
1

An Analysis of the Chinese Wall Pattern for
Guaranteeing Confidentiality in Grid-based

Virtual Organisations
G. Dallons P. Massonet J.-F. Molderez C. Ponsard A. Arenas

F

Abstract—Virtual organisations (VO) allow independent organ-
isations to share resources and collaborate to achieve com-
mon goals. When a VO is defined in a business context and
confidential information is shared, security becomes a main
concern. Furthermore, business contexts the VO need to adapt
quickly to changes in the environment. Maintaining security in
a dynamic environment is particularly challenging open issue
in current Grids. The security issues are not only related to
the protection from the outside world but also to the protection
of the integrity and confidentiality of each organisation against
potentially conflicting goals within the VO.

To tackle this problem, this paper shows how the general
Chinese wall security model can be adapted for use in Grid-
based VO. The result is a reusable Chinese wall pattern that is
expressed in terms of a VO ontology. The pattern formalization
is also proved using the Alloy SAT-based technology. This work
is a first step towards deploying Chinese walls in operational
Grid-based VO.

Index Terms—Virtual organisation, Security, Trust, Chinese
Wall, Verification, Alloy, KAOS

1 INTRODUCTION

Virtual organisations (VO) allow resources to
be shared across administrative domains, and
thus enable collaborations between organisa-
tions. When VO operate in a business context
the collaborations between organisations in-
volve the exchange of confidential information,
and thus have strong security requirements.
Furthermore most business collaborations are
very dynamic and need to adapt quickly to
changes in the environment or in the goals of
the collaboration. The confidentiality require-
ments thus need to be guaranteed in a dynamic
environment. Guaranteeing these kind of secu-
rity requirements in Grids is a very challenging

issue with the current Grid security mecha-
nisms. Currently the security mechanisms in
the Grids that underlie VO are considered too
static to support the dynamic security require-
ments that business collaborations have.

In this work, we investigate one security pol-
icy for enforcing confidentiality dynamically
called the Chinese wall model. It is based on
the prevention of conflicts of interest that arise
during the lifetime of a system and are do
not exist in the initial state of the system. The
Chinese wall model deals with this problem
by dynamically defining the access rights: the
access decision is not only based on the rights
of subjects, but is based on the history of past
accesses. The Chinese wall security problem is
well-known in the financial world. Some pa-
pers have addressed this topic and have given
formal models to ensure that a Chinese wall
can be maintained in a financial company [1],
[5].

In this paper, we consider how to model
the Chinese wall security policy in terms of
VO, and define a pattern that can be used for
defining confidentiality in VO. The definition
of a Chinese wall pattern for VO, is a first step
towards deploying Chinese walls in operating
VO.

The paper is organised as follows: to handle
this problem in the particular context of VOs,
we introduce virtual organisation concepts in
section 2. Then, we give a definition of the
Chinese wall policy (section 3), and explain
how a pattern can be modelled using the KAOS
goal oriented approach (section 4). We then

2

present a way to verify the correctness of this
pattern (section 5). Then, we conclude with a
discussion on this approach and future work
(section 6).

2 VIRTUAL ORGANISATION CONCEPTS
To consider security in VO, it is important to
reason on a common conceptual framework. In
this section, we introduce the main concepts of
our VO metamodel in order to share a common
vocabulary [10].

composedOf
Organisation

Resource

Virtual
Organisation

Service

useprovide

use

own

0..* 0..*

0..*
0..*

0..*

1

1

0..*

0..*
0..*

GoalUser

manage aims aims

composed of

0..*

0..*
0..*

0..*

0..*

1

Figure 1. Virtual Organisation metamodel

The VO metamodel is presented in figure
1. We consider that a virtual organisation is a
composition of organisations. An organisation
is a company or an administration that plays
a role in the VO. For example, an organisation
owns a resource used by a service of an organi-
sation participating to the VO. An organisation
owning a resource has the right to add or
remove the resource. A resource is an element
used by a service to meet its specifications.
A resource is owned by an organisation and
is necessary to the execution of the service.
Resources can be further refined into a tax-
onomy, such as distinguishing hardware and
software resources. In the Chinese wall context,
resources of interest are data.

