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Abstract 
The threaded performance of real symmetric dense matrix diagonalisers has 
been thoroughly investigated. Two problems have been identified as 
preventing efficient performance and good scaling. First, the library must be 
fully threaded as opposed to a partially threaded library. Second, there is a 
more fundamental, algorithmic problem which results in memory bandwidth 
bottleneck during the reduction of a matrix to tri-diagonal form. The tri-
diagonalisation step starts dominating from certain matrix sizes and as a 
result using multi-cores in this situation becomes inefficient. Thus 
diagonalisation algorithms more suitable for multi-cores are required. 

 
21/09/2007 
 

Introduction 
 
It is widely acknowledged that with the advent of multi-core processors the “free lunch” 
provided by ever increasing CPU clock frequencies is over, and that the HPC community 
(and indeed IT industry as a whole) needs to find alternative routes to increased application 
performance, namely ways of identifying and efficiently implementing parallelism.  
 
The best solution is clearly to redesign and engineer algorithms and codes with multi/many-
core architectures in mind from the outset. This approach however may be uneconomic or 
impractical. There are potentially easier routes to performance gains through parallelism. 
One route is to use auto-parallelising compilers, but unfortunately this ‘holy grail’ has yet to 
be delivered, and speed-ups obtained through this approach tend to be disappointing . For 
codes that rely on numerical libraries – for example FFTW1 and  LAPACK2 (a cornerstone 
of HPC providing the basis for selecting the Top 500 supercomputers3) – there is potential 
for performance gains if efficiently threaded versions of these libraries are available.  
 
LAPACK is an upper layer library which sits on top of another library – BLAS (Basic Linear 
Algebra Subprograms). The two libraries are separate but sometimes when LAPACK is 
referred to it implicitly includes BLAS. Hardware vendors will typically offer a BLAS and 
LAPACK implementation optimised for the platforms they offer. Ultimately all the 
LAPACK implementations are derived from the netlib.org source. Among the most popular 
ones are MKL (Intel)4 and ACML (AMD)5. HP offers LAPACK functionality for its legacy 
architectures such as CXML for Alpha and MLIB for PA-RISC and Itanium. Subroutines 

                                                 
1 Fastest Fourier Transform in the West (FFTW) http://www.fftw.org/ 
2 Linear Algebra PACKage (LAPACK) http://www.netlib.org/lapack/ 
3 Top 500  http://www.top500.org 
4 Intel Math Kernel Library (MKL) http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm 
5 AMD Core Math Library (ACML) http://developer.amd.com/acml.jsp 
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from LAPACK have also found their way into IBM’s Engineering Scientific Subroutine 
Library (ESSL). All these libraries come with very efficient BLAS implementations. 
Nevertheless there are very competitive non-commercial alternatives such as the self-tuning 
ATLAS suite6 and the BLAS being developed by Goto7 which is free for academic use. 
Thus an interesting alternative can be achieved by supplementing ATLAS or the GotoBLA
by the LAPACK built from source which has recently been updated to version 3.1.

S 
1. 

                                                

 
Multi-threading BLAS is relatively straightforward and many implementations support 
multi-threading. Thus this work explores the route of “parallelisation through parallel 
libraries” and more specifically threaded LAPACK libraries. Furthermore, we limit ourselves 
to a subset of LAPACK functionality which is extremely important in many applied 
problems, namely real symmetric diagonalisers. The need for eigenvectors or/and 
eigenvalues of a matrix often appears in many fields ranging from physics and chemistry 
through to engineering and even computational finance. Efficient diagonalisers are important 
because a large portion of an application’s execution time may be spent in such routines. 
Although diagonalisers are floating point intensive8 matrix operations can be made “cache 
friendly”, and therefore memory bandwidth bottlenecks may be partially circumvented.  
 
In this paper we assess the performance of LAPACK libraries on various commodity 
architectures with an emphasis on multi-core performance and threaded scaling. Only 
threaded libraries will be analysed but we plan to benchmark MPI-based diagonalisers in 
future work. 
 

The benchmark 
 
The time it takes to diagonalise a matrix is obviously a function of its size but also to a lesser 
degree of its type. Benchmarking many different types of matrices would however be rather 
time consuming. The matrix we use appears in an application called WAVR49 which 
computes spectra of tetra-atomic molecules. We hope that this example is reasonably typical 
for a range of applications in the physical sciences. The matrix was generated for one 
particular problem and saved as an ASCII file for portability. It is real and symmetric, has no 
degenerate eigenvalues and its spectrum is well spread out. A graphical view of the matrix is 
given in Figure 1. The full matrix size is 7075 but we also used half of it (3575, lower left 
corner of Figure 1).  In double precision these matrices take about 400 MB and 100 MB 
respectively, and therefore will not be cache-resident. Larger matrices could easily be 
generated but the run time grows as N3 , and apart from slight differences in scaling, we did 
not find enough justification for using larger matrix sizes in this study. 
 

