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This paper introduces an approach to verify the correctness of the implementation of real-
time languages. We apply the techniques presented in Hoare and He’s Unifying Theories
of Programming to reason about the correctness of compilers and schedulers for real-
time languages, using high-level abstractions such as algebraic laws. In the compilation
process, the existence of unique fixed-points is exploited to verify the implementation of
crucial real-time operators such as asynchronous input, delay and timeout. It is devel-
oped an abstract model for scheduling real-time programs into a uniprocessor machine.
The applicability of the model is shown by instancing it with two types of schedulers: a
round-robin scheduler, employed when the participating parallel processes do not include
deadline constraints, and a priority-based scheduler, used when each participating process
is periodic and possesses an associated deadline.
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1. Introduction

Safety-critical computer systems must be engineered to the highest quality in order
to anticipate potential faults and to reduce the possibility of erroneous and unexpected
behaviour. Correctness of system properties must then be guaranteed at all levels, from
specification to low-level implementation into a target machine.

This paper presents a way of reasoning about correctness of compilers and sched-
ulers using high-level abstractions such as algebraic laws. We apply the techniques pre-
sented in Hoare and He’s Unifying Theories of Programming (Hoare and He Jifeng 1998)
to model compilation of real-time programs and to reason about their scheduling. In our
real-time language, processes communicate asynchronously via communication queues
called shunts. A shunt can be seen as a directed channel with the capability of buffering
messages. As the sender transmits a message, it stores it into the corresponding shunt and
proceeds with the execution. When the receiver reads a shunt, it takes the oldest message
deposited in it. However, if the shunt is empty, the receiver is blocked until a message
arrives. The main advantage of this asynchronous mechanism is the loose coupling it pro-
vides between system parts: a sender is never blocked because a receiver is not ready to
communicate. This communication scheme is adopted by several asynchronous models
such as versions of CSP (Kumar and Pandya 1993) and SDL (Mitschele-Thiel 2001), or
the Real-Time Specification for Java (Botella and Goslin 2000), among others.

The paper follows the next structure. Section 2 describes the source programming lan-
guage and presents its main algebraic laws. Then, section 3 introduces the target language
and develops some algebraic properties of machine-level programs. Section 4 formalises



the compiling correctness relation that must hold between source and target code and il-
lustrates the compilation of constructors for sequential programs. In section 5 we develop
our abstract model of scheduling. We then illustrate in section 6 the application of the
model to a round-robin scheduler. Following, section 7 presents the application to a fixed
priority scheduler with pre-emption. Finally, section 8 gathers some concluding remarks
and discusses possible extensions to our work.

2. The Real-Time Programming Language

Our real-time language is a small imperative language with real-time constructors such as
deadline and delay, and primitives for asynchronous communication via communication
queues called shunts. Its syntax is given by the following description:

P = 1 | 11 | x:=¢ | sle
| s7x | Ad | [d]P | P;P
| PP | PIb>P | while(b,P)
| [Py Pl | PP

where P stands for a process, X is a list of variables, x is a variable, s is a queue, e is a list
of expressions, e is an expression, b is a Boolean expression, and d is a time expression.

The chaotic process L defines an arbitrary behaviour, which is beyond control. The
skip process II does nothing, terminating immediately. The multiple assignment X := e,
where X is a list of distinct variables and e an equal-length list of expressions, evaluates the
components of e and stores these results simultaneously into list X, preserving the original
ordering of the elements. We assume here that the evaluation of an expression always
delivers a result and does not change the value of any variable, i.e. no side-effect is allowed.
The output s!e stores the value of the expression e into the output queue s, leaving all
program variables unchanged. The input s 7 x takes the oldest message from queue s and
stores it into variable x. If the queue is empty, the process is blocked until a message
arrives. We adopt the realistic premise that all communicating processes take time, the
amount of time consumed by the instruction not being specified.

Composition P;Q represents a process that executes P first and, at termination of P,
starts with the execution of Q. It is assumed that there is no delay associated with the
transfer of control from P to Q. Process P ' Q represents the non-deterministic choice be-
tween the participating processes. The conditional P < b B> Q represents a choice between
alternatives P and Q in accordance with the value of Boolean expression b; it behaves like
P if b is true, and like Q if b is false. It is assumed that some arbitrary time is spent in the
evaluation of the guard b. The iteration while(b, P) executes process P while condition
b is true, and terminates when the condition is false. It is also assumed that some time is
spent in each iteration evaluating expression b.

The delay process Ad is guaranteed to wait for a minimum of d time units before
terminating. The process [d]P behaves as P and its execution does not take more than d
time units. The timeout process [P % Q] monitors input queue s for d time units; if there
is a message in s during that time, it executes process P, otherwise it executes process Q.
Parallel composition P || Q describes the concurrent execution of processes P and Q. Each



process has its own program state, which is inaccessible to its partner, and interacts with
its partner and the external world via communication through shared queues.

In previous work (Arenas 2001), we have given a specification-oriented semantics to
our language and derived its main algebraic laws. The semantic is constructed by following
the predicative approach described in (Hoare and He Jifeng 1998), where a process is
modelled as a predicate that describes all the observations that it can generate. Notation
P = Q is used to denote that processes P and Q are semantically equivalent and proved
that all derived laws are sound with respect to the model. Further, we use ordering relation
P C Q to indicate that Q is at least as deterministic as P. It is defined in terms of non-
deterministic choiceas PCLQ = (PM Q) =P.

Laws for primitive programs coincide with classical laws for imperative sequential
programs and communicating processes.

Law 1 Laws for Primitive Programs
(1) P, =1;P=P

2) L;P=1

(3) x,yi=e,y = x:=e

(4) x:=¢ x:=f(x) = x:=f(e)

(5) x:=¢; slf(x) = x:=¢; slf(e)

(6) s?y;x:=y = s?x;y:i=x

(7) x:=¢; s!f = slf;x:=e provided x is not free inf .

