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Abstract
We report experiences from the eMinerals project, in collaboration with the National Institute for 
Environmental eScience, in developing a highly-usable grid infrastructure to support simulation 
sciences. The focus has been on a close integration between compute, data and collaborative 
components, with the aim to make each of these highly usable for the scientists. Here we describe 
both general aspects of our approach and specific details of our toolset.  The latter include the 
overall grid infrastructure, the data grid, the user interface, the job submission process, tools for 
creating and managing combinatorial or parameter-sweep studies, our XML tools, and our metadata 
tools, together with their role in running jobs, managing and sharing both data and information, and 
in enabling informed collaboration between researchers.

1.   Introduction
This paper forms part of a workshop on usable grid 
infrastructures. The immediate question is what is 
meant by ‘usable’? Or more precisely, usable to 
whom and for what? The question of usability is 
dependent on the norms of the community for which 
the infrastructure is being developed. In the case of 
the eMinerals project, we have been developing grid 
solutions for computational scientists working in 
several domains within the physical sciences. In 
general, these scientists are most comfortable 
working with shell tools rather than web portals or 
graphical interfaces and having some degree of 
control over their applications. That is not to say that 
they do not appreciate web or graphical interfaces to 
certain tools, but in general they do not want their 
whole work pattern to be wrapped up in a pre-
packaged interface.

This type of scientist has traditionally worked to 
the following paradigm:
‣ the scientist will prepare input data files, job 

scripts and application (which may involve 
modifying the application for the particular study);

‣ he/she will then transfer them to the compute 
resource that will be used for running the job;

‣ the scientist will then log into the resource;
‣ he/she will then compile the application if an 

executable does not exist;
‣ the job will be submitted to an appropriate queue;
‣ some time later the scientist will log back onto the 

compute resource to monitor the status of the job;
‣ when the job is completed, the scientist will 

transfer the data back to his/her local computer 
(typically their desktop computer) to perform 
subsequent analysis.

We have recently been witnessing a transformation in 
the power of compute resources. Typically the 
function of the high capability compute resource is 
being reproduced by commodity clusters, and except 
for the most challenging of computational jobs the 
scientist now aims to handle hundreds or thousands 
of jobs within detailed parametric sweeps rather than 
being restricted to the small number of jobs that once 
was all that was feasible. The traditional paradigm 
has come to the end of the road. The usual approach 
now is for the computational scientist to write 
detailed scripts to handle the job submission and data 
management, although still following the traditional 
approach in terms of running jobs whilst logging into 
the compute resource and in terms of transferring 
data. This is now only “usable” for the fortunate few 
for whom writing scripts is one of their natural skills.

The traditional paradigm also suffers from one 
important aspect that was neglected until the advent 
of escience, namely it offers nothing to facilitate 



collaboration. In fact, with the ability to run many 
jobs, even local collaborators (e.g. a researcher’s 
supervisor) will have great difficulty in extracting 
information from the data obtained by one 
researcher.  A common example of this problem is if a 
PhD student does not publish the results of their 
work before the end of their studentship; increasingly 
there will be only a remote chance of the supervisor 
being able to extract anything of value from the vast 
quantities of files left behind.

Grid computing offers the prospect of completely 
replacing this traditional paradigm, and the eMinerals 
project has sought to develop new approaches to 
exploit this. We have taken the view that the 
traditional paradigm contains no “best parts of” that 
are worth salvaging to create a hybrid with new grid 
methods. Instead we are now offering a  genuinely 
usable infrastructure for computational scientists of 
the type we have described in our opening paragraph. 
Grid solutions solve the problem of management of 
many jobs and associated data files, but on top of this 
they offer the prospect of adding value to data 
through simultaneous automatic capture of metadata, 
and tools to enable extraction of information from 
data files. Such tools will not only make the 
management of data easier for the researcher, they 
will also make collaborative sharing of both data and 
information much easier. The eMinerals toolset is 
now able to make the processes of grid computing, 
data management, information delivery and 
collaboration easy for the computational scientist.

