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ABSTRACT
We study stopping criteria that are suitable in the solution by Krylov space based methods
of linear and non linear systems of equations arising from the mixed and the mixed-hybrid
finite-element approximation of saddle point problems. Our approach is based on the
equivalence between the Babuška and Brezzi conditions of stability which allows us to
apply some of the results obtained in Arioli, Loghin and Wathen (2005). Our proposed
criterion involves evaluating the residual in a norm defined on the discrete dual of the space
where we seek a solution. We illustrate our approach using standard iterative methods
such as MINRES and GMRES. We test our criteria on Stokes and Navier-Stokes problems
both in a linear and nonlinear context.
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1 Introduction

Mixed and mixed-hybrid finite-element methods form a class of popular discretization methods
designed to approximate systems of partial differential equations of saddle-point type arising
in the modeling of a variety of physical phenomena in areas such as fluid-dynamics or linear
elasticity. They generally give rise to large, nonsymmetric, indefinite linear and nonlinear systems
for which the solution is typically sought via iterative approaches. An essential feature of such
methods is the stopping criteria employed. This work aims to describe how to devise a suitable
stopping procedure, given the well-defined theoretical context of variational formulation of partial
differential equations and in particular the mixed finite element theory.
The outline of the paper is as follows. In Section 2, we introduce the abstract formulation of a
generic saddle-point problem as a system based on bilinear forms. Then, we describe a general
framework in which we can formulate a stopping criterion based on the energy norm of the error
between the exact solution of the continuous problem and the solution computed by an iterative
method. Section 3 generalizes the stopping criterion derived in (Arioli et al. 2005) to the case
of mixed finite element formulations, discussing both the linear symmetric and nonsymmetric
cases. We also propose a strategy for the extension of the stopping criteria to the nonlinear
case. Finally, in Section 4, we present our class of test problems together with the convergence
behaviour of some iterative algorithms showing the beneficial effect of our stopping criteria.

2 Mixed variational formulation

We start by summarizing the theoretical setting necessary to describe our problem. A compre-
hensive and exhaustive introduction can be found in the book of Brezzi and Fortin (1991).
Let V,Q be Hilbert spaces with norms ‖ · ‖V , ‖ · ‖Q and duals V∗,Q∗, respectively. Consider
the two real-valued bilinear forms a(·, ·) : V × V, b(·, ·) : V × Q and the two linear functionals
f(·) ∈ V∗, g(·) ∈ Q∗. We are interested in the following abstract variational formulation

(SP)







Find (u, p) ∈ V ×Q such that for all (v, q) ∈ V ×Q
a(u, v) + b(v, p) = f(v),
b(u, q) = g(q).

In the nonlinear case the bilinear form a(·, ·) is replaced by the nonlinear operator F : V → V ∗,
as, for example, in the Navier-Stokes case. The variational formulation in this case reads

(NSP)







Find (u, p) ∈ V ×Q such that for all (v, q) ∈ V ×Q
〈F (u), v〉(V∗,V) + b(v, p) = f(v)

b(u, q) = g(q).

Following Hughes, Franca and Balestra (1986), Demkowicz (2006), and Xu and Zikatanov (2003),
we introduce the Hilbert space H = V ×Q with the norm graph:

{

H 3 w =
{

u, q
}

‖w‖2
H = ‖v‖2

V + ‖q‖2
Q,

the bilinear form K : H×H → IR and the linear functional f : H → IR, f ∈ H∗:

K(u, p; v, q) = a(u, v) + b(v, p) + b(u, q),
f(u, q) = f(v) + g(q),

(1)

where we equip H∗ with the norm ‖ · ‖H∗ given by

‖f‖2
H∗ = ‖f‖2

V∗ + ‖g‖2
Q∗ .
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Problem SP can be reformulated as
{

Find u ∈ H such that for all v ∈ H
K(u, v) = f(v).

