
Technical Report
DL-TR-2005-002

A Java GUI and Distributed CORBA
Client-Server Interface for a Coastal
Ocean Model

R WAIN and M ASHWORTH

JUNE 2005

Council for the Central Laboratory of the Research Councils

© 2005 Council for the Central Laboratory of the Research Councils

Enquiries about copyright, reproduction and requests for additional copies of this
report should be addressed to:

Library and Information Services
CCLRC Daresbury Laboratory
Daresbury Warrington
Cheshire WA4 4AD
UK
Tel: +44 (0)1925 603397
Fax: +44 (0)1925 603779
Email: library@dl.ac.uk

ISSN 1362-0207

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.

POLCOMS GUI and distributed CORBA interface i/26

A Java GUI and Distributed CORBA Client-Server Interface
for a Coastal Ocean Model

R. Wain and M. Ashworth
Computational Science and Engineering Department,

CCLRC Daresbury Laboratory,
Daresbury, Warrington WA4 4AD, UK

Abstract
Scientific simulation codes can benefit from a professional Graphical User Interface
(GUI) making the use of the program easier and quicker for both technical and non-
technical users. We report on recent work on a GUI for the POLCOMS coastal
ocean modelling system. In addition to the GUI allowing for parameter setting and
the viewing of input and output data, we have implemented a client-server interface
allowing real-time monitoring (and potentially computational steering) of the
progress of the simulation from a remote workstation. The work utilises Java, Java
Swing, VTK and CORBA. We intend that this work should be a stepping stone
towards further Grid-related developments for this code.

Keywords
GUI, graphical user interface, CORBA, distributed computing, computational
steering, coastal modelling, ocean modelling.

POLCOMS GUI and distributed CORBA interface ii/26

Table of Contents

Abstract__i

Keywords___i

Table of Contents ___ ii

1 Introduction ___ 1

2 POLCOMS __ 1

3 Design__ 2
3.1 Overview__ 2
3.2 Technology decisions__ 3
3.3 Java Swing __ 3
3.4 VTK ___ 4
3.5 CORBA___ 5

3.5.1 OMG-IDL ___ 5
3.5.2 Using TAO_IDL __ 6
3.5.3 Using JacORB IDL __ 6

4 Implementation __ 7
4.1 Overview__ 7
4.2 Visualisation__ 10
4.3 Communication ___ 11

4.3.1 Steering __ 12
4.3.2 Monitoring __ 13
4.3.3 Object Implementation ___ 14
4.3.4 C-Wrapper for POLCOMS ___ 14

3.3.4.1 Getclient__ 14
3.3.4.2 Monclient___ 14

5 Compiling and running ___ 14
5.1 Compiling and building the Fortran __ 14
5.2 Compiling the GUI __ 15
5.3 Running CORBA services __ 15
5.4 Running the GUI __ 16
5.5 Using the GUI to start a run___ 17

6 Testing __ 17

7 Evaluation ___ 18

8 Future improvements___ 19
8.1 Visualisation__ 19
8.2 Communication ___ 20
8.3 GUI Selection Panes ___ 20
8.4 Grid Computing __ 20

POLCOMS GUI and distributed CORBA interface iii/26

9 Web Resources __ 21

References ___ 23

 POLCOMS GUI and distributed CORBA interface 1/26

1 Introduction

This report covers recent work on a Graphical User Interface (GUI) for the
Proudman Oceanographic Laboratory Coastal-Ocean Modelling System
(POLCOMS). The GUI has been designed to allow the user to view and interact with
input and output datasets, to set model parameters, to run the POLCOMS code and
to monitor output from the model in real-time.

The work on the GUI focused on the addition of visualisation capabilities as well as
the development of a CORBA bridge between the GUI and POLCOMS. This report
provides in-depth information on the design, implementation and testing of these
additions to the GUI as well as evaluating the work that has been done so far and
summarising the possibilities for further work that could be carried out.

A list of useful resources can be found at the end of this report. These resources
include on-line tutorials, FAQs, example code, journal articles and books. Most of
these have been invaluable references throughout the course of this work and
should be used as a first port of call for any information that is not presented here.

2 POLCOMS

The Proudman Oceanographic Laboratory Coastal Ocean Modelling System
(POLCOMS) has been developed to tackle multi-disciplinary studies in coastal/shelf
environments [1], [3]. The central core is a sophisticated 3-dimensional
hydrodynamic model that provides realistic physical forcing to interact with, and
transport, environmental parameters. Integrating from ocean to coast, or vice versa,
biological production and the fate of contaminants can be determined.

The hydrodynamic model is a 4-dimensional finite difference model based on a
latitude-longitude Arakawa B-grid in the horizontal and S-coordinates in the vertical.
Conservative monotonic PPM advection routines are used to ensure strong frontal
gradients. Vertical mixing is through turbulence closure (Mellor-Yamada level 2.5).
The hydrodynamic model can be coupled to an ecosystem model in order to
simulate the development of plankton blooms and to study the effects of
anthropogenic influences on the marine ecosystem. Such computer models have a
wide range of applications, including coastal engineering, offshore industries,
fisheries management, marine pollution monitoring, weather forecasting and climate
research.

The physical hydrodynamic model and the biological components have been
parallelised to take advantage of state-of-the-art high-performance systems. This
report concentrates on developments of the model’s GUI and its exploitation in a
distributed computing environment.

 POLCOMS GUI and distributed CORBA interface 2/26

3 Design

At the start of this work there was already a functioning POLCOMS GUI and the
major part of the GUI’s design had already been implemented. This section of the
report provides an overview of the design of communication and visualization
components of the GUI. There is then a discussion of the technology decisions that
were made as well as a summary of each of the key technologies.

