Our Mean Cost is the mean of the cost function (d-d*)2. Row 4 gives these figures for [(d-y(x))2 = n(x)2] and represents the best performance attainable. Row 5 gives the correlations between the absolute errors and the network estimate for the standard deviation of the errors. Row 6 gives the correlations between the absolute errors and the true noise standard deviation. Row 7 gives the percentage of absolute errors that are less than 1 and 2 times the corresponding network estimate for the standard deviation of the error. Row 8 gives the percentage of absolute errors that are less than 1 and 2 times the corresponding true noise standard deviation. Row 9, which is included for comparison purposes, gives the percentage of observations that are less than 1 and 2 standard deviations in a Gaussian distribution.

Table II shows that compared to the Nix-Weigend network there is little improvement in the fit to the target d between our Phases II and III. However the Phase III fit (row 3) for the proposed network is close to the best attainable, deviating only by 0.6%. The Nix-Weigend network on the other hand does not approach the best attainable figure quite so closely, deviating by 1.4%. The proposed network figures for correlation of the actual absolute errors with the network prediction and the true values (rows 5 and 6), is slightly better than the corresponding figures for the Nix-Weigend network, even in Phase II. The distributions of errors reported in rows 7 and 8 differ only slightly from those for the Nix-Weigend method.

Overall, on the basis of the results in Table II the proposed network performs comparably with a Nix-Weigend network and actually outperforms it slightly on the errors and correlations. The results in Table II however, are not based on formal statistical tests. For this reason we prefer to rely on the results presented in Table 1. The results of F and t tests presented in Table I show that the proposed network can provide unbiased estimates of an underlying true regression function, an associated noise variance function, and also the actual target and squared errors in the univariate case.

5.2.2 Synthetic Option Price Example

The option market data were from LIFFE. They consist of daily closing prices for the FTSE-100 index call option for all trading dates from 13 March 1992 to 1 April 1997. The data set contains 119,413 records. The data were cleaned to exclude options with invalid or missing parameters. Only options which had actually been traded, as indicated by positive values of bid, offer, spread, trading volume, and open interest were used. Only options with moneyness (S/X) between 0.8 and 1.4 were included. Options with at-the-money implied volatilities (as tabulated by LIFFE) greater than 40% were excluded. The cleaned data set comprised 14,254 records. This data set was randomly split into a training set and a test set. The resulting training sets contained 7,083 records with 3629 in Set A and 3454 in Set B. 50% of these were randomly sampled and used for validation. The test set contained 7,171 records.
In this section the proposed network is applied in the more realistic multivariate setting of option pricing. Our approach was tested using synthetic option prices and synthetic noise, labelled Example#2. For this purpose we follow Hutchinson et al
 and omit the volatility and risk-free interest rate from the standard Black-Scholes inputs. The synthetic option prices were created using a trained neural net option pricing model as the underlying known regression function. The neural net was trained using observed market prices as the target and the variables moneyness, (m = S/X), and time to maturity, t, as inputs; S represents the price of the asset in index points and X is the strike price for the option. Analysis of squared residual errors for neural net option pricing models indicated that
[image: image96.wmf]2417

(,)510361

tmtm

s

=+

was a suitable choice for approximating the underlying residuals to give a known noise variance function; it is important to emphasize that this function has no significance other than as a residual model. Using this function, a closely similar shaped distribution, as indicated by variance, standard deviation, skewness, and kurtosis, is obtained for the absolute values of the synthetic noise generated, and for those of real residual errors for neural net option pricing models. Moreover, t-tests indicate that the obtained target d(t,m) is not significantly different from observed market prices. Artificial noise from the normal distribution N was drawn as N(0,2(t,m)) and added to the outputs of the trained NN to generate a synthetic target option price d(t,m). As in Example#1 the aim is to determine whether the method can successfully recover an underlying known regression function and noise variance function. The results for Example#2 are presented in Table III.

Table III: Results for Example#2: Synthetic Option Prices + Noise

[image: image97.wmf]Table III Results for Example#2: Synthetic Model Option Prices + Noise

row

Test Set

Target d = C

NN

+ noise

E

NMS

Our Mean Cost

1

Phase I

0.059

564.660

2

Phase II

0.062

599.406

3

Phase III

0.059

566.805

4

n(x) (exact additive noise)

0.058

556.988

Target e

2

r

 (PIII)

r

(PII)

5

r

(

s

*(x), residual errors)

0.537

0.536

6

r

(

s

(x), residual errors)

0.562

0.591

Distribution (PII)

1 std.

2 std.

7

% of errors <

s

*(x); 2

s

*(x)

51.3%

81.4%

8

% of errors <

s

(x); 2

s

(x)

70.0%

96.1%

Distribution (PIII)

9

% of errors <

s

*(x); 2

s

*(x)

32.5%

60.2%

10

% of errors <

s

(x); 2

s

(x)

71.4%

96.2%

11

(exact Gaussian)

68.3%

95.4%

In Table III ENMS is the mean squared error normalised by the (global) variance of the target d. Our Mean Cost is the mean of cost function (d-d*)2. Row 4 gives these figures for [(d-y(x))2 = n(x)2] and represents the best performance attainable. Row 5 gives the correlations between the absolute errors and the network estimate for the standard deviation of the errors. Row 6 gives the correlations between the absolute errors and the true noise standard deviation. Row 7 gives the percentage of absolute errors that are less than 1 and 2 times the corresponding network estimate for the standard deviation of the error. Row 8 gives the percentage of absolute errors that are less than 1 and 2 times the corresponding true noise standard deviation. Rows 9 and 10 report these results for PhaseIII. Row 11, which is included for comparison purposes, gives the percentage of observations that are less than 1 and 2 standard deviations in a Gaussian distribution. Here (x) represents the two input variables (t,m)

In Table III The Phase III fit for the target d(t,m), (Row 3) is only 0.001 (1.7%) more than the lowest attainable value (Row 4). The Phase II fit (Row 2), is not quite as good but is still only 0.004 (7%) more than the lowest attainable value. Although the difference is not statistically significant at the 95% level as shown by the t-tests, the Phase II fit to ENMS is slightly poorer than the Phase I fit (Row 1). This is because, in contrast to Nix & Weigend (1995), our Phase II involves training a new model constrained to fit both the target d(t,m) and the squared residuals from Phase I. Like Nix & Weigend (1995) we use 10 hidden layer nodes per output node, but in our method these are in a single hidden layer of 20 nodes with full connectivity to all input and output nodes. Pruning runs, not reported here, indicate fewer nodes can achieve the relevant accuracy. As in Example#1 the correlation of the absolute errors with the estimated absolute errors and with the true noise standard deviation (Rows 5 and 6) improves slightly from Phase II to Phase III. The correlation results in Table III are of a similar order to those for Example#1 in Table II. Row 7 and Row 9 distribution results show the dispersion of the actually occurring absolute errors is greater than the estimated and true noise standard deviation results given in Row 8 and Row 10 indicate. The decreased correlation of absolute values of residual errors with the known noise standard deviation (Row 6) suggests that Phase III training should be omitted in the more realistic multivariate setting for this data.