A VO is formed for a purpose. The purpose
of the VO can be captured by one or sev-
eral high-level goals. The high-level goals can
progressively be refined into more operational
goals, resulting in a goal refinement structure.
The VO goals can be met by the composition of
finer goals that are assigned to individual or-
ganisations. Organisations manage their users
which have access to the services used by their
organisation.

3 THE CHINESE WALL

The Chinese wall addresses problems of con-
fidentiality and access control. This problem is
well-known and has been presented in several
papers [1], [5]. In this article, we use the Chi-
nese wall model from [1]. To promote reuse
within the design of Grid systems, we have
adapted the terminology and to fit the discus-
sion within the space allowed for this paper,
we will only focus on read access. There are
several concepts appearing in the Chinese wall
model (figure 2):

• A resource is an individual item of infor-
mation belonging to an organisation.

• An organisation has several resources
used in the context of her services. This set
of resources is represented by the ”owned”
relationship between organisation and re-
source.

• Different organisations can be in competi-
tion. In this case, each of them belongs to
the same conflict of interest class.

• A user is someone who makes an access
to a resource through a service provided
by an organisation.

owned owns

conflictSet

content

1 0..*

0..* 0..*

0..* 0..*1

ServiceConflict of
interest class

Organisation Resource

access

User

Figure 2. Object model

The Chinese wall is based on the idea that
you can’t access a conflicting resource. A con-
flicting resource is a resource accessed by a
user that belongs to an organisation that is in
the same conflict of interest class than other
organisation resources accessed by this user.

Brewer and Nash have defined two security
rules ensuring that the Chinese wall is not
violated by wrong access [1]. They said that
access by a user is only granted if the resource
requested:

• is either owned by the same organisation
than a resource already accessed by that
user

3

• or belongs to an entirely different conflict
of interest class.

Figure 3. Example of virtual organisation

We will consider the following example of
VO (figure 3). This example presents a Finan-
cial VO composed by two banks: Bank A and
Bank B. Each of these Banks provides a service
to access financial data and has access to the
service of the other bank. The financial data
is managed by resources 1 to 8. Each of these
resources is owned by an organisation which
is a customer of the bank.

Software conflict of interest classOil conflict of interest class

Oil company A
(Organisation)

Resource
1

Chinese Wall

Resource
2

Oil company B
(Organisation)

Resource
3

Resource
4

Software company A
(Organisation)

Resource
5

Resource
6

Software company B
(Organisation)

Resource
7

Resource
8

Figure 4. Example of a chinese wall

To explain the Chinese wall in the context of
this example, we add the figure 4 representing
the conflict of interest classes. If ”user 1” has ac-
cessed resource 1, this user can only access the
other resources of Oil Company A or resources
form Software Companies since they belong to
another conflicting class than Oil Company A.
If the user later accesses resource 5 of Software
Company A then its possible accesses will be
restricted to Oil Company A and Software
Company A since Software Company B is in a
conflicting set with Software Company A. The
Chinese wall is represented by the dashed line.
An important remark is the dynamic aspect of
the wall. Indeed, the wall changes according
the history of accesses.

This example shows a situation where the
Chinese wall problem exists in the VO but
not for each organisation. The two conflict
of interest classes exist for the financial VO

because Oil Company A is a competitor of
Oil Company B and Software company A is a
competitor of Software Company B. If we take
singly Bank A and Bank B, they don’t need
a Chinese wall. But if we take the VO, the
Chinese wall is required to ensure that there
won’t be conflicting access.