(2)

Existence and uniqueness of solutions to problems of type (2) is guaranteed provided the following
conditions hold for all u, v ∈ H

K(w, v) ≤ C1‖w‖H‖v‖H (3a)

sup
v∈H\{0}

K(w, v)

‖v‖H
≥ C2‖w‖H, (3b)

sup
w∈H\{0}

K(w, v)

‖w‖H
≥ C2‖v‖H; (3c)

for some positive constants C1, C2.

Remark 2.1. Requirements (3) are known as the Babuška conditions and can be shown to be
equivalent to the Brezzi conditions which essentially are (i) continuity conditions (of type (3a))
on a(·, ·), b(·, ·), (ii) a condition of type (3b) for b(·, ·) and (iii) a coercivity condition on a(·, ·)
(Xu and Zikatanov 2003, Demkowicz 2006). In the following we find it convenient to work with
the Babuška conditions.

Consider now the finite dimensional spaces Vh ⊂ V and Qh ⊂ Q with bases
{

ψi

}

1≤i≤n
and

{

φj

}

1≤j≤m
, respectively. Moreover, we denote by Hh and its dual H∗

h the spaces

Hh = Vh ×Qh, H∗
h = V∗

h ×Q∗
h .

Variational formulation (2) restricted to the finite dimensional space Hh reads

{

Find uh ∈ Hh such that for all vh ∈ Hh

Kh(uh, vh) = fh(vh).
(4)

where Kh(·, ·) is a bilinear form on Hh ×Hh and fh(·) is a continuous linear form on Hh.
In the following we assume that the Babuška conditions (3) hold for the bilinear form Kh(·, ·).
This allows us to derive the a priori error estimate

‖u − uh‖H ≤

(

1 +
C1

C2

)

min
vh∈Vh

‖u − vh‖H. (5)

Remark 2.2. We shall be assuming that the variational formulations introduced above are weak
formulations of a system of partial differential equations defined on some open subset Ω of IRd.
Then the Hilbert spaces are spaces of real-valued functions defined on Ω, while Vh,Qh are finite
element spaces, spanned by basis functions defined on a subdivision Ωh of Ω. Replacing vh by the
interpolant of u on Ωh and using standard interpolation error estimates we can derive a priori
bounds of the form

‖u − uh‖H ≤ C(u)C(h),

which are very useful in informing our approach to designing stopping criteria.

For the choice (1), the weak formulation (4) gives rise to a linear system of equations

Ku = f ,
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where the matrix K has the 2-by-2 block structure

K =

(

A BT

B 0

)

with
Aij = a(ψj , ψi), Bkj = b(ψj , φk), i, j = 1 · · · n, k = 1 · · ·m.

Let us examine the discrete setting further. Note first that there is an isomorphism Πh between
IRn+m and Hh defined via

Πhw = Πh

(

v
q

)

=

( ∑n
i=1 viψi

∑m
j=1 qjφj

)

=

(

vh

qh

)

= wh.

In particular, since

‖vh‖
2
Vh

= vTV v = ‖v‖2
V , ‖qh‖

2
Qh

= qtQq = ‖q‖2
Q,

where V ∈ IRn×n and Q ∈ IRm×m, the finite dimensional Hilbert spaces (Vh, ‖ · ‖Vh
), (Qh, ‖ · ‖Qh

)
are represented, respectively, by (IRn, ‖ · ‖V ), (IRm, ‖ · ‖Q). Therefore, the space Hh can be
represented by IRn+m with norm ‖ · ‖H where H ∈ IR(n+m)×(n+m) is given by

H =

[

V 0
0 Q

]

.

The dual space H∗
h can be shown to be represented by IRn+m with norm ‖ · ‖H−1 .