Let us explain some of the above laws. Law 1(1) shows that II is unit of sequential
composition. Law 1(2) expresses that once a process is out of control, its sequential com-
position with another process does not redeem the situation. In our formal model (Arenas
2001), an assignment may take time, but the amount of time consumed by the instruction
is not specified; this allows us to derive law 1(4). Law 1(7) describes a special case of
commutation between assignment and output.

The following laws describe some properties of the real-time operators.

Law 2 Laws for Real-Time Operators
(1) Adl; Adg = A(dl + d2)

(2) [di]P C [da]P  provided ds < dy
(3) [Py [Py Q] = [Py, O
4) [P > R &y O] = [P >g O

2.1. Some Auxiliary Processes

We introduce here some auxiliary processes useful in reasoning about process behaviour.
The idle process A represents a process that may terminate at any arbitrary time without
changing any variable or shunt. The conditional process (P <1 b I> Q) selects one alterna-
tive depending on the value of expression b; if b is true, it acts like process P, otherwise
it behaves like Q. It differs from the conditional of our programming language in that it is
assumed that the evaluation of b does not take time. The miracle program, denoted by T,
stands for a product that can never be used because its conditions of use are impossible to
satisfy. The assumption of b, denoted by 5", can be regarded as a miracle test: it behaves



like /1 if b is true; otherwise it behaves like T. By contrast, the assertion of b, denoted by
b, , also behaves like II if b is true, otherwise it fails, behaving like L. The declaration
var x introduces new program variable x and permits x to be used in the portion of the
program that follows it. The complementary operation, end x, terminates the region of
permitted use for variable x. The next law shows some examples of the use of auxiliary
processes.

Law 3 Laws for Auxiliary Processes
(1) b'; (P<b>Q)=b"; P
xi=e (x=¢e)l =x:=e
A;sle = sle = sle; A
(s [Py 0l = (s 0)75 A P
(endx; varx) C Il = (varx; endx)
A; endx C x:=e¢; endx
If x is not free in P then P; varx = varx; P and endx; P = P; endx .
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Let X be the name of a recursive program we wish to construct, and F'(X) a function on
the space of processes denoting the intended behaviour of the program. We can show that
the space of processes forms a complete lattice (Arenas 2000). Notation y X.F(X) stands
for the least fixed point of function F and notation vX.F(X) denotes the greatest fixed point
of F. The following law illustrates the main properties of these operators.

Law 4 Fixed Point Laws
(1) F(uX.F(X)) = pX.F(X)
(2) F(Y)CY = pXF(X)CY
(3) FwX.F(X)) = vX.F(X)
(4 F(Y)JY = vXFX)JY.
The iteration b* P can be defined as the least fixed point of the equation p X.((P; X) <
b 1> II). Typical laws for the loop include the following.

Law S Loop Laws
(1) b";bxP =0b"; P, bxP
2) (=) bxP=(—-b)".

There is an interesting case in which the least and greatest fixed points coincide, as
described below.

Theorem 1 Unique Fixed Point

Let F(X) be a monotonic function on the space of processes. If it is guaranteed that there
is a delay of at least one time unit before invoking the recursion, then the fixed point of F
is unique.



3. The Target Language

Our target machine has a rather simple architecture, consisting of a store for instructions
m : Addr — Instr, modelled as a function from the set of addresses to the set of machine
instructions; a program counter pc : Addr that points to the current instruction; and a data
stack st : seq.Z, used to hold temporary values. The target language is an intermediate-
representation language close to, but more abstract than the final machine code. Following
tradition, the machine instructions are represented by updates to machine components.
These instructions are introduced in Table 1.

Let us explain some of the instructions. Instruction LD(x) has variable x as its operand;
its execution pushes the value of x onto the evaluation stack, and increases the value of the
program counter pc by 1. Symbol + denotes concatenation of sequences; last.st stands
for the last element of sequence st; front.st corresponds to the sequence obtained from
eliminating last element of sz. Instruction ST(x) pops the value at the top of the stack into
variable x, and then passes the control to the next instruction; the requirement of having
at least one element in the stack is expressed as an initial assumption in the instruction.
Instructions EV(e), EVB(b) and EVT(d) are used to evaluate integer, Boolean and time ex-
pressions respectively; the instructions push the result of evaluating the expression onto
the top of the stack and increment the program counter by one. When non-integer values
are stored into the stack, they are translated into the appropriate representation by using a
representation function Ry, of type T — Z for each basic type T, as presented in (Miiller-
Olm 1997, Lermer and Fidge 2002). Arithmetic instructions are introduced by means of
the ADD and SUB instructions; the operation front2.st obtains the front of front.st;
similarly, the operation last2.st obtains the last element of front.st. Comparison of
the last two elements of the evaluation stack is introduced by the instructions LE and LT.
Instructions JP, JPF and JPT are used for unconditional and conditional jump respec-
tively. The instruction DUP duplicates the value stored at the top of the evaluation stack st.
The output instruction OUT(s) sends the value on top of the stack through shunt s, taking
that value out of the stack. The input instruction IN(s) is executed only when shunt s is not
empty; it inputs the oldest message from s and leaves it at the top of the stack. Instruction
TST(s) tests whether there is a message in shunt s. Instruction STM(s) stores in top of
the stack the time stamp of the oldest unread message of s. The TIM instruction reads the
current time and places it on top of the stack; it is simply a specification that the hardware
implementator must guarantee.

The target language is a distinguished subset of the modelling language. The assign-
ment statements are “timed” assignments so that time passes while an instruction executes.
Let 7 : Instr — Time be a function denoting the duration of executing a machine instruc-
tion such that 7(INSTR) > 0 for INSTR € Instr. Notation 7 is used later to define the
execution time of blocks of machine code.

3.1. Execution of Target Programs

The execution of a target program is represented by the repetition of a set of machine in-
structions. In this part we formalise such concepts, borrowing some elements from (Hoare
and He Jifeng 1998).



Definition 1 Labelled Instruction
Let INSTR : Instr be a machine instruction as defined in Table 1 and l : Addr a machine lo-
cation. Labelled instruction | : INSTR expresses that instruction INSTR is executed when

o~

the program counter has value l. It is definedas 1: INSTR = (INSTR<\pc=I10>1I).