4 CHINESE WALL PATTERN
The Chinese wall pattern is presented us-
ing KAOS [6], [11], [12]. KAOS is a goal-
oriented method for requirements engineering.
The method is based on the identification of
goals which have to be met by the designed
system. Goals are refined in subgoals. These
subgoals imply the parent goal and are more
detailed. Goals are refined until they can be
operationalized -here through a policy- and as-
signed to agents. Goals can be formalized using
linear temporal logic (LTL) [7]. Verifications can
then be made on goal refinements to ensure
that the system meets the goals and that the
goal model is well-formed.

The chinese wall goal model is expressed
in figure 5. It is formalized in a generic way
using the previously introduced VO concepts
and the notion of conflict of interest classes.
This ensures that this description is a reusable
pattern that can be instantiated to all VO.

The main goal is to ensure that there won’t
be a conflict during the life of the system. A
conflict will occur if a user accesses a resource
that is in the same conflicting class and owned
by a different organisation than a resource pre-
viously accessed. So, the following goal must
hold if we want to maintain the Chinese wall:

AvoidConflictOfInterest

AccessAutorizedWithin
SameCompany

AccessAutorizedWithin
OtherConflictSet

ChineseWallAutorized
Cases

ChineseWallPolicy
Access

Figure 5. Goal pattern for the Chinese wall

Goal AvoidConflictOfInterest
FormalDef (∀u:User; r, r′:Resource) noConflict(u, r, r′)

We will consider a writing shortcut ∃0
1 o :

Object which means that there exists zero or

4

one o of type Object. This allows us to simplify
the formula by avoiding huge disjunctions.
The �A formula means that A has been true
sometimes in the past and the ◦A formula tells
us that A is true in the following state of the
system. Let us also define some constrained
relationships:

• hasAccessed: (∀u:User; r:Resource) hasAccessed(u, r)
⇔ �access(u, r)

• sameOrganisation:
(∀r, r′:Resource) sameOrganisation(r, r′)
⇔ owned(r) = owned(r′)

• differentConflictSet:
(∀r, r′:Resource) differentConflictSet(r, r′)
⇔ conflictSet(owned(r)) 6= conflictSet(owned(r′))

• noConflict: (∀u:User; r, r′:Resource) noConflict(u, r, r′)
⇔ hasAccessed(u, r) ∧ hasAccessed(u, r′) ∧
(sameOrganisation(r, r′)∨differentConflictSet(r, r′))

To refine this goal, we will use the case-
driven pattern refinement tactic in [2]. This
tactic consists to split a goal into cases. So, if
we have a goal P ⇒ Q, we can split it into
three subgoals: P ∧ C1 ⇒ Q, P ∧ C2 ⇒ Q and
P ⇒ C1 ∨ C2. In our case the parent goal has
not the form prescribed by the pattern, more
over we introduced several quantifiers: so we
cannot take the refinement as proven and have
to check for its correctness.

The first subgoal of the goal AvoidCon-
flictOfInterest can be formulated as

Goal AccessAutorizedWithinSameCompany
FormalDef (∀r:Resource;∃0

1 u:User;∃0
1 r′:Resource)

hasAccessed(u, r) ∧ sameOrganisation(r, r′) ⇒
◦(hasAccessed(u, r′))

If we access a resource in the same organisa-
tion than a resource already accessed, we are
allowed to access. The second case is quite
similar. We can access a resource that is in a
different conflict of interest class than other
resources accessed:

Goal AccessAutorizedWithinOtherConflictSet
FormalDef (∀r:Resource;∃0

1 u:User;∃0
1 r′:Resource)

hasAccessed(u, r) ∧ differentConflictSet(r, r′) ⇒
◦(hasAccessed(u, r′))

The third element of the refinement expresses
the case composition. It is defined as:

Goal ChineseWallAutorizedCases
FormalDef (∀u:User; r, r′:Resource)
hasAccessed(u, r) ⇒ (sameOrganisation(r, r′) ∨
differentConflictSet(r, r′))

The access policy that operationalizes the
Chinese wall can be specified by the following
formula:

Policy ChineseWallPolicyAccess(u:User,r:Resource)
Rule 1 conflictingResource(u, r) ⇒ skip
Rule 2 ¬conflictingResource(u, r) ⇒ hasAccessed(s, o)

Where conflictingResource(u, r) :

(∀u:User; r:Resource) conflictingResource(u, r)

⇔ (∃r′:Resource)hasAccessed(u, r′)

∧ (¬(sameOrganisation(r, r′))

∧ ¬(differentConflictSet(r, r′)))

Skip means that the relation hasAccessed stays
unchanged.