3.1 Overview

In the distributed computing mode of operation, the POLCOMS model runs as a
server on a remote machine and the user interacts with a client running on a local
PC or workstation. The client-server design was already incorporated into the GUI
but had not been fully implemented when this work began. The model can be
started in a server mode. In server mode it accepts its input parameters from a
connection with the client and returns monitor data by the same route. This was
previously implemented by wrapping the Fortran code with a number of C routines,
which communicated via TCP/IP sockets. Now the Fortran is wrapped further with
C++ and performs the client/server communication using CORBA. Figure 1 shows
the structure of the POLCOMS GUI design and the CORBA link to the model.

Figure 1: Structure of the POLCOMS Java GUI and CORBA interface.

The visualization part of the GUI needs to display a range of datasets in a number of
different ways. These datasets do not share a common format so it does not make
sense to design a class that encapsulates the methods required to read, render and
interact with all of them. Instead a top-level visualisation class defines methods for
the dataset that requires the broadest set of visualisation capabilities on the basis

 POLCOMS GUI and distributed CORBA interface 3/26

that most other datasets would need to inherit some methods from this class. The
dataset in question in this case is the initial temperature and salinity data for the
model.

Initial temperature and salinity data contains one temperature and one salinity value
for every point on a three dimensional grid of size l x m x n. The data needs to be
viewed in several ways; slices through the 3D grid at a given l, m, or n and X-Y plots
of data. The design requires a class to satisfy all of this functionality in such a way
that as many methods as possible can be directly inherited by classes for the other
datasets.

3.2 Technology decisions

In order to implement the design effectively a number of technology decisions
needed to be made. The chosen technologies and reasons for these choices are
presented in this and subsequent sections.

Java is a modern, object-oriented programming language that has been designed
from the start to facilitate the provision of services over the Internet. Java offers
many advantages including robustness, ease of programming and reusability, but
the key features for this project are its portability and the access to a rich
environment of existing and developing class libraries in the areas of GUIs,
distributed computing and Grid technologies [4].

In the Web-based distributed computing environment, we see major benefits in
integrating Java with the traditional high-performance programming environment
based on Fortran using a client/server model. This vision emphasises the strengths
of each component: Java allows easy access to Web-based computing and
facilitates the construction of Graphical User Interfaces (GUI); Fortran allows
applications best to exploit high-performance hardware. The difficulty comes in
providing the bridge between the Java GUI on the client side and the Fortran on the
server side. There are various options but none is particularly straight-forward.
Weighing up the various factors of communications overheads, maintainability and
efficiency it was decided that the following technologies would be implemented in
creating the client-server bridge. Firstly the Fortran would be wrapped in a layer of C
to allow easy integration of C++ code. Then a C++ ORB (TAO) would provide the
means for client-server communication. On the client-side a Java ORB (JacORB)
provides easy integration with the java GUI. This configuration avoids the difficulties
associated with using JNI to communicate directly between Java and Fortran. The
reason for choosing TAO and JacORB was that these ORBs are both mature in their
development and include all the CORBA services required for this project. The
ORBs have also been tested for interoperability. Even though the CORBA standard
is specified with ORB interoperability in mind, it still cannot be assumed that one
ORB will recognise all of the capabilities contained within another.

3.3 Java Swing

The Swing package is part of the Java Foundation Classes (JFC) in the Java
platform [5]. The JFC encompasses a group of features to help people build GUIs
and Swing provides all the components from buttons to split panes and tables.
"Swing" was the code name of the project that developed the new components.

 POLCOMS GUI and distributed CORBA interface 4/26

Prior to the introduction of the Swing package, the Abstract Window Toolkit (AWT)
components in the Java language provided all the user interface components in the
JDK 1.0 and 1.1 platforms. Although it is an unofficial name, it is still frequently used
to refer to the new components and related API and is immortalised in the package
names. Swing is best described as a layer on top of AWT rather than a replacement
for it. The Swing package was first available as an add-on to JDK 1.1. Although the
Java 2 Platform still supports the AWT components, most experts strongly
encourage the use of Swing components.

Swing is a large set of components ranging from the very simple, such as labels, to
the very complex, such as tables, trees, and styled text documents. Almost all Swing
components are derived from a single parent called JComponent that extends the
AWT Container class. Swing components are recognisable because their names
start with "J". For example, the AWT class to implement a checkbox is named
Checkbox, whereas the Swing checkbox class is named JCheckBox. In addition, the
AWT components are in the java.awt package, whereas the Swing components are
in the javax.swing package. As a rule, programmers should not use "heavyweight"
AWT components alongside Swing components. Heavyweight components include
all the ready-to-use AWT components, such as Menu and ScrollPane, and all
components that inherit from the AWT Canvas and Panel classes. When Swing
components (and all other "lightweight" components) overlap with heavyweight
components, the heavyweight component is always painted on top.

The Swing Component Set provides a set of "lightweight" (all-Java language)
components that, to the maximum degree possible, work the same on all platforms.
Swing provides many standard GUI components such as buttons, lists, menus, and
text areas, which you combine to create your program's GUI. It also includes
containers such as windows and tool bars. On the downside, you may find that
Swing applications are slower and more memory hungry than their AWT
counterparts.

3.4 VTK

The Visualization ToolKit1 (VTK) [6], [7] is an open source, freely available software
system for 3D computer graphics, image processing, and visualization used by a
large community of researchers and developers around the world. VTK consists of a
C++ class library, and several interpreted interface layers including Tcl/Tk, Java,
and Python. Although VTK is freely available, professional support and products for
VTK are provided by Kitware, Inc. VTK supports a wide variety of visualization
algorithms including scalar, vector, tensor, texture, and volumetric methods; and
advanced modelling techniques such as implicit modelling, polygon reduction, mesh
smoothing, cutting, contouring, and Delaunay triangulation. In addition, a number of
imaging algorithms has been directly integrated to allow the user to mix 2D imaging,
3D graphics algorithms and data. The design and implementation of the library has
been strongly influenced by object-oriented principles. VTK has been installed and
tested on nearly every Unix-based platform, PCs (Windows 98/ME/NT/2000/XP),
and Mac OSX Jaguar or later.

