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Abstract 

In this paper, we present a goal-oriented approach to design policies for managing security requirements of 

critical information infrastructures (CII). The approach, adapted from a standard and widely accepted re-

quirements engineering methodology, is applied to the security analysis of a specific CII: Grid Data Man-

agement Systems (GDMS). Based on domain ontologies, combining concepts borrowed both from Virtual 

Organisation and Secure UML, a comprehensive set of GDMS security requirements is elicited and structured 

first semi-formally then formally. The benefits of the early formalisation are illustrated in term of complete-

ness and consistency. A specific security analysis, using anti-goals, is also performed on the resulting formal 

security model to address the presence of malicious agents. Derivation of security policy from the set of secu-

rity requirements is performed, first based on an abstract operationalization, still in the problem domain, and 

then it is translated into more concrete policy templates using standard policy constructs. Perspectives of the 

policy refinement and translation on existing policy languages and frameworks are described for its low-level 

implementation. 
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1   Introduction 

Grids enable access to, and the sharing of, geographically distributed heterogeneous resources such as compu-

tation, data and information sources, sensors and instruments, for solving large-scale or complex problems [Fos-

ter, 2001]. One of the key Grid applications is the use of grids in emergency response. In this kind of applica-

tions, Grids become a critical information infrastructure providing essential information to emergency depart-

ments in order to minimise adverse impacts of potential tragedies. For instance, Grids may be useful in prevent-

ing floods, which can be achieved by integrating data from various sources - networks of sensors in a river basin, 

weather prediction centres, historical flood datasets, topography, population and land use data - for processing in 

sophisticated numerical flood models [Hluchy, 2006]. The massive data sets that would need to be accessed and 

processed would require huge network facilities, data storage, and processing power to deliver accurate predic-

tions. This paper focuses on one element of such critical infrastructure: Grid data management systems (GDMS). 

We have carried out a formal analysis of security requirements for semantic grid services to explore how these 

requirements can be used to derive security policy. 

This paper takes a requirements engineering approach for the elaboration of such security requirements. Re-

quirements Engineering (RE) is concerned with the identification of goals to be achieved by the envisioned sys-

tem, the refinement of such goals and their operationalization into specifications of services and constraints, and 

the assignment of responsibilities for the resulting requirements to agents such as humans, devices and software. 

Goal-oriented RE refers to the use of goals for requirements elicitation, elaboration, organization, specification, 

analysis negotiation, documentation and evolution [van Lamsweerde, 2000]. More specifically the KAOS goal-

oriented approach [Dardenne, 1993] is considered and applied to the security analysis of GDMS. KAOS supports 

a number of key features for the development of high quality security model such as: a security specific analysis 

(using anti-goals, modelling the attacker rationales), the ability to formalise critical parts with tool support for 

deep consistency and completeness checks [Ponsard 2007], and a dynamic framework for runtime requirements 

enforcement [Feather, 1998]. This paper demonstrates the benefits of such an early approach to close the gap 

between declarative security requirements and operational policies. It is achieved through mapping the require-

ments model onto high-level abstract policy by developing policy templates. The whole approach is illustrated 



with the help of a complex data management system [Naqvi, 2006]. The focal point of this case study is ' avail-

ability' goals. 

This paper is organized in the following manner: section 2 presents statement of the problem that is being used 

as a reference throughout this paper to elaborate the proposed approach. Use of Goal-oriented requirements engi-

neering techniques for the specification of GDMS security requirements is elaborated in section 3. There is 

strong relation between security requirements and security policies. This relation is analysed in Section 4 by 

describing the derivation of security policy from the requirements model. We compare our approach with other 

known techniques in section 5. The paper is finally concluded with a concise account of future perspectives of 

this work.  

2   Problem Statement 

We consider a simple problem statement so that more attention could be given to elaborate the various compo-

nents of the security requirements model rather than indulging into the complexities of the model itself.  

The problem addressed in this section is to assure fault tolerant and secure management of a distributed file 

system. Fault tolerance is attained by keeping an adequate number of replicas at different nodes; whereas the 

secure management is based on the encrypted transfer of files between the nodes. The various parameters in-

volved in attaining these two broad requirements are illustrated in this section. 

2.1   GDMS as Critical Information Infrastructure (CII) 

Grid computing is comparatively a new paradigm and therefore gauging its true potential still requires due ex-

ploration of the domain and its applications. Grid itself is already seen as a critical infrastructure for knowledge 

based economy where the digital data is used as raw materials [Steward 2005]. Applying Grid technologies for 

managing large chunks of data is the logical evolution of the conventional computing data management systems. 

