
Usable grid infrastructures: practical experiences from the
eMinerals project

MT Dove*, AM Walker, TOH White, RP Bruin, KF Austen, I Frame*, G-T Chiang*
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ

* affiliated to the National Institute for Environmental eScience at above address

P Murray-Rust
Unilever Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road,

Cambridge CB2 1EW

RP Tyer, PA Couch, K Kleese van Dam
 STFC, Daresbury Laboratory, Warrington, Cheshire WA4 4AD

SC Parker, A Marmier†, C Arrouvel
Department of Chemistry, University of Bath, Bath BA2 7AY

† Now School of Engineering, Computer Science and Mathematics, University of Exeter, North Park Road, Exeter
EX4 4QF

Abstract
We report experiences from the eMinerals project, in collaboration with the National Institute for
Environmental eScience, in developing a highly-usable grid infrastructure to support simulation
sciences. The focus has been on a close integration between compute, data and collaborative
components, with the aim to make each of these highly usable for the scientists. Here we describe
both general aspects of our approach and specific details of our toolset. The latter include the
overall grid infrastructure, the data grid, the user interface, the job submission process, tools for
creating and managing combinatorial or parameter-sweep studies, our XML tools, and our metadata
tools, together with their role in running jobs, managing and sharing both data and information, and
in enabling informed collaboration between researchers.

1. Introduction
This paper forms part of a workshop on usable grid
infrastructures. The immediate question is what is
meant by ‘usable’? Or more precisely, usable to
whom and for what? The question of usability is
dependent on the norms of the community for which
the infrastructure is being developed. In the case of
the eMinerals project, we have been developing grid
solutions for computational scientists working in
several domains within the physical sciences. In
general, these scientists are most comfortable
working with shell tools rather than web portals or
graphical interfaces and having some degree of
control over their applications. That is not to say that
they do not appreciate web or graphical interfaces to
certain tools, but in general they do not want their
whole work pattern to be wrapped up in a pre-
packaged interface.

This type of scientist has traditionally worked to
the following paradigm:
‣ the scientist will prepare input data files, job

scripts and application (which may involve
modifying the application for the particular study);

‣ he/she will then transfer them to the compute
resource that will be used for running the job;

‣ the scientist will then log into the resource;
‣ he/she will then compile the application if an

executable does not exist;
‣ the job will be submitted to an appropriate queue;
‣ some time later the scientist will log back onto the

compute resource to monitor the status of the job;
‣ when the job is completed, the scientist will

transfer the data back to his/her local computer
(typically their desktop computer) to perform
subsequent analysis.

We have recently been witnessing a transformation in
the power of compute resources. Typically the
function of the high capability compute resource is
being reproduced by commodity clusters, and except
for the most challenging of computational jobs the
scientist now aims to handle hundreds or thousands
of jobs within detailed parametric sweeps rather than
being restricted to the small number of jobs that once
was all that was feasible. The traditional paradigm
has come to the end of the road. The usual approach
now is for the computational scientist to write
detailed scripts to handle the job submission and data
management, although still following the traditional
approach in terms of running jobs whilst logging into
the compute resource and in terms of transferring
data. This is now only “usable” for the fortunate few
for whom writing scripts is one of their natural skills.

The traditional paradigm also suffers from one
important aspect that was neglected until the advent
of escience, namely it offers nothing to facilitate

collaboration. In fact, with the ability to run many
jobs, even local collaborators (e.g. a researcher’s
supervisor) will have great difficulty in extracting
information from the data obtained by one
researcher. A common example of this problem is if a
PhD student does not publish the results of their
work before the end of their studentship; increasingly
there will be only a remote chance of the supervisor
being able to extract anything of value from the vast
quantities of files left behind.

Grid computing offers the prospect of completely
replacing this traditional paradigm, and the eMinerals
project has sought to develop new approaches to
exploit this. We have taken the view that the
traditional paradigm contains no “best parts of” that
are worth salvaging to create a hybrid with new grid
methods. Instead we are now offering a genuinely
usable infrastructure for computational scientists of
the type we have described in our opening paragraph.
Grid solutions solve the problem of management of
many jobs and associated data files, but on top of this
they offer the prospect of adding value to data
through simultaneous automatic capture of metadata,
and tools to enable extraction of information from
data files. Such tools will not only make the
management of data easier for the researcher, they
will also make collaborative sharing of both data and
information much easier. The eMinerals toolset is
now able to make the processes of grid computing,
data management, information delivery and
collaboration easy for the computational scientist.