It is worth noting that one important part of the 
traditional paradigm has been the role of the log 
book. If a researcher has taken the log book 
seriously, it should be possible for a collaborator or 
supervisor to understand what the researcher did and 
thus pick up from the researcher at any point. With 
the capability of running many jobs, it is becoming 
increasingly untenable to expect fellow researchers 
to maintain comprehensive lab books. Moreover, the 
flow of data from simulation to analysis to final 
graph is increasingly entirely within the electronic 
realm. And in any case, it is hard to share lab books 
with collaborators who work in distant institutes. 
Within the eMinerals project we have have not 
sought to reproduce the lab book for escience. 

Instead we recognise,  as will be discussed later, that 
many of the functions the lab book was intended to 
fulfil in a scientist’s process can now be reproduced, 
or even improved upon, by various components of 
our toolset.

2.   The eMinerals perspective 

2.1 The eMinerals project
The eMinerals project has a primary focus on 
developing grid infrastructures to support 
computational scientists who perform simulations of 
the atomistic components of environmental 
processes. One exemplar is the simulation of the 
energies involved in the adsorption of organic 
pollutant molecules such as dioxins on mineral 
surfaces. These are challenging calculations in their 
own right, but the challenge is magnified through the 
fact that there are 76 congeners of the dioxin 
molecule, i.e. by representing the chemical formula 
as (C6HxCl4–x)O2(C6HyCl4–y), there are 76 different 
molecules that are formed by different values of x 
and y in the formula and different locations of the H 
and Cl atoms within the molecule. We need to be 
able to perform these calculations for all congeners 
for each mineral surface being studied, and there are 
many important mineral surfaces within soils.

We have developed a view of escience that 
comprises a close integration between compute grids, 
data grids and collaborative grids. as represented in 
Figure 1.  The compute and collaborative grids 
overlap because there is a sharing of resources within 
the project, and because the compute grid tools 
(described below) have been developed through a 
strong collaboration between scientists and grid 
developers. The compute and data grids overlap 
because we have increasingly understood how grid 
computing now enables us to run so many jobs that 
we have required a completely new approach to data 
management in its broadest sense. The overlap 
between collaborative and data grids is based on the 
need for collaborators to share data in a way that is 
useful. Sharing data is actually only part of the issue; 
what scientists need to be able to do is share the 
information content of data, an issue we called 
“information delivery”.

The eMinerals project involves scientists, 
application developers, computer scientists and grid 
specialists from seven institutes within the UK: the 
universities of Cambridge, Bath, and Reading, 
Birkbeck College, University College London, and 
the Daresbury eScience Centre.

2.2 Development of a usable grid infrastructure; 
the general approach
Over the duration of the eMinerals project, there 
have been significant changes in tools and 
opportunities. In order to capture the advantages 
these changes give, we have taken a ‘bottom-up’ 
approach to developing the eMinerals infrastructure 
and toolset. In such an approach, there is a close 
interaction between the scientist users and the 
developers. Alternative descriptions for this approach 

Computing 

grids

Data 

grids Collaborative 

grids

Figure 1. Representation of the three components of 
the grid infrastructure envisaged by the eMinerals 

project. The focus is on the areas of overlap between 
the different components.



might be ‘democratic’, ‘anarchic’  or ‘chaotic’.  Such 
an approach requires confident and informed 
leadership, and a committed teamwork approach, 
because people have to work to a common goal that 
is necessarily dynamic. Anticipating later discussion, 
we highlight one example of this sort of approach. 
Soon after the eMinerals project started we became 
aware of the work on the development of the 
Chemical Markup Language (CML). Using CML 
was not part of our original project plan, but over 
time our vision of the opportunities afforded by 
making CML a major part of our work became much 
wider, and we devoted many resources to 
incorporating CML into our work,  including 
developing several tools that exploited CML, 
creating new CML-specific tools, adding CML 
capability to our simulation tools, and contributing to 
the development of CML. This aspect of our work 
has significantly enhanced all aspects of the vision 
represented in Figure 1; the point is that it was easy 
to adapt to this opportunity through the use of a 
bottom-up approach.

