
Technical Report

RAL-TR-2007-006

Council for the Central Laboratory of the Research Councils

May 17, 2007

Patrick Amestoy, Iain Duff, Abdou Guermouche, and Tzvetomila Slavova

Analysis of the Out-of-Core Solution Phase

of a Parallel Multifrontal Approach

c© Council for the Central Laboratory of the Research Councils

Enquires about copyright, reproduction and requests for additional copies of this report should

be addressed to:

Library and Information Services

CCLRC Rutherford Appleton Laboratory

Chilton Didcot

Oxfordshire OX11 0QX

UK

Tel: +44 (0)1235 445384

Fax: +44(0)1235 446403

Email: library@rl.ac.uk

CCLRC reports are available online at:

http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225;

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from

the use of information contained in any of their reports or in any communication about their

tests or investigations.

RAL-TR-2007-006

Analysis of the out-of-core solution phase of a parallel

multifrontal approach1

Patrick Amestoy2, Iain S. Duff3, Abdou Guermouche4, and Tzvetomila Slavova5

ABSTRACT

We consider the parallel solution of sparse linear systems of equations in a limited

memory environment. A preliminary out-of core version of a sparse multifrontal

code called MUMPS (MUltifrontal Massively Parallel Solver) has been developed as

part of a collaboration with members of the INRIA project GRAAL.

In this context, we assume that the factors have been written on the hard disk during

the factorization phase, and we discuss the design of an efficient solution phase. Two

different approaches are presented to read data from the disk, with a discussion on

the advantages and the drawbacks of each one.

Our work differs and extends the work of Rothberg and Schreiber (1999) and Rotkin

and Toledo (2004) because firstly we consider a parallel out-of-core context, and

secondly we focus on the performance of the solve phase.

Keywords: parallel solution, out-of-core solution, Gaussian elimination, multifrontal

method, MUMPS.

AMS(MOS) subject classifications: 65F05, 65F50.

1Current reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directory

pub/reports. This report is in files duffRAL2007006.pdf and duffRAL2007006.ps.gz. The report

also available through the URL www.numerical.rl.ac.uk/reports/reports.html. It is also

available as the CERFACS Technical Report TR/PA/07/48. This work was supported by the

EPSRC Grant GR/S42170 and by ANR project SOLSTICE, ANR- 06-CIS6-010.
2ENSEEIHT-IRIT, Toulouse, France. Patrick.Amestoy@enseeiht.fr
3Rutherford Appleton Laboratory, UK and CERFACS, France. i.s.duff@rl.ac.uk.
4LaBRI, INRIA Futurs/Univ. Bordeaux 1, France. Abdou.Guermouche@labri.fr
5CERFACS, Toulouse, France. Mila.Slavova@cerfacs.fr

Computational Science and Engineering Department

Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

May 17, 2007

Contents

1 Introduction 1

2 Main In-core Features 1

2.1 Parallelism during the factorization phase 2

2.2 In-core solution phase . 3

2.2.1 Pool of tasks . 4

2.2.2 Parallel forward and backward substitution 5

3 Out-of-Core (OOC) Main Features 10

3.1 OOC factorization phase . 10

3.2 OOC Solution phase . 10

4 Testing environment 11

5 System based demand driven approach 12

5.1 Performance . 12

5.2 Limitations of the demand driven algorithm 13

6 Direct IO based method 13

6.1 General presentation of the Direct IO based method 14

6.2 Influence of scheduling on the sequential performance 16

6.3 Influence of parallelism on the performance 18

7 Concluding Remarks 23

i

1 Introduction

We are interested in solving large sparse linear systems Ax = b with direct methods (Duff,

Erisman and Reid 1986), in a parallel limited memory environment. Indeed one main

limitation in the use of sparse direct methods comes from the need to store the matrix

factors that has often many more entries (10 to 100 times) than the original matrix.

In this context, an out-of-core (OOC) multifrontal (Duff and Reid 1983, Duff and

Reid 1984) approach is considered. Here the complete matrix of factors is written to

disk during the factorization phase, as a sequence of blocks (so called factor blocks).

Overlapping communications and I/O with computations during the factorization phase is

an important issue (see Agullo, Guermouche and L’Excellent 2006), but is not the scope

of this work . During the subsequent phase (forward and backward solutions, the so called

solve phase) we have to load the factor blocks from the local disks of the computer to the

main memory. In this context, the cost of the solution phase can become the dominant

phase of the complete solution process. When the solution phase has to be performed for

many right-hand sides (simultaneously or not) then it is even more critical.