Labelled instructions are used to model the possible actions during the execution of a
target program. The fact that the executing mechanism can perform one of a set of actions
according to the current value of the program counter can be modelled by a program of
the form [y : INSTRy [J/s : INSTRy[] --- [, : INSTR, where locations I, ---,I, are
pairwise disjoint and operator [] denotes the assembly of machine programs.

Definition 2 Assembly and Continuation Set
— Let C be a machine program consisting only of labelled instruction | : INSTR. Then, C
is an assembly program with continuation set L.C = {I}.
— Let C and D be assembly programs with disjoint continuation sets L.C and L.D respec-
tively. The assembly program (C [| D) and its continuation set are defined as follows:

C[|D = (C<apceLCr D)

< (pc € LCULD) > I
L(C[][D) = L.CUL.D.

The continuation of assembly C denotes its set of valid locations. The value of the
program counter determines the instruction to be executed.

Law 6 Program Counter and Assembly Program
Let C = (ly : INSTRy [|la: INSTRo[] -+ [J I, : INSTR,) be an assembly program. Then
(pc=LANLELC)T; C = (pc=LANl;€LC)T; INSTR; .

The execution of an assembly program is modelled as a loop which iterates the pro-
gram as long as the program counter remains within the continuation set.

Definition 3 Execution

Let C be an assembly program. Execution of program C is defined as follows: C* = (pc €
L.C) x C. The evaluation of the guard in the loop does not consume time. All execution
time overheads are accounted for in the machine instructions.

4. Compiling Sequential Programs

This section specifies a compiler that translates a sequential program into a target program
represented as an assembly of single machine instructions whose behaviour represents an
improvement with respect to that of the original source program. We also derive the exe-
cution time of each target program generated by the compiler.

Definition 4 Compilation

The correct compilation of a program is represented by a predicate C(P,a, C, z) where P is
the source program; C is a machine program stored in the code memory m, consisting of an
assembly of single machine instructions; a and z stand for the initial and final addresses
of program C, respectively. Predicate C(P,a,C,z) is formally defined by the following



refinement:
C(P,a,C,z) = PLC (varpe,st; (pc=a)';
C*; (pc =2z)1; endpc,st).

In above definition, the declaration var pc, st introduces the machine components.
The assumption (pc = a) ' expresses that program counter pc should be positioned at
location a at the beginning of execution of C. The assertion (pc = z) | states the obligation
to terminate with program counter pc positioned at location z.

Notation 7¢(P) is used to denote the worst-case execution time of the machine code
that compiler specification C associates to source program P.

The compiler is specified by defining predicate C recursively over the syntax of sequen-
tial source programs. Correctness of the compiling relation follows from the algebraic laws
of the language. We omit the proof for the classical sequential operators, since it follows
lines similar to those of the untimed case, and refer the reader to (Arenas 2000). We outline
the proof for output, input and timeout operators.

Assignment x := e is implemented by a piece of code that evaluates expression e and
stores the result into the corresponding program-variable store. Note that the duration of an
assignment was unspecified at source level, however the code implementing it has an exact
duration equal to the addition of the duration of each participating machine instruction.

Theorem 2 Assignment Compilation
C(x:=e, a,(a:EV(e)[Ja™: sT(x)),a™?) .
Te(x:=e) = T(EV)+T(ST)

Notation [T : INSTR states that machine instruction INSTR is located at position
I + i. For simplicity, we are assuming that the evaluations of the integer expressions all
have the same duration. We can determine the duration of evaluating an expression by
using techniques for simplifying expressions.

Skip is implemented as an empty segment of code. Obviously, the duration of the code
implementing the skip is zero. Let us assume that /I also denotes a machine program with
an empty location set, i.e L.II = ().

Theorem 3 Skip Compilation
C(Ill, a1l a) .
Tel) =0 .

The output process is implemented by a piece of code that evaluates the expression to
be transmitted and then sends the value to the corresponding shunt. The duration time of
the implementation is equal to the addition of its constituent machine instructions.

Theorem 4 Output Compilation

C(s'e, a, (a:EV(e)[]a™ : oUT(s)), at?) .
Te(sle) = T(EV)+T(0OUT).

Proof:



varps,st; (pc=a)';

(a:EV(e)[Ja™ : oUT(s))*; (pc =a*?),; endpc,st
Definition of execution, def. 3, and loop laws, law 5
varpe,st; (pc =a)'; EV(e); OUT(s);

(pc = a*?); endpc,st

Definition machine instructions, table 1

varpe,st; (pc =a)"; pec,st:=pc+1,st+H{e);
(#st > 1)T; s!last .st; pe,st := pc+ 1, front .st;
(pc = a*?).; endpc,st

:=-1 substitution and commutation, law 1(5)(7),

and = void 7, law 3(2)

varpe,st; (pc=a)"; sle; pc,st:=pc+1,st+ (e);
pe, st := pc + 1, front .st; (pc = a™?),; endpc, st
:= combination, law 1(4), and := identity, law 1(3)
varpe,st; (pc=a)"; sle; pc:=a+2;

(pc = a*?),; endpc, st

:=-end combination, law 3(6),

and change scope, law 3(7)

varpc,st; A; endpc,st; sle

change scope and end-var inverse, law 3(7)(5),
and A output, law 3(3)

sle

I

I

O

The implementation of input instruction s 7 x is split into two parts. The first one, code
A below, tests if there exists a message in shunt s; if there is no message, it jumps back to
execute code A again. If there is a message in s, the second part, code I below, does input
the oldest message and finishes storing it into variable x. To determine the execution time of
the implementation of an input is an infeasible problem, since the arrival of messages into
a shunt depends on the environment’s behaviour; however, we can estimate the execution
time of the input implementation if we know that the shunt is not empty.