Interestingly these nascent Grid-based data management systems possess the intrinsic characteristic of critical 

information infrastructures (CII). Critical information infrastructures (CII) are communications or information 

service whose availability, reliability and resilience are essential to the functioning of a modern economy, secu-

rity, and other essential social values. Markets depend on them, as much as governments, to function properly 

[Cukier, 2005]. 

2.2   GDMS Security Requirements 

Grid data management systems [Jagatheesan, 2003] offer a common view of storage resources distributed over 

several administrative domains. The storage resources may not only be disks, but also higher-level abstractions 

such as files, or even file systems or databases. The scale of the stored data and its distribution over different 

administrative domains across geopolitical frontiers exacerbate the overall security state of the entire systems as 

the presence of weakest link in the security chain may simply remains invisible due to the complexity and large 

size of the GDMS. It is impossible to extensively identify the security requirements of such systems by making 

simple observations. This situation obliges the security designers to rely on formal analysis techniques [Heit-

meyer, 2001] to precisely identify the complete set of security requirements. Typical security requirements of 

GDMS cover the access restriction to authorized users, the protection against transmission in an insecure envi-

ronment, the availability of files. In the following section, we present the goal-oriented analysis of those require-

ments. 

3. Applying Goal-oriented Requirements Engineering for GDMS 

This section presents a concise security requirements model of distributed file systems. This model is built by 

using the KAOS goal-oriented requirements engineering methodology [Dardenne, 1993]. KAOS is a generic 

methodology that is based on the capture, structuring and precise formulation of the system goals. A goal is pre-

scriptive description of system properties, formulated in non operational terms. A system includes not only the 

design part but also its environment. Goals are refined and operationalized in a top-down manner as the system is 

designed or bottom up approach while re-engineering existing systems. Goals also help to structure the domain 



vocabulary. In our case we do not start from scratch but will rely on existing ontologies such as Virtual Organisa-

tion (VO - for high level modelling of Grid systems) [Winton, 2005] and Secure UML (for security model) [Lod-

derstedt, 2002]. The approach also supports adverse environment, i.e. composed of possibly malicious external 

agents trying to break the system goal rather than to collaborate in the goal fulfilment, this approach has espe-

cially been applied to security requirements [van Lamsweerde, 2004]. As a Grid system is typically composed of 

a number of interacting nodes immersed in an open and possibly adverse environment, this approach really fits 

our needs. 

 

A KAOS model is composed of a number of interrelated sub-models: 

• The object model captures the ontology of the domain, i.e. the relevant vocabulary to express goals and 

anti-goals. In this part we reuse existing VO/security ontologies in order to be as standard as possible 

and enable some processing specific to those ontologies. 

• The goal model captures and structures the assumed and required properties. In our case we will focus 

on security properties. 

• The agent model takes care of assigning goal to agent in a realizable way. Discovering responsible 

agents is the criterion to stop a goal-refinement process. 

• The operation model details, at state-transition level, the action an agent has to perform to reach the 

goals he is responsible for.  

• The anti-goal model captures attacks on the system and how they are addressed. This model is built in 

parallel with the goal-model and helps discovering goals that will improve the robustness of the system, 

especially against malicious agent whose aims is to break the high level goals of the system. 

 

In the rest of this section, we present and illustrate each model in turn, using excerpts of our running example. 

The anti-goal model is presented as the last model as such an analysis is done in a second phase of the system but 

note it triggers modification in the previous models to enhance the security of the system. 

3.1 Object Model 

The object model is used to define and document the concepts of the application domain that are relevant with 

respect to the known requirements. The object model consists of objects pertaining to the stakeholders’ domain 

and objects introduced to express requirements on operational system. There are four concepts that are found in 

the object model: classical entities (independent passive objects); associations (dependent passive objects) found 

in entity-relationship models; more specialised concepts such as agents (independent active objects); and events 

(transient association existing in only one state). Inheritance is available to all types of objects including associa-

tions. Objects can be qualified with attributes. 