One aspect of the bottom-up approach is that 
users effectively control the development of tools. 
For example, if a tool doesn’t meet the needs, it can 
be altered at an early stage,  and in some extremes 
tools are abandoned if they do not attract interest. 
The big advantage of this is that the tools that are 
developed have usability built into them from the 
outset.

2.3 eMinerals user profile
Briefly, it is important to comment on the profile of 
the users we are developing against, because this 
provides the context for this paper.  Our users are, to a 
person, very comfortable with command lines and 
shell tools. They are not necessarily capable of 
developing complex scripts, although they are able to 
adapt scripts to meet their needs.  They are happy to 
use portals and graphical interfaces for specific tools, 
but they are very uncomfortable in having such 
interfaces for most of their working environment. 
Moreover, our users want to have complete control 

over their simulation applications, and are very 
uncomfortable working with applications that are 
wrapped as a service if it means that they lose direct 
control over the application. Even for applications 
they have not developed, they still want to retain the 
ability to modify them to a lesser or greater extent. A 
usable grid infrastructure for these scientists must 
ensure that users retain such a level of control over 
what they do. This is consistent with the idea of a 
bottom-up or democratic infrastructure, as opposed 
to a provider/consumer model.

The eMinerals scientists often need to perform 
large-scale combinatorial or parametric studies, 
which typically involve several hundreds of jobs in 
one go. In the traditional paradigm way of working 
discussed in the introduction, the scientist would 
work through the set of jobs one by one. Our 
scientists now expect submission of many jobs and 
the subsequent job and data management to be as 
easy as submitting a single job.

3.   eMinerals grid infrastructure

3.1 The basics of the infrastructure
The eMinerals grid infrastructure is represented in 
Figure 2. This shows an integration of heterogeneous 
compute resources (the virtue of ‘heterogeneous’ 
being that users have very heterogeneous 
requirements) and data resources. The data resources 
are currently based on the Storage Resource Broker, 
(SRB) but work is in progress to develop a new 
webdav-based data grid resource. One key to the 
usability is in the use of standard middleware 
components, such as Globus and Condor. Another 
key is in the design of the interface seen by the user, 
and this will be discussed extensively below. One 
point to make here is that these have enabled the 
users to exploit additional facilities, such as the NW-
Grid, as they become available.

3.2 The use of a data grid component
The eMinerals scientists have discovered that the use 
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Figure 2. Representation of the eMinerals 
grid infrastructure. Compute resources 

include clusters and Condor pools. Globus 
is used to manage access to the grid 

resources (including user authentication). 
With the use of standard middleware tools 

(such as Globus and Condor), access to 
other grid resources and facilities is 
straightforward. The infrastructure 

contains an integrated data component 
with data vaults attached to the Globus 

gatekeepers. The application server 
provides access to metadata associated 

with the files in the data vaults and other 
associated databases, and gives support 

for various interface tools. The researcher 
is shown with representations of  terminal 

command line and web-based interfaces to 
the grid infrastructure; the key to usability 

is in the interfaces.



of a datagrid component, in our case the SRB, has 
made a significant qualitative change to the way that 
they work. The datagrid is closely integrated with the 
compute grid in one simple way,  giving the user a 
new working paradigm (which contrasts with the 
paradigm described in the introduction):
‣ the scientist will prepare input data files, job 

scripts and application for many jobs;
‣ he/she will then transfer them to the data grid;
‣ the set of jobs will be submitted to the grid 

infrastructure from the user’s desktop, with the 
jobs handling metascheduling, data transfer 
between the compute resource and data grid, and 
automatic collection of metadata;

‣ the user monitors the progress of jobs from their 
desktop;

‣ when the jobs are completed, the scientist can 
view the output files using our XML tools, and 
collate the core results from the metadata database.