It is worth noting that one important part of the
traditional paradigm has been the role of the log
book. If a researcher has taken the log book
seriously, it should be possible for a collaborator or
supervisor to understand what the researcher did and
thus pick up from the researcher at any point. With
the capability of running many jobs, it is becoming
increasingly untenable to expect fellow researchers
to maintain comprehensive lab books. Moreover, the
flow of data from simulation to analysis to final
graph is increasingly entirely within the electronic
realm. And in any case, it is hard to share lab books
with collaborators who work in distant institutes.
Within the eMinerals project we have have not
sought to reproduce the lab book for escience.

Instead we recognise, as will be discussed later, that
many of the functions the lab book was intended to
fulfil in a scientist’s process can now be reproduced,
or even improved upon, by various components of
our toolset.

2. The eMinerals perspective

2.1 The eMinerals project
The eMinerals project has a primary focus on
developing grid infrastructures to support
computational scientists who perform simulations of
the atomistic components of environmental
processes. One exemplar is the simulation of the
energies involved in the adsorption of organic
pollutant molecules such as dioxins on mineral
surfaces. These are challenging calculations in their
own right, but the challenge is magnified through the
fact that there are 76 congeners of the dioxin
molecule, i.e. by representing the chemical formula
as (C6HxCl4–x)O2(C6HyCl4–y), there are 76 different
molecules that are formed by different values of x
and y in the formula and different locations of the H
and Cl atoms within the molecule. We need to be
able to perform these calculations for all congeners
for each mineral surface being studied, and there are
many important mineral surfaces within soils.

We have developed a view of escience that
comprises a close integration between compute grids,
data grids and collaborative grids. as represented in
Figure 1. The compute and collaborative grids
overlap because there is a sharing of resources within
the project, and because the compute grid tools
(described below) have been developed through a
strong collaboration between scientists and grid
developers. The compute and data grids overlap
because we have increasingly understood how grid
computing now enables us to run so many jobs that
we have required a completely new approach to data
management in its broadest sense. The overlap
between collaborative and data grids is based on the
need for collaborators to share data in a way that is
useful. Sharing data is actually only part of the issue;
what scientists need to be able to do is share the
information content of data, an issue we called
“information delivery”.

The eMinerals project involves scientists,
application developers, computer scientists and grid
specialists from seven institutes within the UK: the
universities of Cambridge, Bath, and Reading,
Birkbeck College, University College London, and
the Daresbury eScience Centre.

2.2 Development of a usable grid infrastructure;
the general approach
Over the duration of the eMinerals project, there
have been significant changes in tools and
opportunities. In order to capture the advantages
these changes give, we have taken a ‘bottom-up’
approach to developing the eMinerals infrastructure
and toolset. In such an approach, there is a close
interaction between the scientist users and the
developers. Alternative descriptions for this approach

Computing

grids

Data

grids Collaborative

grids

Figure 1. Representation of the three components of
the grid infrastructure envisaged by the eMinerals

project. The focus is on the areas of overlap between
the different components.

might be ‘democratic’, ‘anarchic’ or ‘chaotic’. Such
an approach requires confident and informed
leadership, and a committed teamwork approach,
because people have to work to a common goal that
is necessarily dynamic. Anticipating later discussion,
we highlight one example of this sort of approach.
Soon after the eMinerals project started we became
aware of the work on the development of the
Chemical Markup Language (CML). Using CML
was not part of our original project plan, but over
time our vision of the opportunities afforded by
making CML a major part of our work became much
wider, and we devoted many resources to
incorporating CML into our work, including
developing several tools that exploited CML,
creating new CML-specific tools, adding CML
capability to our simulation tools, and contributing to
the development of CML. This aspect of our work
has significantly enhanced all aspects of the vision
represented in Figure 1; the point is that it was easy
to adapt to this opportunity through the use of a
bottom-up approach.