In this paper, we focus on the performance of the solution phase. We first recall in

Section 2 the main features of our target solver MUMPS (Amestoy, Duff, Koster and

L’Excellent 2001, Amestoy, Duff and L’Excellent 2000, Amestoy, Guermouche, L’Excellent

and Pralet 2006) and fully describe the in-core distributed memory solution phase (never

done in previous publications related to MUMPS). Then we explain how it has been

adapted to the out-of-core context (Section 3). We describe in Section 4 our testing

environment - the hardware we use and our choice of matrices for the tests. We show

in Section 5 the limitations of a simple demand driven approach, that we call a System

based approach, based on automatic system I/O caching mechanisms. In Section 6 we

show how user buffers can be introduced to improve the behaviour of the solve phase and

then describe an approach where the memory used is completely controlled, which we call

the Direct IO based approach. We show that a naive implementation of the Direct IO

based approach is not suitable for parallel implementation and introduce a new scheduling

that constrains the ordering of the tasks. We first prove that the new algorithm is correct.

We then illustrate the gain in performance obtained on a large problem of order 8 million

in a parallel environment.

2 Main In-core Features

Direct solvers try to preserve the zero pattern and to exploit the independence of some

computations in parallel environments. So called three-phase approaches have become very

popular:

• The analysis phase considers only the pattern of the matrix and builds the necessary

data structures for numerical computations.

1

• The factorization phase tries to follow the decision of the analysis and builds the

sparse factors (LU for unsymmetric case, or LDLT for the symmetric case).

• The solution phase performs a forward and backward substitution and, optionally,

performs iterative refinement to improve the solution.

Multifrontal methods use an elimination tree (Liu 1990) to represent the dependencies

of the computations. Each node of this tree is associated with a frontal matrix that

is assembled (summed) by contributions from the children and the original matrix. In

practice, nodes of the elimination tree are amalgamated so that more that one variable

can be eliminated at each node of the tree. The resulting amalgamated tree is referred to

as the assembly tree.

�� ��fully summed columns partially summed columns

fully summed rows

partially summed rows

F F

F
11

F
21 22

12

factors
L

U
factors

non−elim
variables

variables

variables
FS

FS

CB

Figure 2.1: General structure of the frontal matrix

The work associated with an individual node of the assembly tree corresponds to the

factorization of a so called frontal matrix. Frontal matrices are always considered as

dense matrices (see Figure 2.1). Once all eliminations have been performed, the Schur

complement matrix F22 − F21F
−1
11 F12 is computed. It is used to update later rows and

columns of the overall matrix which are associated with the parent nodes. We call this

Schur complement matrix the contribution block (CB) of the node, see Figure 2.1.

If some variables are not eliminated because of numerical issues, they are included in the

contribution block and their elimination is postponed to the parent node or later. These

non-eliminated variables (delayed pivots) increase the fill-in the factors, the number of

the operations and the factorization time, but allow the factorization to compute accurate

factors.

2.1 Parallelism during the factorization phase

The MUMPS solver (Amestoy et al. 2001, Amestoy et al. 2000, Amestoy et al. 2006)

provides three different types of parallelism for both factorization and solve phases. The

reason for the three types is to balance the total work and the memory on each processor.

We use the assembly tree, representing the order in which the matrix will be factorized,

to distribute the nodes over the processors. Depending on the size of the node and on

which level of the assembly tree the node is situated, we have :

2

Type1 node: sequential processing of a node — essentially for the low levels of

the tree (near the leaves), where the tree parallelism is sufficient.

Type2 node: irregular 1D decomposition of the node — for the intermediate

levels when the node is large enough: the contribution blocks are partitioned and

each partition assigned to a different processor. The master is in charge of factorizing

the block of fully summed variables and of deciding how many slave processes will

be used to process this node.

Type3 node: block cyclic 2D distribution of the frontal matrix — reserved only

for the root node, if it is large enough. In this case, ScaLAPACK (Choi, Demmel,

Dhillon, Dongarra, Ostrouchov, Petitet, Stanley, Walker and Whaley 1996) is used

on the node.