5 VERIFICATION WITH ALLOY

In this section, we will verify that the pattern
presented in the previous section is correct.
The verification will be done using the Alloy
analyser [4]. Once the pattern refinement has
been checked it can be reused without having
to perform the verifications again. However if
the pattern cannot be reused as such, and needs
to be adapted, then the adapted pattern will
need to be checked again.

An important remark is the translation of
temporal logic. In Alloy, there aren’t temporal
operations. We have introduced a state sig-
nature to model the time (listing 1). An al-
ways operator becomes an ”all state” quantifi-
cation and the next operator is translated by a
”next[state]”. The conceptual model presented
in figure 2 is translated in Alloy (see listing 1).
Each entity is translated as a ”sig” signature
in Alloy and the relations become attributes of
these signatures.

Goals are refined into subgoals. The refine-
ment is correct if it’s complete and consis-
tent. A desired refinement property is also
the minimality but it is not required. In [3],
a formal definition is given. A set of goals
{G1, G2, . . . , Gn} refines a goal G in the domain
D if the following conditions hold :

G1, . . . , Gn, D |= G (completeness) (1)∧
j 6=iGj , D 6|= G for each i ∈ [1..n] (minimality) (2)

G1, . . . , Gn, D 6|= false (consistency) (3)

5

Listing 1. Alloy state model and conceptual
model no ident no ident no ident no ident no
ident no ident no ident no ident
module models/chinesewal l
open u t i l /ordering [S t a t e] as ord

//−−−−−−−−−−−− S t a t e s ignature −−−−−−−−−−−−
s i g S t a t e {accessed : User−>Resource}

// No a c c e s s a t the i n i t i a l s t a t e
f a c t i n i t i a l S t a t e { l e t s0 = f i r s t [] | no s0 . accessed}

// no r e t r i c t i v e a c c e s s
pred a c c e s s (s t a t e : S ta te , next : s t a t e , u : User , r : Resource)
{next . accessed= s t a t e . accessed+u−>r}

// s t a t e t r a n s i t i o n
f a c t s t a t e T r a n s i t i o n { a l l s t a t e : S ta te , next : next [s t a t e] |
one u : User , r : Resource{
next . accessed = s t a t e . accessed or a c c e s s [s t a t e , next , u , r]}}

//−−−−−−−−−−−−−−−−−− Model −−−−−−−−−−−−−−−−−−
s i g User {}
s i g Resource {owned : one Organisat ion}
s i g Organisat ion { c o n f l i c t S e t : one C o n f l i c t S e t}
s i g C o n f l i c t S e t {}

As previously mentioned, the refinement
must be complete and consistent. If it is possi-
ble, it can reach the minimal form. We have to
check propositions 1, 2 and 3. To perform these
checks, we have to specify an access operation
that allows all accesses. The aim is to show
that if the subgoals are met, then the main goal
must hold (listing 2). So the accesses don’t have
to constrain the check.

The check of consistency is performed using
a predicate and asking Alloy to give us an
instance. If an instance can be found, then
the predicate is consistent. The predicate is thus

AccessAutorizedWithinSameCompany ∧
AccessAutorizedWithinOtherConflictSet

∧ ChineseWallAutorizedCases

In our situation, Alloy found an example.
This confirms that our refinement is consistent.