This conclusion is supported by Table IV which gives the results of hypothesis tests for Example#2. They show that the (proposed network) estimate for the mean of the target d(x) is unbiased for all three training phases. The Phase II estimate of the mean of the known noise variance function and the actual squared errors is unbiased as indicated by the hypothesis test results. However Phase III estimates of both are biased, unlike the Example#1 results. The F statistics indicate there is no difference between the estimated and actual variance of the known noise variance function for both PhaseII and PhaseIII.

The Table III & IV results for PhaseII training in Example#2 show the proposed network produces an unbiased estimate of the input dependent noise variance function 2(t,m), which is a smooth function of time to maturity t, and moneyness m. Moreover, this is an unbiased estimate of the actually occurring squared errors for the estimate of the target. These results suggest that given a set of unseen input variables for which there is no corresponding targets, the proposed network is capable of producing an unbiased estimate of a target d(t,m), and a corresponding (unknown) noise variance function. The unbiased estimate of both the mean of the target and the true noise variance function suggest that prediction intervals upon them will be a good estimate of the 95% prediction intervals.

Table IV Performance of Proposed Network (Example#2)

[image: image98.wmf]Table IV Performance of Proposed Network (Example#2)

Phase

Layers

Input

Output

R

2

Adj.R

2

F_Statistic

t-statistic

t-test

[no. nodes]

F

crit

(1 tail)

F

calc

(0.05)

t

crit

(2 tail)

t

calc

(0.05)

[H0:O=O*]

Estimated Regression Function

Phase I

2-10-1

t,m

m

y

*(d)

0.942

0.967

1.04

1.08

1.96

-0.02

Unbiased

Estimated v. Actual Target (d) & True Noise Variance Function

Phase II

2-20-2

t,m

m

y

*(d)

0.939

0.964

0.96

0.98

1.96

-1.62

Unbiased

Phase II

2-20-2

t,m

s

*

2

(d)

0.845

0.557

0.96

0.45

1.96

1.52

Unbiased

Phase III

2-20-2

t,m

m

y

*(d)

0.942

0.966

1.04

1.08

1.96

-0.61

Unbiased

Phase III

2-20-2

t,m

s

*

2

(d)

0.900

0.855

0.96

0.75

1.96

6.20

Biased

Estimated v. Actual Squared Errors

Phase II

2-20-2

t,m

s

*

2

(d)

0.246

-0.139

0.96

0.77

1.96

-1.16

Unbiased

Phase III

2-20-2

t,m

s

*

2

(d)

0.219

0.118

1.04

1.51

1.96

4.39

Biased

Table IV shows the proposed network produces an unbiased estimate, y*(d), of the mean of the target d in all three training phases. The estimated variance 2(d) is also an unbiased estimate of both the true noise variance and actual squared error for PhaseII; the corresponding Phase III estimates are biased.

5.2.3 Actual Option Price Example

Example#3 uses the same data set as Example#2. However, actual observed prices of options are now used in place of the synthetic prices created for Example#2. There is no underlying true noise variance function for Example#3. Hence, the estimated noise variance can only be compared with the actual squared errors for the fit to the target variable, which in this case is the actual observed option prices corresponding to the input variables t, and m.

Figure: 2
Option Prices with Prediction Intervals

[image: image99.wmf]Estimated Call Price & Prediction Intervals PII

(Trading 03/03/95 for 16/06/95 expiration)

-50

0

50

100

150

200

250

300

350

400

450

500

0.8

0.9

1

1.1

1.2

Moneyness (S/X)

Price (Index points)

Observed

Estimated

U*

L*

BS

L

U

Figure 2: Prices of FT-SE100 Call Options trading on the 3rd March 1995 for June 1995 expiration. Options become cheaper for strike prices increasingly greater than the current price S0 of the underlying asset (i.e. “out-of-the-money”). Prices also fall as maturity approaches. Here the crosses are the observed option prices. The red line represents the proposed network estimate of the prices. The blue dashed lines are the estimated upper and lower prediction intervals. The green dashed lines are corresponding intervals calculated using the actually occurring residual errors.

Table V Performance of Proposed Network (Example#3)

[image: image100.emf]Phase Layers Input Output

R

2

Adj.R

2

F_Statistic t-statistic t-test

[no. of nodes]

F

crit

(1 tail) F

calc

(0.05) t

crit

(2 tail) t

calc

(0.05)

[H0:O=O*]

Estimated Regression Function

Phase I

2-10-1 t,m

m

y

*(O)

0.960 0.999 1.04 1.09 1.96 0.47 Unbiased

Estimated v. Actual Target (O) & Squared Errors

Phase II

2-20-2 t,m

m

y

*(O)

0.932 0.972 1.04 1.13 1.96 -0.31 Unbiased

Phase II

2-20-2 t,m

s

*

2

(O)

0.385 0.347 1.04 6.14 1.96 0.63 Unbiased

Phase III

2-20-2 t,m

m

y

*(O)

0.957 0.974 1.04 1.10 1.96 0.70 Unbiased

Phase III

2-20-2 t,m

s

*

2

(O)

0.435 0.365 1.04 1.14 1.96 -6.59 Biased

Table V shows the proposed network produces an unbiased estimate, y*(d), of the mean of the target O in all three training phases. The estimated variance 2(O) is also an unbiased estimate of the actual squared error for PhaseII; the corresponding Phase III estimate is biased.