Theorem 5 Input Compilation
Let A= (a:TST(s)[at!: JPT(a))
and 1= (a™?:1IN(s)[]a™®: sT(x)).
Then C(s?x, a, (A[JI), a*?) .
If s is not empty, then
Te(s?x) = T(TST)+T(JPT)+T(IN)+T(ST).
Proof:We use a novel strategy in which the uniqueness of the fixed point for recursive
equations plays an important role. Let us start by defining a function F that portrays the
execution of the target code.
Let C=(A[]I), START = varpc,st; (pc=a)" ,
END = (pc = a™),; endpc,st
ENDy = (pc = a \V pc = a™) 1 ; endpc, st
and F(X) = START; A*; (X <pc=a>1I"); ENDy .
Function F(X) starts by executing code A. Depending on the value of the program counter



at the end of the execution of A, it proceeds either to execute code [ or to invoke parameter
program X. As all instructions in A take time, we conclude then that function F is time-
guarded for variable X. From theorem 1, it follows that F has a unique fixed point. Our
strategy consists in proving first that s 7 x is a pre-fixed point of F, i.e. s?x C F(s?x),
concluding by the strongest fixed point law, law 4 (4), that s?7x T pX e F(X). Then we
proceed by proving that (START; C*; END) is a post-fixed point of F, i.e.

F(START; C*; END) C (START; C*; END), concluding by the weakest fixed point
law, law 4 (2), that uX e F(X) C (START; C*; END). The desired result follows from
the transitivity of the refinement relation. Complete proof of this theorem is presented in
(Arenas 2000).

O

The strategy employed in the implementation of the input program can be used to
prove the implementation of constructors that require to wait for the occurrence of an
event, namely delay and timeout.

The code implementing the delay program Ad is divided into two parts: codes S and
T. Execution of code S determines the time when delay Ad should finish: it is equal to
the addition of the current time to the value of time parameter d, leaving the result on top
of the evaluation stack. Code T compares the current time with the value at the top of the
stack, in order to determine whether the delay has expired.

Theorem 6 Delay Compilation
Let  S=(a:TIM[Ja™ :EVT(d)[Ja™®: ADD)
and T = (a*3:DUP[Ja™: TIM]]
at®: LT[|a®: gpT(a™?)).
Then C(Ad, a, (S]|T),a"™").
Te(Ad) = d+T(S)+T(T).

Let us now turn to the implementation of compound processes. Sequential composi-
tion can be compiled componentwise, having as target code the assembly of its compo-
nents.

Theorem 7 Sequential Composition Compilation

Let C(P,a,C,h), C(Q, h,D, z)

and (L.CNLD)=10.

Then C(P;Q, a, (C[|D), z) .
Tc(P;Q) = Tc(P) +Tc(Q) -

The compilation of a timed conditional includes an initial piece of code that evaluates

the corresponding guard and then, depending on the result of the evaluation, chooses one
of the participating programs.

Theorem 8 Conditional Compilation
Let  B=(a:EVB(b)[a™:Jpr(h)),
C(P, a™ C2), C(Q, h,D,2),
(LCNLD)=0 and (LBNL.CNLD)=1 .
Then C(P<b>>Q, a, (C[|B[|D), z) .
Tc(P<b>Q) = T(EVB) + T(JPF)+
max(7e (P), Te(Q)) -



The iteration program is implemented by a piece of machine code that evaluates the
guard. In case the guard holds, the body of the program is executed. Once it has terminated,
it jumps back to repeat the whole process. To determine the execution time of the iteration
program, it is necessary to know the upper bound on the possible number of iterations.

Theorem 9 Iteration Compilation
Let  B=(a:EVB(b)[a™:JPF(z)),J = (j: JP(a))
C(P, a*? C,j) and (LBNLJNL.C)=10 .
Then C(while(b,P),a, (B[|CI[]J),z) .
Let T be the maximum number of iterations of the program while(b, P). Then
Te(while(b,P)) = Tx(T(B)+7T(C)+7T(J))+7T(B) .

The timeout [P > Q] is implemented by a machine program that monitors shunt s
for at most d time units. If a message arrives in that period of time, the program jumps to
execute the code associated to program P. After d time units, if a message has not arrived
on shunt s, the program jumps to execute the code associated to program Q.

Theorem 10 Timeout Compilation

Let  S=(a:TiM[Ja™ :EVT(d)[Ja*?: ADD) ,
E=(a™:757(s)[Ja*t*: gPF(a™1?)) ,
T=(a"®:purP[|at®: TIM[at" : LT[]

at®: gpr(h)) ,

J=(a™:Jp(a"?)),
M= (a0 : sTM(s) [Jatt! : LE[|a™? : JPF(h)),
C(P, a*' B,z), C(Q, h, D, z),
(LBNLD)=10,
(LSNLENLTNLJNLMNLBNLD)=0 and
C=(SIENTI(MB]D).

Then C([P % 0], a,C, z).

Te(P>y Q) = d+T(S)+T(E)+T(T)+

7(J) + T (M) + max(7c(P), Te(Q)) -

Proof:Let us first explain the implementation of [P % Q], assuming thatC (P, a3, B, z)
and C (Q, h, D, z). Code S refers to the evaluation of the timeout parameter; it reads the
current time, and then adds to it the value of parameter d, leaving the result at the top of the
evaluation stack. Code E determines whether there exists messages in the shunt. In case
there are no messages in the shunt, code T compares the current time with the value at the
top of the stack, to determine if a timeout has occurred. In case of a timeout, the program
jumps to location % to execute piece of code D. If there is no timeout, the program proceeds
with the execution of code J, which simply jumps to repeat code E. If there is a message
in shunt s, code M determines if it arrived before the timeout; to do so, it obtains the time
stamp of the oldest unread message, and compares it with the timeout value that is stored
at the top of the evaluation stack. In case of the stamp being less than the timeout, code M
jumps to location a3, where it continues with the execution of B. In case of the stamp
being greater than the timeout value, a timeout has happened (although some messages
could have arrived after the timeout, in which case they are not considered), code M jumps
then to location £, the initial location of D.

10



In the proof, we follow a strategy similar to the one used for proving the input instruc-
tion. It starts with the definition of a function F that mimics the execution of code C and
then exploits the uniqueness of its fixed point to get the desired result.