The completeness claim is checked
differently using an assert. If the assert
holds, no counterexample will be found. The
assert in Alloy for the completeness is:

AccessAutorizedWithinSameCompany ∧
AccessAutorizedWithinOtherConflictSet

∧ ChineseWallAutorizedCases ⇒
AvoidConflictOfInterest

The analyser found no counterexample.
So, the refinement is complete.

The minimality is checked by three asserts:

Listing 2. Main goal and refinementno ident no
ident no ident no ident no ident no ident no ident
no ident
//−−−−−−−− Main Goal : A v o id C o nf l i c t Of I n t er e s t −−−−−−−−
pred c o n f l i c t (s t a t e : S ta te , r : Resource , r ’ : Resource ,
u : User , u ’ : User){u−>r in s t a t e . accessed and
u’−>r ’ in s t a t e . accessed and u=u ’ and not (r=r ’) and
not (r . owned = r ’ . owned) and
(r . owned . c o n f l i c t S e t = r ’ . owned . c o n f l i c t S e t)}

pred A vo i d C on f l i c t O f I n t e r e s t (){ a l l s t a t e : S t a t e |
a l l u : User | a l l r : Resource | a l l r ’ : Resource {
not (c o n f l i c t [s t a t e , r , r ’ , u , u])}}

//−−−−−−−−−−−−−−− Refinement −−−−−−−−−−−−−−
// P r e d i c a t e d i f f e r e n t C o n f l i c t S e t
pred d i f f e r e n t C o n f l i c t S e t (r : Resource , r ’ : Resource)
{not (r . owned . c o n f l i c t S e t = r ’ . owned . c o n f l i c t S e t)}

// P r e d i c a t e sameOrganisation
pred sameOrganisation (r : Resource , r ’ : Resource)
{r . owned = r ’ . owned}

// Refinement
pred AccessAutorizedWithinSameCompany (){
a l l s t a t e : S t a t e | lone u : User | a l l r : Resource |
lone r ’ : Resource { s t a t e != l a s t [] and
u−>r in s t a t e . accessed and sameOrganisation [r , r ’]
impl ies u−>r ’ in next [s t a t e] . accessed }}

pred AccessAutorizedWithinOtherConfl ic tSet (){ a l l s t a t e : S t a t e |
lone u : User | a l l r : Resource |
lone r ’ : Resource { s t a t e != l a s t [] and u−>r in s t a t e . accessed
and d i f f e r e n t C o n f l i c t S e t [r , r ’] impl ies u−>r ’ in next [s t a t e] . accessed }}

pred ChineseWallAutorizedCases (){ a l l s t a t e : S t a t e |
a l l u : User | a l l r : Resource | a l l r ’ : Resource {
(s t a t e != l a s t [] and u−>r in s t a t e . accessed)
impl ies sameOrganisation [r , r ’] or d i f f e r e n t C o n f l i c t S e t [r , r ’]}}

• AccessAutorizedWithinSameCompany ∧
AccessAutorizedWithinOtherConflictSet
⇒ AvoidConflictOfInterest

• AccessAutorizedWithinSameCompany ∧
ChineseWallAutorizedCases
⇒ AvoidConflictOfInterest

• AccessAutorizedWithinOtherConflictSet ∧
ChineseWallAutorizedCases
⇒ AvoidConflictOfInterest

These asserts must be invalid. So each of
them must give a counterexample. Our refine-
ment is not minimal because only the first
assert gives a counterexample. This is not im-
portant because the minimality is desired but
not required.

The refinement is valid. The policy enforce-
ment, presented at the end of the previous
section, can be refined in a similar way and will
not be detailed here. This policy is complete
and consistent.

In this section, we have verified the refine-
ment and give the result of the checks for the
Chinese wall policy. Our model is correct and
consistent. These verifications give us confi-
dence in the Goal pattern corresponding to the
Chinese wall problem.

6

6 CONCLUSION AND FUTURE WORK

This study shows us that in the context of
VO, a Chinese wall can be maintained if the
VO is aware of the resources used through the
services. Thus, it is important to model these el-
ements when we consider security in VO. This
work has an indirect impact on the thinking
done in the context of the VO metamodel [10].