A UML class diagram view is generally used to show the domain ontology. Such a diagram for the GDMS sys-

tem is depicted in figure 1. The top of the figure depicts more general concepts borrowed for classical VO on-

tologies such as described in [Winton, 2005], the middle part of the figure describes a number of security related 

concepts borrowed from [Lodderstedt, 2002]. Those concepts are reused at the GDMS domain level through 

inheritance. This enables both to capture finer grained concepts and to stay compatible with standard ontologies 

and the associated processes (such as checks, model derivation, tools…). All the concept and attributes shown in 

the bottom part of figure 1 will be heavily used when formalising the security goals. 
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Figure 1: Excerpt of the GDMS object model. 

3.2 Goal Model 

Goals are organized in AND/OR refinement-abstraction hierarchies where higher-level goals are in general stra-

tegic, coarse-grained and involve multiple agents whereas lower-level goals are in general technical, fine-grained 

and involve fewer agents. In such structures, AND-refinement links relate a goal to a set of sub-goals (called 

refinement) possibly conjoined with domain properties or environment assumptions; this means that satisfying all 

subgoals in the refinement is a sufficient condition in the domain for satisfying the goal. OR-refinement links may 

relate a goal to a set of alternative refinements. Goal refinement ends when every sub-goal is realizable by some 

individual agent assigned to it, i.e. expressible in terms of conditions that are monitorable and controllable by the 

agent [Letier, 2002]. A requirement is a terminal goal under responsibility of an agent in the software-to-be; an 

expectation is a terminal goal under responsibility of an agent in the environment. 

 

Figure 2 depicts a fragment of the goal model of the security requirements of a GDMS. It illustrates that the main 

goal of the system is to assure that the files are always secure and available. This overall goal Main-

tain[FilesSecurelyAvailable] is refined with the sub-goals Maintain[FilesAvailable] and Main-

tain[SecureAccessToFiles]. These sub-goals are further refined to describe the set of auxiliary sub-goals needed 

to elaborate the upper level goals. For example, a refinement goal Maintain[FilesAvailable] is through a goal 

Maintain[FileRedundancy].  Finally a set of requirements is associated with each refined sub-goal to demon-

strate the prerequisite of attainment of these goals. For example, the Maintain[FilesAvailable] is refined into 

Achieve[LowAvailabilityDetected], Achieve[NewNodeIdentified] and Achieve[FileReplicatedOnNewNode]. As 

agents can be identified to enforce these goals, they are effective requirements and the refinement process stops 

here. However some further change might occur after formalisation (as some goals might have been overlooked) 

and the anti-goal analysis (as new goals may be introduced to improve the system robustness). At this informal 

level, we can already note the refinement follows a temporal pattern called milestone. This will greatly help in the 

formalisation process. 

 



 
 

Figure 2: Excerpt of the GDMS Goal Model. 

 

Goals prescribe intended behaviors; they are optionally formalized in a linear temporal logic [Manna 1992] 

with real-time extensions [Koymans 1992]. Keywords such as Achieve, Avoid, Maintain are used to name goals 

according to the temporal behavior pattern they prescribe. A temporal history is composed of an infinite linear 

sequence of state starting from an initial state. State are describe as classical first order logic predicates, with the 

classic logical operators: ∀, ∃, ¬, ∧, ∨, →, ↔. The temporal operators used in this paper are the following: 

 

• � P, meaning the formula P is satisfied in all future states. It is used to express invariants 

• � ≤N P, meaning the formula P is satisfied in the next N future states. It is a less constrained invari-

ant. 

• � P, meaning the formula P is satisfied in the next state. It typically represents an immediate 

achievement. 

• ◊ P, meaning the formula P is satisfied in some future state. It is typically used to express progress 

obligation 

• ◊ ≤N P, is a constrained form of progress, meaning the formula P is satisfied within N future states 

• P ⇒ Q is a shortcut for �( P → Q ). It is a very frequent conditional temporal pattern 

• @P is a shortcut for ¬ P ∧ � P. It represents a state transition, typically used to model some event. 

 

Goal refinement has a formal semantics based on precise definition of completeness, consistency and minimal-

ity [Darimont, 1996]. Those are supported by formal tools such as the FAUST toolkit [Ponsard, 2006]. 

 

Based on those formal means, the goal [SecureAccessToFiles] can now be formalized as: 

 

Goal Maintain[SecureAccessToFile] 

 InformalDef: a file requested by a user who has access right is granted access. 