Type 3

Type 2

P2
P0

P0
P2
P0

P0
P3
P1 P0

P2
P0P1

P3
P1 P0

P2
P0P1

− sequential processing of the subtree

− irregular 1D decomposition

− 2D block cyclic parallelism

P1
P2

P3

P1 P2 P3 P0P0 P1 P2

Figure 2.2: Different types of parallelism in MUMPS.

Note that, in a sequential environment, we choose to process the nodes of the

elimination tree, using a post-ordering. In a parallel environment, the tree nodes are

distributed onto processors and only a topological ordering is followed.

In Figure 2.3 we show the distribution of the L factors of a frontal matrix depending

on the type of the node. Elim corresponds to a block of eliminated fully summed variables

and NE to the block of non-eliminated fully summed variables of the frontal matrix. In

Figure 2.3.a the whole frontal matrix is mapped to one processor. In Figure 2.3.b the

fully summed variables (FS) are on the master processor. The contributions blocks (CB

in Figure 2.1) can be on several processors.

2.2 In-core solution phase

The solution phase is divided in two steps: forward (Fwd) and backward (Bwd)

substitution. We can present the two steps in several ways. Mathematically, they replace

the original equation (using the whole matrix), by a system of two equations (using only

3

P0

NCB

elim.

NE

FS

P2

P1

P0

NCB

NCB

NE

elim.
FS

a) Type 1 Node b) Type 2 Node

Figure 2.3: Example of mapping of the L factors of a frontal matrix. FS, elim, NE, NCB

hold respectively the fully summed, eliminated, non-eliminated and contribution variables

triangular matrices). So, for example, if the matrix is symmetric, we will replace:

Ax = b by LDy = b (forward step)

LT x = y (backward step)

where L is a lower triangular matrix, and D is a diagonal matrix (or a matrix with 2x2

blocks on the diagonal in the case of numerical pivoting for indefinite systems).

We can also present the two steps graphically using the elimination tree. The forward

step is a bottom-top traversal of the tree (post-ordering for the sequential case and

topological ordering for the parallel case). The backward step is in the reverse order.

We first describe how a pool of tasks, on which the forward and the backward algorithms

will be based, is used to schedule both of the steps.

2.2.1 Pool of tasks

To handle the task dependency, we use a distributed pool of tasks. It contains a list of all

tasks ready to be executed. The pool is used to schedule work in both the sequential and

the parallel cases.

6

3

7

5 4 2 1

POOL − beginning of FWD step

Assembly Tree

1 2 4 5

7

POOL − beginning of BWD step

end of the pool

end of the pool

Sequential environment

Figure 2.4: The POOL of tasks at the beginning of each step. Leaf nodes are coloured

grey. Root node is coloured black.

Figure 2.4 illustrates the pool of tasks. At the beginning of the solve part, using the

assembly tree, we first add to the pool all tasks ready to be processed. For the forward

step, this corresponds to the leaf nodes. As in the factorization, a node will be placed at

the end of the pool as soon as all of its children are processed. A node can be split over

4

more than one processor (Type2 nodes) and, in this case, only the master tasks are added

to the pool for scheduling. The slave tasks are processed on the fly. At the beginning

of the backward step the pool is initialized only with the root nodes. At the end of a

node process, we add to the end of the pool all of its children. The general algorithm

for extracting nodes from the pool is described in Algorithm 1. It is very similar for the

forward and for the backward step.

Algorithm 1 : General Algorithm for extracting a node from the POOL
Step = Fwd or Bwd

if (Fwd) then

Initialise POOL with the leaf nodes mapped on Myid

else if (Bwd) then

Initialise POOL with root nodes mapped on Myid

end if

while (Not finished) do

if (POOL is not empty) then

Try to receive a message and then Process Message(message) [See Algorithms 2 and 3]

else

Wait to receive a message and then Process Message(message) [See Algorithms 2 and 3]

end if

if (POOL is not empty) then

Extract node Inode from the end of the POOL

if (Fwd) then

Fwd Process node(Inode) [See Algorithm 2]

else if (Bwd) then

Bwd Process node(Inode) [See Algorithm 3]

end if

end if

end while

Note that priority is given to the reception of messages - to a blocking or non-blocking

receive. We look at the pool for work only when no messages need to be processed.

The algorithm for the forward case finishes when all root nodes have been treated. The

backward algorithm finishes when all leaf nodes have been processed.

Without loss of generality we will assume in the remainder of this paper that we have

only one right-hand side and thus one solution to compute although the extension to

multiple right-hand sides is straightforward.

