Science & Technology Facilities Council

W@ Rutherford Appleton Laboratory
Technical Report

RAL-TR-2007-012

02/08/07

New Languages for High Performance, High Productivity

Computing
J.V. Ashby
Computational Science and Engineering Department
STFC Rutherford Appleton Laboratory
J.V.Ashby@rl.ac.uk
Abstract

The High Productivity Computing Systems (HPCS) project aims to create a new generation of high
end programming environments, software tools and computer architectures. One arm of the project is
developing new languages to support the high productivity computational environment envisaged.
Three languages, Fortress, Chapel and X10, were defined in the first phase of the project, and the
latter two are being further developed in phase 2. This report gives an overview of the features of the
three languages, followed by amore detailed discussion of the support they offer for parallel
computing. All three possess the basic attributes one might expect of a parallel language. task
parallelism, data distribution and synchronisation, but express them in different ways and with
different levels of programmer control.

mailto:J.V.Ashby@rl.ac.uk

1. Background

The development of scientific computing has been accompanied overmany decades by the
development of programming languages. The first language to remove the programmer from the
mind-bending task of working out how to perform an algorithm in machine code was Fortran, first
announced in 1956 [1],rapidly followed by Algol (1960, revised in 1968) [2], Pascal (1970) [3], C
(early 1970's) [4]and ADA (1983) [5]. Concurrently languages were developed for other application
domains such as COBOL (1960) [6]for business programming, prolog (1975) [7] and Lisp (1959) [8]
for Artificial Intelligence, and PL/1 (1964) [9] for data processing (althowgh it could be argued that
PL/1 is one of the broadest based languages,covering application areas from systems to scientific and
commercial programming). The next major development was the advent of object oriented languages
such as C++ (1985) [10], Java (originally designed forembedded systems, but quickly applied more
widely, 1995) [11] and smalltalk-80 (1980) [12]. With these, the emphasis was placed much more on
the design philosophy of a program, and the languages were intended to be general purpose. Scripting
languages had long been a feature of computing — Basic [13] was already an interpreted language in
1975, and most operating systems incorporated a scripting mechanism, but in recent years a
multiplicity of scripting languages hasemerged, particularly in conjunction with web-based
applications, including VBscript [14],javascript [15], perl [16], python [17] and ruby [18].

With the advent of parallel and vectorcomputing, an early goal was the production of automatic
parallelizing compilers. This proved difficult in the frameworkset by existing languages, though
automatic vectorization was successful. Several attempts were made to add seamlesdy to a language
by means of directives that a compiler was free to act on or not. Typical ofthese is High Performance
Fortran (HPF) [19], which included directives tha could be treated as comments by a compiler, or
could give suggestions for ways to exploit parallelism within the code. However, it was widely felt
that such directive basedparallelization was insufficiently rich to describe the algorithms that were
emerging, and the message passing paradigm became established. Here a library of routines is
supplied (MPI [20], PVM [21] and P4 [22] are examples) by means of which processescan
communicate and cooperate. The functionality of the library is defined outside any specific
programming language, and a language binding is supplied as an API. Recently areturn to
incorporating parallelsm within programming languages has occurred, with CAF, UPC and Titanium
[23] looking for the minimal set of additions to existing languages (Fortran95,C and Java
respectively) which will support parallelization based on thePartitioned Global Address Space model.
In these languages the comnunications and synchronization are largely abstracted out, leaving the
programmer writing code that could work equally well on shared or distributed memory architectures.

Another strand of language development that should be noted is the development of functional
languages and systems such as Matlab [24] or Mathematica [25], which can be regarded as languages
for rapid prototyping. They are very useful for testing out algorithmic ideas, but generally are
restricted when it comes to production code, either by being too slow or by being limited in the size
of problems that can be tackled. However, they are useful, and there would be much interest in a
language that provided aseamless transition from the rapid prototype to a highly optimized
production version with full support for parallelism.

2. The Challenge

In 2002 the US Defense Advanced Research Projects Agency (DARPA)initiated a programme called
HPCS, High Productivity Computing Systems [26]. The mission of this program s to realize a new
vision of high productivity computing systems by the creation of new generations ofhigh end
programming environments, software tools, architectures, and hardware components. This will bridge
the gap between existing supercomputing capacity and the promise of quantum computing [26].
Attention is focussed on the four main attributes of Performance, Programmability, Portability and
Robustness. The programme was designed in three phases: in Phase 1 for twelve months there would
be an assessment of current and emerging technobgy, the development of fresh solutions and the
generation of new productivity metrics; Phase 2 would be 36 months of research and prototype
development; finally phase 3 would take the best ideas and develop them into full-scale products over
48 months. This report is being written at the beginning of phase 3.