Finally, we have the following discrete representation

Kh(uh, vh) = vTKu ∀uh, vh ∈ Hh,

which allows us to write the continuous stability conditions (3) as

max
w∈Rn\{0}

max
v∈Rn\{0}

wTKv

‖w‖H‖v‖H
≤ C1 (6a)

min
w∈Rn\{0}

max
v∈Rn\{0}

wTKv

‖w‖H‖v‖H
≥ C2 (6b)

which is equivalent to uniform conditioning of K with respect to the norm induced by H:

‖K‖H,H−1 ≤ C1, ‖K−1‖H−1,H ≤ C−1
2 ,

or, κH(K) ≤ C1/C2. We point out that both C1 and C2 are constants independent of h and,
thus, independent of n and m.

3 Stopping criteria

Conditions (6) are sufficient for the main theorem in (Arioli et al. 2005) to apply:

Theorem 3.1. Let u be the solution of the weak formulation (2) and let u, uh = Πhu satisfy

Ku = f ;
‖u − uh‖H
‖uh‖H

≤ C(h).
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Then ũh = Πhũ satisfies
‖u − ũh‖H
‖ũh‖H

≤ C̃(h) = O(C(h))

if
‖f −Kũ‖H−1

‖ũ‖H
≤ ηC(h)C2, (7)

for some η ∈ (0, 1).

Remark 3.1. This result means that one may replace the finite element solution uh by an approx-
imation ũh constructed by an iterative method provided the H−1-norm of the residual r = f −K ũ
is of the same order as the finite element error.

In the following, we consider in greater detail the application of the above criterion to saddle-point
systems, both in a linear and nonlinear setting.

3.1 The linear case

Unlike the positive-definite case considered in (Arioli et al. 2005), there is no obvious solution,
or iterative method, that would allow for the approximation of ‖r‖H−1 in an indefinite context.
In fact, it appears that this may have to be computed by solving a linear system with coefficient
matrix H. Fortunately, this is a procedure that is included already in some preconditioned
iterative methods.

3.1.1 Symmetric indefinite problems

It is an established fact that symmetric saddle-point problems arising from the stable finite
element discretization of a system of partial differential equations are rather amenable to iterative
treatment in the sense that they come equipped with optimal preconditioners. We quote here a
general result from (Loghin and Wathen 2004) that expresses this fact.

Theorem 3.2. Let (6) hold. Then

‖H−1K‖H = ‖KH−1‖H−1 ≤ C1, (8a)

‖K−1H‖H = ‖HK−1‖H−1 ≤ C−1
2 . (8b)

While the form of (8) is useful when we consider the nonsymmetric case, we note here that one
can write the above bounds as a bound on the 2-norm condition number of K preconditioned
centrally by the norm

κ2(H
−1/2KH−1/2) ≤

C1

C2
.

This suggests that an iterative method such as the Minimum Residual method (MINRES) will
converge in a number of steps independent of the size of the problem. Furthermore, the residual
computed by this method is in fact measured in the right norm: ‖ · ‖H−1 . Hence, one can easily
incorporate in this approach bound (7). This we carry out in our numerics section.
We note here that there is a significant amount of research devoted to the analysis of norm-based
preconditioners for symmetric saddle-point problems and derivation of bounds of type (8). Some
of the problems considered come from ground-water flow applications (Bramble and Pasciak
1988), (Bramble and Pasciak 1997), (Chen, Ewing and Lazarov 1996), (Glowinski and Wheeler
1988), (Rusten and Winther 1993), (Vassilevski and Wang 1992), Stokes flow (Cahouet and
Chabard 1988), (Wathen and Silvester 1993), (Silvester and Wathen 1994), (Fischer, Wathen and
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Silvester 1998), (Chen and Strikwerda 1999), elasticity (Glowinski and Pironneau 1979),(Arnold,
Falk and Winther 1997), (Klawonn 1998), (Brown, Jimack and Mihajlovic 2000), (Mihajlovic
and Silvester 2002), magnetostatics (Perugia and Simoncini 1998), (Perugia, Simoncini and Ari-
oli 1999) etc.