Table V reports the results for Example#3. The pattern for Example#2 is repeated. the (proposed network) estimate for the mean of the target O(x) is unbiased for all three training phases. The Phase II estimate of the mean of the noise variance function is an unbiased estimate of the actual squared errors as indicated by the t-test results. However the Phase III estimate is biased, like the Example#2 results. The F statistics indicates significant differences between the variance of the actual squared errors and the estimated noise variance in both PhaseII and PhaseIII, unlike Example#2. The R-squared and adjusted R-Squared figures for the estimated noise variance when compared to the actual squared errors are better than the corresponding PhaseII results. These results show that the proposed network can produce unbiased estimates of both the mean and variance of the target values, where those targets are actual observed option prices corresponding to unseen input variables. The unbiased estimate of both the mean of the target and actually occurring squared errors suggest a good estimate of the 95% prediction intervals will result in this case also.

6 Conclusions

In this paper, we demonstrate a method for computing standard errors, confidence intervals, and prediction intervals, using the form of neural net termed a multi layer perceptron (MLP). We show that the method is applicable to any generalised non linear regression technique of sufficient generality. The method rests on the classical framework for least squares regression and maximum likelihood estimation.

The method has been applied successfully to a standard synthetic set of data and gave statistically acceptable results. It performed comparably with a similar though less general method proposed by Nix & Weigend (1995). A synthetic option pricing test was constructed and the true noise variance function recovered. In a test with actual option prices an unbiased estimate of the actual squared errors for the fitted option prices was obtained. The theory presented and the results of the tests suggest that the method is appropriate for determining prediction intervals for target data with heteroskedastistic errors.

Directions for future research include application of the technique to the recovery of risk neutral densities from option prices, where it may be useful in avoiding the limitations of bootstrap and Monte Carlo methods for computing statistical intervals
. The technique also has applications in recovering the time dependent conditional densities of asset price series, and in volatility modelling. Possible extensions of the technique include the addition of extra output nodes to model higher moments, and thus recover a more complete description of the error distribution.

References

Andersson, M., and Lomakka, M., 2003. "Evaluating Implied RND's by Some New Confidence Interval Estimation Techniques", Sveriges Riksbank Working Paper Series, No. 146.

H. Amilon. 2001. "A Neural Network Versus Black-Scholes: A Comparison of Pricing and Hedging Performances", Working Paper, Department of Economics, Lund University, Lund, Sweden.

Bakshi, G., Cao, C., and Chen, Z. 1997. "Empirical performance of alternative option-pricing models", The Journal of Finance, Vol.52, No.5, pp.2003-2049.

Bakshi, G., Cao, C., and Chen, Z. 1998. "Pricing and hedging long-term options", Journal of Econometrics.

Bishop, C.M. 1994."Mixture Density Networks", Technical report NCRG/4288, Neural Computing Research Group, Aston University.

Bishop C. M., 1995. Neural Networks for Pattern Recognition, Clarendon Press, Oxford, pp. 253-294.

Bishop, C.M., Qazaz, C.S. 1995. "Bayesian Inference of Noise Levels in Regression", Technical Report, Neural Computing Research Group, Aston University.

Campbell, J., Lo, A., and Mackinlay, G. 1997. The Econometrics of Financial Markets, Princeton University Press, Princeton, New Jersey. P 518.

Efron, B., Tibshirani, R.J. 1993. An Introduction to the Bootstrap. Chapman & Hall, New York.

Galai, D. 1983. "A survey of empirical tests of option-pricing models," in Option Pricing: Theory and Applications (M. Brenner, ed.), Lexington Books, Lexington, pp.45-81.

Galindo, J., 1999. "A Framework for Comparative Analysis of Statistical and machine learning Methods: An Application to the Black-Scholes Option Pricing Equation", in Computational Finance. (1999) Abu-Mostafa, Y. S., B. LeBaron, A. W. Lo, and A. S. Weigend (Eds.) Proceedings of the Sixth International Conference on Computational Finance (CF99, New York, January 1999). Cambridge, MA: MIT Press.

Girosi, F., and Poggio, T., 1990. "Networks and the best approximation property". Biological Cybernetics, 63, pp. 169-176.

Herrmann, R., and Narr, A., 1997 “Risk Neurality.” Risk, 10, Technology Supplement, p 23-29.

Heskes, T. 1997. "Practical confidence and prediction intervals", in: M.Mozer, M.Jordan & T.Petsche, eds, `Advances in Neural Information Processing Systems 9', MIT Press, Cambridge, MA, pp. 176-182.

Hornik, K., 1989. "Multilayer feedforward networks are universal approximators". Neural Networks, 2(5), pp. 359-366.

Hornik, K., Stinchcombe, M., White, H., 1990. "Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks", Neural Networks, Vol. 3, pp. 551-560.

Huber, P. J. 1967. "The behavior of maximum likelihood estimation under nonstandard conditions", Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, LeCam, L. M. and Neyman, J. editors. University of California Press, pp. 221-233.

J. Hutchinson, A. Lo, and T. Poggio. 1994.“A Non-parametric Approach to Pricing and Hedging Derivative Securities via Learning Networks.” Journal of Finance, 49, No. 3, pp. 851-889.

Hwang, J.T. Gene, and Ding, A. Adam, 1997. "Prediction Intervals for Artificial Neural Networks", Journal of the American Statistical Association, Vol. 92 No. 438, pp. 748-757.

Lajbcygier P. 1999a. “Literature Review: The problem with modern Parametric Option Pricing” Journal of Computational Intelligence in Finance Vol.7 No.5 pp.6-23.

Lajbcygier P. 1999b. “Literature Review: The Non-Parametric Models” Journal of Computational Intelligence in Finance Vol.7 No.6 pp.6-18.

LeBaron, A. & Weigend, A. 1994. "Evaluating Neural Network Predictors by Bootstrapping", In: Proceedings of the International Conference on Neural Information Processing (ICONIP'94), Seoul.

MacBeth, J., and Merville, L., 1979. "An Empirical Examination of The Black-Scholes Call Option Pricing Model", Journal of Finance 34, pp. 1173-1186.

MacKay, D.J.C. 1991. "Bayesian Methods for Adaptive Models", PhD thesis, California Institute of Technology.

Malliaris, M., Salchenberger, L., 1993. "A Neural Network Model for Estimating Option Prices". Journal of Applied Intelligence, Vol. 3, p. 193-206.