Developments under this programme are proceeding on several fronts, hardware, software, systems
characterisation, etc. In particular HPCS identified a need for a new language which would support
the high productivity environment it was trying to create. It should be noted here that Performanceis
only one of four criteria the new language can be judged against — the aim was not simply to produce
a language that ran programs as fast as possible, but also one in which programming safe reliable
code is easy and swift. A good analysis of the challenges involved can be found in [27]

To this end DARPA commissioned three major computer vendors to produce prototype next
generation systems including new programming languages. Sun Microsystems [28] have developed
new modes of chip-to-chip communication through novel VLSI fabrication techniques, photnic
interconnect, smart storage systems and the Fortress programming language, which aims “to do for
Fortran what Java did for C”. Sun were not, however, selected to participate in phase 3.

Cray developed a system called CASCADE [29] based on a heterogeneous processing malel where a
combination of system software and compiler/execution environmert can map applications onto
available processorhardware. The system is likely to be based on AMD multicore Opteron processors
and to exploit third party tools such as the Portland Group compilers, Cluster File Systems' file
systems and DataDirect Networks storage technology. For a language solution Cray produced Chapel
in collaboration with CalTech/JPL.Its aim was to provide ahigher level of expression than current
parallel languages and to improve the separation between algorithmic expression anddata structure
implementation.

The third partner who, together with Cray, are involved in phase 3, is IBM. Their project, codenamed
PERCS (Productive, Easy-to-use, Reliable Computing System) [30] will be based on Power7 chips
and IBM's own General Parallel File System (GPFS).The X10 language offeredby IBM is arguably
the least radical of the three developed in phase 2, being largely a re-engineering of Java for
parallelism.

In the next section weshall look briefly at the main features of the three languages, Fortress, Chapel
and X10. Following that we shall look in more detail at the support they offer for parallel computing
and finally make some concluding remarks.

3. Brief attributes of the new languages

Fortress

The Fortress language is being developed by SunMicrosystems [28], and is intended to be a
growable, general purpose language forrobust, high performancesoftware with high
programmability. This is a large goal, and the language is correspondingy large and complex.

Fortress as a name is intended to invoke the idea of a “secure Fortran”, combining the ideals of
Fortran for high performancecomputation with the abstraction and type safety inherent in modern
languages such as C++ and Java. It is, however, not an evolution of Fortran. Rather it is a language
being developed from scratch,though informed by experiences with other languages including Java,
NextGen [31], Scala [32], Eiffel [33], Self [34], Standard ML [35], Objective Caml [36], Haskell [37]
and Scheme [38].

The basic concepts in Fortress are objects and traits [39]. Objects are familiar from OO programmug,
they are composed of fields and methods. Traits are named sets of methods, which provide amethod
of inheritance that is said to be better than conventional class inheritance. Within a trait a method may
be abstract (consisting only of headers, similar to an interface declaration in Fortran) or concrete,
carrying with it code defining the action it embodies.

In a radical departure from most other languages previously used by computational scientists,
Fortress is not restricted to being writen in ASCII characters. Unicode characters can be used (giving
access for example to the Greek alphabet and many mathematical symbols), as well as sub- and
superscripting. Types are inferred where possible and operators can be overloaded. These points
allow programmers to writeFortress in something that looks a lot like standard mathematical
notation. In this Fortress seeks to ease the transition from a rapid prototype such as might be written
in Matlab or Mathematica to a high performance application.

As well as possessing values, object in Fortress can also be associated with physical units such as
metres or seconds, and dimensions such as length or time. Dimensional checking is carried out
statically (essentially at compile time) and errors reported. Consistent and sensible use of this facility
should reduce bugs and improve the correctness of code.

Aggregate expressions are Fortress' method for using many kinds of collections of data such as
tuples, arrays, matrices, vectors, maps, sets and lists. Arrays are defined by writing their elements
enclosed in squarebrackets [] . Two dimensional arrays have rows separated by new lines or by
semicolons. In three dimensional arrays pairs of semicolons separate the two-dimensional sub -arrays
and so on. Sets are enclosed in braces (curly brackets { }) while list elements are enclosed in angle
brackets (written in ASCII as<| and | >).