3.1.2 Nonsymmetric indefinite problems

While convergence of iterative methods for nonsymmetric problems is not fully understood,
bounds such as (8) are clearly attractive in a preconditioning context. They guarantee that for
H−1/2KH−1/2 both the singular values and the absolute values of the eigenvalues are bounded
from below and above. This means that the use of the norm as a preconditioner can be rec-
ommended also in the nonsymmetric case. The general approach, as suggested by the form of
(8) is to employ an iterative solver in the H-inner product with left preconditioner H. The
resulting algorithm is equivalent to employing an Euclidean inner-product and system matrix
H−1/2KH−1/2 and output a residual measured in the norm ‖ · ‖H−1 which is what we want to
monitor. We carry out this kind of procedure in the case of the Generalized Minimum Residual
method (GMRES).

3.2 The nonlinear case

In the nonlinear case the approximation of the solutions by mixed or mixed-hybrid methods in
combination with the linearization of the operator by a Newton method or a Picard approach,
yields a sequence of finite dimensional problems of type (4), generally nonsymmetric, each of
which satisfy the stability conditions (6). Writing the approximation of problem NSP as

F(w) = 0

after linearization, we want to solve

Kkwk+1 = gk, (9)

where

wk+1 =

(

uk+1

pk+1

)

and gk =

(

fk
0

)

.

In practice, an inner-outer iteration process is the method of choice for large problems, with an
inner linear solve, typically an iterative process, and an outer nonlinear update. A popular ap-
proach is the Newton-Krylov procedure, where the outer Newton iteration uses an inner iterative
procedure of Krylov type to solve the linear system (9). The efficiency of such methods relies on
the choice of inner stopping criteria. This was recognized by Dembo et al. (Dembo, Eisenstat
and Steihaug 1982). We review briefly their result and adapt it to the finite element context.

3.2.1 Nonlinear stopping criteria

Let us assume that we seek the solution of problem (9) via an iterative routine in which at every
step j we compute or estimate a residual

rj = gk −Kkwk+1.

Since initially system (9) approximates poorly the equation F(w) = 0 one can compute only a
coarse approximation to the solution wk+1. As convergence of the outer iteration improves one
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would want to improve the quality of wk+1. One way of achieving this is through the use of of
the following inner stopping criterion (Dembo et al. 1982)

‖rj‖

‖F(wk)‖
≤ c‖F(wk)‖q. (10)

The norm employed in (10) is general, though in practice the standard Euclidean norm is em-
ployed. This is wasteful in a finite element context. In particular, given the result of Thm 3.1,
we propose to evaluate the above criterion in the relevant norm ‖ · ‖H−1

‖rj‖H−1

‖F(wk)‖H−1

≤ c‖F(wk)‖q
H−1 , (11)

Criterion (11) is to be combined with criterion (7). Thus, while (7) is not satisfied, one employs
at each nonlinear step an iterative method with criterion (11). Moreover, the choice of c, q in (11)
needs to be related to C(h) in (7). Thus, if the problem is large, one can compute a satisfactory
solution in just a few iterations, without the need to attain a very small order for the nonlinear
residual, which in a finite element context has no relevant meaning. A typical algorithm for
solving (9) is outlined below:

k = 0, choose wk, rk = −Fk(wk) tol out := ηC(h)C2

while ‖rk‖H−1/‖wk‖H ≥ tol out

w0 = wn, r0 = rk, tol in := c‖r0‖q
H−1

wj = GMRES(Kk,gk,w
0, tol in,H)

k = k + 1, wk = wj, rk = −F(wk)

end while

where the iterative routine GMRES(E,b,x0, tol,H) applied to a matrix E computes an approx-
imate solution xk such that

‖b −Exk‖H−1

‖b −Ex0‖H−1

≤ tol.