 
6 Automatically Tuned Linear Algebra Software (ATLAS) http://math-atlas.sourceforge.net/ 
7 GotoBLAS http://www.tacc.utexas.edu/resources/software/ 
8 Typically double precision is required although there have been recently some works done on incorporating 
single precision calculations in the double precision context (see for example, A. Buttari, J. Dongarra, J. 
Kurzak, J. Langou, J. Langou, P. Luszczek, and S. Tomov, “Exploiting Mixed Precision Floating Point 
Hardware in Scientific Computations”; 
http://www.netlib.org/utk/people/JackDongarra/PAPERS/par_comp_iter_ref.pdf). 
9 I.N. Kozin, M.M. Law, J. Tennyson, J.M. Hutson, "New vibration-rotation code for tetraatomic molecules 
exhibiting wide-amplitude motion: WAVR4", Comp. Phys.  Comm. 163 (2): 117-131 (2004). 
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LAPACK was originally implemented in Fortran but its success has led to implementations 
in other high level languages: C, C++, Fortran 95 and Java. We decided to implement our 
benchmark in Fortran 95 not only because this is in keeping with the original, but also 

because Fortran is still very widely and this situation is unlikely to change.  The source is 
pure Fortran 95 (e.g. the wall-clock time is implemented using Fortran 95 
DATE_AND_TIME) and is available from the Distributed Computing web site10. One 
further advantage in using Fortran 95 is to be able to use LAPACK95 interfaces and thus 
hide slight differences among LAPACK implementations. Through the command line 
options it is possible to vary the algorithms and stipulate whether or not eigenvectors are 
required. The number of threads is controlled via the environment variable 
OMP_NUM_THREADS. 

 
Figure 1: Graphical view of the matrix used in the tests: pixels from white to black 
represent aggregated matrix elements on the log scale with white being the largest. 

 
The benchmark calls the four different diagonalisation algorithms implemented in LAPACK 
subroutines: DSYEV, DSYEVD, DSYEVR and DSYEVX. DSYEV is the basic diagonaliser 

                                                 
10 Dbench benchmark can be downloaded from Distributed Computing Group website: 
http://www.cse.scitech.ac.uk/disco 
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which is used when all eigenvalues are needed. DSYEVD uses a divide and conquer 
algorithm to compute eigenvectors. DSYEVX and DSYEVR are more advanced and allow 
the computation of a selection of the eigenspectrum. DSYEVR is the most recent addition to 
LAPACK and employs Relatively Robust Representations. However, all these algorithms 
regardless of whether eigenvectors are required make the reduction of the matrix to tri-
diagonal form their first step. The difference appears only later when the tri-diagonal matrix 
is being diagonalised. 
 

Intel quad-core performance 
 
Our main benchmarking system was a two socket Intel “Clovertown” server. Here is a 
summary of its technical details: 

• CPU: 2x Xeon X5355 2.66 GHz 
• Chipset: Blackford 
• System bus: 1333 MHz 
• Memory: 4x1GB 533 MHz FB-DIMMs 
• Motherboard: Supermicro X7DB8+ rev 2.01 
• OS: RHEL 4 update 4 
• Intel compilers 10.0 (Build 20070613) 

 
On paper this is a powerful system with a theoretical peak performance of 85 GFLOPS (8 
cores capable of 4 fused add-multiply at 2.67 GHz). Indeed it can perform matrix-matrix 
multiplication using DGEMM at 68 GFLOPS (80% efficiency).  
 
First, in order to assess the performance of matrix diagonalisers we obtained the reference 
serial performance of the latest LAPACK (3.1.1) built with Intel compilers. Then we 
compared its performance to the performance of other libraries11 and the results are 
presented in Figure 2. We observe that Intel’s MKL always gives the best performance as 
one might expect for an Intel library on an Intel platform. But other libraries are usually not 
too far behind. However Intel’s DSYEV has managed to maintain a performance lead, 
particularly with the latest release of MKL (version 9.1.021). 
 