For the sake of completeness references to BLAS (Basic Linear Algebra Subroutines)

kernels (GEMM/V and TRSM/V) have been added to the description of the algorithms.

2.2.2 Parallel forward and backward substitution

We start by presenting the general algorithm for the forward substitution (Ly = b). We

then show details of the algorithm used to process a node and add comments on how

messages are processed.

5

Algorithm 2 : General algorithm for the forward step
Myid - process number; Inode - the current node mapped on process Myid ;

Nb children - the number of children of Inode and Pfather - the process on which the master of the father

of Inode is mapped. Nb slaves - the number of slaves; and Nb ContV ect - the number of contribution

vectors, initialized to Nb children +
∑

(Nb slaves involved in each child). Wb - a local working array,

initialized to 0 and designed to accumulate modifications of the right-hand side b; temp Wb - a small

working array of maximum size the size of the largest frontal matrix, initialized to 0.

Fwd Process node(Inode) {I am the master of node Inode}

Update b with entries of Wb corresponding to elim variables

Use factors to compute solution corresponding to elim variables (TRSM/V)

if (Inode is of Type2) then

for i = 1, Nb slaves

send to slave i the computed solution and entries of Wb corresponding to rows mapped

on slave i (message MASTER2SLAVE)

end for

Update entries of Wb related to NE variables (GEMM/V) and send them to Pfather

Reset to zero all entries of Wb sent to slaves and to Pfather

else if (Inode is of Type1) then

Update Wb for NCB+NE rows (GEMM/V)

if (Myid 6= Pfather) then

Send Wb to Pfather (message ContVec)

Reset the sent entries of Wb to zero

else

Decrement Nb ContV ect

if (Nb ContV ect = 0) then /* last modification */

Add father(Inode) to the end of the pool (since father(Inode) is ready to be processed)

end if

end if

else /* Parallel Root Node */

ScaLAPACK will be used to perform both forward and backward steps on all processes

end if

Process Message(Message) {I am updating Inode}

if (Message = ContVect) then

Update Wb with contribution received (scatter and add)

Decrement Nb ContV ect(Inode)

if (Nb ContV ect(Inode) = 0) Add Inode to the end of the pool

else if (Message = MASTER2SLAVE) then

Initialize temp Wb with the part of Wb just received

Use factors and the solution sent by the master to update temp Wb (GEMM/V)

if (Myid=Pfather) then

Update Wb with temp Wb (scatter and add temp Wb in Wb)

Decrement Nb ContV ect(father(Inode))

if (Nb ContV ect(father(Inode) = 0) Add father(Inode) to the end of the pool

else

Send temp Wb to Pfather (message ContVec)

end if

end if

6

Note that in our algorithm (and in practice) the same working space can be used to

store both y and b. We will keep two separate vectors in our algorithm only for the sake of

simplicity. The general algorithm for the forward substitution is described in Algorithm 2.

To better understand the distributed memory version of our algorithms, we first

introduce a few properties related to the use of the elimination tree. For properties 2.1

and 2.2 please note that the terms eliminated and non-eliminated variables were described

in Figure 2.3.

Property 2.1 All contributions to eliminated variables of a node, say Inode, come only

from processes involved in the children of Inode (both master or slave processes).

Proof: This property is clearly preserved by the algorithm, since in our algorithm only

processes involved in the children nodes send contributions to the master of the father -

message ContVec or direct update of Wb either during Fwd Process Node for type 1 nodes

or at the reception of message MASTER2SLAVE for type 2 nodes. Furthermore contributions

to the eliminated variables of a node can only come from nodes involved in the sub-tree

rooted at that node (main property of the elimination tree). This proves our property. �

Property 2.2 All contributions of descendants of a node Inode, to non fully summed and

non-eliminated variables of Inode, are not always sent to processes in charge of Inode.

7

5

3 1

���������������������� ��������������������������
��������������������������

������
������

������
������

��������������������

������
������

		
	

P4

4

P0 P1

P0

P3

P0

6
P2

2

Dotted arrow between nodes 4 and 6 indicates that

part of the contributions from the sub-tree rooted at

node 4 to node 7 are in fact sent by process P0 when

sending contributions from node 2 to node 6.

Figure 2.5: Example used to prove Property 2.2: part of the contributions of node 1 are

not sent to process P3, in charge of node 5.