 FormalDef: (∀ f:File, u:User) requested(u,f) ⇒ � granted(u,f) 

 

To avoid conflict with the availability goal, the scope of this goal is only at grant level and not effective ac-

cess. This part is formalized by the goal Maintain[FileAvailable]: 

 

Goal Maintain[FileAvailable] 



 InformalDef: a file requested by a user should been accessed within the max access time specified for the 

system 

 FormalDef: (∀ f:File, u:User) granted(u,f) ⇒ ◊ ≤MAX accessed(u,f) 

 

Note that this formalisation already takes into account the security dimension through the granted predicate. 

An initial formulation would have just used requesting but would have resulted in some conflict among those 

goals. This shows the importance of the formalization in the early discovery and resolution of conflicts which 

otherwise will inevitably result in subsequent design inconsistencies. 

 

As the father goal is beyond the scope of formalisation, this refinement will not be checked. However further 

refinement have to comply with the formal semantics of refinement. As the process of proving the refinement is 

rather complex and the same goal refinement pattern are frequently encountered, a pattern library has also been 

defined.  For example, the Maintain[FileRedundancy] goal is refined using the classical milestone pattern of the 

form: P⇒ ◊ Q refined by P ⇒ ◊ R and R ⇒ ◊ Q. The pattern is instantiated as follows: 

 

Goal Maintain[FileRedundancy] 

 InformalDef: each goal should be replicated across the network a number of times N 

 FormalDef: (∀ f:File) �( replicas(f) ≥  N ) 

  Where replicas(n) ≡ {n:Node | hosted(f,n) and available(n)} 

 

As the parent goal is too restrictive to fit the pattern, we decide to soften it under the current achieved form 

that tolerates temporary availability under the threshold. To be safer, we could envisage increasing that threshold. 

 

Goal Achieve[WeakenedFileRedundancy] 

 InformalDef: each goal should be replicated across the network a number of time N 

 FormalDef: (∀ f:File) (replicas(f) < N) ⇒ ◊ ≤T (replicas(f) ≥  N) 

 

The leave goals are requirements under the responsibility of some agents and can be formalized as follows: 

 

Requirement Achieve[LowAvailabilityDetected] 

 InformalDef: an availability failure event is triggered for all file below the availability threshold 

 FormalDef: (∀ f:File) replicas(f) < N ⇒ ◊ ≤T1 availabilityFailure(f) 

 Resp: DataMonitor 

 

Requirement Achieve[NewNodeIdentified] 

 InformalDef:  a availability failure event triggers the identification of a new node on which to replicate the 

file 

 FormalDef: (∀ f:File) availabilityFailure(f)  

    ⇒ ◊ ≤T2 (∃nn:Node) available(nn) ∧ ¬hosted(f,nn) ∧ newNodeIdentifed(f,nn) 

 Resp: ReplicaManager 

 

Requirement Achieve[FileReplicatedOnNewNode] 

 InformalDef: when a new node is identified, the file is replicated on this node within a given time bound 

 FormalDef: (∀ f:File, nn:Node) newNodeIdentified(f, n, nn) ⇒ ◊ ≤T3 hosted (f,nn) 

 Resp: ReplicaManager 

 

A milestone pattern with two intermediate steps is now apparent. An additional real-time constraint is also pre-

sent: T1+T2+T3 ≤ T. As the pattern is tuned, additional checks have to be made using formal tools such as the 

FAUST toolkit which can model-check complex refinements. In our case, it reveals a missing piece when several 

nodes fail simultaneously. To address this we can add an assumption about the maximal failed node accepted in 

the systems with respect to the system size and the duplication level. 

 

Assumption[LimitedSimultaneousFailures] 

 FormalDef: #{n:Node| failure(n)} < #{n:Node} - N 

 

In our refinement there are also obvious conflicts with resource usage goals. For example, the current design 

only increases copies and will also result in resource usage conflict. Resource optimization will result in a dual 



goal refinement decreasing the number of copies. The number of replicas is also left open and can be used to 

optimize the design with respect with other goals and the simultaneous failure assumption. 

3.3 Agent Model 

Goal refinement ends when every sub-goal is realizable by some individual agent assigned to it, that is, ex-

pressible in terms of conditions that can be monitored and controlled by the agent. Hence, those agents are also 

usually shown in the goal model (see figure 1). Those agents are either human or automated (hardware or soft-

ware). 