A Fortress program is composed of nested blocks of code. The entire program is ablock, and each
component is a sub-block. Some expressions are also blocks or have blocks as part of themselves. For
example a while expression is a block (the part that is tested) and its body (the part that is executed) is
another block. Blocks may be sufficiently independent that they can be executed in parallelor in a
separate thread. This is one example of Fortress' implicit support for parallelism. Others are that tuple
expressions may be evaluated in several implicit threads, and that f or loops and similar constructs
are parallel by default (programmerscan override this by use of the sequential qualifier). More details

of the support for parallelism in Fortress are given in section 5.

In January 2007 Sun released a JVM-based interpreter for a core set of the Fortress language [40].
There is some speculation that this may have been prompted by an announcement that the project
would not be proceeding to thenext stage of funding, leading to Sun seeking to establish the language
as a de facto standard.

Chapel

Chapel is the language being developed by Cray Inc in association with CalTech/JPL aspart of their
overall contribution to the HPCS project, Cascade. Chapel itself is the Cascade High Productivity
Language [41].

Chapel aims to bridge algorithm development and production deployment in the domain of high-
performance parallel computing. Thus while it incorporates many of the features of modern
programming practice such as object orientation, some compromises are made in order to achieve
high performance.

Two basic techniques underpin he approach of Chapel: Locality Aware Multi-Threading and Generic
Programming. Locality Aware Multi-Threading is an extension of the PGAS (Program Globa
Address Space) model expressing the relationship between computations on a particular process and
the data they access. Generic Programming addresses the issue of code re-use by providing constructs
which express the abstract qualities of data-structures in such a way that algorithms can then be
expressed to accept any data-structures which posses the required qualities. This means, for example,
that an algorithm which included multiplication would “automatically” be defined for integers, reals,
complex numbers, quaternions, matrices, but not for strings, say.

As abasic language, Chapel is an amalgam of the most successful elemens of several important high-
level languages, notably Fortran90/95,C and C++. Programmers familiar with those languages
should be able to follow the Chapel programming model, though some of the terms by which
concepts are called may change (and there may be some false friends — terms which appear familiar
but are actually expressing aslightly different concept). The language is object-oriented, with
inheritance and overloading supported. Structured types (Fortran derived types, C structs) canbe
defined together with constructors and bound funcions for them. The use statement (which here as
in Fortran incorporates code and variables from amodule) can also be used to control access to fields
in a structured type. Union types are also supported — variables which can hold one of several types of
variable (e.g. a floating point number or an integer). To access these safely at ypesel ect control
statement is provided.

A further important high-level type is the sequence. This is used to provide iteration over sets in an
abstract fashion (thus leaving details of implementation to the compiler or to the system). A sequence
is a list of expressions (all of which must have the same type). Arithmetic sequences can be
constructed using a special operator,<expr 1> .. <expr 2> and subsequences can be
constructed using the by operator. Sequences can be used to control for loops and similar iterators.
For example if X is a sequence, then to square all its members we could use the expression[y i n

X y*y.

Programmers in most high-level languages arefamiliar with the concept of aggregate data collections
such as arrays. Chapel extends this idea by introducing high-level objects called domans. These are
not the aggregate data collections themselves, but are descriptions of how such collections are
addressed. A conventional Fortran or C array is addressed by a set of integers, as many as the rank of
the array requires, which must be within certain limits. Thus its domain is specified as so many
bounded integers. In Chapel, domains are not restricted to integers but can be addressed by strings,
booleans, enumeration types, or any other scalar type. For many of these it does not make sensefor
bounds to be provided (in what way would a string index run from ‘ni ckel ’ to ‘si | ver ’?) and so
the elements of domans defined by these types varies as the program runs. Methods for adding and

deleting indices to a domain are provided, as well as methods for querying if an index is already
defined.

X10

X10 is arguably the smallest and least ambitious of the three languages. It is described in its reference
manual [42] as “(generic) Java less concurrency, arrays and built-in types, plus places, activities,
clocks, (distributed, multi-dimensional) arrays and value types.” Thus it represents an attempt to
migrate an existing language to the field of High-Productvity, High-Performance computing in the
same way as Co-Array Fortran, UPC and Titanium. The difference is that whereas those three
languages use aPartitioned Global Address Spacemodel to express parallelism, X10 extends this to a
Globally Asynchronous, Locally Synchronous (GALS)model.