Table 1: Time consumption breakdown (%) for different LAPACK algorithms within 
LAPACK built with Intel compilers. 

  no vectors vectors 
  dsyev dsyevd dsyevr dsyevx dsyev dsyevd dsyevr dsyevx
dsymv 64 63 63 63 10 16 63 63
dsyr2k 26 27 27 27 4 7 27 27
dgemm         20 73     
dlasr         64       

 
One simple method of parallelising LAPACK is to use a threaded BLAS library. Fortunately 
one such implementation, GotoBLAS, is freely available for academic use. This provided us 

                                                 
11 We have also built and used ATLAS 3.7.37 (currently the latest version). It recognised the hardware and the 
build was successful (we used GNU 4.2.1 compilers). However the performance was disappointing. Since 
version 3.7 is still in development, and therefore cannot be recommended for production usage, we decided not 
to include the ATLAS library in the benchmarking at this time. Furthermore, its matrix-vector operations are 
not threaded (read further on the relevance of this). We shall revisit ATLAS performance in a future paper. 
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with a reference for threaded performance. Although GotoBLAS substantially improves 
serial performance (we used version 1.16), the scaling was not very good. The reasons for 
this are the algorithms used in the LAPACK diagonalisers and the threaded implementation 
within GotoBLAS. In Table 1 below we present a profile of the main time consumers for all 
diagonalisers in question as implemented by LAPACK 3.1.1 (serial runs, matrix size 3575). 
 
We observe that most of the tests are dominated by matrix-vector multiplications (DSYMV) 
and only some by matrix-matrix multiplications (DLASR, DGEMM). It turns out that 
GotoBLAS threading accelerates only DSYR2K and DGEMM (both are matrix-matrix 
multiplications). DLASR is part of LAPACK and therefore is not affected. Once GotoBLAS 
is used with LAPACK the profiles change a little but remain essentially the same. The 
profiles obtained for GotoBLAS 1.16 are presented in Table 2. 
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Figure 2: Serial performance of symmetric matrix diagonalisers on Intel 
Clovertown 2.66 GHz. Top: only eigenvalues are computed. Bottom: both 
eigenvalues and eigenvectors are computed. The matrix size is 7075. 
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Table 2: Time consumption breakdown (%) for different LAPACK algorithms in 
LAPACK built with Intel compilers and supplemented by GotoBLAS. 

  no vectors vectors 
  dsyev dsyevd dsyevr dsyevx dsyev dsyevd dsyevr dsyevx
dgemv_t      61 62 62 60 9 39 62 62
dgemv_n      16 16 15 18 3 11 16 16
dgemm_kernel 11 12 12 11 5 34 12 11
dlasr                80       

 
Thus it should come as no surprise that LAPACK+GotoBLAS scaling is generally rather 
poor. Figure 3 presents the scaling of selected tests and all the data are available in the 
Appendix. Indeed DSYEVD demonstrates the best scaling achieving 40% improvement 
because DGEMM is accelerated by threading. Other tests show only around 10% speedup 
regardless of the number of threads. However even then the usefulness of DSYEVD is 
doubtful since in absolute terms other algorithms like DSYEVR and DSYEVX are quicker. 
It should be noted that as of version 1.18 GotoBLAS provides threaded DGEMV but the 
behaviour of DSYMV is not affected. 
 
Figure 3 also summarises the scaling of MKL and ACML libraries. It shows threaded 
performance of MKL and LAPACK+GotoBLAS is reasonably close for all the tests except 
DSYEV. Although MKL performs better the scaling is little different. In contrast ACML 
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Figure 3: Scaling of different LAPACK libraries on Intel Clovertown 2.66 GHz.  
The matrix size is 7075. 
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presents a different pattern: often being slower on a single thread it scales better and as a 
result wins in most of the tests. Whether this is an indication of some algorithmic changes on 
the LAPACK level or not, we are not sure. Ultimately all the tested libraries struggle to 
achieve scaling better than a factor of two and this is clearly an algorithmic issue. As the 
profiles above demonstrate, all the subroutines heavily use matrix-vector products, the 
exceptions being DSYEV and DSYEVD when eigenvectors are needed. However this 
operation is limited: even if matrix-vector operations were threaded the performance would 
be throttled by the available aggregate memory bandwidth12. If we take 8GB/s as a rough 
estimate for practically achievable memory bandwidth, the maximum performance we can 
get on a matrix-vector product is only 2 GFLOPS (one double precision number is being 
fetched from memory roughly every nanosecond and used in two floating point operations – 
multiplication and addition). Compared to the peak of 85 GFLOPS this is only 2% 
efficiency. The measured floating point efficiency is in line with this number and was 
measured at around 3-4%. The higher average numbers are possible because there are other 
than tri-diagonalisation steps. In a spectacular fit, MKL’s DSYEV (no eigenvectors) 
achieved 7% processor efficiency on one thread and 14% on eight. MKL’s bus efficiency 
changes very little from one thread (typically at around 55%) to eight (around 60%). In 
contrast, ACML nearly doubles the bus efficiency from 44% on one thread to 78% on eight, 
which probably goes some way towards explaining the scalability. 
 