This process is shown in Figure 3. The data grid is 
core to this process, providing a data staging tool that 
integrates easily into the user’s desktop (the SRB 
provides something like a file system view of their 
data) and provides the user with complete control 
over their files. The qualitative change to our work 
patterns has several forms:
‣ we now expect to be able to share data with our 

collaborators, and we expect this to be easy to the 
point of being automatic;

‣ we now routinely and automatically produce 
complete archives of all files associated with a 
given study;

‣ the data grid provides a single place to deposit 
data, and this process is easy.

Figure 3 shows an additional aspect to the data 
component, namely the automatic capture of 
metadata. We discuss this in detail in a separate paper 
[3], but some aspects are discussed below.

3.3 Job submission interface: MCS
The primary user interface to job submission is the 
my_condor_submit (MCS) tool. In brief, MCS is a 
perl program that will enable a user to submit a job to 

a grid infrastructure. The user provides a simple file 
containing directives, as illustrated in Figure 4, and 
the job submission process is controlled by the 
information given within the file and then handled by 
the Condor-G wrapping of Globus. MCS has a close 
integration between the compute and data grids, in 
that it is designed specifically to handle the activity 
workflow described above. An earlier version of 
MCS has been described elsewhere [1], but it now 
has a number of new features which we will discuss 
here with reference to Figure 4. The user has control 
over a number of actions within the job:
‣ ability to nominate a number of grid resources to 

which MCS can submit the job (metascheduling);
‣ provide information on the type of resource 

(cluster or Condor pool, and number of processors 
if a cluster);

‣ select data locations (e.g. within the SRB) for the 
application, input and output files;

‣ instruct the job to automatically collect metadata 
from the output XML files.

With regard to the latter point, automatic metadata 
capture is an important aspect of usability, for 
discovery of data location and information on data, 
and as a primary interface to the core outputs 
contained within the data, again as discussed below.

3.4 Job submission process: RMCS
MCS requires users to have Globus and Condor 
installed on their desktops, which certainly mitigates 
against usability to some extent. Thus we have 
developed a web services wrapping of MCS called 
RMCS. In effect, the use of RMCS converts the two-
tier client/grid model of MCS to a three-tier model of 
client, server and grid,  as represented in Figure 5. 
The interaction between the client and RMCS server 
can be performed from the user’s desktop without the 
need to install additional middleware tools, and the 
demands on the institute’s firewall are light. These 
considerations are critical for making grids usable.

For people using shell tools, the RMCS package 
consists of a set of six shell command tools that 
interact with a central server via gSOAP. These 
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commands perform the following tasks:
‣ Submit an MCS job (rmcs_submit);
‣ Cancel an RMCS job (rmcs_cancel);
‣ Inspect the status of an RMCS job (rmcs_status);
‣ Remove an RMCS job from the status list 

(rmcs_remove) after it has run;
‣ Update the user’s proxy credentials to the local 

Myproxy server in the event that the initial proxy 
has expired (rmcs_update);

‣ Change the RMCS password (rmcs_passwd).
The first three of these are self-explanatory. The only 
point to note is that the MCS file contains all the 
information that a job requires, so the rmcs_submit 
command requires no information other than the 
name of the MCS file.  Once a job has been 
submitted, the RMCS infrastructure maintains a 
record of the status of a job that is updated regularly. 
To use the RMCS commands, the user first needs to 
upload his/her grid certificate credentials to a 
myproxy server. This task might be accomplished 
using the Globus myproxy_init command, but RMCS 
is designed to be run from computers on which 
Globus has not been installed.  Instead, users can use 
the CCLRC Myproxy Upload tool for example, a 
java client tool with a graphical interface. The 
updated proxy will have a finite lifetime; the 

Executable  = ossia2004
notification = NEVER

globusRSL = (arguments= 'trans')
pathToExe = /home/bob.eminerals/OSSIA2004

preferredMachineList =  pbs1.uni.ac.uk cluster.college.ac.uk
jobType    = performance
numOfProcs = 1