One aspect of the bottom-up approach is that
users effectively control the development of tools.
For example, if a tool doesn’t meet the needs, it can
be altered at an early stage, and in some extremes
tools are abandoned if they do not attract interest.
The big advantage of this is that the tools that are
developed have usability built into them from the
outset.

2.3 eMinerals user profile
Briefly, it is important to comment on the profile of
the users we are developing against, because this
provides the context for this paper. Our users are, to a
person, very comfortable with command lines and
shell tools. They are not necessarily capable of
developing complex scripts, although they are able to
adapt scripts to meet their needs. They are happy to
use portals and graphical interfaces for specific tools,
but they are very uncomfortable in having such
interfaces for most of their working environment.
Moreover, our users want to have complete control

over their simulation applications, and are very
uncomfortable working with applications that are
wrapped as a service if it means that they lose direct
control over the application. Even for applications
they have not developed, they still want to retain the
ability to modify them to a lesser or greater extent. A
usable grid infrastructure for these scientists must
ensure that users retain such a level of control over
what they do. This is consistent with the idea of a
bottom-up or democratic infrastructure, as opposed
to a provider/consumer model.

The eMinerals scientists often need to perform
large-scale combinatorial or parametric studies,
which typically involve several hundreds of jobs in
one go. In the traditional paradigm way of working
discussed in the introduction, the scientist would
work through the set of jobs one by one. Our
scientists now expect submission of many jobs and
the subsequent job and data management to be as
easy as submitting a single job.

3. eMinerals grid infrastructure

3.1 The basics of the infrastructure
The eMinerals grid infrastructure is represented in
Figure 2. This shows an integration of heterogeneous
compute resources (the virtue of ‘heterogeneous’
being that users have very heterogeneous
requirements) and data resources. The data resources
are currently based on the Storage Resource Broker,
(SRB) but work is in progress to develop a new
webdav-based data grid resource. One key to the
usability is in the use of standard middleware
components, such as Globus and Condor. Another
key is in the design of the interface seen by the user,
and this will be discussed extensively below. One
point to make here is that these have enabled the
users to exploit additional facilities, such as the NW-
Grid, as they become available.

3.2 The use of a data grid component
The eMinerals scientists have discovered that the use

Application

server

Researcher

Compute

clusters

Data

vault

Cluster

JobMgr

Globus

Internet

Access to external

facilities and grids

Desktop

pools
Condor

JobMgr

GlobusData

vault

Campus

grids Condor

JobMgr

Globus
Data

vault

Parallel (HPC)

clusters Cluster

JobMgr

Globus

Data

vault

Figure 2. Representation of the eMinerals
grid infrastructure. Compute resources

include clusters and Condor pools. Globus
is used to manage access to the grid

resources (including user authentication).
With the use of standard middleware tools

(such as Globus and Condor), access to
other grid resources and facilities is
straightforward. The infrastructure

contains an integrated data component
with data vaults attached to the Globus

gatekeepers. The application server
provides access to metadata associated

with the files in the data vaults and other
associated databases, and gives support

for various interface tools. The researcher
is shown with representations of terminal

command line and web-based interfaces to
the grid infrastructure; the key to usability

is in the interfaces.

of a datagrid component, in our case the SRB, has
made a significant qualitative change to the way that
they work. The datagrid is closely integrated with the
compute grid in one simple way, giving the user a
new working paradigm (which contrasts with the
paradigm described in the introduction):
‣ the scientist will prepare input data files, job

scripts and application for many jobs;
‣ he/she will then transfer them to the data grid;
‣ the set of jobs will be submitted to the grid

infrastructure from the user’s desktop, with the
jobs handling metascheduling, data transfer
between the compute resource and data grid, and
automatic collection of metadata;

‣ the user monitors the progress of jobs from their
desktop;

‣ when the jobs are completed, the scientist can
view the output files using our XML tools, and
collate the core results from the metadata database.

This process is shown in Figure 3. The data grid is
core to this process, providing a data staging tool that
integrates easily into the user’s desktop (the SRB
provides something like a file system view of their
data) and provides the user with complete control
over their files. The qualitative change to our work
patterns has several forms:
‣ we now expect to be able to share data with our

collaborators, and we expect this to be easy to the
point of being automatic;

‣ we now routinely and automatically produce
complete archives of all files associated with a
given study;

‣ the data grid provides a single place to deposit
data, and this process is easy.