As mentioned above, all the algorithms do reduction to tri-diagonal form as a first step and 
profiling shows that it takes up 90+% of the time. Indeed the reduction using DSYTRD 

requires 4/3N3+O(N2) floating point operations, whereas computing eigenvalues of a tri-
diagonal matrix requires only O(N2) 13. Our matrix size is sufficiently big that tri-
diagonalisation dominates. This is the reason why performance of some tests is very close 
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Figure 4: Threaded performance of DSYEVR from MKL, ACML and 
LAPACK+GotoBLAS on Intel Clovertown 2.66 GHz.  Both eigenvalues and 
eigenvectors are computed. The matrix size is 7075. 

                                                 
12 Our tests showed that matrix-vector operations provided by MKL and ACML are not threaded. 
13  E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. 
Hammarling, A. McKenney, D. Sorensen, "LAPACK Users' Guide", 3rd Edition 1999. 
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and why some of the profiles are so similar. In fact, the profiles of DSYEV and DSYEVD in 
Tables 1 and 2 differ so much from others when eigenvectors are requested because the 
subsequent steps are too slow and not because the tri-diagonalisation takes longer. 
 

An examination of LAPACK libraries on other platforms 
 
It is instructive to compare the scaling of threaded LAPACK offered by other libraries which 
are available on other hardware platforms. The purpose of this section is not so much the 
absolute performance comparison as the scaling with the number of threads. We have run the 
same benchmark on a number of systems: 
 

• Supermicro X7DB8+ rev 2.01, Intel Clovertown 2.66 GHz, 4 GB RAM, MKL 
9.1.021, ACML 3.6.0; 

• Supermicro X7DB8+ rev 2.01, Intel Woodcrest 3.0 GHz, 4 GB RAM, MKL 9.1.021, 
ACML 3.6.0; 

• SunFire Server V890: 8 UltraSparc IV (dual core) processors, 64 GB RAM, Sun 
Performance Libraries; 

• IBM eServer 57514: 8 Power5  1.5 GHz (dual core), 32 GB RAM, ESSL; 
• HP ProLiant DL145 Server: Opteron 280 2.4 GHz, 8 GB RAM, ACML 3.6.0; 
• SGI Altix: Itanium 1.6 GHz, 96 GB RAM, MKL 9.1.021. 

 
All the data are reported in the Appendix but a selection showing performance and scaling of 
DSYEV (all eigenvalues only) and DSYEVR (1% of eigenvectors) is presented in Figures 5–
8. The results are surprising. First of all, ACML on AMD Opteron scales very poorly. Given 
that ACML performed so well on Clovertown this requires further investigation. Secondly, 
both the Sun and the IBM server demonstrate very good scaling although they are quite 
different in term of absolute performance. Their scaling is very close up to four threads after 
which the Sun server performance tails off. Good scaling is due in part to the availability of 
efficiently threaded libraries15. Finally, while the Intel machines dominate in single thread 
performance they get overtaken by the IBM server for multiple threads.  
 
At this stage we will not speculate on how performance will be affected when Intel makes 
the transition to its CSI/QuickPath interconnect as a replacement for its current FSB 
technology and whether the memory latency and bandwidth of CSI (and for that matter 
Hypertransport) will be sufficient for codes such as these once we are operating in the many-
core regime (16-32+ cores). It is likely however that the byte-per-flop ratio will continue to 
worsen for the foreseeable future and new programming strategies and models (with 
hardware support) are going to be required in order to fully exploit such architectures.   
 

                                                 
14 One HPCx compute node (LPAR) has been used. One Power5 chip has 2 cores with 32KB data and 64KB 
instruction L1 cache each, 1.9 MB L2 cache is shared. Each chip is packaged together with 36 MB L3 cache 
(shared) into a dual-core module (DCM), i.e. 18 MB L3 per DCM. Each eServer contains 8 DCMs (16 cores), 
i.e. total node L3 cache is 144 MB. 
http://www.hpcx.ac.uk/support/documentation/UserGuide/HPCxuser/Architecture_Overview.html 
15 For IBM eServer we used LAPACK and threaded BLAS from ESSL. 
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Figure 5: Threaded performance of DSYEV: matrix size is 3537, all eigenvalues 
are computed, no eigenvectors. 
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Figure 6: Scaling of DSYEV: matrix size is 3537, all eigenvalues are computed, no 
eigenvectors (i.e. same as in Figure 5). 
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Figure 7: Threaded performance of DSYEVR: matrix size is 3537, 1% of 
eigenvectors is computed. 
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Figure 8: Scaling of DSYEVR: matrix size is 3537, 1% of eigenvectors is computed 
(i.e. same as in Figure 6Figure 7). 
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Conclusions 
 