 

In our design, the responsibility of the requirements Achieve[LowAvailabilityDetected] is assigned to the 

DataMonitor, while the requirements Achieve[NewNodeIdentified] and Achieve[FileReplicatedOnNewNode] are 

both assigned to the ReplicaManager. The DataMonitor agent can be formally described as follows 

 

Agent DataMonitor 

 Monitors: File 

 Controls: failureDetected 

 Responsible of: Achieve[NewNodeIdentified] and Achieve[FileReplicatedOnNewNode] 

 

When related to security goals, the monitor and control constructs are general KAOS constructs that can be 

mapped on the SecureUML meta-model using the following “gluing” meta-constraint. This kind of constructs 

ensure the seamless integration of our meta-models. 

 

Meta-constraint MonitoringAllowed: 

 ∀ dm: DataMonitor, n:Node; Permission (dm,node) ⇔  Monitors(dm,node) 

3.4   Operation Model 

Requirements are operationalized into specifications of operations to achieve them [Letier, 2002]. An opera-

tion is an input-output relation over objects; operation applications define state transitions along the behaviors 

prescribed by the goal model. In the specification of an operation, an important distinction is made between (de-

scriptive) domain pre-/post-conditions and (prescriptive) pre-, post- and trigger conditions required for achieving 

some underlying goal(s): 

 

• a pair (domain precondition, domain postcondition) captures the elementary state transitions defined 

by operation applications in the domain; 

• a required precondition for some goal captures a permission to perform the operation only if the con-

dition is true; 

• a required trigger condition for some goal captures an obligation to perform the operation if the con-

dition becomes true provided the domain precondition is true (to produce consistent operation mod-

els, a required trigger condition on an operation implicitly implies the conjunction of its required pre-

conditions); 

• a required postcondition defines some additional condition that any application of the operation must 

establish in order to achieve the corresponding goal. 

 

Note that operation specifications are still abstract construct making no assumption on the real implementation 

at design level. These specifications can be statically developed in the component implementation of some agent 

or deployed as policies using relevant mechanisms provided by the supporting infrastructure. This second option 

is the one we will elaborate in the next section of this paper. 

 

Figure 3 shows the operation model of the problem statement considered in this section. Each requirement is 

operationalized by a single corresponding operation. As the pattern is a milestone, those operations are also logi-

cally chained. This is graphically apparent: first DetectAvailability triggers an appropriate event when a file be-

comes unavailable, IdentifyNewNode then decides on which node(s) new replica(s) will be deployed, and finally 

ReplicateFile performs the replication. 



 

 
Figure 3: Excerpt of the GDMS Operation Model. 

 

Operation can be formalized using first order logic to describe the various fields stated earlier: domain 

pre/post-conditions, and required trigger, pre and post conditions in order to achieve some goal. For example, the 

operation ReplicateFile can be formalized as: 

 

Operation ReplicateFile 

PerformedBy: ReplicaManager 

Input : f: File, nn: Node 

Output: nn:Node 

DomPre : ¬hosted(f, nn) 

DomPost : hosted(f, nn) 

ReqTrig for Maintain[FileAvaibility] : (replicas(f) < N) 

 

In this formulation, the domain operation is simply the replication of a file on a node where it is not yet pre-

sent. To achieve the goal Maintain[FileAvailability] is enforced through the trigger condition which detects the 

low availability of the node. 

3.5   Anti-Goal Model 

In this section, we apply a combined obstacle/anti-goal analysis. The aim of this analysis is to be able to dis-

cover intentional or unintentional circumstances under which the system will fail to fulfil its goals. We call: 

 

• Obstacle (to some goal): a condition whose satisfaction may prevent that goal from being achieved. 

• Anti-goal: an intentional obstacle, i.e. an obstacle not occurring by (lack of) chance but deliberately fol-

lowed by some malicious agent. 

 

The analysis process is fully described in [van Lamsweerde, 2000] and [van Lamsweerde, 2004]. It can be 

briefly described as follows: 

 

1. get initial anti-goals by negating the relevant security goals. In the scope of this paper, we will only con-

sider the Availability goal. 

2. elicit potential agent who might benefit from the anti-goal and check for rationale. 

3. refine the anti-goal using AND-OR graphs until reaching realizable anti-goals, for example exploiting 

some design vulnerability. 

4. address those by generating appropriate resolution counter-measures. 

 

Figure 4 shows the analysis of our example: the Availability goal is first negated and three potential causes are 



identified: some file could possibly not be reachable; reachable but not in time (as there is a time constraint in our 

formalization); or not available at all due to complete deletion. At this level, some problems might be intentional 

or otherwise.  Refining further we can identify: 

 

• Lack of reachability can be instigated by a file or network failure. Some agent might try to bring down 

some link but more likely problems could also be caused by a lack of infrastructure adjustment to resource 

requirements. New goals developed to address this issue are: Achieve[EnoughReplicaManaged] and 

Maintain[RedundantNetworkLinks]. Such kinds of goals are of course expected to be in conflict with 

cost; therefore optimization (possibly dynamic) will occur here. 