A GMRES routine which uses the H−1-norm in its stopping criterion is a GMRES iteration in
the H-inner product preconditioned from the left by H (cf. section 3.1.2)

3.2.2 3-term GMRES

It was shown in the positive-definite case in (Arioli et al. 2005) that the GMRES method in
the H-inner product with left preconditioner H is a three-term recurrence provided H is the
symmetric part of K. In this case, the preconditioned system matrix is a normal matrix

H−1/2KH−1/2 = I + S

where S is a skew-symmetric matrix. Such an implementation of GMRES is storage-free, a
desirable feature in an iterative solver. One would naturally want to extend this to the indefinite
case, particularly for the case where we have to solve a long sequence of problems of type (9).
We show how this can be achieved for a class of nonlinear saddle-point problems.
Let Kk in (9) have the form

Kk =

(

Ak BT
k

Bk 0

)
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where Ak are nonsymmetric positive-definite for all k, a standard assumption for a great variety
of problems. Let us replace the sequence of problems (9) with the following sequence

(

Ak BT
k

Bk −τM

)(

uk+1

pk+1

)

=

(

fk
−τMpk

)

. (12)

It is easy to see that this sequence converges to the same solution provided τ is sufficiently small
(in fact, we require τ ≤ ρ(M−1BA−1

k BT )).
Multiplying the second set of equations by minus one, equation (12) becomes

(

Ak BT
k

−Bk τM

)(

uk+1

pk+1

)

=

(

fk
τMpk

)

(13)

and thus one can split the system matrix into a symmetric (positive-definite) and anti-symmetric
part

(

Ak BT
k

−Bk τM

)

=

(

Lk 0
0 τM

)

+

(

Sk BT
k

−Bk 0

)

.

It is clear now that the three-term GMRES method devised for the scalar case (Arioli et al.
2005) will work also in this case, provided we precondition the above matrix centrally with the
hermitian part Hk of the modified matrix Kk

Hk =

(

Lk 0
0 τM

)

.

Residual convergence will then be automatically measured in the norm

‖v‖2
H−1

k

= ‖v1‖
2
L−1

k

+ τ−1‖v2‖
2
M−1 .

It is clear that M will be chosen to be Q, while Lk will be in general equivalent to V , when not
identically equal to it. Thus, during the Arnoldi process, one can monitor strictly the H−1-norm
of the residual. Numerical experiments indicate that the method does not affect the convergence
rate of the outer iteration for τ sufficiently small, the advantage being that one can employ a
short-term recurrence for the inner iteration.

4 Experiments

4.1 Test problems

We used two test problems suggested in (Berrone 2001). The first is Stokes flow in the unit
square while the second is 2D Navier-Stokes flow in a cavity, which tries to mimic the behaviour
of the driven-cavity flow. The problems we solved are

−∆~u+ ∇p = f in Ω (14a)

div ~u = 0 in Ω (14b)

~u(x) = ~u∗(x) on Γ, (14c)

and

−ε∆~u+ (~u · ∇)~u+ ∇p = f in Ω (15a)

div ~u = 0 in Ω (15b)

~u(x) = ~u∗(x) on Γ, (15c)

7



both of which have the exact solution (~u∗, p) = (u∗, v∗, p∗) given by

u∗(x, y) = −
R2

2π
q0(R2, y) (1 − cos 2πq(R1, x)) sin 2πq(R2, y)

v∗(x, y) =
R1

2π
q0(R1, x) (1 − cos 2πq(R2, y)) sin 2πq(R1, x)

p∗(x, y) = R1R2q0(R1, x)q0(R2, y) sin 2πq(R1, x) sin 2πq(R2, y).

where

q(R, t) =
eRt − 1

eR − 1
, q0(R, t) =

eRt

eR − 1

and R1, R2 are two real constants that can be used to modify the flow behaviour. The pressure
satisfies

∫

Ω
p∗dx = 0, (16)

and this is the type of condition one can use to ensure that equations (15) have a unique solution.

0.5 1
0

0.5

1

(a) Streamlines (b) Pressure

Figure 1: Exact solution for R1 = 0.1, R2 = 4.2.

0.5 1
0

0.5

1

(a) Streamlines (b) Pressure

Figure 2: Exact solution for R1 = 1.2, R2 = 0.1.