We have studied the performance of symmetric diagonalisers for dense matrices which are 
important in many applications and are part of  the Linear Algebra PACKage (LAPACK). 
We have investigated the performance of different libraries on the latest breed of Intel’s x86 
processors and saw very good serial performance, and the recent introduction of fused 
multiply-add means these platforms often beat Itanium. Due to the late delivery of the AMD 
Barcelona quad-core platform, we have not yet been able to carry out an investigation of this 
technology but hope to report on its performance in the near future. 
 
When it comes to practical choices, if eigenvectors are not required then DSYEV is 
recommended due to its superior performance. However if eigenvectors are needed then 
DSYEVX or DSYEVR should be used. An additional factor for consideration might be the 
required working space for these routines – something we have not thus far considered. 
Another interesting issue this study has highlighted is the surprisingly good threaded 
performance of ACML on Intel platforms. Although ACML is slower than MKL on a single 
thread it can be certainly recommended for multiple threads. 
 
With the advent of multi-core processors library writers are under pressure to produce 
efficient parallel implementations more than ever. We have looked into the efficiency of 
threaded LAPACK libraries and identified the bottleneck as typically being in the tri-
diagonalisation step. This step is memory bandwidth bounded and therefore severely limits 
the overall performance even if using a fully threaded LAPACK.  
 
Further algorithmic advances are needed if we are to use all the cores efficiently, and the 
number of cores in a socket is likely to double every 18-24 months in keeping with Moore’s 
Law. Although we did notice some substantial improvements in performance of LAPACK 
libraries (for example, DSYEV was much improved in MKL 9.1.021 versus 9.1.018) and the 
diversity of current choice ranging from commercial libraries to ATLAS and GotoBLAS can 
only be welcomed, our analysis showed that multi-core processors are not very efficient 
when using current LAPACK algorithms and that this situation will only get worse in the 
coming years with current programming models.  
 
In fact there are (probably) insurmountable scalability issues for standard Pthread/OpenMP 
programming models due to the fact that using locks to implement synchronization is 
inherently a bottleneck. We envisage alternative approaches to concurrency such as software 
and/or hardware implementations of the transactional memory model becoming available. 
Indeed, Sun have recently announced that its multi-threaded Rocks platform (16 cores and 32 
threads) will offer some support for this approach in hardware early in 2008. How easy it 
will be to transition legacy codes and libraries to this and any other alternative approaches 
remains to be seen. 
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Appendix 
Table 3: Performance of different LAPACK libraries on Intel Clovertown 2.66 GHz, 
matrix size 7075. 