• Lack of timeliness can be instigated by some infrastructural overload. This can be either caused by regular 

requests or irregular requests (e.g. Denial of Service attack). To address the unintentional failure, the in-

frastructure has to be managed in a way to accommodate its demands; for the intentional one, appropriate 

management of irregular requests have to be put in place, for example by identifying the originating user 

and cancelling or restricting his privileges of using the system. 

• Deletion of all copies is a purely intentional goal as the system is designed to keep N copy in the system. 

To avoid such a situation, the delete operation and associated attributes should be managed very carefully. 

 

 
Figure 4: Anti-goal Model 

 

Considering our original goal model of figure 2, we can consider now how to deploy those goals, for example 

some InfrastructureManager be assigned the responsibility of adapting the number of copies based on average 

and instantaneous number of replicas and the space left. Any increase in the number of copies should automati-

cally be detected by the DataMonitor and result in a new replication by the ReplicaManager. 

4. Derivation of Virtual Organisation Security Policy from the Requirements Model 

Security policies define the types of security measures that are used and what scope those measures have but 

not how those measures are designed or implemented. System security policies are derived from security re-

quirements that specify the risks and threats that must be countered. These policies are system-specific and reflect 

the threat environment and the security problems assumed by system designers. 



We need to derive implementable policy from the high level requirements model. This policy is then refined 

into operational policy. At the operational stage, it is ready to be implemented in the real systems. 

4.1   VO Policies 

Following [Wasson 2003], we can define three types of policies in VOs. (1) VO-wide operational policies, 

which describe the state of the VO as a whole and not any single node or service. These policies are statements 

about the intended operational state of the VO, following mainly from domain invariants, properties know to 

hold in every state of some domain object. (2) VO resource policies, which describe the VO’s rules for the be-

haviour of its member resources. These policies correspond to rules that pertain to particular resources within the 

VO rather than across the entire organisation. An example of this type of policies for the case of our system in-

cludes “if a file Fi contains un-classified information then encryption is disabled”. This type of policies follows 

directly from the object model, where attributes (properties) associated to particular type of object is defined. (3) 

The last type of policies is VO agent policies, which specify rules for agents (users) of the VO’s resources, from 

the perspective of the VO itself. These policies include permit/deny action on various possible agent operations, 

but more importantly they may specify pre-condition for any given operation, as well as obligations that the agent 

receives for performing an action. An example of this type of policies is in a MoveFile operation, the Data Man-

ager agent must disable encryption if the file-transfer path includes trusted domains only”. The main source of 

VO agent policies is the operation model, where pre/post conditions are defined for the operations performed by 

agents.  

Considering our requirements model, the first category will rely on a number of domain properties identified 

as the goal model is elaborated: such properties will prove necessary to ensure the correct global operation of the 

system. The second and third category will be related to the requirements operationalisation step either from the 

target entities (for resource policies) or the enforcing agent point of view (for agent policies). 

4.2   From Requirements to Policies 

In this section we show how to derive security policy from the requirements model and define templates with 

attributes such as subjects, subject’s responsibilities, objects, object’s activities, etc. As in the requirement analy-

sis, these templates will be populated both using natural language (for ease of comprehension) and mathemati-

cally (for its eventual use in developing precise semantics and in-dept formal processing). We will only focus on 

resource and policies. 

 

The policy refinement procedure is the following: 

1. Check the requirement that will be enforced dynamically through a policy process. This requires two 

conditions. First the operation should be controllable by the GDMS infrastructure, second the en-

forcement conditions (pre/post/trig) of the operation as to be monitorable by the infrastructure. 

Note that a candidate operation must not automatically be enforced dynamically even if this is seen as 

more flexible mode. This is a design decision to be taken according to the operational conditions. On 

the other hand, some actions can also be taken to address the lack of monitorability or controllability 

of some feature which could greatly benefit from a policy deployment. 

2. Translate the enforcing operation into a policy using the informal template and the mapping de-

scribed in section 4.3. The formalization will be considered in section 4.3 as a first refinement step. 