1 http://public.kitware.com/VTK/

 POLCOMS GUI and distributed CORBA interface 5/26

3.5 CORBA

The Common Object Request Broker Architecture (CORBA) [8], [9], [10], [11] is a
low-level architecture established in 1989 by the Object Management Group2
(OMG). CORBA is an open, vendor independent architecture and infrastructure that
applications can use to work together over networks. Using the standard Internet
Inter-ORB Protocol (IIOP), built on top of TCP/IP, a CORBA-based program from
any vendor, on almost any computer, operating system, programming language,
and network, can inter-operate with any other CORBA-based program.

CORBA provides a specification for the Interface Definition Language (IDL). IDL lets
developers define interfaces to their programs and objects in a standardized
fashion. With the IDL are mappings that map the IDL definitions and types to
programming languages such as C, C++ and Java. CORBA offers developers
complete language transparency. Developer and vendor objects interact with one
another through an Object Request Broker (ORB).

Using the language mappings, developers can create client-side "stubs" and server-
side "skeletons" that their ORBs will understand. CORBA applications are composed
of objects. For each object type you define an interface in IDL. The IDL interface
defines the syntax for the contract that the server object offers to the clients that
invoke it. Any client that wants to invoke an operation on the object must use this
IDL interface to specify the operation it wants to perform, and to marshal the
arguments that it sends. When the invocation reaches the target object, the same
interface definition is used there to unmarshal the arguments so that the object can
perform the requested operation with them. The interface definition is then used to
marshal the results for their trip back, and to unmarshal them when they reach their
destination. The IDL interface definition is independent of programming language,
but maps to all of the popular programming languages via OMG standards. OMG
has defined standard mappings from IDL to C, C++, Java (Brose et al, 2001),
COBOL, Smalltalk, Ada, Lisp, Python, and IDLscript.

The OMG provide a specification – not an implementation. It is up to other
individuals, groups and companies to provide implementations.

Fnorb is a CORBA 2.0 ORB for Python [12].

JacORB is a CORBA 2.5 ORB for Java [13].

TAO (The Ace Orb) is a 2.3 ORB for C++ [14].

3.5.1 OMG-IDL

The OMG’s Interface Definition Language is used to define an interface to a
distributed object. Compilation of this IDL interface produces a different set of
classes depending on the language mapping of the particular ORB in question. The
tables below explain the files that are produced by the TAO_IDL compiler and the

2 http://www.omg.org/

 POLCOMS GUI and distributed CORBA interface 6/26

JacORB IDL compiler respectively. The names of the files produced are based on
the original IDL file name ‘file.idl’.

3.5.2 Using TAO_IDL

Table 1: Files generated by the TAO_IDL compiler (compiled using information
from ‘A very simple client’ tutorial [15]).

3.5.3 Using JacORB IDL

When compiling IDL files using JacORB IDL it is important to make sure that the
resulting *.java files have the correct package declaration. This can be done by
using nested ‘module’ statements in the IDL interface, or simply by adding the
correct package name after compilation. For example, to add the resulting files to
the Polcoms package you must include the line, ‘package Polcoms’ at the beginning
of each file.

Filename Function

fileC.cpp fileC.i fileC.h Contain the client-side interfaces.
Notice that the inline functions are in
a separate file so you can optionally
compile them out-of-line for smaller
code. Pure clients only need to link
the object file generated from
fileC.cpp.

fileS.cpp files.i fileS.h Contain the server-side skeletons.
Servers must link the object files
generated from fileS.cpp and
fileC.cpp.

fileS_T.cpp fileS_T.i fileS_T.h Contain the TIE classes. These are
the standard (after the CORBA 2.2
spec) skeletons based on
composition instead of inheritance.
They are in separate files only
because some compilers cannot
handle mixed template and non-
template code in the same source file.
You do not need to compile these
files on any platform. However, the
files are required to compile fileS.cpp.
Also notice that if your platform does
not support namespaces, then you
may be unable to use the TIE
approach for some IDL interfaces.

 POLCOMS GUI and distributed CORBA interface 7/26

Filename Function

file.java A java interface.

fileHelper. java Collection of static methods for type
specific operations.

fileHolder. java To allow for the use of out and inout
parameters in Java.

fileOperations. java Java interface containing mappings of
IDL types, constants, attributes,
exception definitions and operations
defined within the IDL interface.

filePOA. java Skeleton code used with the POA.

filePOATie. java Used for server-side tie mechanism.

_fileStub.java Stub code allowing the creation of a
client-side proxy for the object
implementation.

Table 2: Files generated by the JacORB IDL compiler.

OMG define specifications for the mapping of IDL to a number of languages (C,
C++, Java, COBOL, Ada, Lisp, Python, SmallTalk). Most ORB implementations use
the C++ or Java mapping. The mapping specifications define how IDL types,
attributes and operations are mapped to programming language constructs. OMG’s
specifications for the IDL to C++ and IDL to Java mappings can be found on the
OMG’s website.

N.b. There are a number of languages that share the acronym IDL. Several different
Interface Definition Languages other than that defined by OMG exist. There is also
Interactive Data Language developed by Research Systems Inc. When searching
for information about IDL, make sure you bear this in mind.

4 Implementation

This section of the report focuses on the implementation of the GUI design. Firstly,
there is an overview discussing the GUI as a whole. There is then a section on the
implementation of visualisation routines. Finally, there is a section on the
implementation of CORBA communications.

4.1 Overview

The PolcomsDataModule class contains all the steering and model data for the
program and includes methods by which they may be accessed. Other classes
extend PolcomsDataModule and thereby inherit all the data and methods. The
CORBA client is currently incorporated into the class vtkMonitorWindow which
controls the sending of parameters as well as the receiving and displaying of

 POLCOMS GUI and distributed CORBA interface 8/26

monitoring data. The class vtkVisWindow is the highest level visualisation class
defining a visualisation GUI, visualisation pipelines for xy-plots, 3D and 2D views
and a number of methods for reading and accessing data. All other visualisation
classes inherit from this class.