ve
ct

or
s

sub n

MKL 
9.1.021

MKL 
9.1.018

LAPACK 
3.1.1

LAPACK 
3.1.1 + 
GotoBLAS 
1.16

ACML 
3.6.0

100% spectrum
n DSYEV 1 88.0 217.6 281.4 232.9 254.5
n DSYEV 2 50.4 186.2 217.8 149.5
n DSYEV 4 40.7 176.1 211.4 131.3
n DSYEV 8 47.5 175.0 211.0 131.4
n DSYEVD 1 214.9 217.6 282.0 232.9 254.5
n DSYEVD 2 185.2 185.9 217.9 149.5
n DSYEVD 4 176.2 176.2 211.4 131.4
n DSYEVD 8 174.6 174.9 211.0 131.5
n DSYEVX 1 214.7 217.6 280.4 232.9 254.5
n DSYEVX 2 185.1 185.7 217.8 149.5
n DSYEVX 4 175.7 176.1 211.4 131.4
n DSYEVX 8 174.6 174.8 211.0 131.5
n DSYEVR 1 215.9 219.6 279.3 233.9 278.6
n DSYEVR 2 185.8 186.5 218.3 161.0
n DSYEVR 4 176.6 177.0 212.0 136.1
n DSYEVR 8 175.4 175.7 211.5 132.9
v DSYEV 1 516.1 524.9 2138.9 1659.7 1244.0
v DSYEV 2 349.5 352.9 1611.1 658.7
v DSYEV 4 282.3 286.3 1592.4 398.7
v DSYEV 8 270.6 274.2 1591.4 272.9
v DSYEVD 1 336.0 344.4 1115.1 357.1 417.9
v DSYEVD 2 248.1 252.7 285.8 242.9
v DSYEVD 4 216.9 219.2 257.6 error
v DSYEVD 8 211.0 214.6 252.6 error
v DSYEVX 1 214.8 217.4 282.5 233.0 254.5
v DSYEVX 2 184.8 185.8 217.9 149.5
v DSYEVX 4 175.7 176.0 211.4 131.4
v DSYEVX 8 174.7 174.8 211.0 131.4
v DSYEVR 1 215.8 219.8 279.7 234.0 278.5
v DSYEVR 2 185.5 186.5 218.2 160.9
v DSYEVR 4 176.6 176.9 212.0 136.1
v DSYEVR 8 174.9 175.6 211.5 132.8
1% spectrum                                  
n DSYEVX 1 213.1 215.8 281.1 231.3 253.2
n DSYEVX 2 183.1 184.0 216.4 147.8
n DSYEVX 4 174.0 174.3 209.7 129.5
n DSYEVX 8 173.0 173.2 209.2 129.6
n DSYEVR 1 214.2 218.0 280.9 232.3 253.0
n DSYEVR 2 183.8 184.7 216.5 147.8
n DSYEVR 4 174.9 175.2 210.1 129.4
n DSYEVR 8 173.6 173.6 209.9 129.3
v DSYEVX 1 213.3 215.9 281.7 231.3 252.7
v DSYEVX 2 183.1 184.1 216.2 147.6
v DSYEVX 4 174.0 174.3 209.8 129.4
v DSYEVX 8 172.8 173.1 209.3 129.5
v DSYEVR 1 214.2 218.1 280.0 232.5 252.7
v DSYEVR 2 183.8 184.7 216.5 147.7
v DSYEVR 4 175.3 175.2 210.3 129.5
v DSYEVR 8 173.6 174.1 209.9 129.5  
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Table 4: Performance of LAPACK libraries on Intel Clovertown 2.66 GHz, matrix size 
3537. 

ve
ct

or
s

sub n

MKL 
9.1.021

MKL 
9.1.018

LAPACK 
3.1.1

LAPACK 
3.1.1 + 
GotoBLAS 
1.16

ACML 
3.6.0

rum

6.1 22.0 27.0 11.2
n DSYEV 8 7.1 21.7 26.8 10.8
n DSYEVD 1 26.5 26.9 34.7 29.5 30.0
n DSYEVD 2 23.3 23.3 27.8 16.3
n DSYEVD 4 22.0 22.0 27.0 11.2
n DSYEVD 8 21.7 21.7 26.8 10.8
n DSYEVX 1 26.6 26.8 34.6 29.5 30.0
n DSYEVX 2 23.3 23.3 27.8 16.3
n DSYEVX 4 21.9 22.0 26.9 11.3
n DSYEVX 8 21.8 21.8 26.8 10.8
n DSYEVR 1 26.7 27.0 34.6 29.6 36.3
n DSYEVR 2 23.4 23.4 27.8 19.3
n DSYEVR 4 22.0 22.1 27.0 12.5
n DSYEVR 8 21.8 21.8 26.7 11.1
v DSYEV 1 65.9 66.7 272.5 213.4 134.7
v DSYEV 2 45.9 46.0 207.9 69.1
v DSYEV 4 37.2 37.6 205.6 38.3
v DSYEV 8 35.1 36.2 205.3 25.4
v DSYEVD 1 44.8 45.8 153.9 47.6 51.0
v DSYEVD 2 33.1 33.5 38.4 29.0
v DSYEVD 4 28.5 28.8 34.7 20.5
v DSYEVD 8 27.5 27.8 33.8 19.0
v DSYEVX 1 26.6 26.9 34.6 29.5 30.0
v DSYEVX 2 23.3 23.3 27.8 16.3
v DSYEVX 4 21.9 22.0 26.9 11.2
v DSYEVX 8 21.7 21.7 26.7 10.8
v DSYEVR 1 26.6 27.0 34.7 29.6 36.3
v DSYEVR 2 23.4 23.5 27.8 19.3
v DSYEVR 4 22.0 22.1 26.9 12.5
v DSYEVR 8 21.8 21.8 26.7 11.1
1% spectrum                                
n DSYEVX 1 26.1 26.4 34.6 29.1 29.6
n DSYEVX 2 22.8 22.9 27.3 15.9
n DSYEVX 4 21.5 21.5 26.5 10.8
n DSYEVX 8 21.2 21.3 26.3 10.3
n DSYEVR 1 26.3 26.6 34.6 29.2 29.6
n DSYEVR 2 22.9 22.9 27.6 15.9
n DSYEVR 4 21.6 21.6 26.5 10.8
n DSYEVR 8 21.4 21.3 26.3 10.3
v DSYEVX 1 26.0 26.4 34.6 29.1 29.6
v DSYEVX 2 22.8 22.9 27.4 15.9
v DSYEVX 4 21.4 21.5 26.5 10.8
v DSYEVX 8 21.3 21.2 26.3 10.3
v DSYEVR 1 26.3 26.6 34.6 29.2 29.6
v DSYEVR 2 22.9 23.0 27.4 15.9
v DSYEVR 4 21.6 21.6 26.5 10.8
v DSYEVR 8 21.4 21.4 26.3 10.3