4.3   Policy Structure 

Requirements templates have been used in security requirements models to describe the various concepts both 

in natural language and formally [van Lamsweerde, 2001]. Here we are following a similar approach in which 

security policy templates are developed. Policy templates are designed to formulize policy statements. Every 

policy must have a core set of attributes and may have a set of optional/additional attributes. The proposed attrib-

utes are given in the following table along with the way to derive them from the requirements model. All the 

attributes support formalization except ID and Description. 

 

 Attribute description Mapping with requirements 

ID Policy identifier ID can be derived from the enforced goal 



Description Explanation of the policy parameters Description can be derived from the in-

formal description of the enforced goal 

Subject Active entity that manages object(s) through a 

set of actions 

Agent responsible of the enforced re-

quirement 

Object Passive entity that is managed by subject(s) 

through a set of actions 

Objects controlled by the responsible 

agent (operation output) 

Action Task to be executed by a subject on object(s) Domain post-condition of the enforced 

operation 

Authorization Privileges given to the subject to perform actions 

on the object. Authorization maybe restricted by 

constraints 

Security related required pre-condition of 

the enforced operation 

Constraint Conditions that need to be fulfilled before an 

action is initiated. 

Constraint part of the required precondi-

tion of the enforced operation 

Event Condition that triggers the policy Required trigger condition of the enforced 

operation 

 

To illustrate this step, we can consider the goal Achieve[FileReplicatedOnNewNode]. At the informal level, 

the formulation is the following. 

 

ID NFRG-1 

Description New replica of file is generated when an existing storage node is 

failed  

Subject ReplicaManager 

Object Grid data storage nodes 

Action Replica generated 

Authorization Create files replica 

Constraint Availability of nodes 

Event Replica-host node failed 

 

This is a structured representation of a policy element; however, it cannot be implemented in this form as it 

requires refinement and transformation into operational policies. 

4.4   Towards the Refinement to Operational Policies 

Policy NFRG can be further refined to provide more realistic security policy. To support this step, the re-

quirements analysis greatly helps. First, it provides means to identify realizable operations, based on observable 

or controllable information. Second, through the formalization process, a number or missing or conflictial condi-

tions are discovered, avoiding the design of erroneous policies. Applying this to our previous template yield the 

following template: 

 

ID NFRG-2 

Description When the number of available file replicas becomes less than the 

threshold number, the monitoring agent will generate new replica 

by negotiating the security compatibility of the nodes with the file 

security requirements. 

Subject ReplicationManager 

Object File to replicate and backup/unused Grid data storage nodes 

FormalDef: f: File; nn:Node |available(nn) 

Action Replica file generated on the compatible nodes 

FormalDef: hosted(f,nn) 

Authorization Locate compatible storage nodes and create files replica 

FormalDef: Autorized(replicator, nn, WRITE) 



Constraint Availability of compatible nodes 

FormalDef: Available(nn) and not hosted(nn,f) 

Event Number of available replicas becomes less than threshold value. 

FormalDef: Replicas(f) < N 

 

The refined policies provide more details, including some object (file replicas), attributes (number of available 

replicas), and agents (Monitoring agent). However, they still lack the description of exact techniques and tech-

nologies to be employed in the real systems, typically relying on standard protocols (such as WS-agreement, WS-

federation) and specific deployment languages. These details are provided in the implementation policies. Im-

plementation policies are specific to a particular system and cannot be directly applied to other systems. 

 

Unlike generic policies, which are quite abstract, operational policies contain specific details of a particular 

system. An example operational policy derived from the same example policy could be as:  

 

When the number of available replicas of Cosmic_Gravitational_Waves.xls file becomes less 

than ninety percent of the total number of replicas over the LCS gird, the Grid Data Monitoring 

Tool will generate new replica by negotiating the security compatibility of the nodes with the se-

curity requirements of Cosmic_Gravitational_Waves.xls file by using the Web-Service Agreement 

protocol. 

 

Now the operational policy may look like: 

 

ID NFRG-3 

Description NFRG: New File Replica Generation policy is to be implemented 

in the Laser Interferometer Gravitational-Wave Observatory 

(LIGO) environment as part of LIGO Scientific Collaboration 

(LSC) Grid  

Subject Grid-Data Monitoring Tool (DMT) 

Object LSC Grid nodes 

Action Replica of file Cosmic_Gravitational_Waves.xls generated 

Authorization DMT can employ Web-Services Agreement (WSA) protocol to 

negotiate the security parameters and evaluate the compatibility of 

the node where replica is to be generated 

Constraint Availability of the nodes that correspond to the storage and secu-

rity requirements of Cosmic_Gravitational_Waves.xls file 

Event Number of available replica-host nodes becomes less than 90% of 

the total number of replicas. 