Output     = trans.out

Sforce     = true
Sdirect    = true

Sdir       = /home/bob.eminerals/ossia/trans50
Sget       = *
Srecurse   = true

Sdir       = /home/bob.eminerals/ossia/trans50
Sput       = *

RDatasetID = 444
RDesc      = Sweep of temperature using ossia with 50:50 case
MetadataString = Model,”Fitted to SIESTA calculations”
GetEnvMetadata = true
AgentXDefault  = trans.xml

AgentX = Energy,trans.xml:/PropertyList[last]/Property[title='Energy']
AgentX = OrderParameter,trans.xml:/Module[last]/Property[title='Order parameter']
AgentX = PDF1,trans.xml:/Module[last]/Property[dictRef='ossia:PDF1']
AgentX = Stiffness,trans.xml:/Module[last]/Property[title='Stiffness']
AgentX = EnergySquared,trans.xml:/Module[last]/Property[title='Energy squared']
AgentX = HeatCapacity,trans.xml:/Module[last]/Property[title='Heat capacity']
AgentX = Susceptibility,trans.xml:/Module[last]/Property[title='Susceptibility']

Queue

Figure 4. Representative MCS input script.
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Figure 5: Representation of the three-tier 
infrastructure of the RMCS web services wrapping 
of MCS. 



rmcs_update tool enables new a myproxy to be 
associated with a job.

3.5 Combinatorial job submission
As noted in the introduction,  the real gain of grid 
computing (the “killer application”?) is the ability to 
perform large-scale combinatorial or parameter 
sweep studies. Usability requirements means that we 
need a tool that will accurately set up and submit 
many jobs at once.  In fact there are two stages to this. 
The first is unavoidably bespoke to some degree or 
other. What is required is a tool to set up a set of 
input files,  e.g. for a parameter sweep over 
temperature, we need a set of input files each 
containing a different value for the temperature input 
parameter. Our tools for this task also generate a 
simple configuration file that matches the input file 
names against job names.

The more general stage is to take the 
configuration file and turn that into jobs. For this we 
have developed a tool, called Monty, that is closely 
integrated with RMCS. Monty is a perl program,  and 
requires two input files: a configuration file and an 
MCS template file. Monty also requires a directory 
containing any common files that are required to run 
the jobs. This might be, for example, a file containing 
an initial atomic configuration. When Monty is 
executed, it performs a number of tasks:
‣ It first generates a complete set of MCS files based 

on the name mapping provided in the 
configuration file;

‣ It then creates a complete set of collections within 
the SRB using the names within the configuration 
file, and then uploads the set of input files, 
including the common files, to these collections;

‣ Monty then submits all the MCS files using the 
rmcs_submit command.

Monty effectively turns combinatorial job 
submission into a single-command operation.

3.6 XML output files
In principle most users will not need to know much 
about the use of XML, but XML is critical for many 
aspects of the usability of our tools. The eMinerals 
project makes considerable use of CML. Most of our 
simulation codes are written in Fortran, and we have 
have written a set of libraries to enable Fortran codes 
to write output in XML format in general, and CML 
(and KML) format specifically, called FoX [3]. To 
use CML in our toolset, we have developed a way to 
structure CML output files. In particular, our CML 
output files are structured in blocks that contain 
metadata, input parameters,  step-wise output, and 
summary output.  Although most users will not worry 
about XML per se, the point for this paper is that as 
part of our toolkit we have made the use of XML 
relatively easy, including, through the use of FoX, 
creating XML output files.

3.7 Metadata management
The final component in eMinerals toolkit is metadata 
extraction and management. We have developed an 
infrastructure called the RCommands [3]. The 
RCommands framework consists of a back-end 

metadata database, a set of client tools, and an 
application server that maps the web service calls 
from the client tools onto a set of SQL calls. The 
client tools for the user consist of 10 shell commands 
for performing tasks such as listing metadata items, 
annotating datasets and data objects with metadata, 
and searching for datasets and data objects based on 
metadata. The metadata items include the URIs of 
the associated data objects.