Figure 3 shows an additional aspect to the data
component, namely the automatic capture of
metadata. We discuss this in detail in a separate paper
[3], but some aspects are discussed below.

3.3 Job submission interface: MCS
The primary user interface to job submission is the
my_condor_submit (MCS) tool. In brief, MCS is a
perl program that will enable a user to submit a job to

a grid infrastructure. The user provides a simple file
containing directives, as illustrated in Figure 4, and
the job submission process is controlled by the
information given within the file and then handled by
the Condor-G wrapping of Globus. MCS has a close
integration between the compute and data grids, in
that it is designed specifically to handle the activity
workflow described above. An earlier version of
MCS has been described elsewhere [1], but it now
has a number of new features which we will discuss
here with reference to Figure 4. The user has control
over a number of actions within the job:
‣ ability to nominate a number of grid resources to

which MCS can submit the job (metascheduling);
‣ provide information on the type of resource

(cluster or Condor pool, and number of processors
if a cluster);

‣ select data locations (e.g. within the SRB) for the
application, input and output files;

‣ instruct the job to automatically collect metadata
from the output XML files.

With regard to the latter point, automatic metadata
capture is an important aspect of usability, for
discovery of data location and information on data,
and as a primary interface to the core outputs
contained within the data, again as discussed below.

3.4 Job submission process: RMCS
MCS requires users to have Globus and Condor
installed on their desktops, which certainly mitigates
against usability to some extent. Thus we have
developed a web services wrapping of MCS called
RMCS. In effect, the use of RMCS converts the two-
tier client/grid model of MCS to a three-tier model of
client, server and grid, as represented in Figure 5.
The interaction between the client and RMCS server
can be performed from the user’s desktop without the
need to install additional middleware tools, and the
demands on the institute’s firewall are light. These
considerations are critical for making grids usable.

For people using shell tools, the RMCS package
consists of a set of six shell command tools that
interact with a central server via gSOAP. These

4. Job runs on

grid compute

resources

Data

vault

Application

server

1. Upload data files

and application to

data vault

2. Submit job to

minigrid via MCS

3. Data files and

application are

transferred to the

grid resource

5. Metadata is sent to

the application server

6. Output files

are transferred

to the data

vault

7. Researcher

interacts with

the metadata

database to

extract core

output values

Researcher

Figure 3. Representation of the processes
associated with running jobs on the

eMinerals minigrid. The researcher has
one process for the submission of the job

and the management of the data (steps 1,2
and 7). The job itself has another process

associated with data transfer and
metadata extraction (steps 3–6).

commands perform the following tasks:
‣ Submit an MCS job (rmcs_submit);
‣ Cancel an RMCS job (rmcs_cancel);
‣ Inspect the status of an RMCS job (rmcs_status);
‣ Remove an RMCS job from the status list

(rmcs_remove) after it has run;
‣ Update the user’s proxy credentials to the local

Myproxy server in the event that the initial proxy
has expired (rmcs_update);

‣ Change the RMCS password (rmcs_passwd).
The first three of these are self-explanatory. The only
point to note is that the MCS file contains all the
information that a job requires, so the rmcs_submit
command requires no information other than the
name of the MCS file. Once a job has been
submitted, the RMCS infrastructure maintains a
record of the status of a job that is updated regularly.
To use the RMCS commands, the user first needs to
upload his/her grid certificate credentials to a
myproxy server. This task might be accomplished
using the Globus myproxy_init command, but RMCS
is designed to be run from computers on which
Globus has not been installed. Instead, users can use
the CCLRC Myproxy Upload tool for example, a
java client tool with a graphical interface. The
updated proxy will have a finite lifetime; the

Executable = ossia2004
notification = NEVER

globusRSL = (arguments= 'trans')
pathToExe = /home/bob.eminerals/OSSIA2004

preferredMachineList = pbs1.uni.ac.uk cluster.college.ac.uk
jobType = performance
numOfProcs = 1