The basic elements of X10 follow the Object Orientedparadigm of Fortress and Chapel. Generic
interfaces and classes are the building blocks of X10 programs. Scalarclasses possess fields, methods
and inner types, they can inherit attributes though sub-classing another class. Classes may be of
reference type or of value type. Value classes are less flexible than reference classes, but can be
implemented efficiently. They are classes the fields of which are all final, that is they cannotbe
assigned to more than once and must be assigned before use. Unlike in Java it is possible to explicitly
add a null value to the set of values a type may assume through the nullable prefix type constructor.

Array class declarations are not supported by X10, which means that a user cannot define new array
class types. Arrays are created as instances of array types through array type constructors.

X10 does not havea dereference operation, and does not support pointer arithmetic. This renders
code much safer. X10 is said to be type safe (locations are guaranteed to contain legitimate values for
the type that refersto them), memory safe (accesses are bound checked dynamically and
automatically) and pointer safe (non-nullable values cannot throw a null pointer exception). In
addition they are place safe (a place being X10's nomenclaure to describe the locality of data and
activity) and if they use only clocks and uncondtional atomic sections for synchronization, they are
guaranteed not to deadlock.

4. Parallelism in the new languages

Fortress

As we said in section 4, Fortress supports parallelism implicitly in a number of its syntactical
features. Fortress defines locality for threads and data through a region. This is an abstract
representation of a section of the machine in which the thread or data resides. In a distributed memory
multi-processor each region might be a single processor and its associated memory, The distribution
of data across regions is defined by default by Fortress,depending on the sizeand shape of the array
or other aggregate and of the size and configuration of the machine. Programmers canalso determine
the distribution of data through the dstribution trait. Several built-in distributions are provided such
as sequent i al (blocks of contiguous address space allocated to regions),par where one address
is allocated to eachregion in turn, starting again at the beginning when the number of regions is
exhausted (like dealing adeck of cards), bl ocked where the space is divided into roughly equal
chunks, and subdi vi ded where the address space is recursively bisected.

Synchronisation and data locking in Fortress is achieved through the use of atomic code blocks and
expressions. An atomic expression is a set of instructions which must either not have been started or
have finished before another thread can access the data referenced therein. The example given in the
language definition is the following block of code:

do
x =0
y =0
2:Z2Z :=0
(atom c do
X += 1
y += 1
end,
Z 1= Xty)
y4
end

The first and last lines enclose a block of code which returns a value z. The 2™ to 4™ lines initialise x,
y and z, the last of which is defined asan integer (member of the set ZZ which would be rendered as
a double-struck Z). Then the parentheses enclose aduple expression which is executed in two parallel
threads by default. However, because the first element of the duple is an atomic expression
incrementing both X and y, the thread evaluating the second element is blocked from accessing them
while it is running. Thus the whole block returnseither O or 2. However, which of the two it will
return is non-determined.

Chapel

The support for parallelism and distribution in Chapel is somewhat richer than in Fortress, though it is
predicated on a similar model. Again several constructs are parallel by default; hese include
operations of arrays,domains and sequences. In addition there are three control constructs which
explicitly introduce parallelism into a program. These are f or al | , cobegi n and begi n.

The f or al | loop is a version of the f or loop which allows concurrentexecution of theloop body.
The execution is not guaranteedto be concurrent, merely permitted to be. Whether it is or not will be
decided by the compiler and runtime system based on data dependency and resource availability. A
simple example of the f or al | statement is in the copying of one vector into another:

forall i in 1,,N do
a(i) = b(i);
where the programmer has asserted that a and b are sufficiently independent that the assignments
may be carried out concurrently. An alternative syrntax for this loop would be:

[1 in 1.N a(i) = b(i);
The keyword ordered can be prependedto af or al | statement to constrain the concurrency,Thus:
ordered forall i in walk(root) do
somet hi ng(i);
iterator wal k(n: node) {
yield n;
forall c in O..n.nunOChildren{
yield n.child(c);
}
}

The iterator walk effectively orders the nodes such that no child may precedeits parent node,
producing a breadth-first tree walk.

The alternative syntax for the f or al | statement can also be used to evaluate expressions
concurrently. Thus:

[i in S| f(i);

would evaluate f (i) wherei ranged over S, possibly spawning one process or thread for each value
of i , and return the results in a sequence. Placing the or der ed keyword in front of this suppresses
parallelism in the iteration over S and forces the execution to occurin sequence order. It does not,
however, suppress any parallelism there may be in the evaluation of f (1) .