The POLCOMS code is naturally highly modular and we can separate its functions
into the following: the marine domain, the basic hydrodynamics, tides, open
boundaries, initial data, meteorological (surface) forcing, sediments, rivers, output
datasets, checkpoint/restart, target system, parallel processing options etc. Each
module deserves its own class to hold data, variables and parameters, to contain
methods to access and manipulate those data, and to contain methods to display
and manage GUI panels to allow those data to be updated.

Figure 2: The POLCOMS GUI main window

The main window is shown in Figure 2. The user must select a data directory before
loading the input data. A number of options can then be chosen, either through the
options menu or by pressing the options button. Most of the options are available via
a set of tabbed panes, with one pane for each of the modules referred to above.
Many of the options panes contain lists of files that can be visualized by pressing the

 POLCOMS GUI and distributed CORBA interface 9/26

‘Preferences’ button, followed by the ‘Visualize’ button in the file preferences
window. For example, pressing the ‘Preferences’ button on the ‘Domain’ pane,
followed by the ‘Visualize’ button in the file preferences window opens the
visualization window for bathymetry data shown in figure 3.

Figure 3: The POLCOMS GUI Visualisation Window, showing ocean depth for a
model of the north-west European shelf.

When the model is ready to be run, the user presses the “Run” button, and is
presented with the monitor window (Figure 3). In the monitor window the user can
set the type and frequency of monitoring data. When the ‘Run’ button in the monitor
window is pressed the GUI communicates the options to the Fortran model code,
the model starts and the requested monitor information is sent back via CORBA to
the GUI for real-time display.

 POLCOMS GUI and distributed CORBA interface 10/26

Figure 4: The POLCOMS GUI Monitor Window.

4.2 Visualisation

The input and output data visualisation system within the GUI was developed using
the Visualisation Toolkit (VTK). VTK is an open source toolkit written in C with
wrappers provided for Java and a number of scripting languages (Python, Tcl/tk).
The toolkit provides a good range of visualisation routines and a relatively simple
interface to a Java GUI using the ‘vtkPanel’ class which extends the ‘JPanel’ JFC
Swing class.

The GUI allows a range of data sets to be viewed by the user. Where appropriate
the user can also interact with the data, for example, data presented as a 2D map
allows for zooming and panning. 3D data sets (Initial temp/salinity) are presented in
such a way that the user can choose a 2D slice of the data at a particular latitude,
longitude or depth. As the file format and visualisation requirements varied, a
separate class was defined to read data files, set up and populate the VTK data
structures and layout the GUI for each dataset.

The table below illustrates the classes used to visualise datasets in Polcoms:-

Class Name Function Extends

vtkPolcomsPanel • Panel containing the render window to
which a given visualisation is rendered.
Adds to the default window interaction
methods defined in vtkPanel.

vtk.vtkPanel

vtkVisWindow • Provides a GUI for controlling the
visualisation of bathymetry and initial
temperature and salinity data.

• Reads the relevant data files.
• Populates VTK data structures.
• Sets up VTK actors.
• Renders actors.

PolcomsDataSet

vtkRiverVisWindow • Provides a GUI for visualising river
locations on a map as well as xy-plots of
flow rate vs time etc.

• Reads river data files.
• Populates VTK data structures.
• Renders data.

vtkVisWindow

vtkSPMVisWindow • Provides a GUI for visualising SPM
source locations on a map.

• Reads SPM data files.
• Draws map.

vtkRiverVisWindow

vtkOutputVisWindow • Provides a GUI for visualising Output
datasets

(Not yet implemented)

vtkSPMVisWindow

vtkBoundaryVisWindow • Provides a GUI for visualising
temperature and salinity data on the
domain boundary.

• Reads temp. and sal. boundary data.
• Populates VTK data structures.
• Sets up and draws xy-plots.

vtkVisWindow

vtkMetVisWindow • Currently provides a GUI for displaying vtkVisWindow

 POLCOMS GUI and distributed CORBA interface 11/26

cloud cover data only.

Table 3: Visualisation classes for the POLCOMS GUI.

4.3 Communication

The Polcoms GUI utilises CORBA technology to steer and monitor the progress of
the Polcoms code. The GUI code includes a CORBA client implemented using
JacORB, while the Fortran code has a C wrapper connected to a similar client
implemented using TAO (The Ace ORB).

CORBA servers (implemented using TAO) can then be run on any machine that can
be seen by both the local machine on which the GUI is running and the remote
machine on which the model is running. The configuration used for testing this code
had the servers running on the same machine as the model. This was mainly
because the TAO libraries were already available on that machine. The client and
server sides shown in figure 5 do not correspond to those shown in figure 1. This is
because figure 1 related to the client/server design for Polcoms whereas figure 5
relates only to the configuration of CORBA clients and servers.

Figure 5: The POLCOMS Client-Server Communication Configuration.

On the client-side steering and monitoring communications are dealt with by a single
class called ‘CorbaCommsThread’ that extends the Thread class. The run() method
of ‘CorbaCommsThread’ starts a CORBA client that is used for both setting the
steering parameters and receiving the monitoring data.

Before the client and server code could be written two IDL definitions were required.
One to define the interface to a ‘steering parameters’ object (steerParams) and one
to define the interface to a ‘monitoring output’ object (monitorOutput). The following

 POLCOMS GUI and distributed CORBA interface 12/26

sections contain a breakdown of these two idl interfaces that form the basis for
client/server communications.

4.3.1 Steering

The ‘steerParams’ interface contains no typedefs or attributes. Instead the interface
simply defines a list of operations for getting and setting the values of each of the
parameters. First the name of the interface is defined.
interface steerParams

{

Next a list of operations for getting parameters is defined.
 long getnmonitor();

 double getrmonitor();

 string getmonvarst();

 long getlenmonvarst();

 long getmoni();

 long getmonj();

 long getmonk();

 long getldim();

 long getmdim();

 long getndim();

 double gethsmin();

 string getbathf();

 string getmaskf();

 string getts_form();

 string getbounts_form();

 string getbounzuv_form();

 long getlenbathf();

 long get…………………………

 long get………………………

 double get……………………

………… and so on.