Proof: All nodes in Figure 2.5 are Type 1 nodes. Node 1 (mapped on P1) sends to node

4 (mapped on P0) updates to Wb (corresponding to entries of Wb on P1) and resets

those entries to zero. Node 2 (mapped on P0) updates Wb and sends its updates to P2

(corresponding to entries of Wb on P0) and resets those entries to zero. At this point, part

of the contributions of the sub-tree rooted at node 5 will circulate through P2 on node 6.

This is the case if both node 1 and node 2 have a common row in the frontal matrix of

node 7. This update to Wb will then be sent to P4 by P2 during the processing of node 6.

As a consequence during the processing of node 4, process P0 will not send to its father

(node 5) all contributions from node 1 to node 7. Instead Property 2.1 says that the

common row updated by node 2 and node 4 could not be eliminated at node 5, but at

node 7.

Note that, Property 2.1 is one of the main properties of the elimination tree, exploited

by the multifrontal approach and preserved, on each process, by the algorithm for

7

the eliminated variables. However, contrary to what is exploited during multifrontal

factorization, this elimination tree property is no longer respected on each process for

non-eliminated variables (Property 2.2). Property 2.2 also explains the importance of

resetting of Wb to zero in our algorithm. �

Property 2.3 At any time a computed contribution is stored in the Wb array of only one

process.

Proof: We recall that Wb is designed to sum contribution vectors. Wb is first initialized

to zero on each process at the beginning of the forward step. It corresponds to updates

to the right-hand side b due to solution terms already computed. Each time part of Wb

is sent to a process (message ContVec or MASTER2SLAVE) then the corresponding entries

are reset to zero in the procedure Fwd Process node.

Let us now check, that updates to Wb are never lost. First, during the

function Process Message(MASTER2SLAVE), each slave updates in a local array temp Wb,

contributions sent by its master. Temp Wb is then either used to update Wb locally, if the

process id of the slave is equal to Pfather, or is forwarded (message ContVec) to process

Pfather without updating Wb locally. �

Property 2.4 When starting to process a node (first line of Algorithm 2, procedure

Fwd Process node(Inode)), b holds all contributions needed to compute the solution

corresponding to the eliminated variables on the node.

Proof: Results from Property 2.1 and 2.2.

Property 2.4 recursively proves that Algorithm 2 computes the correct solution. �

The general algorithm for the backward substitution is described in Algorithm 3. The

algorithm performs backward elimination operations using the factors U or LT . To describe

the algorithms, we consider the case of LT x = b. As for the forward step, priority is given

to message reception. If no message is received, a node from the pool is extracted.

In the backward step there are three types of messages: Bwd MASTER2SLAVE, similar to

the forward case, UpdateRHS which corresponds to ContVec in the forward step, and a new

type of message: Node, used to activate the children nodes.

8

Algorithm 3 : General algorithm for the backward step

Myid - process number; Inode - current node mapped on Myid; Nb slaves and Nb ContV ect are

respectively the number of slaves and the number of contribution vectors (initialized to 0) of Inode.

Bwd Process Node(Inode)

if (Inode is of Type2) then

Master distributes already computed solution between slaves (message Bwd MASTER2SLAVE).

else if (Inode is of Type1) then

Use factors

associated with NE+NCB columns of LT to update b (GEMM/V)

associated with elim variables to compute solution (TRSM/V)

for each child of Inode do

if (Child mapped on Myid) then

Add child node to the end of the pool

else

Send the solution corresponding to all column indices of the frontal matrix of Inode to

all processes on which at least one master of a child node is mapped (message NODE)

end if

end for

end if

Process Message(Message)

if (Message = NODE) then

Update known solution

Add Inode and all the brothers of Inode mapped on this process to the pool.

else if (Message = Bwd MASTER2SLAVE) then

Use factors mapped on this slave process together with the received solution to compute a

contribution to b (GEMM/V)

Send the contribution to b to the master (message UpdateRHS)

else if (Message = UpdateRHS) then

Update b with the contribution received and increment Nb ContV ect

if (Nb ContV ect = Nb slaves) then /* last update */

Use factors

associated with NE columns of LT to update b (GEMM/V)

associated with elim variables to compute the solution (TRSM/V)

for each child of Inode do

if (Child mapped on Myid) then

Add child node to the end of the pool

else

Send the solution corresponding to all column indices of the frontal matrix of Inode to

all processes on which at least one master of a child node is mapped (message NODE)

end if

end for

end if

end if

9

3 Out-of-Core (OOC) Main Features

The out-of-core implementation of our algorithms is very critical for large matrices when

we may have problems with a limited memory environment. Our objective is to reach good

performance with respect to both run-time and memory in both sequential and in parallel

cases. The OOC run time is strongly related to the hard disk time access. The latency,

the number of disk accesses, and the regularity of the reading pattern are issues that will

have to be taken into consideration.