The MCS example file (Figure 4) shows how 
users interact with the job and the XML output file to 
extract metadata. The directive GetEnvMetadata = 
true instructs the job to extract metadata from the job 
environment and from the metadata and parameter 
blocks of the CML output files. The remaining 
directives, those beginning with “AgentX”, instruct 
the MCS job to extract specific metadata from the 
CML. In this example (which is extracted from a 
somewhat larger file) MCS is being instructed to 
collect items such as the average values of energy, 
order parameter and heat capacity to be stored as 
metadata. It is not common to collect output values 
as metadata,  but there are at least two reasons why 
this is useful. First, by way of example, if a scientist 
has run studies of the adsorption of all congeners of 
dioxin on a set of minerals surfaces, the Rsearch 
command can be used to locate the calculation with 
the lowest adsorption energy. The second reason to 
collect output data values as metadata is to enable 
metadata to be used as a primary interface to the 
data, as we will now discuss. 

3.8 Metadata as an interface to data: the Rgem 
client tool
It is useful to cite a user case: consider a parametric 
study in which we have calculated values of 
quantities such as energy for a wide range of input 
parameter values,  such as temperature. Each 
calculation has been performed as a separate job, so 
that the core output is stored with many other 
quantities within a myriad of output files stored 
within the data grid. Rather than go to the output 
files, we can use the metadata directly to construct a 
table of output values, such as energy vs. 
temperature. We have developed the Rgem command 
to perform this task automatically, making the 
collation of data from many grid computations 
remarkably easy for the researcher. He/she specifies 
the data set that contains metadata for a set of job 
runs and the names of parameters to be extracted. 
Rgem then generates a table of data in space-
separated format, which the researcher can then 
import into an analysis or visualisation program. This 
process is much easier than downloading all the files 
from the data archive and then parsing them all to 
extract the required information.

4.   The eMinerals toolset and the 
collaborative grid
The work described so far in this paper concerns the 
focus that the eMinerals project has had on making 
compute and data grids usable. Now we consider 
how these tools also make collaboration much more 



accessible.  A key point is the central role of our use 
of CML for data representation.

The way that our tools aid collaboration is shown 
in Figure 6. This shows how one researcher (A) is 
collaborating with a fellow researcher (B) who wants 
to understand the results generated by the first 
researcher.  The traditional approach, which frankly is 
completely inadequate in the era of grid computing, 
is for one researcher to send the collaborator a set of 
data files by email (or by posting them to an FTP or 
HTTP server) and then conducting a conversation by 
email to explain how to interpret the files. Using the 
toolset described above, we can now do a lot better.

First, direct interaction between researchers is, in 
our experience, much better carried out using tools 
such as instant messaging, desktop Access Grid (with 
application sharing tools), and wikis. In fact we 
envisage that social networking sites will evolve to 
further enhance this collaborative interaction, and we 
are running a set of experiments in this area.  For 
sharing data, our use of the SRB (or a comparable 
data grid infrastructure) automatically enables 
sharing of output files with collaborators. We have 
developed a web interface to the SRB, called 
TobysSRB, which not only allows for easier access to 
the data than afforded by other tools, but also 
provides a one-click transformation of the XML files 
to XHML pages using our ccViz tool [4]. This 
enables the output file to be viewed by the 
collaborator in a form that makes sense without the 
need for prior expert knowledge, by using a 
combined information- and user-centric 
representation of the information content with tables 
of data represented both in tabular form or plotted as 
SVG graphs on demand. Thus the second researcher 
is much better placed to understand the information 
generated by the compute jobs of the first researcher. 
The experience of the second researcher is further 
enhanced by the fact that she/he can find the data 
using the metadata contained within the RCommands 
framework, a process that required little action from 
the first researcher. Using the Rgem tool,  both 

researchers can construct tables of data easily.