The cobegi n statement is an indication that the statements in the block it introduces can be
executed concurrently. An example would be:
cobegin {
a = b;
[1 in 1..N c(i) =d(i);
}

where the assignment of b to a can be carried out independerntly of the (multiple, concurrent)
assignments of d to c. All the concurrent computations must finish before control can continue
beyond the block. Control may not be transferred into or out of the cobegi n's block statement. The
same is true of the f or al | statement.

In contrast, the begi n statement spawns off a thread or process to executeits associated
computation, while control in the spawning thread or process continues. This could be used, for
example, to separate off I/O from the working body of thecode.

In the same way that the or der ed keyword can control the degreeof parallelism in a code, so can
the seri al statement. In this case a test is given, and if it evaluates to true, implicit parallelism
(suchasinaf oral | loop)is suppressed. Thus in:

serial depth >3 forall i in S{
do some work

}

the f or al | loop will be executed concurrently ifdept h is less than or equal to 3, but serially when
dept h exceeds 3.

A special class of variable is defined in Chapel to support parallel computation. Synchronization
variables are used, as the name suggests, to coordinate and synchronize computations. Reference and
assignment of these variables contrdls the order of execution. There are two forms of synchronization
variables: si ngl e and sync variables.

A si ngl e variable can only be assigned while it is active (in scope). A reference to a si ngl e
variable before it has been assigned acts to suspend execution of the referencing process or thread
until assignment has been made. Any variable defined within a cobegi n statement is implicitly
single.

Sync variables are a generalisation of single variables that permit multiple assignments. Sync
variables may be in one of two states, full or empty. Attempting to reference an empty variable will
suspend execution of the referencing computation until the Sync variable becomes full (by being
assigned). Reading from the variable will change it back to being full. The variable is like a message
basket which canonly hold one message ata time. If the basket is empty a process must wait until it
becomes full to take out amessage, if it is full a process must wait until it has been emptied before
delivering the next message.

It is possible to make a block of code at omi ¢ — that is from the point of view of the rest of the
program the block appears to execute as a single order, and no changes to its variables are apparent
until it has finished.

Thus far we have addressed how Chapel exploits parallelism automatically in a task based fashion.
The model has been of a shared memory machine generating threads or processes to handle executing
multiple statements or blocks of code simultaneously. Using Locales and Distributions, it is possible
to associate dataand computations with specific locales (and hence, implicitly, with each other).

A locale is an abstraction of a processor or node in a parallel computer. Both data and computation
can be associated with locales, thus the programmer can be in control of both data and work
placement. There is a predefined constant array of locales which is irstantiated at runtime with a
configurable size. The program initially runs on the locale described by the first element of ths array.
Computations are directed towards a specific locale or set of locales by use of the on statement. This
has the form:

on <expression> do <statenent>

or

on <expression> <bl ock>

Expression should be either a locale or a variable. In the latter case the computation is run on the
locale where the variable is located. Thus:

forall i in D do on A(i) {
sone work

}

will execute thef or al | loop in such a way that the i -th instance executes on the locale where
A(1) is located.

The location of datais controlled by distributions. These map domain indices to locales. Iteration over
a distributed domain or array then implicitly executes the computation on the associated locales.
There are a set of standard distributions including Block, Cyclic, BlockCyclic and Cut. The ability for
the user to define distributions is planned, but this facility is still in development.

Finally the Chapellanguage provides built-in reductions and scans, and the potential for users to
define more reductions and scans. This latter is by a class definition implementing a structural
interface.

X10

X10's name for the entity which localises data and computation is the place. Activities running in a
particular place may access the data associated with it at maximum speed, access to data in other
places may take much longer. There is a built-in class for the place of which all places are instances.
Currently this class is not extensdble. Various attributes of this class define such things as the
maximum number of places available and the set of all places active.

In X10 a segment of the computation which runs concurrently with others is called an activity.
Activities are spawned using the async statement:

async <pl ace> <st at enent >

where place may be blank or may be an expression which evaluates to a single place. If an object is
given instead, the location of that object (0bj . | ocat i on) is used instead. One potential difficulty
with this comes when using a distributed object, since a[i | will be evaluated asa[i] .| ocati on,
which may not be thesame as a. di stri buti on[i].The programmermust be aware of this and
use appropriate expressions.

A distribution maps a region (a set of indices describing locations in memory or pseudo-memory) to a
set of places. The distribution D has associated attributes D. r egi on (its underlying region) and

D. pl aces, the set of places forming the range of D. If Dis applied to a point p in the region (by
writing D[p]) it returns the place to which p maps. As with the other languages, a set of standard
distributions is supplied including the constant distribution in which every point n the region maps to
the same place, block, cyclic and block cyclic distributions, and an arbitrary distribution.
Distributions can be restricted over domains or over ranges (places). The way in which an
implementation does this may vary for the particular needs of an architecture.