Maruyama, M., Girosi, F., and Poggio, T., 1991. "A connection between GRBF and MLP". Massachusetts Institute of Technology, Artificial Intelligence Memo 1291.

Melick, W R and C P Thomas (1998): “Confidence Intervals and Constant Maturity Series for Probability Measures Extracted from Option Prices”. Paper presented at the conference ‘Information Contained in Prices of Financial Assets’, Bank of Canada.

Nix, D.A., Weigend, A.S. 1995. "Learning Local Error Bars for Non-Linear Regression", In: Proceedings of NIPS 7, pp. 489-496.

Pagan, Adrian., Ullah, Aman., 1999. Nonparametric Econometrics, Cambridge University Press.

Rubinstein, M., 1985. "Nonparametric tests of alternative option pricing models using all reported trades and quotes on the 30 most active CBOE option classes from August 23, 1976 through August 31", 1978, Journal of Finance 40, No. 2, pp. 455-480.

Satchwell, C. 1994. "Neural Networks for Stochastic Problems: More than One Outcome for the Input Space", In: NCAF Conference, Aston University, September 1994.

Seber, G.A.F., & C.J. Wild, 1989. Nonlinear regression, John Wiley & Sons, New York.

C Sutcliffe, Private Communication. January 2003. We are grateful to Professor Sutcliffe for confirming this observation.

Tibshirani, R., 1996. "A comparison of some error estimates for neural network models". Neural Computation, 8, pp. 152-163.

Ungar, Lyle H., De Veaux, Richard D., Rosengarten, Evelyn 1995. "Estimating Prediction Intervals for Artificial neural Networks", Department of Computer and information Science, University of Pennsylvania, Philadelphia, PA 19104.

White, H. 1982. "Maximum likelihood estimation of misspecified models". Econometrica, 50, pp. 1-25.

Wu, C.J.F., 1986. "Jacknife Bootstrap and other Resampling Methods in Regression Analysis", Annals of Statistics 14, 1261-1295.

Appendix A

A.1
The Delta Method

Consider a sample S, {(x1,y1), (x2,y2), …, (xn,yn) (S} where y represents scalar targets and x a vector of k inputs. Suppose the true relationship between the targets y and the input vectors x takes the form:

[image: image101.wmf]() (=1,...,)

ii

yf;in

e

=+

i

x

b

 (A.1)

The data is modelled by the regression equation (3.2) where the right hand side of (3.2) is a MLP. Thus the vector of parameters (is replaced by the set of weights and biases (, and

[image: image102.wmf]ˆˆ

ˆ

()(;) (=1,...,)

yi

;fein

m

=+

ii

xx

WW

 (A.2)

If n is large enough so that
[image: image103.wmf]ˆ

»

WW

, a local linear approximation of the network about x0 = x, where x0 is a particular value of x, can be obtained and the procedure for multivariate linear regression applied. From a first-order Taylor series,

[image: image104.wmf]
[image: image105.wmf]ˆˆˆ

ˆ

()(;)(;)

y

;ff

m

=»+D

0000

xxxg

T

WWWW

 (A.3)

where
[image: image106.wmf]ˆˆ

()

D=

WW-W

, and
[image: image107.wmf]0

(;)/

dfd

=

WW

0

gx

.

Substituting this approximation into the least-squares cost function gives the following expression for the sum of squared residuals

[image: image108.wmf]2

1

2

1

ˆ

((;))

ˆ

 ()

n

i

i

n

i

i

SSRyf

e

T

T

=

=

»--D

»-D

å

å

ii

i

xg

g

WW

W

 (A.4)

Rewriting (A.4) in matrix notation gives

[image: image109.wmf]ˆˆ

()()

T

SSR

»-D-D

eGeG

WW

 (A.5)

where G is an n (k matrix whose ith row is the vector
[image: image110.wmf]T

i

g

and e is an n (1 vector of errors. Setting the derivatives of (A.5) with respect to
[image: image111.wmf]ˆ

W

 equal to zero and solving the resulting equations to minimise the SSR gives

[image: image112.wmf]1

ˆ

()

TT

-

D»

GGGe

W

 (A.6)

Different samples will generate different weight vectors according to (A.6). The variance-covariance matrix of the weights is (the derivation is not given here)

[image: image113.wmf]¶

21

1

ˆ

()()

T

y

Vars

-

-

D»

»

GG

H

W

 (A.7)

where
[image: image114.wmf]1

-

H

is the outer product approximation to the Hessian matrix of second order partial derivatives of the cost function (A.5) with respect to each of the elements of the weight matrix
[image: image115.wmf]ˆ

W

. From (A.3) and (A.7) the standard error of the regression function can now be defined as

[image: image116.wmf]·

(

)

(

)

12

1

((;))()

T

y

SEfs

-

-

»

»

T

iii

T

ii

xgGGg

gHg

W

 (A.8)

Using equation (A.8), a (1-()100% confidence interval for (y(x0) is given by

[image: image117.wmf](

)

12

0(/2)(1)00

ˆ

ˆ

(;)()

TT

ynky

ts

a

m

-

--

±

T

xgGGg

W

 (A.9)

and a (1-()100% prediction interval is

[image: image118.wmf]

EMBED Equation.DSMT4[image: image119.wmf](

)

12

0(/2)(1)00

ˆ

ˆ

(;)(1())

TT

ynky

ts

a

m

-

--

±

T

x+gGGg

W

 (A.10)

Equations (A.9) and (A.10) have the same form as equations (3.6) and (3.7) given above, with vector g substituted for x and matrix G substituted for X. The
[image: image120.wmf]2

y

s

 term is SSR/(n-k-1), the MSR obtained using (A.5) in the numerator. Note that k here is the number of effective weights and biases.

If regularisation as described by Bishop (1995) rather than early stopping is used to prevent over fitting, the standard error given in equation (A.8) must be replaced by

[image: image121.wmf]·

(

)

1

((;))(2)

SEf

l

-

»

T

iii

xgH+g

W

 (A.11)

where the cost function to be minimised is

[image: image122.wmf]2

1

n

i

i

SSRw

l

=

+

å

 (A.12)

and the (term in (A.12) is a penalty term used to induce weight decay. The wi are the weights from equation (3.10).