Output = trans.out

Sforce = true
Sdirect = true

Sdir = /home/bob.eminerals/ossia/trans50
Sget = *
Srecurse = true

Sdir = /home/bob.eminerals/ossia/trans50
Sput = *

RDatasetID = 444
RDesc = Sweep of temperature using ossia with 50:50 case
MetadataString = Model,”Fitted to SIESTA calculations”
GetEnvMetadata = true
AgentXDefault = trans.xml

AgentX = Energy,trans.xml:/PropertyList[last]/Property[title='Energy']
AgentX = OrderParameter,trans.xml:/Module[last]/Property[title='Order parameter']
AgentX = PDF1,trans.xml:/Module[last]/Property[dictRef='ossia:PDF1']
AgentX = Stiffness,trans.xml:/Module[last]/Property[title='Stiffness']
AgentX = EnergySquared,trans.xml:/Module[last]/Property[title='Energy squared']
AgentX = HeatCapacity,trans.xml:/Module[last]/Property[title='Heat capacity']
AgentX = Susceptibility,trans.xml:/Module[last]/Property[title='Susceptibility']

Queue

Figure 4. Representative MCS input script.

RMCS server

Web services API

MCS

RMCS client toolsRMCS library
BPEL engine

The Grid

SOAP library gSOAP

Figure 5: Representation of the three-tier
infrastructure of the RMCS web services wrapping
of MCS.

rmcs_update tool enables new a myproxy to be
associated with a job.

3.5 Combinatorial job submission
As noted in the introduction, the real gain of grid
computing (the “killer application”?) is the ability to
perform large-scale combinatorial or parameter
sweep studies. Usability requirements means that we
need a tool that will accurately set up and submit
many jobs at once. In fact there are two stages to this.
The first is unavoidably bespoke to some degree or
other. What is required is a tool to set up a set of
input files, e.g. for a parameter sweep over
temperature, we need a set of input files each
containing a different value for the temperature input
parameter. Our tools for this task also generate a
simple configuration file that matches the input file
names against job names.

The more general stage is to take the
configuration file and turn that into jobs. For this we
have developed a tool, called Monty, that is closely
integrated with RMCS. Monty is a perl program, and
requires two input files: a configuration file and an
MCS template file. Monty also requires a directory
containing any common files that are required to run
the jobs. This might be, for example, a file containing
an initial atomic configuration. When Monty is
executed, it performs a number of tasks:
‣ It first generates a complete set of MCS files based

on the name mapping provided in the
configuration file;

‣ It then creates a complete set of collections within
the SRB using the names within the configuration
file, and then uploads the set of input files,
including the common files, to these collections;

‣ Monty then submits all the MCS files using the
rmcs_submit command.

Monty effectively turns combinatorial job
submission into a single-command operation.

3.6 XML output files
In principle most users will not need to know much
about the use of XML, but XML is critical for many
aspects of the usability of our tools. The eMinerals
project makes considerable use of CML. Most of our
simulation codes are written in Fortran, and we have
have written a set of libraries to enable Fortran codes
to write output in XML format in general, and CML
(and KML) format specifically, called FoX [3]. To
use CML in our toolset, we have developed a way to
structure CML output files. In particular, our CML
output files are structured in blocks that contain
metadata, input parameters, step-wise output, and
summary output. Although most users will not worry
about XML per se, the point for this paper is that as
part of our toolkit we have made the use of XML
relatively easy, including, through the use of FoX,
creating XML output files.

3.7 Metadata management
The final component in eMinerals toolkit is metadata
extraction and management. We have developed an
infrastructure called the RCommands [3]. The
RCommands framework consists of a back-end

metadata database, a set of client tools, and an
application server that maps the web service calls
from the client tools onto a set of SQL calls. The
client tools for the user consist of 10 shell commands
for performing tasks such as listing metadata items,
annotating datasets and data objects with metadata,
and searching for datasets and data objects based on
metadata. The metadata items include the URIs of
the associated data objects.

