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Abstract

We present a non-uniform static analysis for the π-calculus that is built
on a denotational semantics of the language and is useful in detecting in-
stances of information leakage and insecure communications in systems
with multi-level security policies. To ensure the termination of the analy-
sis, we propose an abstraction, which maintains a finite number of names
to be generated by any process. We prove the safety of the analysis and
review a prototype of the analysis called the Picasso tool.
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1 Introduction

Privacy of information has always been one of the most important aspects of
security in computer systems. In any environment where multiple users share
computing resources, the need for protecting against unauthorized access to con-
fidential data becomes a necessity. Such protection becomes harder to guarantee
in the presence of the emerging mobile technologies, since networks and commu-
nication topologies continuously change and the possibility of interacting with
unknown contexts is ever more likely.

In this paper, we present a static analysis for the privacy of information in
mobile systems specified using the language of the π-calculus [25]. The analysis
is based on the abstract interpretation framework [11, 12] and uses a denota-
tional semantics for the π-calculus based on Stark’s abstract model [27, 2] (other
denotational models for the π-calculus include [10, 16, 19, 20]). The analysis is
aimed at detecting two types of privacy breaches in systems with multilevel secu-
rity: information leakage and insecure communications. The former is concerned
with capturing the movement of data between processes, where a high-level da-
tum is leaked whenever a low-level process obtains it. The latter is concerned
with capturing the movement of data over channels, where a high-level datum
is insecurely communicated whenever it is passed over a low-level channel. One
advantage of this security model over other models like the Bell and La Padula
(BLP) model [3] is that privacy is dependent on the levels of the communicated
data rather than the levels of the communicating processes. This offers extra
flexibility whenever processes with different levels wish to communicate.

The main novelty about this work is the use of the denotational semantics
as a basis for an abstract interpretation for mobile systems. This semantics is
defined to include a renaming mechanism that traces copies of names back to
their origin, which is normally lost as a result of α-conversion. A non-standard
interpretation of processes in the π-calculus is then given that associates with
each input parameter the set of names that can substitute it during communica-
tions. This semantics is abstracted by limiting the number of names, which can
be generated within a process, hence ensuring the termination of the analysis.

The rest of this paper is structured as follows. After comparing with related
work in Section 2, we review the syntax and denotational semantics of the π-
calculus in Section 3. The non-standard semantics is introduced in Section 4
to capture the substitution of names. This semantics is proven to be correct
with respect to the standard semantics. In Section 5, we introduce the abstract
semantics and prove its safety. In Section 6, we demonstrate, with an example,
how the abstract semantics may be used in analyzing closed systems, whereas in
Section 7, we extend the analysis to deal with open systems. Finally, in Section
8, we conclude the work and briefly discuss future directions.
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2 Related Work

In recent years, the use of the static analysis approach in analyzing mobile
systems and verifying their security properties has grown into a major area of
research where a variety of techniques have been employed to varying degrees of
success. Therefore, we shall only give here a few examples of static analyses that
have been applied to the π-calculus. In [21, 22, 24], type checking systems are
used to control access to resources and the flow of information in various versions
of the π-calculus extended with multilevel security. In [22], a combination of
location types and capabilities is used to determine the set of local resources a
particular process has access to. The notion of non-interference [17] is formalized
in [21] in terms of typed traces to ensure that no implicit flow of confidential
information occurs, while [24] employs an enriched syntax and an advanced
typing system. Recently, types have been explored in [23] in a trust analysis
to guarantee that a trusted context does not use untrusted data, and in [9],
dynamically created sorts called groups have been used to achieve non-uniformity
of properties. One disadvantage of the type-based approach is that type systems
do not always admit principal types.

Control flow techniques have also been utilized in [5, 6, 7] to determine the
set of names that a name may be bound to and the set of channels that may
be sent over a channel. This information is used in [5] to infer that a process
confines secret names to itself, where proposed solutions are verified and a least
solution is shown to always exist. This analysis is extended in [6] to include
the BLP property and a constructive procedure is further presented in [7]. One
example of the limitations shared by these analyses is the inability to detect
deadlocks, as a result of the inability to interpret restrictions.