100% spect
n DSYEV 1 11.4 26.9 34.7 29.5 30.0
n DSYEV 2 7.2 23.4 27.8 16.3
n DSYEV 4
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Table 5: Performance of LAPACK libraries on different hardware, matrix size 7075. 

Cl
2.

ve
ct

or
s

sub n

overtown 
66 (QC), 

MKL 9.1.021, 
ACML 3.6.0 
(Intel)

Woodcrest 
3.0 (DC), 
MKL 9.1.021,  
ACML 3.6.0 
(Intel)

Opteron 280 
2.4 (DC), 
ACML 3.6.0 
(Intel)

Itanium 1.6 
(SC), MKL 
9.1.021

Power5 
1.5(DC), 
LAPACK + 
ESSL BLAS

100% spectrum
n DSYEV 1 88.0 75.4 290.1 124.9 247.6
n DSYEV 2 50.4 42.9 249.5 90.3 133.1
n DSYEV 4 40.7 35.0 250.5 72.7 64.6
n DSYEV 8 47.5 57.0 31.8
n DSYEVD 1 254.5 171.0 287.0 150.4 247.7
n DSYEVD 2 149.5 145.0 249.7 124.8 132.2
n DSYEVD 4 131.4 138.3 250.2 109.5 64.6
n DSYEVD 8 131.5 103.6 31.6
n DSYEVX 1 254.5 170.9 287.0 150.4 249.4
n DSYEVX 2 149.5 145.0 249.4 123.0 132.4
n DSYEVX 4 131.4 138.6 250.9 154.2 64.9
n DSYEVX 8 131.5 103.3 31.7
n DSYEVR 1 278.6 170.9 305.3 153.6 250.0
n DSYEVR 2 161.0 145.4 252.3 127.2 134.4
n DSYEVR 4 136.1 139.4 254.7 111.9 65.4
n DSYEVR 8 132.9 104.5 31.8
v DSYEV 1 516.1 432.5 1350.2 594.2 1893.9
v DSYEV 2 349.5 287.3 734.1 484.8 1739.3
v DSYEV 4 282.3 237.1 531.1 304.7
v DSYEV 8 270.6 214.0
v DSYEVD 1 336.0 275.9 495.5 316.5 463.7
v DSYEVD 2 248.1 199.3 372.9 220.8 243.2
v DSYEVD 4 216.9 178.4 343.7 194.8 124.5
v DSYEVD 8 211.0 202.6 65.3
v DSYEVX 1 254.5 171.0 287.2 150.4 248.5
v DSYEVX 2 149.5 144.8 249.6 121.4 133.2
v DSYEVX 4 131.4 138.7 251.0 109.5 64.8
v DSYEVX 8 131.4 104.0 31.7
v DSYEVR 1 278.5 170.6 304.9 153.8 250.0
v DSYEVR 2 160.9 145.2 258.9 123.1 134.2
v DSYEVR 4 136.1 139.4 256.1 111.0 65.3
v DSYEVR 8 132.8 105.0 31.9
1% spectrum
n DSYEVX 1 253.2 169.5 285.7 149.3 245.7
n DSYEVX 2 147.8 143.4 249.8 120.5 131.5
n DSYEVX 4 129.5 137.0 250.3 107.6 62.4
n DSYEVX 8 129.6 101.4 29.4
n DSYEVR 1 253.0 169.2 287.5 152.4 247.8
n DSYEVR 2 147.8 143.9 250.6 124.8 132.1
n DSYEVR 4 129.4 137.9 252.6 108.2 63.2
n DSYEVR 8 129.3 102.9 29.5
v DSYEVX 1 252.7 169.3 286.0 149.3 245.7
v DSYEVX 2 147.6 143.4 248.6 131.4 131.1
v DSYEVX 4 129.4 137.1 253.6 107.1 62.4
v DSYEVX 8 129.5 102.1 29.3
v DSYEVR 1 252.7 169.2 286.4 152.4 247.9
v DSYEVR 2 147.7 143.7 248.9 144.8 132.3
v DSYEVR 4 129.5 138.0 250.6 108.4 62.9
v DSYEVR 8 129.5 103.1 29.6

timing
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Table 6: Performance of LAPACK libraries on different hardware, matrix size 3537. 