This paper has showed that security policies
in the context of VOs can be checked with state
of the art analysis tools like Alloy. These checks
result in higher quality requirements that are
consistent and complete. The examples and
counterexamples found by the analyser can be
used in later phases of the development (for
example to derive test directives).

The approach adopted in this paper has lim-
itations. Indeed, all verifications are done in a
finite scope of state. The Alloy method uses
the hypothesis that most of the problems can
be found in a small scope. In practice, this
hypothesis seems to be verified. The aim of this
approach is to increase the confidence in the
correctness of the pattern. As of result of the
analysis presented in this paper we have high
confidence in the correctness of the pattern, but
do not claim it is correct due to the nature of
the Alloy analysis technique used.

This work is realized in the context of two
European projects on grids: GridTrust [8] and
BeInGrid [9]. The two projects have to identify
trust and security patterns and create a reposi-
tory of these patterns. Our work is strongly link
with Gridtrust and has an impact for BeInGrid.
Indeed, the approach used can be reusable
for other patterns. Further work will be to
check other security patterns in the context
of GridTrust. This work is also relevant for
the SOA community which has considered the
Chinese wall policy [13], [14].

The next step will be to consider the differ-
ences between read accesses and write accesses.
Indeed, in some situations [1], the Chinese wall
can be broken. In order to maintain the wall in
the case of write access, we need information
about the source of data written. Another ex-
tension is to consider the aggressive Chinese
wall model [5].

Cases study will be analyzed in the

GridTrust project. Patterns will be used in con-
crete situation and will be empirically vali-
dated. Probably, some patterns combinations
will occur. In this case, verifications can be
done to check if the properties of the patterns
hold and if there aren’t side effects.

ACKNOWLEDGEMENT

This work is financially supported by the
European FP6-2005-IST-5 GridTrust European
project (project reference number 033817) and
the Walloon Region (DGTRE).

REFERENCES

[1] D. F. C. Brewer and M. J. Nash. The Chinese Wall Security
Policy. In IEEE Symposium on Security and Privacy, pages
206-214, 1989.

[2] R. Darimont and A. van Lamsweerde, Formal Refinement
Patterns for Goal-Driven Requirements Elaboration, 4th
FSE ACM Symposium, San Francisco, 1996.

[3] R. Darimont, Process Support for Requirements Elabo-
ration, PhD Thesis, Université catholique de Louvain,
Dépt. Ingénierie Informatique, Louvain- la-Neuve, Bel-
gium, 1995.

[4] Daniel Jackson, Software Abstractions, ISBN 0-262-10114-9,
MIT Press, 2006.

[5] T.Y. Lin, Chinese wall security policy-an aggressive model.
In Computer Security Applications Conference, pages 282-289,
1989.

[6] Emmanuel Letier, Goal Oriented requirements Engineering
with KAOS (Thesis), Université catholique de Louvain, 2001.

[7] Z. Manna and A. Pnueli, The Reactive Behavior of Reactive
and Concurrent System, Springer-Verlag, 1992.

[8] GridTrust European research project,
http://www.gridtrust.eu

[9] BEinGRID European research project,
http://www.beingrid.eu

[10] P. Massonet, A. Arenas, Deliverable D1.1 : Survey of Grid
Application Classes and VO Topologies, GridTrust Project

[11] The Objectiver Tool, http://www.objectiver.com
[12] The FAUST toolbox, http://faust.cetic.be, 2004
[13] Edgar Weippl and Alexander Schatten and Shuaib Karim

and A. Min Tjoa, SemanticLIFE Collaboration: Security
Requirements and Solutions - Security Aspects of Semantic
Knowledge Management,PAKM, 2004, 365-377.

[14] Simon Foley, Stefano Bistarelli, Barry OSullivan, John
Herbert, Garret Swart, Multilevel Security and Quality of
Protection,
Proceedings of Quality of Protection, 2005