Let START =M; (pc=a)' ,
END = (pc=2)"; endM ,
G(X) = E*; [(T*; (J*; X Qpc=a" > D))
<pc=atb >
(M*; (B* <pc=a*'®>D"))]
F(X) = START; S*; G(X); END .

Invocation of X in F(X) is preceded by instructions that take time. Then, by Theo-
rem 1, it follows that F has a unique fixed point. The proof strategy consists in showing
first that [P % Q] C F([P 5 Q]). Such proof follows by induction on time parame-
ter d, using law 2(3). Then, according to the strongest fixed point law, it follows that
[P >% Q] C pX e F(X). The second part consists in showing that (START; C*; END)
is a post fixed point of F, F(START; C*; END) C (START; C*; END). By the weakest
fixed point law, it follows that 4 X e F(X) C (START; C*; END). The result arises from
transitivity of the refinement relation.

(]

Our compilation process restricts the compilation of deadline to the case in which it is
the outermost operator. Let notation Cp (P, a, C, z) stand for ([D]P C (var pc, st; (pc =
a)"; [D]C*; (pc = z)1; endpc,st)). The following theorem illustrates the compilation
of deadline.

Theorem 11 Deadline Compilation
Let C(P,a,C,z) and Tc(P) < D.
Then Cp(P, a, C, z2).

1c([D]P) = Te(P) .

We are following an approach similar to (Fidge, Hayes and Watson 1999) by consid-
ering the compilation of deadline as a sort of annotation on the target code, annotation that
will be used in the later stage of scheduling analysis.

5. An Abstract Model for Scheduling

This section summarises the abstract model for scheduling presented previously in (Arenas
2002a).

Let (a;, C;, z;) be a collection of target codes working on machine components pc; and
sti, fori = 1,---,n; and C = ([D1]C7 || [D2]Cs || -+« || [Dn]CE) be a parallel program
where execution of each participating process C; has an associated deadline D;. In this
section we define an abstract model in which the implementation of C into a uniproces-
sor machine is represented as transformation S(C) and derive conditions to guarantee the
validity of such a transformation.

Let us assume that the continuation set of the participating processes in C is pairwise
disjoint. Process C; is executed when its program counter belongs to the valid set of lo-
cations, i.e. pc; € L.C;, and the processor has been allocated to it by the scheduler. To

11



represent allocation, integer variable id : Z is employed. Variable id has value i when
the processor has been allocated to process C;; it has a value different from i when C; is
positioned out of its continuation set. The above restrictions can be summarised in the
predicate Z, which can be seen as an invariant on id:

7 =

I>=

(ld =i = pc¢ € LC,) AN

(i

U

g [1,n = Z\ pci € L.C))

i=1

The effect of scheduling process C; is then represented by a transformation S'(C;) in
which each labelled instruction / : INSTR of C; is transformed by strengthening its guard
by the condition (id = i) and by executing a piece of code, called CHANGESs, at the end of
instruction INSTR. Code CHANGE s performs the allocation of the processor according
to the defined policy.

Definition 5 Transformation S'

Si(l: INSTR) = (INSTR; CHANGESs)
Apei=INid=i> 1
S'(C[ID) = (SO [s'(D)).

For simplicity, we assume that scheduling instructions, i.e. the instructions of code
CHANGEgs, are instantaneous. Their execution time is included in the duration of the
associated machine instructions.

The implementation of program C into a uniprocessor machine is represented by a
loop that iterates while the processor is allocated to any of the processes. It proves to
be useful to include in the loop the case when the processor is idle because no process
is active. Such a condition is represented by condition IdleCond, that has the property
IdleCond = id ¢ [1,n]. Action IDLE is executed when IdleCond holds; it is defined as

IDLE = ([1]A < IdleCond t> II) . The loop implementing program C is then defined
as:

S(0) = ex(([| S'(c)]mLE)

To verify that S(C) correctly implements C requires proof that the timing and com-
putational requirements of C are respected by S(C). Such requirements are represented in
properties (1) and (2) below:

e Let 75(C;) denote the time spent executing process C; in S(C). If each process C;
in C has an associated deadline D;, then we have the obligation to prove that imple-
mentation S(C) respects those timing constraints, i.e.

TS(C,’) S D,’ forizl,---7n. (1)
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o Let( H C7) denote the parallel execution of the target processes in C, without con-
i=1
sidering their timing constraints. The fact that the computational behaviour of C is

respected by S(C) is represented as follows:

(Il €wn € (Vid=i«(] S(C). Q

i=1 i
Refinement requires that both programs have the same alphabet, hence we use notation
( || C;)+(ia, 1) to indicate that alphabet of ( || C7) has been extended with variable id,

and invariant Z holds. In general, for program Vanable v and predicate V on v, alphabet
extension P (, 1) can be defined as v pPV,.

We close this part by showing that if the application of transformation S to each ma-
chine instruction of C; is an improvement, then refinement (2) holds directly.

Theorem 12 Computational Behaviour

Let | : TNSTR be an instruction of target process C;. If the refinement (S'(INSTR); Z7) 3

INSTR holds then property (2) is valid.