Streamlines and pressure plots for various values of R1, R2 are given in Figs 1, 2. The problem
used in our tests corresponds to the choice R1 = 0.1, R2 = 4.2.
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We solved (14), (15) using the discrete mixed formulation (4) where the space Hh ⊂ H with
H = H1

0 (Ω) × L2(Ω). In particular, we chose to work with the norm

‖v‖2
H = ε|~v|21 + ‖q‖2

L2(Ω)

where v = (~v, q) and

|~v(x)|H1

0
(Ω) = |~v(x)|1 =





∑

|α|=1

∫

Ω
|Dα~v(x)|2 dx





1/2

.

Our discrete spaces Vh, Qh were finite element spaces spanned by quadratic basis functions in the
case of the velocity space and linear basis functions in the case of the pressure space.

4.2 The linear case

We chose to compare the stopping criterion (7) with both the exact finite element error and
interpolation error measured in the norms inherited by the problem. We computed

(i) FE: the exact relative errors between the solution at step k and the exact continuous
solution of either (14) or (15)

FE :=
‖u − uk

h‖H
‖uk

h‖H
;

(ii) FIE: the exact relative interpolation errors

FIE :=
‖uI − uk

h‖H
‖uk

h‖H
;

(iii) HINV: the exact H−1-norm criterion (7) with C2 estimated on a coarse mesh;

(iv) the standard 2-norm stopping criterion ‖rk‖/‖r0‖.

We first display in Fig. 3 the results for MINRES preconditioned with the norm in the case of
the Stokes problem. In Fig. 3 (a), we plot the value of the global error while in Fig. 3 (b), (c),
and (d), we plot the values of FE, FIE, HINV, and 2-norm of the residual for each one of the
components of the velocity and the pressure, which in this case appear distributed unevenly. The
pressure component provides the largest error, while the velocity components appear to converge
faster. This will not be the case for the nonsymmetric example. Moreover, the interpolation error
seems to be higher than the energy in the case of the pressure and this is also reflected globally.
Our guess is that this is to do with imposing condition (16) numerically. We remark here that
Theorem 3.1 is only applicable to the global solution w = (u, v, p) and there is no reason to
expect that the criterion should work componentwise.
We also examined the convergence of the symmetrically norm-preconditioned GMRES applied to
the Navier-Stokes problem. More precisely, we computed the solution to the nonlinear problem
using a Picard iteration, but displayed only the results corresponding to the last linear system
solve. As before, the convergence can be examined globally or separately for the different com-
ponents of the solution. These curves are shown in Figs 4, 5 for two values of the diffusion
parameter: ε = 0.1, ε = 0.01. Again, the criterion works fine; moreover, it seems that in this
case, the component convergence can be described by components of our criterion, a feature
which did not work for MINRES. More precisely, plots (b), (c), (d) seem to indicate that velocity
and pressure residuals can provide respective bounds for the velocity and pressure forward errors.
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Figure 3: Convergence criteria for preconditioned MINRES.

4.3 The nonlinear case

In this section, we present the results for the fully nonlinear Navier-Stokes problem (15).

First, we show the simple run of unpreconditioned GMRES as a solver for the Picard iteration
applied to the nonlinear problem (15). The Picard iteration takes the form (9), but we used the
modified iteration (13), in order to both exhibit its convergence properties and highlight the
relevance of our stopping criteria.

The choice c = 10−1, q = 1/4 in (10) does not affect the number of nonlinear iterations in
our tests. Note that the norm in (10) is the Euclidean one. The purpose of this criterion, as
described in (Dembo et al. 1982) is to make GMRES work hard only when it matters (i.e., when
the residual is sufficiently small).