Finally, three operations for setting parameters are defined. One for the model
parameters, one for the monitor parameters and one for the input and output
filenames (not yet implemented).

void set_params(in long l, in long m, in long n, in double

hsmin, in string bathf, in string maskf, in string ts_form, in
string bounts_form, in string bounzuv_form, in long lenbathf,
in long lenmaskf, in long lents_form,in double daldi, in
double dbedi, in double alat1, in double along1, in double st,
in double dlt, in long mt, in double tdur, in double avmin, in

 POLCOMS GUI and distributed CORBA interface 13/26

double dbdzmin, in double q2min, in double ahm, in double cbf,
in double conv_lim, in double land, in double rstress, in
double rcloud, in double rsalt, in long ntypes, in double
bounfreq_TS, in double bounfreq_ZET, in long ig, in long jg,
in long kg, in double tmp_init, in double sal_init, in long
noriv);

 void set_monitor(in long nmonitor, in double rmonitor,

in string monvarst, in long lenmonvarst, in long moni, in long
monj, in long monk);

 void set_filenames();

};

In this case, the JacORB client attached to the GUI sets the parameters in the
‘steerParams’ object while the TAO client attached to the model gets them. The
object itself simply holds the data and responds to requests from the ORB.

4.3.2 Monitoring

The monitorOutput interface requires a typedef for a sequence of length 50 called
LongSeq. Sequences provide one of the easiest ways of representing arrays in IDL
and this interface needs to allow for an array of integers to be passed as a
parameter.
typedef sequence<long,50> LongSeq;

Next the interface name is defined.
interface monitorOutput

{

Three operations are then defined for getting the values of the current timestep, data
value at a given array position and count respectively. Count is used as a flag to
determine when the GUI client should request the next set of data.
 long gettimestep();

 long getdata(in long pos);

 long getcount();

Finally, there are three operations for setting the timestep, count and the next array
of monitor data.
 void settimestep(in long timestep);

 void setcount(in long count);

 void set_monitor(in long timestep, in LongSeq data);

};

Here we have the opposite set up to that presented in the steerParams case. It is
the TAO client attached to the model that sets values while the JacORB client gets
them. This time the interface also requires a typedef for LongSeq which will be
mapped to an array in both C++ and Java.

 POLCOMS GUI and distributed CORBA interface 14/26

4.3.3 Object Implementation

Once the idl has been compiled an Object Implementation class and a server class
must be written. Currently these are coded in C++ using TAO rather than in Java.
The servers can be found in the files ‘monitorServer.cpp’ and ‘server.cpp’, while the
object implementations can be found in the files ‘steerParams_I.cpp’,
‘steerParams_I.h’, ‘monitorOutput_I.cpp’ and ‘monitorOutput_I.h’.

4.3.4 C-Wrapper for POLCOMS

The final requirement for completing the CORBA bridge is a C-wrapper for the
POLCOMS code that can call the TAO/C++ client routines and pass output
parameters to the Fortran. There are two C subroutines that provide this
functionality. The first is ‘getclient’ which is called by the Fortran routine parm_client.
The second is ‘monclient’ which is called by the Fortran routine data_out.

3.3.4.1 Getclient

Getclient takes the model parameters as input and sets pointers to each of the
parameters so that their values can be retrieved by the Fortran code. Currently
getclient is called once when the model is started.

3.3.4.2 Monclient

Monclient takes a single integer array as input, along with an integer value for the
size of the array and an integer value for the current timestep. The routine calls the
TAO client monitor_client passing the array and integer values as arguments.

5 Compiling and running

5.1 Compiling and building the Fortran

The Polcoms code was compiled and built using GNU Make [16] under Compaq
tru64. In order to compile and build the code under a different OS or with different
compilers or options you must edit the makefile, adding a new target that matches
your requirements for the build. For information on writing makefiles for GNU make
see the GNU make manual at [17].

GNU Make and ACE 5.3 +TAO 1.3 must be installed and the ACE and TAO libraries
must be built before the code can be compiled.

To compile and build the code, first ensure that the GNU make executable is in the
source directory along with the makefile. Next rename the GNU make executable,
calling it ‘gmake’. This distinguishes GNU make from any other make program that
may reside on the system and ties in with the commands defined in ‘makefile’. Now
type ‘./gmake (Targetname)’, starting GNU make with the target ‘Targetname’.
Target names in ‘makefile’ are constructed as follows:

exec-os-buildoptions

Where ‘exec’ is the name of the executable being built, ‘os’ indicates the OS being
used and ‘buildoptions’ indicates options associated with the build. An example of a
target name is:

 POLCOMS GUI and distributed CORBA interface 15/26

shelf-compaq-serial-g

‘shelf' is the executable. ‘-compaq’, indicates Compaq tru64. ‘-serial’ indicates that
this is a serial build and ‘-g’ indicates a –g build (i.e. Symbol tables are produced for
full symbolic debugging)

The CORBA servers must also be built before the model can be run. The make file
‘servermakefile’ is used to build the servers. To run this make file type the following
command: ‘./gmake -f servermakefile’.

A number of environment variables must be set for the makefile to function correctly.
ACE_ROOT must contain the path of the ACE installation directory
(ACE_wrappers), TAO_ROOT should be set to $(ACE_ROOT)/TAO and lastly, the
$(ACE_ROOT)/ace directory should be added to the LD_LIBRARY_PATH
environment variable. See TAO and ACE Installation instructions for more details.