The abstract interpretation framework [11, 12] is often used in situations
where safe (but imprecise) abstractions of the runtime properties are acceptable.
In [14], a non-uniform analysis is presented for detecting instances of leakage of
confidential data in the presence of unknown contexts. The analysis builds on
the work of [29], which presents a sound and non-uniform description of how
topologies evolve in closed π-calculus specifications without nested replications.
The same approach is utilized again in [15] in an occurrence counting analy-
sis for detecting the exhaustion of resources, mutual exclusion, and deadlocks.
Although these analyses reveal some interesting results, they lack simplicity as
they all build on a small-step structural operational semantics, which requires
sophisticated abstractions to trace the movement of data.

3 The Language

We adopt the standard version of the π-calculus as shown in Figure 1. Processes
are P,Q, . . . ∈ P and names are x, y, . . . ∈ N possibly subscripted with num-
bers. A process is constructed from standard π-calculus terms, where conditional
statems replace the matching/mismatching constructs and infinite behaviour is
expressed by replication. The notions of substitution and α-conversion as well
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P := 0 Null
x(y).P Input action
x〈y〉.P Output action
τ.P Silent action
if [x = y] then P else Q Conditional
P + Q Summation
P | Q Parallel Composition
(νx)P Restriction
!P Replication

Figure 1: Syntax of the π-calculus.

as free names fn(P), bound names bn(P) and the set of all names of a process
n(P ) = fn(P) ∪ bn(P) also apply. We assume that all the names in n(P) are
initially distinct, particularly fn(P) ∩ bn(P) = ∅. Later in the analysis, we shall
employ the notion of act(P ) to signify the set of all the actions that are present
in the specification of P , as defined by the following:

act(0) = ∅
act(π.P ) = {π} ∪ act(P ), for π ∈ {x(y), x〈y〉, τ}
act(if [x = y] then P else Q) = act(P ) ∪ act(Q)
act(P + Q) = act(P ) ∪ act(Q)
act(P | Q) = act(P ) ∪ act(Q)
act((νx)P ) = act(P )
act(!P ) = act(P )

Our standard semantics of the π-calculus is inspired by the domain-theoretic
model of name-passing processes suggested by Stark [27] and modified in [2].
The model is based on functor categories and is motivated by the solution to the
following predomain equations, which describe a process in terms of the basic
actions it can perform (input/output, deadlock, and termination):

Pi ∼= 1 + P (Pi⊥ + In + Out) (1)
In ∼= N × (N → Pi⊥) (2)

Out ∼= N × (N × Pi⊥ + N ( Pi⊥) (3)

Where Pi⊥ is the object of processes, N is the object of names, and In and
Out represent input and output actions respectively, allowing for bound outputs
as in (νy)x〈y〉 in order to be able to express scope extrusion. P (−) is a power
operation taken as the adaptation of Plotkin’s (convex) powerdomain P \ to
bifinite predomains [26] whereas ( is a non-standard exponential taken as the
lifted function space that supplies a fresh name to a process that uses it.

The solution to equations (1–3) is constructed within a functor category C
that is symmetric monoidal closed. In order to build C, an initial category BI is
suggested, where B is the category of bifinite predomains and continuous maps
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described in [26] and I is the category of finite sets of names, s ⊆ ℘(N ), and
injections between those sets, f : s → s′. The definition of Pi⊥ is then a functor
I → B, where Pi⊥s signifies the domain of all processes with free names in s,
and Pi⊥f : Pi⊥s → Pi⊥s′ denotes a re-labeling operator. Finally, the object of
names N is taken as the inclusion from a set of names s to a discrete predomain
s (this expresses the lack of structure in names).

Within C, a number of morphisms leading into Pi⊥ are defined as follows:

∅ : 1 → Pi⊥ (4)
{| − |} : (Pi⊥ + In + Out)⊥ → Pi⊥ (5)

] : Pi⊥ × Pi⊥ → Pi⊥ (6)
new : (N ( Pi⊥) → Pi⊥ (7)

These morphisms describe the manner in which processes are constructed in
the π-calculus. The ∅ morphism denotes terminated and deadlocked processes.
The singleton map {| − |} is used to interpret input, free/bound output, and
silent actions. The least element {|⊥|} represents the undefined process where
{|⊥|} v ∅ and ∅ is incomparable otherwise. Finally, the ] morphism is a standard
powerdomain union representing non-deterministic choice between two processes
while the new morphism is used to interpret restrictions.