Proof:Let F(X) = (( ] S'(C))); X < (\ id; = i) > II). The right hand side of property
i=1 i=1

(2) is equivalent to x X e F(X). Since each instruction of C; takes time, function F is time

guarded for variable X and the fixed point is unique. We exploit this situation, and use the

strategy of proving that ( || C;") 4 (ia,z) is a pre-fixed point of function F. Let us begin with
i=1

the case when arbitrary p}ocess C; is active and has been chosen by the scheduler to be
executed. Let ASS = (pc; = [ A id = j A m[l] = INSTR). Then

13



F((.HIC?)A—(M,I))
Definition of F'

n n

(1 S@: (1| € ram) 2 (V idy =iy 11

i=1 i=1

ASS and e]imina&ion of conditional, Law 1(3)
S(C)); (chf)Jr(id,I)

Deﬁnition_of assembly, and elimination of conditional, Law 1(3)

S(INSTR); (|| €F)+qia,z)

i=1

_  Definition of alphabet extension and
assumption (S’(INSTR); ZT) J INSTR
nsTR; (| ¢7); 2o

i=1
_  Expansion law 1(7)

Jj—1 n

(CJ.c) Il (ws7%; G (Il €): T
i= i=j

Unfolding the loop, Law 1(5)

J n

et f ez

i=1 i=j
ASS implies predicate Z and definition of alphabet extension

(chi*)-&-({id},I)

n
The case when all programs have finished their execution, i.e. A pc; € L.C;, follows
i=1
in a straightforward manner, since both sides of the refinement reduce to skip.
O

6. Cyclic Scheduling

Let C = (C; || C5 || -+ || CF) be the parallel program to be implemented, where
each C; represents a target process that is neither periodic nor has an associated dead-
line. Here we apply the technique presented previously to prove the implementation of C
into a uniprocessor machine using a round robin scheduler. In this model, the execution
in the single-processor machine is represented by an interleaving of the instructions exe-
cuted by the participating processes. The interleaving is represented by executing piece
of code CHANGES s after a communication instruction (machine instructions IN and OUT)
and after the last instruction of C;. Code CHANGEj is defined as follows.

Definition 6 Code CHANGEs
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CHANGEs =
(id € [1,n])T; varaA;
A={k[1<k<n+1A
(3jej=(id+k)mod (n+1) Aj#0Apcj € L.Cj)};
((id := (id + min(A)) mod (n+ 1)) <A # 0 > id := —1);
endA .

Code CHANGESs assumes initially that variable id has a value in the interval of 1 to
n. It then stores in temporal variable A the set of distances between id and the identifier of
other active processes, in such a way that the cyclic order is maintained. Finally, it updates
id with the identifier of the closest active process.

For target program (a, C;, z), the effect of scheduling process C; is represented by a
transformation S!(C;). We rewrite definition 5 in the following way.

Definition 7 Transformation Sé
Si(1: INSTR) = (INSTR; CHANGEs) <\pc;i=I1Nid=ir>1II
if INSTR € {IN(s), OUT(s)} or
[: INSTR= (I: INSTR; (pc;=12)1)
= INSTR<pci=INid=i> Il otherwise

SiCD) = (S(O)[1SUD)) -

Following the abstract model, implementation of C in the single-processor machine is
denoted by S(C). Execution of C finishes when all processes C; terminate their execution;
thus, it is not necessary to model in S(C) the idle case in which the processor is not exe-
cuting processes, and IdleCond is defined to be false. Implementation S(C) for the case of

the cyclic scheduler is then defined as follows: S(C) = (\ id=1i)*([] S.(C)) .
1

i=1 i=
Correctness of S(C) requires verification that the timing and computational constraints
hold, i.e. to prove that equation (1) and refinement (2) are valid. Equation (1) follows
trivially, since there are not timing constraints associated with processes in C. To prove
refinement (2), we utilise theorem 12 and show that the application of transformation S! to
a machine instruction is an improvement on the original instruction.
As all assignments in CHANGEs are instantaneous, execution of CHANGEg 1is a re-

finement of skip.
Lemma 1 Ifid € [1,n] then (CHANGEs; ") 3 1I .

Proof of refinement (2) follows directly from the next theorem. Application of S! to a
machine instruction is an improvement on the original instruction.

Theorem 13 Si(l: INSTR); Z' 1 [: INSTR

Proof:The case for instructions that do not execute code CHANGE s follows directly from
the definition of transformation Sz We illustrate the case when pc; = [, id = i, m;[l] =
INSTR, and code CHANGE; is executed after INSTR.
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Si(l: INSTR); Z7

Definition of S7, Def. 7

((INSTR; CHANGEs) <ipc;=1Nid=i>1); TT
Assumption pc; = land id = i

(INSTR; CHANGEs); I7

—  Associativity of sequential composition and Lemma 1
INSTR; II

= [ unit of sequential composition, Law 1(1),
assumption pc; = land id = i
INSTR < pc; =111

= Definition of labelled instruction
[: INSTR

O

7. Fixed Priority Scheduling with Pre-emption

Let C = (Cy || Co || - -+ || C,) be a parallel program where each C; = [D;]C} is a process
with deadline D; and period 7;. Here we show how to apply the technique presented in
section to validate the implementation of C.

In general, in priority-based scheduling schemes processes are assigned priorities such
that, at all times, the process with the highest priority is executing (if it is not delayed or
otherwise suspended). A scheduling scheme will therefore involve a priority assignment
algorithm and a schedulability test, i.e. a means of confirming that the temporal require-
ments of the system are satisfied (Burns and Wellings 1997). We have selected the deadline
monotonic priority ordering (Leung and Whitehead 1982) as our method for priority as-
signment. In this ordering, the fixed priority of a process is inversely related to its deadline:
if D; < D; then process C; has higher priority than C;. As the parallel operator is commu-
tative and associative, we reorganise processes in C such that if i < j then C; has higher
priority than C;. Regarding schedulability tests, we have chosen the worst-case response
time analysis (?). The worst-case response time of process C;, denoted by R;, is defined
to be the longest time between the invocation of C; and its subsequent completion. We
assume that the set of processes C;s in C has passed the worst-case response time test, i.e.
R; < D;fori=1,--- n, and use a model of cooperative scheduling (Burns and Wellings
1997), in which each machine instruction is considered an atomic action and pre-emption
is deferred at the end of executing an instruction.