The value of k, the degrees of freedom to use in equations (A.9) and (A.10) is somewhat problematic. When neural net training is stopped before convergence, by regularisation or early stopping, some weights and biases may be ineffective. One solution is to use the upper bound k = q (H + 1 + H, where q is the number of input nodes, and H the number of hidden layer nodes. Alternatively, sensitivity analysis can be used to identify inputs that do not influence the predicted targets, and the weights and biases associated with these inputs deducted from the upper bound figure. However, for large data sets (e.g. 7000 + observations), use of the upper bound where k (50 should have minimal effect on estimation accuracy.

A.2
The Sandwich Method
An important assumption underlying the OLS and delta method estimators of standard error concerns the variance of the noise (associated with the true regression. This is assumed (~ N(0,(2) with constant variance (2. The presence of heteroskedasticity will result in estimated standard errors that are biased. The sandwich estimator
 provides a method of dealing with this problem. The sandwich estimator is obtained by replacing the variance-covariance matrix of weights given by equation (A.7) with

[image: image123.wmf]¶

121

1

()()()

ˆ

()

()

n

TTTT

iii

i

Sand

ne

Var

nk

--

=

éù

êú

ëû

D»

-

å

GGGggGGG

W

 (A.13)

Substituting (A.13) into (A.8) in place of (A.7) gives

[image: image124.wmf]¶

¶

(

)

ˆ

((;))()

SandSand

SEfVar

æö

»D

ç÷

èø

T

iii

xgg

WW

 (A.14)

Equation (A.13) yields asymptotically consistent variance-covariance matrix estimates without making distributional assumptions, even if the assumed model underlying the parameter estimates is incorrect. Because of these desirable properties, the sandwich estimator is also termed the robust covariance matrix estimator or the empirical covariance estimator.

Appendix B

B.1
Bootstrap Pairs method

Resampling methods provide an alternative to the delta method for calculating standard errors and statistical intervals for neural nets. The bootstrap method
 is a computer-based technique based on resampling that can provide confidence intervals for any population parameter estimate. In the context of regression, two forms of bootstrap are possible. The first of these is the bootstrap pairs method.

Consider a sample S, {(x1, y1), (x2, y2), …, (xn, yn) (S}, where y represents scalar targets and x a vector of k inputs. A bootstrap sample is a sample
[image: image125.wmf], {(,) , 1 to }

BootBoot

ii

yin

Î=

SxS

, consisting of n pairs of (xi, yi) drawn randomly (with replacement) from S. This means that some (xi, yi) may appear more than once in
[image: image126.wmf]boot

S

while others may not appear at all. The bootstrap estimate of the standard error of the true regression function, which is a function of the set of inputs X, is given by

[image: image127.wmf]¶

2

,

1

1

ˆ

ˆˆ

((;))(;)()

1

B

Boot

yyBoot

b

b

SEf

B

mm

=

éù

»-

ëû

-

å

XXX

WW

 (B.1)

In equation (B.1),
[image: image128.wmf]ˆ

ˆ

(;)

y

b

m

X

W

 is the neural net trained on the bth bootstrap sample
[image: image129.wmf]Boot

b

S

, where there are a total of B bootstrap samples, with typical values 20 < B < 200. The bootstrap estimate of the mean of the target values
[image: image130.wmf],

ˆ

()

yBoot

m

X

, termed a bagged estimate in the neural net literature, is given by the mean of the ensemble of B networks:

[image: image131.wmf],

1

1

ˆ

ˆˆ

()(;)

B

yBooty

b

b

B

mm

=

»

å

XX

W

 (B.2)

In equations (B.1) and (B.2), X is an n (1 vector of the xi, that is, an n(k matrix of x values. Using equation (B.1), a (1-()100% bootstrap confidence interval for (y(X) is given by
:

[image: image132.wmf]¶

(

)

,(/2)

ˆ

()((;))

Boot

yBootB

tSEf

a

m

±

XX

W

 (B.3)

B.2
Bootstrap Residuals Method

In the bootstrap residuals method the residuals from a neural net
[image: image133.wmf]ˆ

ˆ

(;)

y

m

X

W

 trained on a sample S, defined as before, are resampled rather than the training sample itself.

Suppose E, {e1, e2, …, en) (E} is a set of residuals from
[image: image134.wmf]ˆ

ˆ

(;)

y

m

X

W

 trained on sample S. A bootstrap residuals sample is a sample
[image: image135.wmf], { , 1 to }

BootBoot

i

ein

Î=

EE

 consisting of n samples ei drawn randomly (with replacement) from E. The bootstrap residual estimate of the standard error of the true regression function is given by

[image: image136.wmf]¶

2

,

1

1

ˆ

ˆˆ

((;))(;)()

1

B

rb

BootR

yyBootR

b

SEf

B

mm

=

éù

»-

ëû

-

å

XXX

WW

 (B.4)

In equation (B.4),
[image: image137.wmf]ˆ

ˆ

(;)

b

r

y

m

X

W

 is the NN trained on the bth bootstrap residual sample
[image: image138.wmf]Boot

b

E

, where there are a total of B bootstrap residual samples, with typical values 20 < B < 200. The target for
[image: image139.wmf]ˆ

ˆ

(;)

b

r

y

m

X

W

 is (
[image: image140.wmf]Boot

b

E

(
[image: image141.wmf]ˆ

ˆ

(;)

y

m

X

W

). The bootstrap residual estimate of the mean of the target values,
[image: image142.wmf],

ˆ

()

yBootR

m

X

, is given by the mean of the ensemble of B networks.

[image: image143.wmf],

1

1

ˆ

ˆˆ

()(;)

b

B

r

yBootRy

b

B

mm

=

»

å

XX

W

 (B.5)

Using equation (B.4), a (1-()100% bootstrap confidence interval for (y(X) is

[image: image144.wmf]¶

(

)

,(/2)

ˆ

()((;))

BootR

yBootRB

tSEf

a

m

±

XX

W

 (B.6)

The bootstrap residuals method has the advantage that the same sample S is the source of the inputs X for all B networks that must be trained. This may be an advantage in some experimental situations. On the other hand, it is model specific and not as robust to over fitting or mis-specification as the bootstrap pairs method.

B.3
Bayesian Approaches

The delta, sandwich, and bootstrap estimators of standard errors are based on the maximum likelihood framework. Bayesian statistics provides a different approach. In classical “frequentist” statistics, inferences about the parameters of a population P are based entirely on sample statistics from sample(s) S drawn randomly from P. Bayesian statistics in contrast, takes account of prior beliefs about the population P, by basing inferences on a prior probability distribution which is combined with a sample S to produce a posterior (probability) distribution
[image: image145.wmf]()

P

q

S

, for the parameter of interest (. Confidence and prediction intervals are defined within the Bayesian Framework.