In order to be able to build an abstract interpretation, a concrete definition of
the semantic domain is necessary. This is achieved by explicitly specifying finite
elements p, q . . . ∈ Pi⊥s using morphisms (4–6). Name binding is expressed as
a λ-abstraction of the form λy.p, where a name y is bound to a process p. An
input action thus is represented as in(x, λy.p) and a bound output action as
out(x, λy.p). The remaining free output and silent actions are represented as
out(x, y, p) and tau(p), respectively.

A concrete definition of the new morphism over s interprets restriction in
terms of morphisms (4–6). This definition is illustrated in Figure 2 and a com-
prehensive explanation of the rules can be found in [28, 2]. Conceptually, these

news(λx.∅) = ∅
news(λx.{|⊥|}) φ = {|⊥|}

news(λx.{|in(y, λz.p)|}) =
{
∅, if x = y
{|in(y, λz.news∪{z}(λx.p))|}, otherwise

news(λx.{|out(y, z, p)|}) =

 ∅, if x = y
{|out(y, λz.p)|}, if x = z 6= y
{|out(y, z,news(λx.p))|}, otherwise

news(λx.{|out(y, λz.p)|}) =
{
∅, if x = y
{|out(y, λz.news+{z}(λx.p))|}, otherwise

news(λx.{|tau(p)|}) = {|tau(news(λx.p))|}
news(λx.(p1 ] p2)) = news(λx.p1) ] news(λx.p2)

Figure 2: The concrete definition of new over s.
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rules capture deadlocked situations arising from an attempt to communicate over
a fresh channel, and scope extrusion situations where free outputs are turned
into bound outputs. In all the other situations, restriction has no effects. It
is important to note here that the freshness requirement imposed by ( in the
definition of new is implemented later in the semantics by a special labeling
mechanism.

Using the concrete definition of Pi⊥s, the interpretation of a process P with
free names in s can be given as an element S([P ])s ρ ∈ Pi⊥s. The rules of
this interpretation are shown in Figure 3, where the parameter ρ represents a
multiset containing all the processes composed in parallel with P . We use the
singleton {| − |}ρ and the multiset union ]ρ operators over ρ, which should not
be confused with the morphisms {| − |} and ] over Pi⊥.

(S1) S([0])s ρ = ∅
(S2) S([x(y).P ])s ρ = {|in(x, λy.(R([{|P |}ρ ]ρ ρ])s∪{y}))|}
(S3) S([x〈y〉.P ])s ρ = (

⊎
x(z).P ′∈ρ

R([{|P |}ρ ]ρ ρ[P ′[y/z]/x(z).P ′]])s) ]

{|out(x, y,R([{|P |}ρ ]ρ ρ])s)|}
(S4) S([τ.P ])s ρ = {|tau(R([{|P |}ρ ]ρ ρ])s)|}
(S5) S([if [x = y] then

P else Q])s ρ =
{
R([{|P |}ρ ]ρ ρ])s, if x = y
R([{|Q|}ρ ]ρ ρ])s, otherwise

(S6) S([P + Q])s ρ = (R([{|P |}ρ ]ρ ρ])s) ] (R([{|Q|}ρ ]ρ ρ])s)
(S7) S([P | Q])s ρ = R([{|P |}ρ ]ρ {|Q|}ρ ]ρ ρ])s

(S8) S([(νx)P ])s ρ = news(λxi.R([{|P [xi/x]|}ρ ]ρ ρ])s+{xi})
where, i = min{i | i ∈ N ∧ xi /∈ s}

(S10) S([!P ])s ρ = µp.p ] S([P ])s ({|!P |}ρ ]ρ ρ)
(R0) R([ρ])s =

⊎
P∈ρ

S([P ])s (ρ\{|P |}ρ)

Figure 3: Standard semantics of the π-calculus.