Code CHANGESs states the scheduling policy that the processor is always executing
the active process with the highest priority. In order to implement such a policy, the fol-
lowing elements are included:

e Integer variable clock represents the clock of the system. For simplicity, it is as-
sumed that clock is equal to zero when the execution of the system begins.

e Integer variables inv; and com; representing the number of invocations and comple-
tions of each process C; respectively. A natural requirement for the system is that
each invocation of a process is completed before its next invocation, i.e.
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n

N (inv; > com; > inv; — 1) . That requirement holds under the restriction that the
i=1
deadline of executing a process is less than its period, i.e. D; < T;. Process C; is
active when condition inv; > com; holds; further, it is the highest-priority active
i—1
process if condition (inv; > com; A\ — (inv; > com;)) is true.
=1
e Following Liu and Joseph (Liu and Joseph 2001), to verify that the implementation
of C satisfies its real-time constraints, timers 7a; and 7T¢; are included for each pro-
cess C;. Timer Ta; records the time that has elapsed since the last invocation of C;.
Timer Tc; records the time spent in executing proper instructions of C;.

e Pre-emption cannot happen in the middle of the execution of a machine instruction;
therefore, it is necessary to record those processes that were activated during the ex-
ecution of an instruction, as well as the time of activation. These values will be used
to update the corresponding variables once the execution of the instruction finishes.
Auxiliary variable newact; is true if process C; was released during the execution
of a machine instruction, and #; records the value of the clock at the moment of the
activation.

As initial condition, it is assumed that the system starts execution at time zero, and at
that time all participating processes are active. Condition INIT represents such situation.
INIT = clock=0Aid=1 A
n
N (invi =1 A com; = 0 A pc; = a; A
i=1
- newact; N Ta; =0 A Te; = 0).
Processes are released by the system according to their period. Condition TRIGGER
represents the release of processes.

n

TRIGGER = N(clockmodT;) =0 =
i=1
(inv;, newact;, Ta;, Tc; := inv; + 1, false, 0,0

<V — (inv; > comj) >
=1
inv;, newact;, t; := inv; + 1, true, clock) .

n
If the processor was idle (\/ — (inv; > com;)), we activate the ready processes imme-
j=1
diately; otherwise, the activation is deferred until the end of the current machine instruc-

tion.

Let us now define code CHANGEs, which is attached to each machine instruction
and performs the actions associated with the scheduler: update the timers, activate new
processes and achieve pre-emption.

Definition 8 Code CHANGEs
Code CHANGESs (i, a,z, INSTR) where i denotes the identifier of a process C;, a stands
for the initial location of process C;, 7 corresponds to the final location of C;, and INSTR
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denotes a machine instruction of C;, is defined as follows.
CHANGEs(i,a,z, INSTR) =
Tc; :=Tc; + T(INSTR); (Update Tc;)

n
( N\ newact; = (newact;, Ta;, Tc; := false, clock — t;,0)); (New processes)
j=1
n
(A (inv; > com; \ — newact;) = Ta; := Ta; + T (INSTR)); (Update Ta)
=1
(com;, pc; :== com; + 1,a < pe; = z > 1I); (End of execution of C;)
j—1
id :== min{j € [1,n] | inv; > comj A )\ — (invy > comy)} (Pre-emption)
k=1

n
<V inv; > com; > 1T
Jj=1

In above definition, timer T¢; counts the time spent executing instructions of C;, hence
it is incremented by the duration of INSTR. In case a new process C; was activated during
the execution of INSTR, timer Ta; should count the fraction of time its activation has been
deferred. In case other processes C; are active, timer 7Tg; is incremented by the duration
of instruction INSTR. If execution of C; finishes, the counter com; is incremented and
the program counter is located to the initial position, so that it will be ready for the next
invocation. Finally, variable id is updated with the identifier of the active process with the
highest priority.

For target program (a, C;, z), the effect of scheduling process C; is represented by a
transformation Séa,z) in which the guard of each instruction / : INSTR of C; is strengthened
by the condition (id = i), as is the case in the abstract model, and code CHANGEs (i, a,z, INSTR)
is executed at the end of INSTR. We rewrite definition 5 as follows.

Definition 9 Transformation S éa 2

Sém (I: INSTR) = (INSTR;
CHANGEs(i,a,z, INSTR))
dpei=INid=i> I
Stary (CID) = (Slun(O) [ S(4(D)) -

Following the abstract model, implementation of C in the single-processor machine is
denoted by S(C). The processor is idle when no process is active; thus, IdleCond is defined
as id ¢ [1,n]. As aresult, the guard of loop S(C) is reduced to true. Implementation S(C)
for the case of the pre-emptive ﬁxed-priority scheduler is defined as follows:

S(C) = INITT; true * (( [] S{4.(C1)) [IDLE)
Correctness of S(C) requlres verlﬁcatlon that the timing constraints and the computa-
tional behaviour of C, equation (1) and refinement (2), are preserved.
7.1. Verifying Computational Behaviour

In order to prove that S(C) preserves the computational behaviour of C, we resort to theo-
rem 12 and simply show that application of S‘ ptoa machine instruction of C; is an im-
provement on such an instruction. Let us deﬁne the auxiliary variables v introduced in the
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implementation of C and its associated invariant: v = {inv, com, clock, Ta, Tc, newact, t}
n
and V = A (inv; > com; > inv; — 1)
i=1
The following theorem illustrates that any labelled instruction of process C; is im-

proved by the application of transformation S Ea 2

Theorem 14 Computational Behaviour
S{ao(l: INSTR); (ZAV)T I 1: INSTR.

(az
Proof:The proof follows lines similar to those of proof of theorem 13, since all instructions
in CHANGEj s are instantaneous.

O

7.2. Verifying Timing Constraints

To verify timing constraints, we follow an approach presented previously (Liu and Joseph
2001), which relies on the value of timers 7a; and T¢; to determine the duration of process
C;. The time spent executing process C; in S(C) corresponds to the value of timer Ta;
after executing last instruction of C;; hence, proving equation (1) is equivalent to prove
that timer 7a; is less than the deadline associated to process C;. As all processes share a
common release, it can be shown from general scheduling theory that if all processes meet
their first deadline then they will meet all future ones. As a result, we concentrate our
attention to the case com; = 0 and inv; > com,;.

Assume that all processes with higher priorities than C;, i.e. processes C; for j =

1,---,i — 1, have met their deadline so far. In the worst case, the time spent on executing

’ i—1 i—1
processes of higher priority than C; is given by the formula: Comphp; = ‘21 com; x T (C;) + _Zl(invj — com;) * Tcj
j= j=

where 7 (C;) denotes the worst-case execution time of process C;'.
The next lemma summarises the main properties of 7a; and Tc;.