As with Fortress and Chapel, X10 supports the notion of atomic blocks of code to coordinate and
synchronize threads. An unconditional atomic block is a statement or block of statements preceded by
the keyword atomic. This is executed as a single step, and all concurrent activities in the same place
are suspended. Since there is no impact on activity in other places, this is a non-blocking form of
synchronization. A conditional atomic block has the form:

when (bool ean expression) {
statenment bl ock

}

or (other bool ean expression) {
ot her statenent bl ock

The or clause is optional and there may be several of them. When the program reachesa conditional
block it will suspend execution until one of the boolean expressions (calledguards) evaluates to true.
At that point the first block whose guardis true will be executed. With this construct itis possible to
implement locks and waits.

Barrier style synchronization is implemented using a generalization of barriers called clocks, which
allow the registration and deregistration of dynanically created activities. They are designed to avoid
deadlocks and race conditions.

5. Current Status and Roadmaps

Fortress

As stated above, in early 2007 Sun released a Java based interpreter for Fortress and made the project
open-source. This coincided with the HPCS project deciding not to continue with Fortress.
Development of theinterpreter and libraries is continuing, both at Sun and in teams outside the
company. It is expectedthat work will begin on a compiler by 2008 with a complete 1.0 version of a
non-optimising implementation of Fortress by late 2008. [43]

Chapel

Chapel has been exercised on the HPC Challenge suite of benchmarks [44]. There is a prototype
compiler (not yet widely available outside the project) which currently does not support distributed
architectures, nor all the serial features of the language [45].1t works on a single locale, and supports
multiple tasks within a locale, so can be used for multicore processors or for a shared memory node.
Task parallelism is supported through multi-threading. Data parallel structures areimplements, but do
not result in parallelsm within the locale. This and distributed systems are the two main goals for the

next phase of implementation. The performance of this compiler is good, and it has been released to
HPCS mission partners and a handful of users who have expressed interest in evaluating it and
providing feedback to assist the development path. The next release on similar terms is due in
December 2007 with a public release towards the end of 2008. It is expected that it will take a while
after that for performance to catch up with hand-coded MPI.

While Chapel is being developed in the framework of a specific Cray hardware configuration, the
focus is on implementing it for generic parallel architectures,and the current releases are targeted at
Linux clusters. [46]

X10

The latest news on X10 [42] states that the development team have a well-defined langauagewith
formal semantics which have been implemented in a parallel, single VM compiler (thus handling
shared memory, but not distributed memory architectures) which has been exercised on several
benchmarks and applications. Further development of tools and a distributed memory compiler are
expected, though there are no timescales currently available.

6. Conclusions

The three approaches to defining a new language for High Productivity, High Performance computing
show a number of similarities and several differences. They have all taken a broadly similar model
for parallel computing, in particular adopting a unified concept of locality for both data and
computation, with the use of atomic constructs for synchronisation. Chapel has gone further and
introduced special synchronization variables which also assist memory consistency.

It should be remembered that the aim of the HPCS programme is high programmer productivity, and
arguably both Fortress and X10 have concentrated on this in different ways, leaving high
performance in second place. Since programming for performance is likely to be a major concern for
the computational science community, the value of the new languages will in large part be determined
by the quality of the compilers and associated tools they provide. Existing computational scientists
have a large investment in dusty deck code, and evolution will always be easier than revolution. Few
projects can afford the luxury of putting a large piece of software on one side and re-writing it in a
new language. At the very least, well-defined interoperability is required, with such matters asthe
interface by which libraries of old code (written in Fortran, C or C++) can be called. None of the
languages currently appears to tackle this problem.

Fortress is clearly an ambitious project, trying to squeeze the best of many differentlanguages into
one. The language suffers from being very large as a result of this, and the support for parallelism
relies heavily on the compiler knowing best. The theoretical basis of the language is strong (as it is
for X10), but a language that canbe used by scientists, and not just by computer scientists, requires a
pragmatic foundation as well. X10 has taken a more evolutionary (some might say timid) path,
seeking to amend Javain as minimal as possible a fashion to achieve the HPCS goals. In doing so it
has also kept its parallel constructs to aminimum and ultimately performance would rely on clever
optimization and automatic parallelization.