The meaning of the composed processes in ρ is given by rule (R0) as an in-
terleaving of all possible the actions within these processes. Rule (S1) interprets
the meaning of a null process directly as the ∅ morphism. Rules (S2) − (S4)
deal with the cases of processes guarded by input, output, and silent actions
after which the residues are composed with the elements of ρ. In (S2), the in-
put parameter y is joined to s as it is free (though not necessarily fresh) within
the residue. In (S3), when interpreting an output action, communication may
or may not take place according to the availability of processes in ρ that are
guarded by the appropriate input action. If it does take place, the residues of
those processes are modified accordingly. Rules (S5) and (S6) deal with match
and mismatch respectively. If the condition of the rule holds, the residue P is
composed with the processes in ρ, else it blocks. Rule (S7) interprets each of
the processes in a summation as composed with the processes in ρ. The alter-
natives are combined by the ] morphism. Rule (S8) interprets the meaning of
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two parallel processes as being composed with the rest of processes in ρ. Rule
(S9) introduces a labeling mechanism into restriction which ensures that the cre-
ated name is always distinct from previous copies. This mechanism successively
generates names x1, x2 . . . each time (νx) is applied. This removes the need for
α-conversion and allows the new copies to be traced back to their origin. Finally,
in (S10), replication is interpreted recursively over ρ using a fixed-point of the
choices of processes p.

4 Non-standard Semantics

The standard meaning of a process in the π-calculus as an element of the Pi⊥s
domain will be modified in this section to a non-standard meaning, which deter-
mines the set of names to which a name in a process can be bound. To facilitate
this, we first introduce a name environment φE : N → ℘(N ) initially mapping
each name to the empty set. Hence, ∀x ∈ N : φE0(x) = ∅. Informally, φE allows
for any name substitutions resulting from communications to be captured. For
example, if a message z is received by the input action x(y).P (which is substi-
tuted for y), then z will be added to the set φE(y). We shall refer to the total
function space of φE environments as D = N → ℘(N ) ordered by set inclusion
as follows:

φE1 vD φE2 iff ∀x ∈ N , φE1(x) ⊆ φE2(x)

The bottom element is φE0, where ∀φE ∈ D,φE0 vD φE .
The non-standard interpretation of a π-calculus process P is now defined as

an element E([P ])s ρ φE ∈ D on the structure of P by the set of rules of Fig. 4.
Again the interpretation uses a ρ parameter to hold terms composed in parallel.
However, rule (R0) uses the union of environments ∪φ to join all the resulting
φE environments. This union is defined over some name x as follows:

(φE1 ∪φ φE2)(x) = φE1(x) ∪ φE2(x)

Rule (E1) states that a null process will terminate without altering the φE en-
vironment. Rules (E2 − E4) deal with guarded processes, where φE is modified
according to any communications occurring in (E3). Rules (E5) and (E6) again
check for any matching and mismatching of names, respectively. Rule (E7) inter-
prets summation as the union of φE environments resulting from the composition
of the two processes with ρ. Rule (E8) composes two processes in parallel with
ρ. Rule (E9) creates a new name xi distinct from any previous copies of x.
Finally, in (E10), replication is interpreted recursively over ρ using a fixed-point
calculation of the union of φE environments.

The correctness of the non-standard semantics with respect to the standard
semantics of Fig. 3 is expressed by the following theorem:

Theorem 1 (Correctness of the non-standard semantics)
∀P, ρ, φE : S([P ])s ρ = . . .S([P ′])s ρ′ . . .∧E([P ])s ρ φE = . . . E([P ′])s ρ′ φ′E . . .∧Q ∈
ρ ∧Q[x/y] ∈ ρ′ ⇒ x ∈ φ′E(y)
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(E1) E([0])s ρ φE = φE

(E2) E([x(y).P ])s ρ φE = φE

(E3) E([x〈y〉.P ])s ρ φE =
⋃

φ
x(z).P ′∈ρ

(R([{|P |}ρ ]ρ ρ[P ′[y/z]/x(z).P ′]])s φ′E)

where φ′E = φE [(φE(z) ∪ {y})/z]