 

This shows how the policies could be derived from the requirements model and then refined and translated 

into the operational policies. A comprehensive set of such policies for the example case of LSC will also consist 

of secure transfer of file contents to the newer nodes. An operational policy for such data transfer will provide 

low-level details such as encryption algorithm to be employed, key-length to be maintained etc. 

5   Related Work 

Some techniques have been defined with the objective of taking security into account at requirement engineer-

ing. A main inspiration in our work is [van Lamsweerde, 2004]. Tropos [Mouratidis 2006] is a similar methodol-

ogy for modelling organizations in terms of actors, goals, and dependencies to early requirements and provides a 

basis for extending early requirements to late requirements, architectural design, and detailed design. Tropos 

emphasizes the need to identify organizational concerns, separate them from implementation concerns, and give 

them first-class treatment. Toward this end, Tropos posits five main classes of concern: actors, resources, goals, 

soft goals, and tasks. A particular requirements model will contain multiple instances of each of these classes. 

Properties are not represented directly in the Tropos schema but may be captured in hard or soft goals. Tropos 

incorporate several types of concern relationship, including decomposition, means-ends, and dependency rela-

tionships. In some contrast to Tropos, the KAOS approach adopts a more explicitly multidimensional perspective 



on requirements. Conceptually, requirements in the abstract and elements in a model can be associated with dif-

ferent aspects. Goals are subject to disjunctive and conjunctive refinement. Multiple views of the requirements 

are supported including refinement, operationalisation, entity-relationship, and agent. It also takes a view of con-

cerns that is appropriate to requirements and separated from implementation and provides downstream continu-

ity, from requirements to architectural refinement. 

As for KAOS, security extensions have been proposed to Tropos [Giorgini, 2004]. Central to their work is that 

is the assumption that in modelling security and trust it is necessary to distinguish between the actors that ma-

nipulate resources, accomplish goals or execute tasks, and actors that own the resource or the goals. They first 

develop a trust model, determining the trust relationship between actors, and then a functional model, where it is 

analysed the actual delegations against the trust model, checking whether an actor that offer a service is author-

ised to have it. 

A first attempt to derive policies from high-level goals is presented in [Bandara, 2004]. Their main objective 

is to refine high-level policies -represented as a goal- into low-level operations that will allow a given system to 

achieve the desired goal. Their approach combines the KAOS requirement-engineering methodology, the Event 

Calculus, and abductive reasoning techniques. We have been inspired by their work, but taking an alternative 

approach. We use security requirements to derive the high-level policies, which could be further refined using 

their approach. Close to Bandera’s work is the work of [Rubio-Loyola, 2005], which refines policies by applying 

requirement engineering and model checking techniques based on a temporal logic formalisation similar to the 

one used in this paper. His approach allows one to find system executions aimed at fulfilling low-level goals that 

logically entail high-level strategic guidelines. From system executions, policy information is abstracted and 

eventually encoded into a set of refined policies specified in Ponder. Above approaches have been applied to the 

networking management domain. Our interest is in applying them to the Grid area. An important distinction here 

is that the approach described in [Rubio-Loyola, 2005] yields instances level policies whose generation is diffi-

cult to control and that have then to be generalised carefully. Our approach is more constructive and stays at the 

predicate level all the way: the RE model is directly mapped onto policies. The FAUST model-checking tool is 

applied to correct the model and not to generate policies directly. 

6 Conclusions and Perspectives 

This paper has presented our work of modelling security requirements of critical information infrastructures 

(CII). We considered - Grid Data Management Systems (GDMS) - an emerging example of CII as a reference 

system in this paper. This work addresses issues related to storage management policies by modelling security 

requirements at the application level. 

Our approach is a pioneer work towards the formalisation of CII security requirements modelling. We showed 

how goal-oriented requirements engineering techniques can be deployed in the GDMS field to provide a solid 

framework for the elaboration of a high quality formal security requirements models from which system’s secu-

rity policy can be derived. Such an approach also provides strong arguments for security rationale [Common 

Criteria 2006] that yields security guarantees for the various stakeholders. These security assurances play vital 

role in the service level agreements (SLA) in the relevant businesses.  

Our future directions include formal derivation of security policy followed by the conception of formal mod-

els for policy refinement to operational policies. 
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