Lemma 2 Timer Properties
(1) Te; < T(C).
(2) If com; = 0 and inv; > com; then
Ta; = Comphp; + Tc;.
(3)  If com; = 0 and inv; > com;, then
Comphp; +T(Ci) < R;

We close this section by proving property (1), i.e. the time spent executing arbitrary
process C; is less than its associated deadline.

Theorem 15 Timing Constraints
Let C = (Cy | Co || -+ || Cu) be a parallel target program where each process C; =
[Di|C} has associated deadline D; and period T;, such that D; < T;. If the set of processes
in C passes the worst-case response analysis, i.e. R; < D;, then the following property
holds for implementation S(C):

inv; > com; = Ta; <D; fori=1,--- n.

Proof:
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com; =0 A inv; > com;
= Lemma 2
(Ta; < Comphp; + T (Cy)) A (Comphp; + T (C;) < R;)
= Transitivity of < relation
TIa; < R;
= Assumption R; < D;
Ta; < D;
O

8. Conclusions

Many authors have shown that unique fixed points arise naturally in real-time contexts
when restricting the model to allow the progress of time (Davies and Schneider 1993). In
this paper we have taken advantage of this characteristic to verify the implementation of a
real-time language using the refinement-algebra approach to compilation.

Implementation of classical sequential constructors (such as assignment, sequential
composition, conditional and iteration) has followed lines similar to those of the untimed
case. The novelty in our work consisted in devising a strategy for proving the implemen-
tation of constructors that are required to wait for the occurrence of an event (input, delay
and timeout), as presented in (Arenas 2002b).

The approach to prove correctness of compiling specification using algebraic laws
was originally suggested by Hoare in (Hoare 1991, Hoare, He Jifeng and Sampaio 1993).
Hoare’s work was accomplished in the context of the ProCoS project (Bowen, Hoare,
Langmaack, Olderog and Ravn 1996) and has inspired several investigations. Notable is
the work of Miiller-Olm (Miiller-Olm 1997), that describes the design of a code generator
translating the language of while programs — extended by communication statements and
upper-bound timing — to the Inmos Transputer. Emphasis is put on modularity and ab-
straction of the proofs, which is achieved by constructing a hierarchy of increasingly more
abstract views of the Transputer’s behaviour, starting from bit-code level up to assembly
levels with symbolic addressing. In (Hale 1994), a compilation is defined for a real-time
sequential language with memory-mapped input and output commands. Both the source
and target languages are modelled in the Interval Temporal Logic, and a set of algebraic
laws are derived in a way similar to that presented here. The compilation process is sim-
plified by representing the compilation of communication processes as a compilation of
assignments to port variables.

Also influenced by Hoare’s work, but using an alternative approach, Lermer and Fidge
define compilation for real-time languages with asynchronous communication (Lermer and
Fidge 2002). Their semantic model is based on the real-time refinement calculus of Hayes
where communication is achieved by shared variables, and the language offers delay and
deadline constructors. Our intermediate target language is very close to their target code,
also modelled as a subset of the source language. The operation of composition of machine
programs is achieved by means of an operation for merging loops, similar to our model of
execution of machine programs. Although there are many similarities between the two
studies, this approach does not define a compiling relation. Instead, a set of “compilation
laws” are derived, where each law looks like a rule of the well-known refinement calculus
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of Morgan.

having a high-level of abstraction while reasoning about schedulers enables one to
model different types of schedulers and to investigate their effect on different programs.
The potential of our model for scheduling has been illustrated by instancing it with two
types of schedulers: a round-robin scheduler and a fixed-priority scheduler. In both cases,
we have derived and verified properties that guarantee the correctness of the implementa-
tion. In the case of the round-robin scheduler, we have verified that the implementation
preserves the computational behaviour of the parallel program. In the case of the fixed-
priority scheduler, we have verified that the implementation preserves the computational
behaviour as well as the timing constraints of the parallel program.

There are some limitations in our scheduling work: the programs analysed have some
restrictions on their structure such as not having deadlines (cyclic scheduler) or being pe-
riodic (priority-based scheduler). Intended future work includes studying more general
forms of scheduling such as dynamic schedulers.
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Table 1: The Target Language

| LD(x) = pe,st:=pc+ 1, st+ (x) |
‘ ST(x) = (#st>1)T; pe,st,x:=pc+ 1, front.st, last.st ‘
|EV(e) = pc,st:=pc+1,st+(e) |
| EVB(D) = pc,st:=pc+1,st+H (Rg.b) ‘
‘ EVT(d) = pec,st:=pc+1,st+ (Rpme-d) ‘
ADD = (#st>2)7;
pc, st :=pc+ 1, front2.st H (last2.st + last.st)
SUB = (#st>2)7;
pe,st:=pc+ 1, front2.stH (last2.st — last.st)
LE = (#st>2)7;
pc, st :=pc+ 1, front2.st +
(1 <last.st < last2.st>0)
LT = (#st>2)7;
pc,st:=pc+ 1, front2.st 4+
(1 < last.st < last2.st>0)
| ap(l) = pc:=1
JPE(l) = (#st>1)7;
pe,st:= (I < last.st =001 pc+ 1), front.st
JPT(l) = (#st>1)7;
pe,st:= (I < last.st =10 pc+ 1), front.st
| puP = (#st>1)T; pe,st = pc+ 1, stH(last(st)) |
‘ OUT(s) = (#st>1)"; s!last.st; pc,st:=pc+ 1, front.st ‘
NG 2 (£ ()T varx
s?x; pc,st:=pc+1,stH (x); endx
| TST(s) = pe,st:=pc+1,st+ (1 <5 = () >0) |
| sTM(s) = (s# ()5 pe,st:=pc+1,st+ (stamp(s)) |
TIM = pc,st:=pc+1,st+ (t) where t € [t,,1,] and 74, 1,

stand for the time when starts and finishes the execution
of the instruction
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