ve
ct

or
s

sub n

Clovertown 
2.66 (QC), 
MKL 9.1.021, 
ACML 3.6.0 
(intel)

Woodcrest 
3.0 (DC), MKL 
9.1.021,  
ACML 3.6.0 
(intel)

Opteron 280 
2.4 (DC), 
ACML 3.6.0 
(Intel)

Itanium 1.6 
(SC), MKL 
9.1.021

Power5 
(DC), 
LAPACK + 
ESSL 
BLAS

UltraSparc 
IV (DC), 
Sun 
Performanc
e Libs

100% spectrum
n DSYEV 1 11.4 9.8 36.6 15.8 27.1 128.0
n DSYEV 2 7.2 6.2 29.6 9.9 13.8 74.0
n DSYEV 4 6.1 5.3 27.4 8.5 8.0 42.3
n DSYEV 8 7.1 8.0 4.9 29.4
n DSYEVD 1 30.0 24.9 36.3 19.5 27.1 127.7
n DSYEVD 2 16.3 14.1 29.7 16.3 13.8 74.3
n DSYEVD 4 11.2 13.8 27.4 14.9 8.0 42.1
n DSYEVD 8 10.8 14.4 4.9 29.8
n DSYEVX 1 30.0 24.8 36.5 19.5 27.1 128.0
n DSYEVX 2 16.3 14.1 29.6 16.3 13.8 74.2
n DSYEVX 4 11.3 13.8 27.2 14.9 8.0 42.3
n DSYEVX 8 10.8 14.3 4.9 29.7
n DSYEVR 1 36.3 30.4 41.1 19.9 27.2 155.7
n DSYEVR 2 19.3 16.8 32.1 16.4 13.9 99.4
n DSYEVR 4 12.5 14.9 28.5 15.1 8.0 66.1
n DSYEVR 8 11.1 14.7 4.9 53.0
v DSYEV 1 134.7 55.2 167.9 91.4 237.2 1556.1
v DSYEV 2 69.1 37.6 98.0 56.5 214.4 795.2
v DSYEV 4 38.3 31.0 62.6 38.9 204.4 496.0
v DSYEV 8 25.4 28.9 200.1 334.8
v DSYEVD 1 51.0 43.07 63.5 43.9 57.6 227.9
v DSYEVD 2 29.0 24.99 47.1 29.9 29.6 126.6
v DSYEVD 4 20.5 21.01 40.5 23.3 16.8 70.7
v DSYEVD 8 19.0 20.8 10.6 46.5
v DSYEVX 1 30.0 24.85 36.6 19.5 27.2 128.0
v DSYEVX 2 16.3 14.12 30.7 16.3 13.8 74.6
v DSYEVX 4 11.2 13.78 28.8 15.0 8.0 42.3
v DSYEVX 8 10.8 14.4 4.9 29.7
v DSYEVR 1 36.3 30.44 41.4 20.0 27.2 155.8
v DSYEVR 2 19.3 16.82 33.2 16.5 13.9 99.5
v DSYEVR 4 12.5 14.86 29.4 15.1 8.0 66.2
v DSYEVR 8 11.1 15.1 4.9 53.0
1% spectrum
n DSYEVX 1 29.6 24.47 36.4 19.2 26.5 127.0
n DSYEVX 2 15.9 13.71 30.5 15.8 13.3 73.5
n DSYEVX 4 10.8 13.34 28.3 14.5 7.4 41.3
n DSYEVX 8 10.3 14.2 4.3 28.8
n DSYEVR 1 29.6 24.47 36.4 19.7 26.7 132.7
n DSYEVR 2 15.9 13.74 30.7 16.0 13.3 76.6
n DSYEVR 4 10.8 13.34 28.3 22.0 7.5 43.2
n DSYEVR 8 10.3 14.2 4.3 29.9
v DSYEVX 1 29.6 24.43 36.7 19.2 26.5 127.1
v DSYEVX 2 15.9 13.71 30.7 15.9 13.2 73.4
v DSYEVX 4 10.8 13.34 28.3 14.5 7.4 41.4
v DSYEVX 8 10.3 14.3 4.3 28.6
v DSYEVR 1 29.6 24.47 36.4 19.6 26.6 132.6
v DSYEVR 2 15.9 13.73 30.6 16.0 13.3 76.6
v DSYEVR 4 10.8 13.35 28.2 14.7 7.5 43.0
v DSYEVR 8 10.3 14.2 4.3 29.6

timing
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