Chapel seems to offer the best way forward for experienced HPC programmers who wish to exploit
its richness and retainthe ability to squeeze the last drop of performanceout of an algorithm. Its
parallel constructs are syntactically rich and, as one might expect from Cray, well-suited to use by
knowledgeable practitioners. On the debit side, however, it is also a very large language and many of
the ways in which it is describedin the language manual are esoteric. Whichever language emerges as
the preferred choice, there will be an urgent need for readable introductory textbooks which remove
the mysterious elements from the formalspecification.

Finally, it is worth raising he question of whether one language can hope to cover such a large set of
requirements. Might it not be better (and in the spirit of such contemporary paradigms as agile
programming) to produce several small programming languages, each of which is excellent ata small
sector of the target programming space, with well-defined methods for inter-operability? It is possible
that this could be done by modularising the three proposed languages. The advantageis that it
becomes clear which language (or part of the language) a programmer needs to know to performa
specific task, reducing the time spent on the learning curve and increasing programmer productivity
in a way the current offerings do not.

Acknowledgments

I would like to thank M. Ashworth and R.J. Blake for constructive comments.

References
1. Metcalf M. and Reid J.K Fortran95 Explained, Oxford Science Publications (1998)
Bauer F.L. An Introduction to Algol, Prentice Hall 1964

Morton J.K. An Introduction to Pascal, Business Educational Publishers Ltd 1993

s » N

Kernighan B.W. And Ritchie D.M., The C Programming Language (2" Edition) Prentice Hall
1988

Barnes J. Programming in Ada 2005, Addison Wesley (2006)

Shelly G.B. And Cashman T.J., Structured COBOL, Boyd and Fraser (1984)
Bratko I., Prolog Programming for Artificial Intelligence, Longman (2001)
McCarthyJ., The List 1.5 Programmer's Manual, MIT Press (1963)

A A

Smedley D., Programming the PL/1 Way, McGraw-Hill (1982)
10.Stroustrup B., The C++ Programming Language, Addison Wesley (2000)
11.Flanagan D., Java in a Nutshell, O'Reily (2005)

12 Korienek G. and Wrensch T., A Quick Trip to ObjectLand: Object-Oriented Programming with
Smalltalk/V, Prentice Hall (1993)

13.Clark J.F., BASIC, a Structured Approach, South-Western (1989)
14.Wilson E., Microsoft VBScriptStep by Step, Microsoft Press (2006)
15.Flanagan D., Javascript, the Definitive Guide, O'Reilly (2006)

16.Wall, L., Christiansen T. and Orwant J., Programming Perl, O'Reilly (2000)
17.Lutz M., Programming Python, O'Reilly (2006)

18.Carlson R. and Richardson L., Ruby Cookbook, O'Reilly (2006)

19.Koelbel C.H., Loveman D.B., Schreiber R.S., Steele G.L. And Zosel M.E., The High Performance
Fortran Handbook, MIT Press (1994)

20.Gropp W., Lusk E. and Skjellum A., Using MPI: Portable Parallel Programming with the
Message-passing Interface, MIT Press (2000)

21.Geist A., Beguelin A., DongarraJ., Jiang W., Manchek R. and Sunderam V.S., PVM: Parallel
Virtual Machine - A Users' Guide and Tutorial for Networked Parallel Computing, MIT Press
(1995)

22 Butler R. and Lusk E., User's Guide to the p4 Parallel Programming System, http:/www-
fp.mcs.anl.gov/~lusk/p4/p4-manual/p4.html

23.Ashby J.V. Novel Parallel Languages forScientific Computing — a comparison of Co-Array
Fortran, Unified Parallel C and Titanium, Rutherford Appleton Laboratory Technical report RAL-
TR 2005-015 (2005)

24 Higham D.J. and Higham N.J., Matlab Guide, S.I.A.M. (2005)

http://www-fp.mcs.anl.gov/~lusk/p4/p4-manual/p4.html
http://www-fp.mcs.anl.gov/~lusk/p4/p4-manual/p4.html

25.Wolfram S., The Mathematica Book, Wolfram Media Inc (2004)

26.http://www.darpa.mil/ipto/programs/hpcs/index.htm High Productivity Computing Systems
(HPCS)

27.Snir M., Programing Languages forHPC — Is There Life After MPI?
http://www.cs.uiuc.edu/hames/snir/PDF/Programming %20Languages %20for%20HPC%?23hort.p
df

28.http://research.sun.com/spotlight/2006/2006-04-07 Sun on HPCS.html Vildibill, M. Sun on
HPCS: Changing the Productivity Game.