(E4) E([τ.P ])s ρ φE = R([{|P |}ρ ]ρ ρ])s φE

(E5) E([[x = y]P ])s ρ φE =

{
R([{|P |}ρ ]ρ ρ])s φE , if x = y
φE , otherwise

(E6) E([[x 6= y]P ])s ρ φE =

{
R([{|P |}ρ ]ρ ρ])s φE , if x 6= y
φE , otherwise

(E7) E([P + Q])s ρ φE = (R([{|P |}ρ ]ρ ρ])s φE) ∪φ (R([{|Q|}ρ ]ρ ρ])s φE)

(E8) E([P | Q])s ρ φE = R([{|P |}ρ ]ρ {|Q|}ρ ]ρ ρ])s φE

(E9) E([(νx)P ])s ρ φE = R([{|P [xi/x]|}ρ ]ρ ρ])s+{xi} φE
where, i = min{i | i ∈ N ∧ xi /∈ s}

(E10) E([!P ])s ρ φE = φE ∪φ µφ.E([P ])s ({|!P |}ρ ]ρ ρ) φ

(R0) R([ρ])s φE =
⋃

φ
P∈ρ

E([P ])s (ρ\{|P |}ρ) φE

Figure 4: Non-standard semantics of the π-calculus.

Proof : The proof proceeds by induction on the structure of P . The only inter-
esting case is that of rules (S3) and (E3), since these express name substitutions
resulting from communications. The restriction rules (S9) and (E9) do not affect
φE as we are interested in substitutions resulting from communications alone.�

The correctness requirement states that for any instance of name substitution
Q[x/y] resulting from communications in the standard semantics, the same sub-
stitution will be captured by the φE environment in the non-standard semantics
by adding x to the set φE(y).

5 Abstract Semantics

Despite the fact that the non-standard semantics of the previous section allows
for the capturing of name substitution, it operates over an infinite domain D,
which may result in the non-termination of the semantics. This is due to the
presence of infinite behaviour such as !((νz)x〈z〉) | !x(y), which when executed,
will cause an infinite number of fresh messages z to be created resulting in an
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unlimited growth in s. This will render any fixed-point calculations over the
domain D incomputable.

To overcome this problem, we use an approximation that restricts the number
of names that can be generated within the semantics. If we assume an integer
constraint k, then the number of separate instances of the name z above will
be restricted to k instances (i.e. z0 . . . zk−1). If the value of k is 1, then the
performed analysis will be uniform, otherwise, it will be non-uniform. Non-
uniform analyses are often useful whenever the property of interest changes with
the different runs of the analyzed process. In Section 4, it turns out that a
uniform analysis is quite sufficient for the property we are interested in, i.e.
security levels of names. Subsequent copies of a name can never change their
levels and will always obtain the level of the origin.

In order to enforce the integer constraint k, we need a special function.

Definition 2 Define the abstraction function, αk : N×N → N , as follows:

αk(xi) =
{

xi, if i < k
xk−1, otherwise

Based on αk, the abstract semantic domain D] : N → ℘(N ) is defined as the
total function space of the abstract φA environments ordered by set inclusion as
before. The abstract interpretation of a process P in the π-calculus is now given
as an element A([P ])s ρ φA ∈ D] expressed by the set of rules of Fig. 5.

The rules are very similar to the non-standard semantics of Fig. 4 except for
one difference in the interpretation of restriction in rule (A9). Instead of creating
an unbounded number of fresh copies of the name x each time (A9) is applied,
we restrict the number of these copies to k by applying αk(xi). This abstraction
ensures that the set φA(x) will have a finite number of elements throughout the
semantics. It also implies that the fixed-point calculation of (A10) is computable
since D] is kept finite and the relation A([P ])s ρ φA is a continuous function.
This will guarantee the termination of the analysis. Furthermore, the safety of
our abstraction with reference to the non-standard semantics of the previous
section is given by the following theorem.