Let (be a parameter of the population distribution P, and S a random sample drawn from P. If (is viewed as a random variable whose posterior distribution is
[image: image146.wmf]()

P

q

S

, then [(L(S), (U(S)] is a (1-()100% Bayesian confidence interval for (if from
[image: image147.wmf]()

P

q

S

 there is a (1-()100% probability (([(L(S), (U(S)]. In the Bayesian approach, (is a random variable and [(L(S), (U(S)] is fixed given availability of S. In the classical approach it is (which is fixed and [(L(S), (U(S)] varies with S. If S is a (univariate) random sample drawn from P where {(x1, x2, …, xn) (S, n<p} and P(xn+1(S) is the posterior distribution for xn+1, then [(L(S), (U(S)] is a (1-()100% Bayesian prediction interval for xn+1 if from P(xn+1(S) there is a (1-()100% probability xn+1 ([(L(S), (U(S)].

For regression, maximum likelihood based methods estimate single values for each (unknown) parameter of the true regression. The Bayesian approach, in contrast, expresses the uncertainty regarding the true weight vector (as the posterior probability distribution
[image: image148.wmf]()

P

S

W

given a sample S. Thus

[image: image149.wmf](())(())()

 (())()()

yy

y

PPPd

PPPd

mm

m

=

µ

ò

ò

xSxS

xS

W

W

WWW

WWWW

 (B.7)

where P(() is the prior distribution for the weights. MacKay
 shows that with approximations, the latter integral can be solved analytically. If the noise is assumed to be (~ N(0,(2) and the prior P(() is also assumed to be Gaussian, then a Gaussian posterior distribution
[image: image150.wmf](())

y

MP

P

m

x

W

can be derived where

[image: image151.wmf]ˆ

ˆ

[()](;)

yyMP

E

mm

=

xx

W

 (B.8)

In (B.8),
[image: image152.wmf]MP

W

 is (at the maximum of the posterior probability distribution
[image: image153.wmf]()

P

S

W

. The variance of
[image: image154.wmf](())

y

MP

P

m

x

W

is

[image: image155.wmf]¶

211

(())()

T

y

Var

ms

--

=+

xgAg

 (B.9)

where (2 is the (constant) noise variance and
[image: image156.wmf]1

-

A

 is the Hessian matrix of second order partial derivatives (with respect to each of the elements of () of the regularised cost function

[image: image157.wmf]2

2

1

ˆ

(;)

22

N

yii

ii

yw

sl

m

=

éù

-+

ëû

åå

i

x

W

 (B.10)

The second term in (B.10) is a regularisation term resulting from the assumption that P((), the prior distribution in (B.7) is a Gaussian. In (B.10), (is a constant and the wi are the weights from equation (3.10). It follows that an approximate (1-()100% Bayesian prediction interval for
[image: image158.wmf]()

y

m

x

is given by

[image: image159.wmf]211

(1)100%

ˆ

(;)()

T

yMP

z

a

ms

--

-

±+

000

xgAg

W

 (B.11)

By using (B.7), maximum likelihood estimation has been avoided. However, the derivation relies on the same assumptions of normality of the errors and unbiasedness as the delta method, to which it is related. Bishop & Qazaz
 have extended the method to the case of non-constant variance, replacing the constant noise variance term in (B.9) with input-dependant (variable) noise variance. An advantage of the Bayesian approach is that the regularisation parameter is automatically determined during training. This means cross validation is not required to control over fitting, so all of the available data can be used for training. Unfortunately, for neural nets obtaining Bayesian standard error estimates is substantially more complex than using maximum likelihood based approaches
. This is due to the approximations required to obtain the analytical formulae. The Bayesian method is unreliable where crude approximations are used. Moreover, inversion of the Hessian matrix is required, with the attendant possibility of failure.

Table 1 Estimates by Proposed Network (Example#1)

�

Table 1 Shows the proposed network produces unbiased estimates μy*(x), of the underlying true regression function, and σ∗2(x) of the noise variance function. Phase III estimates of the actual target d and actual squared residuals are also unbiased. The t-test for the means shows no difference at the 95% level.

� MacBeth, J., and Merville, L., 1979. "An Empirical Examination of The Black-Scholes Call Option Pricing Model", Journal of Finance 34, pp. 1173-1186.

 Galai, D. 1983. "A survey of empirical tests of option-pricing models," in Option Pricing: Theory and Applications (M. Brenner, ed.), Lexington Books, Lexington, pp.45-81.

Rubinstein, M., 1985. "Nonparametric tests of alternative option pricing models using all reported trades and quotes on the 30 most active CBOE option classes from August 23, 1976 through August 31 1978", Journal of Finance 40, No. 2, pp. 455-480.

� Lajbcygier P. [1999a] “Literature Review: The problem with modern Parametric Option Pricing” Journal of Computational Intelligence in Finance Vol.7 No.5 pp.6-23.

� Bakshi, G., Cao, C., and Chen, Z. [1997] "Empirical performance of alternative option-pricing models", The Journal of Finance, Vol.52, No.5, pp.2003-2049.

Bakshi, G., Cao, C., and Chen, Z. [1998] "Pricing and hedging long-term options", Journal of Econometrics.

� Pagan, Adrian., Ullah, Aman., 1999. Nonparametric Econometrics, Cambridge University Press.

� Lajbcygier P. [1999b] “Literature Review: The Non-Parametric Models” Journal of Computational Intelligence in Finance Vol.7 No.6 pp.6-18.

� Hornik, K., 1989. "Multilayer feedforward networks are universal approximators". Neural Networks, 2(5), pp. 359-366.

Girosi, F., and Poggio, T., 1990. "Networks and the best approximation property". Biological Cybernetics, 63, pp. 169-176.

� Maruyama, M., Girosi, F., and Poggio, T., 1991. "A connection between GRBF and MLP". Massachusetts Institute of Technology, Artificial Intelligence Memo 1291.

� Campbell, J., Lo, A., and Mackinlay, G. 1997. The Econometrics of Financial Markets, Princeton University Press, Princeton, New Jersey. P 518.