The nonlinear convergence history is displayed in Fig. 6. More precisely, the 2-norm of the
residuals rk, concatenated from all nonlinear iterations (7 in this case) is plotted together with
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Figure 4: Convergence criteria for symmetrically preconditioned GMRES for ε = 0.1.

the energy-error and the H−1-norm of the residual, which is computed exactly for illustration
purposes. Of course, in the case of unpreconditioned GMRES it is not clear how one could derive
an approximation for ‖r‖H−1 , except through direct computation.
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Figure 5: Convergence criteria for symmetrically preconditioned GMRES for ε = 0.01.
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(a) Nonlinear convergence and our stopping crite-
rion

(b) u difference
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Figure 6: Convergence criteria for unpreconditioned GMRES for ε = 0.1 and the difference
between the solution converged using (10) and using our proposed stopping criterion (11).

We plotted also in Fig. 6 the difference between the final solution obtained using criterion
(10) and that obtained by employing the H−1-norm of the residual. The errors are of the order
10−3 for the velocities and 10−2 for the pressure (given solutions of order one), which indeed are
of the order of the FEM error.

In Fig 7 we display the convergence of the 3-term GMRES method in the last Picard step of
the nonlinear iteration of type (13) using the hermitian part to symmetrically precondition the
system. We point out that the choice τ = 10−2 in (12) did not change the number of nonlinear
iterations.

Finally, we present the results obtained using the 3-term GMRES algorithm suggested in
Section 3.2.2 for solving the full nonlinear problem.

First, we note that different choices of c, q will lead to different nonlinear convergence curves.
We present a typical example in Fig 8 (with c = 1, q = 0.5) and highlight convergence properties
for several choices of parameters in Tables 1, 2. In particular, we chose to work with c = c(h), for
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(a) Global convergence for ε = 0.1
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(b) Global convergence for ε = 0.01

Figure 7: Convergence criteria for symmetrically preconditioned 3-term GMRES.
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(a) ε = 0.1
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Figure 8: Convergence criteria for the full nonlinear problem using symmetrically-preconditioned
GMRES-Picard for ε = 0.1, 0.01

three values of q. We set tol out= 10−6 and highlighted the number of iterations needed for this
‘classic’ criterion compared with that suggested in the algorithm above where tol out= ηC(h)C2.
We worked with η = C2 = 1 and C(h) = h2 for ε = 0.1 and C(h) = h3/2 for ε = 0.01; we note
that this leads to a robust stopping criterion which we highlight in the vertical lines across the
convergence curves in Fig 8. As expected, a small value of c = c(h) leads to best performance in
the H−1-norm. In particular, the GMRES-Picard algorithm is most wasteful when we attempt
to solve each iteration to the full FEM error level, i.e., when c(h) = h2. On the other hand, when
c(h) = h1/2, the convergence is relatively robust with respect to the q parameter.
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q = 0.25 q = 0.5 q = 0.75

c(h) = dual classic dual classic dual classic

h1/2 26 83 30 125 31 175

h 31 112 33 155 37 199

h2 45 170 49 215 52 257

Table 1: Total number of preconditioned GMRES iterations for the full nonlinear solution of our
test problem with ε = 0.1 using both the classic (l2) and dual stopping criteria

q = 0.25 q = 0.5 q = 0.75

c(h) = dual classic dual classic dual classic

h1/2 229 914 309 1440 405 1928

h 317 1261 405 1754 495 2205

h2 544 1949 635 2385 722 2747

Table 2: Total number of preconditioned GMRES iterations for the full nonlinear solution of our
test problem with ε = 0.01 using both the classic (l2) and dual stopping criteria

5 Conclusion

We showed how the results described in (Arioli et al. 2005) can be used and extended in the
framework of mixed and mixed-hybrid finite-element approximation of partial differential equa-
tion systems in saddle-point form.

Moreover, we described how the dual norm of the residual can be easily used within classical
Krylov methods to obtain reliable and efficient stopping criteria.

Finally, we described how to generalize these techniques to the nonlinear case, thus obtaining
a considerable gain in efficiency. In particular, we showed how the use of the dual norm of the
residual (essentially, the energy norm of the error) can be successfully combined with a short
term recurrence GMRES in order to solve nonlinear saddle-point problems such as Navier-Stokes
equations.
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