The MCS example file (Figure 4) shows how
users interact with the job and the XML output file to
extract metadata. The directive GetEnvMetadata =
true instructs the job to extract metadata from the job
environment and from the metadata and parameter
blocks of the CML output files. The remaining
directives, those beginning with “AgentX”, instruct
the MCS job to extract specific metadata from the
CML. In this example (which is extracted from a
somewhat larger file) MCS is being instructed to
collect items such as the average values of energy,
order parameter and heat capacity to be stored as
metadata. It is not common to collect output values
as metadata, but there are at least two reasons why
this is useful. First, by way of example, if a scientist
has run studies of the adsorption of all congeners of
dioxin on a set of minerals surfaces, the Rsearch
command can be used to locate the calculation with
the lowest adsorption energy. The second reason to
collect output data values as metadata is to enable
metadata to be used as a primary interface to the
data, as we will now discuss.

3.8 Metadata as an interface to data: the Rgem
client tool
It is useful to cite a user case: consider a parametric
study in which we have calculated values of
quantities such as energy for a wide range of input
parameter values, such as temperature. Each
calculation has been performed as a separate job, so
that the core output is stored with many other
quantities within a myriad of output files stored
within the data grid. Rather than go to the output
files, we can use the metadata directly to construct a
table of output values, such as energy vs.
temperature. We have developed the Rgem command
to perform this task automatically, making the
collation of data from many grid computations
remarkably easy for the researcher. He/she specifies
the data set that contains metadata for a set of job
runs and the names of parameters to be extracted.
Rgem then generates a table of data in space-
separated format, which the researcher can then
import into an analysis or visualisation program. This
process is much easier than downloading all the files
from the data archive and then parsing them all to
extract the required information.

4. The eMinerals toolset and the
collaborative grid
The work described so far in this paper concerns the
focus that the eMinerals project has had on making
compute and data grids usable. Now we consider
how these tools also make collaboration much more

accessible. A key point is the central role of our use
of CML for data representation.

The way that our tools aid collaboration is shown
in Figure 6. This shows how one researcher (A) is
collaborating with a fellow researcher (B) who wants
to understand the results generated by the first
researcher. The traditional approach, which frankly is
completely inadequate in the era of grid computing,
is for one researcher to send the collaborator a set of
data files by email (or by posting them to an FTP or
HTTP server) and then conducting a conversation by
email to explain how to interpret the files. Using the
toolset described above, we can now do a lot better.

First, direct interaction between researchers is, in
our experience, much better carried out using tools
such as instant messaging, desktop Access Grid (with
application sharing tools), and wikis. In fact we
envisage that social networking sites will evolve to
further enhance this collaborative interaction, and we
are running a set of experiments in this area. For
sharing data, our use of the SRB (or a comparable
data grid infrastructure) automatically enables
sharing of output files with collaborators. We have
developed a web interface to the SRB, called
TobysSRB, which not only allows for easier access to
the data than afforded by other tools, but also
provides a one-click transformation of the XML files
to XHML pages using our ccViz tool [4]. This
enables the output file to be viewed by the
collaborator in a form that makes sense without the
need for prior expert knowledge, by using a
combined information- and user-centric
representation of the information content with tables
of data represented both in tabular form or plotted as
SVG graphs on demand. Thus the second researcher
is much better placed to understand the information
generated by the compute jobs of the first researcher.
The experience of the second researcher is further
enhanced by the fact that she/he can find the data
using the metadata contained within the RCommands
framework, a process that required little action from
the first researcher. Using the Rgem tool, both

researchers can construct tables of data easily.

5. The role of the system and network
managers
A lot of work to make grids usable relies heavily on
the contributions of system and network managers.
An example is in the area of security, specifically
with regard to firewalls. The patterns of network
communication required to support grid computing
are significantly different from those of most
researchers. The use of the Access Grid is one
example, which we want to have available on all
researchers’ desktops. The underlying multicast
technology is not needed on many networks and is
therefore unfamiliar to many network administrators.
Furthermore, specific firewall configurations are
required for many of our other software and
middleware tools, including Globus, Condor and the
SRB. Active positive collaboration between network
administrators and scientists is essential for escience
to be usable. Within the lead author’s institute we
have demonstrated that such a collaboration is both
feasible and consistent with running an institute
network that simultaneously meets the needs of the
researchers and the security requirements of the
network administrators.