� Hornik, K., Stinchcombe, M., White, H., 1990. "Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks", Neural Networks, Vol. 3, pp. 551-560.

� Galindo, J., 1999. "A Framework for Comparative Analysis of Statistical and machine learning Methods: An Application to the Black-Scholes Option Pricing Equation", in Computational Finance. (1999) Abu-Mostafa, Y. S., B. LeBaron, A. W. Lo, and A. S. Weigend (Eds.) Proceedings of the Sixth International Conference on Computational Finance (CF99, New York, January 1999). Cambridge, MA: MIT Press.

� Malliaris, M., Salchenberger, L., 1993. "A Neural Network Model for Estimating Option Prices". Journal of Applied Intelligence, Vol. 3, p. 193-206.

Hutchinson, J., Lo, A., and T. Poggio, T. 1994. “A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks.” Journal of Finance, 49, No. 3, pp. 851-889.

Herrmann, R., and Narr, A., 1997 “Risk Neurality.” Risk, 10, Technology Supplement, p 23-29.

� C Sutcliffe, Private Communication. January 2003. We are grateful to Professor Sutcliffe for confirming this observation.

� H. Amilon. 2001. "A Neural Network Versus Black-Scholes: A Comparison of Pricing and Hedging Performances", Working Paper, Department of Economics, Lund University, Lund, Sweden.

� Bishop C. M., 1995. Neural Networks for Pattern Recognition, Clarendon Press, Oxford, pp. 253-294.

� Hwang, J.T. Gene, and Ding, A. Adam, 1997. "Prediction Intervals for Artificial Neural Networks", Journal of the American Statistical Association, Vol. 92 No. 438, pp. 748-757.

� Seber, G.A.F., & C.J. Wild, 1989. Nonlinear regression, John Wiley & Sons, New York.

� Huber, P. J. 1967. "The behavior of maximum likelihood estimation under nonstandard conditions", Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, LeCam, L. M. and Neyman, J. editors. University of California Press, pp. 221-233.

White, H. 1982. "Maximum likelihood estimation of misspecified models". Econometrica, 50, pp. 1-25.

� Tibshirani, R., 1996. "A comparison of some error estimates for neural network models". Neural Computation, 8, pp. 152-163.

� LeBaron, A. & Weigend, A. 1994. "Evaluating Neural Network Predictors by Bootstrapping", In: Proceedings of the International Conference on Neural Information Processing (ICONIP'94), Seoul.

� Bishop, C.M., Qazaz, C.S. 1995. "Bayesian Inference of Noise Levels in Regression", Technical Report, Neural Computing Research Group, Aston University.

� Ungar, Lyle H., De Veaux, Richard D., Rosengarten, Evelyn 1995. "Estimating Prediction Intervals for Artificial neural Networks", Department of Computer and information Science, University of Pennsylvania, Philadelphia, PA 19104.

� Heskes, T. 1997. "Practical confidence and prediction intervals", in: M.Mozer, M.Jordan & T.Petsche, eds, `Advances in Neural Information Processing Systems 9', MIT Press, Cambridge, MA, pp. 176-182.

� Nix, D.A., Weigend, A.S. 1995. "Learning Local Error Bars for Non-Linear Regression", In: Proceedings of NIPS 7, pp. 489-496.

� Satchwell, C. 1994. "Neural Networks for Stochastic Problems: More than One Outcome for the Input Space", In: NCAF Conference, Aston University, September 1994.

� Wu, C.J.F., 1986. "Jacknife Bootstrap and other Resampling Methods in Regression Analysis", Annals of Statistics 14, 1261-1295.

� Bishop, C.M. 1994."Mixture Density Networks", Technical report NCRG/4288, Neural Computing Research Group, Aston University.

� J. Hutchinson, A. Lo, and T. Poggio. “A Non-parametric Approach to Pricing and Hedging Derivative Securities via Learning Networks.” Journal of Finance, 49, No. 3, 1994, pp. 851-889.

� Melick, W R and C P Thomas (1998): “Confidence Intervals and Constant Maturity Series for Probability Measures Extracted from Option Prices”. Paper presented at the conference ‘Information Contained in Prices of Financial Assets’, Bank of Canada.

Andersson, M., and Lomakka, M., 2003. "Evaluating Implied RND's by Some New Confidence Interval Estimation Techniques", Sveriges Riksbank Working Paper Series, No. 146.

� Huber, P. J. 1967. "The behavior of maximum likelihood estimation under nonstandard conditions", Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, LeCam, L. M. and Neyman, J. editors. University of California Press, pp. 221-233.

White, H. 1982. "Maximum likelihood estimation of misspecified models". Econometrica, 50, pp. 1-25.

� Efron, B., Tibshirani, R.J. 1993. An Introduction to the Bootstrap. Chapman & Hall, New York.

�Heskes, T. 1997. "Practical confidence and prediction intervals", in: M.Mozer, M.Jordan & T.Petsche, eds, `Advances in Neural Information Processing Systems 9', MIT Press, Cambridge, MA, pp. 176-182.

� MacKay, D.J.C. 1991. "Bayesian Methods for Adaptive Models", PhD thesis, California Institute of Technology.

� Bishop, C.M., Qazaz, C.S. 1995. "Bayesian Inference of Noise Levels in Regression", Technical Report, Neural Computing Research Group, Aston University.

� Ungar, Lyle H., De Veaux, Richard D., Rosengarten, Evelyn 1995. "Estimating Prediction Intervals for Artificial neural Networks", Department of Computer and information Science, University of Pennsylvania, Philadelphia, PA 19104.

i

[image: image160.emf]_1106975361.unknown

_1106975422.unknown

_1106975474.unknown

_1118805572.unknown

_1118806882.unknown

_1118807172.unknown

_1118812963.unknown

_1119099662.unknown

_1118807311.unknown

_1118807388.unknown

_1118807434.unknown

_1118807212.unknown

_1118807045.unknown

_1118807121.unknown

_1118806982.unknown

_1118805781.unknown

_1118806777.unknown

_1118805682.unknown

_1118672333.unknown

_1118672600.unknown

_1118672783.unknown

_1118688293.doc
Table II
Results for Example#1: Methods Compared

This Work

Nix-Weigend

row

Test Set

 (n=104)

Test Set

 (n=105)

Target d

ENMS

Our Mean Cost

ENMS

NW Mean Cost

1

Phase I

0.764

0.454

0.593

0.882

2

Phase II

0.577

0.344

0.593

0.566

3

Phase III

0.578

0.344

0.570

0.462

4

n(x) (exact additive noise)

0.575

0.343

0.563

0.441

Target e2

(PIII)

(PII)

(PIII)

(PII)

5

(x), residual errors)

0.571

0.569

0.548

N/a

6

(x), residual errors)

0.586

0.585

0.584

N/a

Distribution P(III)

1 std.