5.2 Compiling the GUI

The GUI was developed under Windows XP using the Netbeans IDE (v3.5.1), Java
2 Standard Edition (J2SE v1.4.2), The Visualisation Toolkit (VTK v4.2) and JacORB
(v1.4.1). Before trying to compile the code it is important to mount ‘jacorb.jar’ and
‘vtk.jar’ as file systems within the Polcoms GUI project. This will ensure that all VTK
and JacORB classes are accessible for inclusion in the GUI classes. Using
Netbeans, the compilation of the GUI code is simple. In the ‘Explorer [Filesystems]’
view, select the folder containing the GUI source code. Now go to the ‘Build’ menu
and click on ‘Compile all’. Any compilation errors will be reported in the ‘Output
Window’. You may encounter errors relating to the VTK class ‘vtkPanel’. If such an
error occurs you can work around it by following these steps:

1. In the ‘Explorer [Filesystems]’ view, right-click on the file system icon for

‘vtk.jar’ and click on ‘Unmount Filesystem’.
2. Right-click on the file system icon for the file system containing the Polcoms

GUI package folder.
3. Select ‘New’ and then ‘Java Package’ from the resulting menu.
4. Call the new package ‘vtk’ and click on finish.
5. Unpack ‘vtk.jar’ and copy and paste all of the files from the resulting ‘vtk’

directory into the new vtk package folder.

The VTK classes will now be available within the project and any compiler errors
relating to vtkPanel should cease.

5.3 Running CORBA services

Before the GUI can be used to pass parameters to and receive monitoring data from
the model we must run the CORBA Naming Service as well as servers for the two
types of CORBA object.

The following examples assume that services are being run from within the Fortran
source directory.

 POLCOMS GUI and distributed CORBA interface 16/26

The Naming Service
$(ACE_ROOT)/TAO/tao/orbsvcs/Naming_Service/Naming_Service –ORBEndPoint
iiop://machinename:portnumber

During testing the Naming service was run on tca18, port 10101. The following
command was used to run the service:
./../ACE_wrappers/TAO/tao/orbsvcs/Naming_Service/Naming_Service –
ORBEndPoint iiop://tca18:10101

The steerParams server
server –ORBInitRef NameService=
corbaloc:iiop:machinename:portnumber/NameService

During testing the steerParams server was run on tca18, port 10101. The following
command was used to run the service:
./server –ORBInitRef NameService= corbaloc:iiop:tca18:10101/NameService

The monitorOutput server
monitorServer –ORBInitRef NameService=
corbaloc:iiop:machinename:portnumber/NameService

During testing the monitorOutput server was run on tca18, port 10101. The following
command was used to run the service:
./monitorServer –ORBInitRef NameService=
corbaloc:iiop:tca18:10101/NameService

5.4 Running the GUI

JacORB provides its own batch file (jaco.bat) that can be used for launching clients
and servers. ‘jaco.bat’ contains the following commands:
@echo off
rem call java interpreter

java -Xbootclasspath:"$(JACORB_HOME)\lib\jacorb.jar;

$(JAVA_HOME)\jre\lib\rt.jar;%CLASSPATH%"

-Dorg.omg.CORBA.ORBClass=org.jacorb.orb.ORB -Dorg.omg.CORBA.

ORBSingletonClass=org.jacorb.orb.ORBSingleton %*

The final command calls ‘java’ and sets the ‘Xbootclasspath’ as well as the ORB
classes that should be used by JacORB applications. You can run the Polcoms GUI
from the command line as follows:
Jaco -classpath (path of Polcoms and VTK class
directories);$(JAVA_HOME)\jre\lib\rt.jar Polcoms.Polcoms

Alternatively, ‘jaco.bat’ can be updated to run the Polcoms GUI by simply replacing
the %* at the end of the file with the following:
-classpath (path of Polcoms and VTK class
directories);$(JAVA_HOME)\jre\lib\rt.jar Polcoms.Polcoms

 POLCOMS GUI and distributed CORBA interface 17/26

Having updated ‘jaco.bat’, save the file with a different name such as ‘polgui.bat’.
Now you can simply type ‘polgui’ to launch the GUI from the command line, or
alternatively just double-click on the ‘polgui.bat’ icon.

N.B. In the example commands above, $(JAVA_HOME) represents the root
directory of java sdk and $(JACORB_HOME) represents the root directory of
JacORB.

5.5 Using the GUI to start a run

This section provides a simple step by step tutorial for starting the GUI, passing
parameters, starting the model and monitoring data.

1. Run CORBA Naming Service and servers as instructed in the previous section.

2. Open a Command Prompt and cd to the location of the ‘polgui.bat’ file.

3. Type ‘polgui’ to launch the GUI.

4. Click on the ‘Browse’ button and select the directory containing ‘parameters.dat’
and ‘filenames.dat’.

5. Now click on the ‘Load’ button to load the parameters and filenames into the GUI.
Then click on ‘OK’ to remove the info message confirming the load.

6. Go to the ‘Run Length’ textfield and enter ‘1’. Alter the units to years by clicking
on the arrow next to the units menu and selecting ‘Years’.

7. If you wish to alter any other options at this stage, click on the ‘Options’ button,
select the appropriate pane, change the option and click on ‘OK’.

8. Click on the ‘Run’ button to enter the ‘Monitor Window’.

9. Go to the ‘Monitor Frequency’ textfield and enter ‘1’. Alter the units to days by
clicking on the arrow next to the units menu and selecting ‘days’.

10. Select an appropriate ‘i’ and ‘j’ so that the point being monitored is not on the
land.

11. Click on the ‘Run’ button and wait for the empty axes to be displayed in the
display window.

12. Run the model by typing ‘./shelf’. A run of length one year will begin and
monitoring data will be returned for each day of the year (i.e. 365 times per run).

6 Testing

For all tests the GUI was running under Windows XP on a 1.59GHz PC with 256MB
of RAM. The model was running under Compaq Tru64 Unix. Testing was carried out
using a domain with dimensions 251x206x20.

All current visualisation capabilities have been tested. The GUI can display
bathymetry, initial temperature/salinity, boundary temperature/salinity, river data,
SPM locations, time series locations and cloud cover data.

 POLCOMS GUI and distributed CORBA interface 18/26

It has been verified that the GUI can send steering parameters to the model running
on a remote machine. These can then be used as initial parameters when the model
starts. It is not yet possible to pause the model's execution and alter the steering
parameters, although the design of the model does allow for this through the ‘server
loop’ incorporated into the routine ‘b3drun’.