6. Conclusions
The primary message from this paper is that we have
created a grid infrastructure for simulation scientists
that is a close integration between compute, data and
collaborative requirements, is complete in the sense
that it covers the whole job life cycle from
submitting jobs to a grid environment through to
extracting the core information for analysis and
sharing with collaborators, and is highly usable.
Usability is an important feature, and has been
designed into the development of the toolkit from the
outset by our bottom-up policy of enabling scientists
to work closely with the developers to set the overall

Data

vault

Application

server

Upload XML data files to data

vault for sharing with collaborator

Annotate data

with metadata

Locate data

from metadata

Using Rgem to share

simulation outputs

Researcher A

Researcher B

Project wiki

Instant

messaging

Access Grid

with JMAST View information

content of data

files using ccViz

Figure 6. Representation of the the
collaborative grid. Communication

tools include the Access Grid with the
JMAST application sharing tool, and

instant messaging. Tools such as wikis
allow for asynchronous and permanent
communication. The collaborative data
tools are based on the use of data grids
and metadata tools. If the data files are

in XML format, Researcher B can use
information delivery tools such as ccViz

[4] to read the information content of
the shared data files without sharing all
of the domain knowledge of Researcher

A. Both researchers can use the
metadata to construct tables of results

without either researcher needing to
parse output files. Researcher B can

also use the metadata to locate the data
files generated by Researcher A.

escience research agenda.
We show an example in Figure 7. This comes

from a study of the ordering of cations in silicate
minerals. In this example, the work was performed
through a collaboration between two of the authors.
Either of the collaborators would use the tools
described in §3.5 to create and submit several
hundred jobs at one time (a two-command process).
The other collaborator could then find the location of
the output files from the metadata, together within
information about the jobs (such as values of input
parameters, system size, number of steps). Both
collaborators could check that different jobs were
well-converged using the ccViz tool within
TobysSRB, and both could produce tables of data for
plotting, as in Figure 7, using the Rgem tool and the
approach of treating metadata as the primary
interface to data. The complete study involved the
integration of compute, data and collaborative grids
(Figure 1), the grid infrastructure represented in
Figure 2, the process represented in Figure 3, and the
collaboration cycle represented in Figure 6. The data
shown in Figure 7 were obtained using many
separate processors on a number of individual grid
resources, with job creation and submission handled
by one command each, with the data located through
a simple browse through the metadata, and with one
command required to collate the data for construction
of the graphs.

Finally we note that the toolset described in this
paper are quite generic, and can be used by other
communities of researchers. For users of the NGS,
some of the components are already available for
people to use. For communities wanting to work with
independent grid resources, we believe that the tasks
for the system manager are no harder than setting up
installations of Globus (which is needed on the
various grid resources). The demands on the user in
terms of installing tools on his/her own desktop are

very light, consisting merely of copy a few
executables and setting up the appropriate paths. The
bigger challenge is actually learning a new way or
working, rather than learning how to use the tools.

Acknowledgments
We are grateful to NERC for financial support (grant
reference numbers NER/T/S/2001/00855, NE/
C515698/1 and NE/C515704/1).

References
1. RP Bruin et al, “Job submission to grid computing

environments”, Proceedings of the Fifth UK eScience
All Hands Meeting, 2006, pp 754–761

2. TOH White et al. “Application and uses of CML within
the eMinerals project”. Proceedings of the Fifth UK
eScience All Hands Meeting, 2006, pp 606–613

3. RP Tyer et al, “Metadata management and grid
computing within the eMinerals project”, Proceedings
of the Sixth eScience All Hands Meeting, 2007

4. TOH White et al, “ A lightweight, scriptable, web-based
frontend to the SRB”, Proceedings of the Fifth UK
eScience All Hands Meeting, 2006, pp 209-216

Figure 7. Example of a grid computation, namely a sweep through temperatures to study the ordering of cations in
layer silicates using the Monte Carlo method. In this example the physics problem is represented by a set of

interactions between neighbouring sites, with energies associated with different types of neighbour pairs (left). Each
temperature is run on a different grid resource, as described in the text. Collation of data from the outputs of all runs
is required in order to generate graphs showing the behaviour as a function of temperature. The graph on the right
shows the degree of long-range order as a function of temperature raised to the power of 8; theory proposes that in

the vicinity of the phase transition the degree of order should scale as (1–T/Tc)1/8.