5.   The role of the system and network 
managers
A lot of work to make grids usable relies heavily on 
the contributions of system and network managers. 
An example is in the area of security,  specifically 
with regard to firewalls. The patterns of network 
communication required to support grid computing 
are significantly different from those of most 
researchers. The use of the Access Grid is one 
example, which we want to have available on all 
researchers’ desktops. The underlying multicast 
technology is not needed on many networks and is 
therefore unfamiliar to many network administrators. 
Furthermore, specific firewall configurations are 
required for many of our other software and 
middleware tools, including Globus, Condor and the 
SRB. Active positive collaboration between network 
administrators and scientists is essential for escience 
to be usable. Within the lead author’s institute we 
have demonstrated that such a collaboration is both 
feasible and consistent with running an institute 
network that simultaneously meets the needs of the 
researchers and the security requirements of the 
network administrators.

6.   Conclusions
The primary message from this paper is that we have 
created a grid infrastructure for simulation scientists 
that is a close integration between compute, data and 
collaborative requirements, is complete in the sense 
that it covers the whole job life cycle from 
submitting jobs to a grid environment through to 
extracting the core information for analysis and 
sharing with collaborators, and is highly usable. 
Usability is an important feature, and has been 
designed into the development of the toolkit from the 
outset by our bottom-up policy of enabling scientists 
to work closely with the developers to set the overall 
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Figure 6. Representation of the the 
collaborative grid. Communication 

tools include the Access Grid with the 
JMAST application sharing tool, and 

instant messaging. Tools such as wikis 
allow for asynchronous and permanent 
communication. The collaborative data 
tools are based on the use of data grids 
and metadata tools. If the data files are 

in XML format, Researcher B can use 
information delivery tools such as ccViz 

[4] to read the information content of 
the shared data files without sharing all 
of the domain knowledge of Researcher 

A. Both researchers can use the 
metadata to construct tables of results 

without either researcher needing to 
parse output files. Researcher B can 

also use the metadata to locate the data 
files generated by Researcher A.



escience research agenda.
We show an example in Figure 7. This comes 

from a study of the ordering of cations in silicate 
minerals. In this example, the work was performed 
through a collaboration between two of the authors.  
Either of the collaborators would use the tools 
described in §3.5 to create and submit several 
hundred jobs at one time (a two-command process). 
The other collaborator could then find the location of 
the output files from the metadata, together within 
information about the jobs (such as values of input 
parameters, system size,  number of steps). Both 
collaborators could check that different jobs were 
well-converged using the ccViz tool within 
TobysSRB, and both could produce tables of data for 
plotting, as in Figure 7, using the Rgem tool and the 
approach of treating metadata as the primary 
interface to data.  The complete study involved the 
integration of compute, data and collaborative grids 
(Figure 1), the grid infrastructure represented in 
Figure 2, the process represented in Figure 3, and the 
collaboration cycle represented in Figure 6. The data 
shown in Figure 7 were obtained using many 
separate processors on a number of individual grid 
resources, with job creation and submission handled 
by one command each, with the data located through 
a simple browse through the metadata, and with one 
command required to collate the data for construction 
of the graphs.

Finally we note that the toolset described in this 
paper are quite generic, and can be used by other 
communities of researchers. For users of the NGS, 
some of the components are already available for 
people to use. For communities wanting to work with 
independent grid resources, we believe that the tasks 
for the system manager are no harder than setting up 
installations of Globus (which is needed on the 
various grid resources). The demands on the user in 
terms of installing tools on his/her own desktop are 

very light, consisting merely of copy a few 
executables and setting up the appropriate paths. The 
bigger challenge is actually learning a new way or 
working, rather than learning how to use the tools.
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Figure 7. Example of a grid computation, namely a sweep through temperatures to study the ordering of cations in 
layer silicates using the Monte Carlo method. In this example the physics problem is represented by a set of 

interactions between neighbouring sites, with energies associated with different types of neighbour pairs (left). Each 
temperature is run on a different grid resource, as described in the text. Collation of data from the outputs of all runs 
is required in order to generate graphs showing the behaviour as a function of temperature. The graph on the right 
shows the degree of long-range order as a function of temperature raised to the power of 8; theory proposes that in 

the vicinity of the phase transition the degree of order should scale as (1–T/Tc)1/8. 