2 std.

1 std.

2 std.

7

% of errors < *(x); 2*(x)

67.4

93.1

67.0

94.6

8

% of errors < (x); 2(x)

66.9

95.0

68.4

95.4

9

(exact Gaussian)

68.3

95.4

68.3

95.4

_1118672758.unknown

_1118672550.unknown

_1114506269.unknown

_1114506354.unknown

_1114594708.doc
Table IV Performance of Proposed Network (Example#2)

Phase

Layers

Input

Output

R2

Adj.R2

F_Statistic

t-statistic

t-test

[no. nodes]

Fcrit(1 tail)

Fcalc(0.05)

tcrit(2 tail)

tcalc(0.05)

[H0:O=O*]

Estimated Regression Function

Phase I

2-10-1

t,m

y*(d)

0.942

0.967

1.04

1.08

1.96

-0.02

Unbiased

Estimated v. Actual Target (d) & True Noise Variance Function

Phase II

2-20-2

t,m

y*(d)

0.939

0.964

0.96

0.98

1.96

-1.62

Unbiased

Phase II

2-20-2

t,m

*2(d)

0.845

0.557

0.96

0.45

1.96

1.52

Unbiased

Phase III

2-20-2

t,m

y*(d)

0.942

0.966

1.04

1.08

1.96

-0.61

Unbiased

Phase III

2-20-2

t,m

*2(d)

0.900

0.855

0.96

0.75

1.96

6.20

Biased

Estimated v. Actual Squared Errors

Phase II

2-20-2

t,m

*2(d)

0.246

-0.139

0.96

0.77

1.96

-1.16

Unbiased

Phase III

2-20-2

t,m

*2(d)

0.219

0.118

1.04

1.51

1.96

4.39

Biased

_1118672177.unknown

_1114593173.doc
Table III Results for Example#2: Synthetic Model Option Prices + Noise

row

Test Set

Target d = CNN + noise

ENMS

Our Mean Cost

1

Phase I

0.059

564.660

2

Phase II

0.062

599.406

3

Phase III

0.059

566.805

4

n(x) (exact additive noise)

0.058

556.988

Target e2

 (PIII)

(PII)

5

(*(x), residual errors)

0.537

0.536

6

((x), residual errors)

0.562

0.591

Distribution (PII)

1 std.

2 std.

7

% of errors < *(x); 2*(x)

51.3%

81.4%

8

% of errors < (x); 2(x)

70.0%

96.1%

Distribution (PIII)

9

% of errors < *(x); 2*(x)

32.5%

60.2%

10

% of errors < (x); 2(x)

71.4%

96.2%

11

(exact Gaussian)

68.3%

95.4%

_1114506336.unknown

_1114506296.unknown

_1114506033.unknown

_1114506188.unknown

_1106975476.unknown

_1114504714.unknown

_1106975430.unknown

_1106975438.unknown

_1106975463.unknown

_1106975470.unknown

_1106975472.unknown

_1106975466.unknown

_1106975442.unknown

_1106975444.unknown

_1106975446.unknown

_1106975460.unknown

_1106975447.unknown

_1106975445.unknown

_1106975443.unknown

_1106975440.unknown

_1106975441.unknown

_1106975439.unknown

_1106975434.unknown

_1106975436.unknown

_1106975437.unknown

_1106975435.unknown

_1106975432.unknown

_1106975433.unknown

_1106975431.unknown

_1106975426.unknown

_1106975428.unknown

_1106975429.unknown

_1106975427.unknown

_1106975424.unknown

_1106975425.unknown

_1106975423.unknown

_1106975377.unknown

_1106975402.unknown

_1106975410.unknown

_1106975418.unknown

_1106975420.unknown

_1106975421.unknown

_1106975419.unknown

_1106975412.unknown

_1106975414.unknown

_1106975416.unknown

_1106975417.unknown

_1106975415.unknown

_1106975413.unknown

_1106975411.unknown

_1106975406.unknown

_1106975408.unknown

_1106975409.unknown

_1106975407.unknown

_1106975404.unknown

_1106975405.unknown

_1106975403.unknown

_1106975386.unknown

_1106975390.unknown

_1106975394.unknown

_1106975396.unknown

_1106975398.unknown

_1106975400.unknown

_1106975401.unknown

_1106975399.unknown

_1106975397.unknown

_1106975395.unknown

_1106975392.unknown

_1106975393.unknown

_1106975391.unknown

_1106975388.unknown

_1106975389.unknown

_1106975387.unknown

_1106975382.unknown

_1106975384.unknown

_1106975385.unknown

_1106975383.unknown

_1106975380.unknown

_1106975381.unknown

_1106975379.unknown

_1106975369.unknown

_1106975373.unknown

_1106975375.unknown

_1106975376.unknown

_1106975374.unknown

_1106975371.unknown

_1106975372.unknown

_1106975370.unknown

_1106975365.unknown

_1106975367.unknown

_1106975368.unknown

_1106975366.unknown

_1106975363.unknown

_1106975364.unknown

_1106975362.unknown

_1106975344.unknown

_1106975352.unknown

_1106975357.unknown

_1106975359.unknown

_1106975360.unknown

_1106975358.unknown

_1106975354.unknown

_1106975355.unknown

_1106975353.unknown

_1106975348.unknown

_1106975350.unknown

_1106975351.unknown

_1106975349.unknown

_1106975346.unknown

_1106975347.unknown

_1106975345.unknown

_1106975335.unknown

_1106975340.unknown

_1106975342.unknown

_1106975343.unknown

_1106975341.unknown

_1106975338.unknown

_1106975339.unknown

_1106975336.unknown

_1106975331.unknown

_1106975333.unknown

_1106975334.unknown

_1106975332.unknown

_1106975329.unknown

_1106975330.unknown

_1106975328.unknown