Monitoring of data has been tested for a range of short runs (up to a week) with
different monitoring frequencies (from once an hour to once a day). Monitoring of
data has also been tested for a run length of 6 months with data monitored daily.
These runs generated good results, but occasional problems with the visualisation
of the data and the CORBA connection have been encountered.

Tests revealed a bug associated with the annotation in the monitor display window.
Lower case ‘i’ and ‘j’ characters do not display correctly. This bug has not yet been
resolved. The relevant code can be found in ‘vtkMonitorPanel.java’. The CORBA
connection has also failed during some tests. Such a failure produces an error
message window containing the message ‘CORBA connection error’. All monitoring
data received prior to the failure is then lost when the run is restarted. Such an error
will occur if CORBA services and servers have been started incorrectly or in the
wrong order, or when the remote machine on which the services are running is shut
down.

One test with a run length of one year resulted in a ‘java.lang.outofmemory’
exception. This is a concern and attempts have been made to identify and correct
any memory management problems in the code. The error has not been repeated in
subsequent tests. The class ‘memory’ has been included in the GUI source. This
class provides a useful means of monitoring memory usage using the
‘memory.report()’ method.

When running the code with large data sets (> 200 x 200 x 10) a ‘memory exceeded’
or ‘stack overflow’ error message may be encountered. If such an error occurs the
amount of memory allocated for the stack and/or data storage may need to be
manually increased. If you are using ksh this can be done using the following
commands:

ulimit –s bytes (sets stack size to ‘bytes’)

ulimit –d bytes (sets data storage size to ‘bytes’)

or using csh:

limit stacksize bytes (sets stack size to ‘bytes’)

limit datasize bytes (sets data storage size to ‘bytes’)

where ‘bytes’ is the number of bytes that you wish to allocate. 1048576 is the value
used during testing.

7 Evaluation

This project has been successful in that the Java GUI can now be linked in real-time
to the Fortran application code and visualisation capabilities have been integrated
into the GUI using VTK. After a short learning period Java was found to be quick,

 POLCOMS GUI and distributed CORBA interface 19/26

easy and robust to use. Working with CORBA proved more difficult, but the relatively
simple interfaces defined here will provide a good foundation for developing
communications between GUI and model in the future. At the very least the work
demonstrates that real-time monitoring of data can be achieved via CORBA.
Working with VTK also proved to be a challenge, but this was in part down to the
lack of example code and documentation for VTK with Java. The majority of
examples that are available cover 3D visualisation techniques which are not central
to the work that has been done on the GUI. It has been difficult to find examples of
techniques for producing xy-plots and the VTK help files are sometimes vague in
their descriptions of methods. Despite these problems a range of visualisations for
different data sets have been produced. This code also provides a set of examples
from which any further work can inherit.

Problems encountered during the work include dealing with memory management in
a mixed language application, especially, where VTK is incorporated into the GUI
code. Efforts have been made to track memory usage (using the ‘memory’ class).
There are also some difficulties involved with maintaining the CORBA code due to
the number of stages that any update has to go through. Updating the idl interface
will result in a knock on alteration being required in several other files (Object
implementation classes, clients, etc…). Because of this it is vital to keep track of
changes as they are made.

8 Future improvements

The POLCOMS GUI still requires a number of refinements and additions that either
fall outside the requirements for this work or could not be included because of time
constraints. This section summarises the future work that needs to be done as well
as indicating some of the possibilities for expanding the GUI’s capabilities.

8.1 Visualisation

Currently there are a number of datasets that cannot be visualised. These include
tidal data, meteorological data and all output datasets. As long as the format for
each of these datasets can be established it should be relatively straightforward to
write classes to visualise them by extending the current visualisation classes. There
is also room for improvement of some of the less developed visualisation classes
such as ‘vtkMetVisWindow’ which currently controls the display of cloud cover data,
but needs to be expanded to cover all meteorological datasets.

The functionality of the monitor window is currently limited to displaying only
temperature data on an xy-plot. In the future the intention is for this to be updated to
allow the user to choose all parameter types and to allow other forms of visualisation
such as slices through the data.

A possible addition to the GUI’s visualisation capabilities might be to incorporate a
method of viewing and saving animations made up of images of datasets changing
as the simulation progresses.

 POLCOMS GUI and distributed CORBA interface 20/26

8.2 Communication

CORBA communication can be enhanced by using the ‘server loop’ built in to the
Fortran (see ‘b3drun.F’) to allow ‘scanning’ for parameter changes while the code is
running.

The 'steerParams' idl interface currently makes no provision for the passing of input
and output filenames from the GUI to the model. This is a relatively simple operation
but was not thought to be vital to this work as the new capabilities of the GUI can be
demonstrated without it.

The machine name and port number used for CORBA communication is currently
‘hard-wired’ into the code at line 172 of ‘CorbaCommsThread’ as well as in
‘tao_client’ and ‘monitor_client’ that are used for communication by the model.
Ideally the machine name and port number should be entered into the ‘Target’
options pane in the GUI. This pane needs to be updated to allow for this. These
parameters could then be passed to a ‘CorbaCommsThread’ object so that the
location of distributed objects could be determined by the GUI. The machine name
and port number defined in ‘tao_client’ and ‘monitor_client’ must match those
defined in the GUI, but there is no mechanism for passing these parameters as they
are required by the model before a CORBA connection can be established.
Currently ‘tao_client’ and ‘monitor_client’ must be updated manually to ensure that
this is the case. It would be useful to include an option for altering the machine
name and port number in the Fortran code so that the code did not need to be
altered whenever it is required to run on a different machine or use a different port.

8.3 GUI Selection Panes

Currently the ‘Options window’ features a debugging pane which has not yet been
implemented. The tidal data options pane is not fully implemented.

As discussed above, the target pane could be used to specify a machine and port
number as a target for CORBA communication. This pane needs updating before
this is possible.