Theorem 3 (Safety of the analysis)
∀P ∈ P, φE ∈ D,φA ∈ D] : E([P ])s ρ0 φE0 = φE ∧ A([P ])s ρ0 φA0 = φA ⇒ ∀x ∈
s, y ∈ φE(x) : αk(y) ∈ φA(αk(x))

Proof: The proof is straightforward by induction on the structure of P .�

6 Analysis of Closed Systems

So far, we have dealt with standard π-calculus processes without any security
considerations. In this section, we demonstrate how the abstract semantics of
the previous section can be applied in detecting two types of privacy breaches:
information leakage and insecure communications. We shall consider here the
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(A1) A([0])s ρ φA = φA

(A2) A([x(y).P ])s ρ φA = φA

(A3) A([x〈y〉.P ])s ρ φA =
⋃

φ
x(z).P ′∈ρ

(R([{|P |}ρ ]ρ ρ[P ′[y/z]/x(z).P ′]])s φ′A)

where φ′A = φA[(φA(z) ∪ {y})/z]

(A4) A([τ.P ])s ρ φA = R([{|P |}ρ ]ρ ρ])s φA

(A5) A([[x = y]P ])s ρ φA =

{
R([{|P |}ρ ]ρ ρ])s φA, if x = y
φA, otherwise

(A6) A([[x 6= y]P ])s ρ φA =

{
R([{|P |}ρ ]ρ ρ])s φA, if x 6= y
φA, otherwise

(A7) A([P + Q])s ρ φA = (R([{|P |}ρ ]ρ ρ])s φA) ∪φ (R([{|Q|}ρ ]ρ ρ])s φA)

(A8) A([P | Q])s ρ φA = R([{|P |}ρ ]ρ {|Q|}ρ ]ρ ρ])s φA

(A9) A([(νx)P ])s ρ φA = R([{|P [αk(xi)/x]|}ρ ]ρ ρ])s+{αk(xi)} φA
where, i = min{i | i ∈ N ∧ xi /∈ s}

(A10) A([!P ])s ρ φA = φA ∪φ µφ.A([P ])s ({|!P |}ρ ]ρ ρ) φ

(R0) R([ρ])s φA =
⋃

φ
P∈ρ

A([P ])s (ρ\{|P |}ρ) φA

Figure 5: Abstract semantics of the π-calculus.

case of closed systems, where no intruder is assumed to be running in parallel
with the system. This fact may be expressed by setting ρ0 = ∅.

First, we assume a finite lattice L = (SL,v,u,t,>,⊥) of security levels
ranged over by l, l′, . . . with >L = ltop and ⊥L being the undefined level. Using
L, we can define a security policy that localizes names depending on the level of
the process to which those names are bound and provides a predetermined level
for free names.

Definition 4 Assuming a process P has a level l, define a security policy,
ζ : N → L, as follows:

∀x ∈ N : ζ(x) =

 lx, if x ∈ fn(P )
l, if x ∈ bn(P )
⊥L, otherwise

Where lx is the level of free names and is dependant on the administrators’
policy. The uniformity of our analysis follows from the fact that names cannot
change their values in ζ and the different copies of the same name will always
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obtain the same value. This is mainly due to the manner that ζ assigns levels
to names: based on the levels of the processes in which those names are created
(hence creating a sense of location).

Using ζ and the results of the abstract semantics, we can now analyze for
the following two properties, assuming Q has level l and is a subprocess of the
system Sys (note the strict order on levels):

Property 5 (Information Leakage) ∃x ∈ n(Sys), x′ ∈ φA(x), y ∈ bn(Q)
then the leakage of x to Q is expressed by the result that: ζ(y) @ ζ(x′) ∧ x ∈
φA(y), where A([Sys])s ρ0 φA0 = φA.

Property 6 (Insecure communications) ∃x ∈ n(Sys), x′ ∈ φA(x), z(y) ∈
act(Sys), z′ ∈ φA(z) then the insecure communication of x over z is expressed
by the result that: ζ(z′) @ ζ(x′) ∧ x ∈ φA(y), where A([Sys])s ρ0 φA0 = φA.