29 .http://www.cray.com/products/programgcascade/index.html Cascade — HPC Technology

Initiatives

30.http://domino.research.ibm.com/comm/pr.nsf/pages/news.20030710 darpa.html
31.Cartwright R. and Steele G., Compatible genericity wih run-time types for the Java Programming
Language. In OOPSLA (1998)

32.0dersky M., Altherr P., Cremet V., Emir B., Micheloud S., Mihaylov N., Schinx M., Stenman E.
and Zenger M., The Scala Language Specification.
http://scala.epfl.ch/docu/fies/ScalaReference.pdf

33.Meyer B., Object Oriented Software Construction, Prentice Hall (1988)

34.Agesen O., Bak L., Chambers C., Chang B-W., Holzle U., Maloney J., Smith R.B., Ungar D. and
Wolczko M., The Self Programmer's Reference Manual,
http://research.sun.com/self/release 4.0/Self4.0/manuals/Self-4.1 Pgmers-Ref.pdf

35.Milner R., Tofte M., Harper R. and MacQueen D., The Definition of Standard ML, MIT Press
(1997)

36.Leroy X., Doligez D., Garrigue J., Rémy D. and Vouillon J., The Objective Caml System,release
3.08, http://caml.inria.fr/distrib/ocaml-3.08/ocaml-3.08-refman.pdf

37.Peyton-Jones S., Haskell 98 Languageand Libraries, Cambridge Universty Press (2003)

38.Kelsey R., Clinger W. and Rees J., Revised report on the algorithmic language Scheme, ACM
SIGPLAN Notices, 33(9), 26-78 (1998)

39.Allen E., Chase D., Hallett J., Luchango V.,Maessen J-W., Ryu S., Steele G.L. and Tobin-
Hochstadt S., The Fortress Language Specification, Version 1.0a
http://research.sun.com/projects/plrgPublications/fortress1.0alpha.pdf

40.http://fortress.sunsource.net/Fortress Project home. This page contains links to many reports on

Fortress.

41.http://chapel.cs.washington.edu/Chapel — the Cascade High Productivity Language. This page
contains links to many reportson Chapel.

42 http://domino.research.ibm.com/comm/research projects.nsf/pages/x10.index.html The X10
Programming Language. This page contains a link to a presentation on X10 by V. Sarkar.

43 Steele, G. Private Communication

http://fortress.sunsource.net/
http://domino.research.ibm.com/comm/research_projects.nsf/pages/x10.index.html
http://fortress.sunsource.net/
http://fortress.sunsource.net/
http://chapel.cs.washington.edu/
http://fortress.sunsource.net/
http://fortress.sunsource.net/
http://research.sun.com/projects/plrg/Publications/fortress1.0alpha.pdf
http://caml.inria.fr/distrib/ocaml-3.08-refman.pdf
http://research.sun.com/self/release_4.0/Self-4.0.manuals/Self-4.1-Pgmers-Ref.pdf
http://scala.epfl.ch/docu/files/ScalaReference.pdf
http://domino.research.ibm.com/comm/pr.nsf/pages/news.20030710_darpa.html
http://www.cray.com/products/programs/cascade/index.html
http://research.sun.com/spotlight/2006/2006-04-07_Sun_on_HPCS.html
http://research.sun.com/spotlight/2006/2006-04-07_Sun_on_HPCS.html
http://www.cs.uiuc.edu/homes/snir/PDF/Programming Languages for HPC short.pdf
http://www.cs.uiuc.edu/homes/snir/PDF/Programming Languages for HPC short.pdf
http://www.darpa.mil/ipto/programs/hpcs/index.htm
http://www.darpa.mil/ipto/programs/hpcs/index.htm
http://www.darpa.mil/ipto/programs/hpcs/index.htm
http://www.darpa.mil/ipto/programs/hpcs/index.htm
http://www.darpa.mil/ipto/programs/hpcs/index.htm

44 HPCC Benchmarks http://icl.cs.utk.edu/hpcc/

45.Chamberlain, B., Chapel; Global Benchmarks andStatus Update. Delivered at Cray User Group
meeting, May 2007

46.Chamberlain, B. Private Communication

http://icl.cs.utk.edu/hpcc/

	Technical Report
	New Languages for High Performance, High Productivity Computing
	Fortress
	Chapel
	X10
	Fortress
	Chapel
	X10
	Fortress
	Chapel
	X10