A data format choice JComboBox has been included on the main menu. There is
currently only provision for one data format. As new data formats are developed it is
important that this should be kept up to date. This also applies to the ‘readdata’
methods in each of the vtk classes which must be able to read all possible data
formats.

8.4 Grid Computing

We intend that the work described here should be extended to allow the model to
make use of current and future developments in Grid computing. This will probably
entail the replacement of the CORBA code by an interface built around Globus or
Web Services. Remote access to input and output datasets could usefully utilise the
Storage Resource Broker (SRB).

 POLCOMS GUI and distributed CORBA interface 21/26

9 Web Resources

Java

APIs –

http://java.sun.com/j2se/1.4.2/docs/api/

Java Swing

APIs –

http://java.sun.com/j2se/1.4.2/docs/api/

The JFC/Swing Tutorial –

http://java.sun.com/docs/books/tutorial/uiswing/

VTK

VTK Mailing list –

http://www.vtk.org/mailman/listinfo/vtkusers

Java - VTK examples –

http://ij-plugins.sourceforge.net/vtk-examples/

VTK can be downloaded from –

http://www.vtk.org/get-software.php

CORBA

OMGs CORBA website –

http://www.corba.org/

OMGs CORBA FAQ –

http://www.omg.org/gettingstarted/corbafaq.htm

Download the OMG IDL to C++ Mapping specification from –

http://www.omg.org/cgi-bin/doc?formal/03-06-03

Download OMG IDL to Java Mapping specification from –

http://www.omg.org/cgi-bin/doc?formal/03-09-04

Corba Papers on the web –

 Wrapping ADPAC CFD Code

 http://accl.grc.nasa.gov/IPG/CORBA/wrap_fortran.scott.html

Developing CORBA-Based Distributed Scientific Applications From Legacy
Fortran Programs

 POLCOMS GUI and distributed CORBA interface 22/26

 http://accl.grc.nasa.gov/IPG/CORBA/CAS_corba.pdf

NPSS on NASA's IPG: Using CORBA and Globus to Coordinate
Multidisciplinary Aeroscience Applications

http://www.ipg.nasa.gov/workshops/papers/NPSS_CAS_paper.html

A Framework for Distributed Mixed Language Scientific Applications

http://www.hep.net/chep95/html/papers/p18/p18.pdf

JacORB

JacORB 1.4.1 Programmers Guide –

http://www.jacorb.org/docs/ProgrammingGuide_1_4_1.pdf

JacORB website –

http://www.jacorb.org/

JacORB can be downloaded from –

http://www.jacorb.org/download.html

ACE + TAO

Installation instructions ACE –

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/ACE-INSTALL.html

TAO Documents –

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/TAO/docs/index.html

TAO FAQ –

http://www.theaceorb.com/faq/faq.html

Installation instructions TAO –

http://www.cs.wustl.edu/~schmidt/ACE_wrappers/TAO/TAO-INSTALL.html

Download ACE and TAO from –

http://deuce.doc.wustl.edu/Download.html

GNU Make

GNU Make manual –

http://www.gnu.org/software/make/manual/html_mono/make.html

Download version 3.80 of GNU Make from -

ftp://ftp.gnu.org/pub/gnu/make/

 POLCOMS GUI and distributed CORBA interface 23/26

References

[1] M. Ashworth, R.J. Allan, C.J. Müller, H.J.J. van Dam, W. Smith, D. Hanlon,
B.G. Searle and A.G. Sunderland, Graphical User Environments for Scientific
Computing, UKHEC Technical Report,
http://www.ukhec.ac.uk/publications/reports/guienv.pdf

[2] J.T. Holt, R. Proctor, M. Ashworth, J.I. Allen and J.C. Blackford, Eddy
Resolved Ecosystem Modelling in the Irish Sea, in Realizing Teracomputing:
Proceedings of the Tenth ECMWF Workshop on the Use of High
Performance Computing in Meteorology, eds. W. Zwieflhofer and N. Kreitz,
2004, pp.268-278, (World Scientific).

[3] J.T. Holt, R. Proctor, J.C. Blackford, J.I. Allen and M. Ashworth, Advective
controls on primary production in the stratified western Irish Sea: An eddy
resolving model study, 2004, in press, Journal of Geophysical Research.

[4] Daniel J. Berg and J. Steven Fritzberger, Advanced Techniques for Java
Developers, 1999, (John Wiley & Sons).

[5] Sun Microsystems Inc., The Swing Tutorial: Creating a GUI with JFC/Swing,
http://java.sun.com/docs/books/tutorial/uiswing/

[6] William Schroeder, Ken Martin, Bill Lorensen, The Visualisation Toolkit An
Object-Oriented Approach To 3D Graphics 3rd Edition, Kitware Inc.

[7] The Visualisation Toolkit Users Guide, Kitware Inc.

[8] Th. Mowbray and R. Zahari, Essential Corba: System Integration with
Distributed Objects, 1995, (John Wiley & Sons) ISBN 0-471-10611-9

[9] J. Siegel, CORBA 3: Fundamentals and Programming, Second edition., (John
Wiley & Sons), 2000

[10] Michi Henning, Steve Vinoski, Advanced Corba Programming with C++,
Addison Wesley. 1999.

[11] Gerald Brose, Andreas Vogel Keith Duddy, Java Programming With Corba,
Third Edition, John Wiley and Sons Inc. 2001.

[12] Fnorb Homepage, http://www.fnorb.org

[13] Jacorb Homepage, http://www.jacorb.org

[14] The ACE ORB (TAO) Homepage, http://www.theaceorb.com

[15] Carlos O'Ryan, A Very Simple Client Tutorial,
http://www.cs.wustl.edu/~schmidt/ACE_wrappers/TAO/docs/tutorials/Quoter/
Simple/Client/index.html

[16] GNU make Manual
http://www.gnu.org/software/make/manual/html_mono/make.html.

[17] http://www.gnu.org/software/make/manual/html_mono/make.html