Consider the following example, which consists of a Proxy and a System, both
of which are running at a security level llow. The System consists of a Server , a
database DB , and a back-processing program Prog . The Server is also running
at level llow and is designed to receive local data k (e.g. the client’s credit card
details) from the Proxy . The Server then writes k to the database DB , which
is assumed to be running at level lhigh. DB may be used by Prog , which is
running at level lmid, to perform some calculations on the database. The overall
specification of the system would be as follows:

!Proxy | !System

where,
Proxy def= (νk)port1〈k〉
System def= (ν db)(ν port2)(Server | DB | Prog)
Server def= port1(y).port2〈y〉
DB def= port2(w).db〈w〉
Prog def= db(u).Prog’
ζ(port1) = lbot

ζ(k) = ζ(port2) = ζ(db) = llow.

The assumption about the order of levels is lbot @ llow @ lmid @ lhigh, where lbot

is the safest level that can be assigned to the external context. The result of the
analysis will be the following:

φA(k) = ∅
φA(port1) = ∅
φA(port2) = ∅
φA(db) = ∅
φA(y) = {k}
φA(w) = {k}
φA(u) = {k}
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This example represents an interesting security scenario. Although the commu-
nication between DB and Prog may seem as a leakage since we have k ∈ φA(u)
and lmid @ lhigh, our analysis does not signal any information leakage. This is
because ζ(k) @ ζ(u), which does not satisfy Property 5. On the other hand,
the analysis indicates that k has been insecurely communicated over port1 as
k ∈ φA(y) and ζ(port1) @ ζ(k), which satisfy Property 6. Again, the uniformity
of the analysis is demonstrated by the fact that the different runs of the proxy
will always produce names k1, k2, . . . all of which share the same level llow.

Now, if we swap the security levels of Proxy and Prog so that Proxy has level
lmid and Prog has level llow, then clearly Property 5 is satisfied as ζ(u) @ ζ(k).

7 Analysis of Open Systems

Open systems refer to systems that are expected to run within a wider context
whose specification may be unknown and hence, could pose security threats.
Such a context is also referred to sometimes as the intruder . A famous example
is the Internet.

Often, to cater for the absence of the intruder’s code, the abstract semantics
has to be modified to include scenarios where communications between the sys-
tem and the intruder are possible [14]. However, in our analysis, we shall assume
the existence of the intruder’s specification, I , and hence no special encoding in
the semantics is required. For example, consider the following intruder I of a
process P :

I
def= (νi)[!i(u).((νz)u〈z〉.i〈z〉 | u〈k〉 | u(w).i〈w〉) | !i〈n〉] |

(νi)[!i(u).((νz)u〈z〉.i〈z〉 | u〈k〉 | u(w).i〈w〉) | !i〈m〉] |
...

Where the public names n, m, k, . . . /∈ N ∩ bn(P ). This specification is capable
of performing any input/output actions initially over public names and then
over any new names created by the intruder and extruded beyond its scope and
names that will be learnt from P . Such a specification will be contained directly
in the ρ parameter as the initial value, i.e. ρ0 = {I }.

If we consider the example of the previous section, where Proxy , Server , DB ,
and Prog are all assumed to be running at the same level lmid, and we further
assume that I has level lbot. Clearly, we would obtain a result where k is both
insecurely communicated and leaked to I, since I has the initial knowledge of
all the public names, as for example, n = port1 and k ∈ φA(w).

8 Conclusion and Future Work

We presented an abstract interpretation-based static analysis for detecting in-
stances of high-level information leakage and insecure communications in the
π-calculus. The analysis demonstrates how multilevel process classification in a
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denotational setting could be useful in distinguishing between the two properties
for closed and open systems. A ML-based prototype of the analysis is already
under implementation.

The use of the denotational semantics could be quite interesting in exploring
other, more complex, concepts of privacy. For example, a formalization of the
notion of weak bisimulation in Stark’s semantics would be helpful in building a
static analysis for non-interference. Also, a similar model could be adopted for
other formalisms, specially the spi calculus [1] and the Mobile Ambients of [8].
The spi calculus is an extension of the π-calculus with cryptographic primitives
and its model would benefit the analysis of cryptographic-based properties, like
the leakage of keys, and the authenticity and integrity of the communicated data.
The Mobile Ambients, on the other hand, explicitly incorporates the notion of
location in its modeling of the mobility of code. This would be useful in the
analysis of location-based systems, like firewalls.
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