In this section, we describe the main OOC features of our algorithms.

3.1 OOC factorization phase

During the OOC execution, the computed factors are stored on the hard disk and are

written in the order in which they have been computed. Results obtained by Agullo et al.

(2006) show that this can be obtained with limited overhead with respect to the in-core

factorization.

In a sequential environment factors are written on the hard disk following a post-

ordering traversal of the tree. For the parallel runs only a topological ordering, with

unpredictable dynamic interleaving of slave and master tasks is followed (see Figure 3.1).

10

2 4 7

9

8

3

1

6
P3

P0
P1
P2

P0

P1

P2

P0 P0

P0

P2

P1P3

P0 P1 P3

P0

P0

P1 P3

P0

Type 2
Type 2

Type 1

Type 3

P2 P3

5

P3
P0

P1P1
P2

P0

Type 2

P2

P3

P0

P1

1 3 6 10

52 3

4 3

9 10

9 10

7 58 109

5

Factor data on the disk of each processor

9

 master task

 slave task

a) elimination tree mapped on 4 processors b) Hard disk of each processor

Figure 3.1: Example of interleaving of master and slave tasks during the factorization and

influence on the disk usage on each processor.

Although one could clearly take advantage of keeping part of the factors in-core at the

end of the factorization, for the sake of clarity, we will consider in the following that all

factors have been written to the disk at the end of the factorization phase.

3.2 OOC Solution phase

We use the factorization write sequence in order or in reverse order, to prefetch factor

blocks to the user buffers during the forward and the backward steps respectively. Looking

10

at the hard disk storage area, these two steps can be represented as directions for reading

data. The forward step needs factors from the disk in a left-right direction. That is why,

for the forward step, we may want to prefetch data in the natural direction (the order in

which data has been written) (see Figure 3.2). The backward step needs factors in the

reverse order: right-left direction on the disk. Here, the inverse of the natural reading

direction is used, so that, one could expect the performance of the backward step to be

worse than the forward step.

BWD stepFWD step

L Factors Data on the HARD DISK

P1 52 3 9 10

Figure 3.2: Reading direction on the disk in the solution step.

For this OOC method we use almost the same algorithms as for the in-core case. The

only modification (see Algorithm 4) for the OOC execution is to load data from disk for

each occurrence of the sequence ‘ use factors’ in the Algorithms 2 and 3.

Algorithm 4 : Modification of Fwd and Bwd algorithm for OOC execution

Use factors of Inode ... =⇒

if (OOC run) then

Load data from disk(Inode)

end if

Use factors ...

4 Testing environment

All our runs have been performed on the multiprocessor Cray XD1 located at CERFACS

(58 nodes with 2 processors per node; and 4 GB per node). Each node is equipped with an

IDE disk managed by the reiserfs file system of maximum bandwidth for a read operation

close to 16 MB/sec with one MPI process per node.

Two matrices have been used for the experiments:

• The matrix Grid 300-100-10 corresponds to an 11-point discretization of the

Laplacian operator on a three-dimensional grid problem of reasonably large size :

300 × 100 × 10 (factor size: 748 MB, order : 300 000)

• Qimonda07 from Qimonda AG company is a large real symmetric matrix from circuit

simulation of order 8,613,291 with factors of size 2 534 MB and a total working space

for in-core factorization of 5 084 MB.

We recall that during factorization all factors are written to the local disks. We have

no factors kept in memory at the beginning of the solve part and between the forward and

11

backward steps. So we have no intended reuse of data, which will help to better understand

the behaviour of each step.

With these assumptions, we will thus have to load all of the factors during the solution

phase. Furthermore, Qimonda07 is a large and very sparse matrix with more than 3 million

nodes in the assembly tree. IO access might occur for each node of the elimination tree

and thus it is an interesting matrix to illustrate the behaviour of our algorithms.

Two possibilities for accessing data on disk will be considered. In the first approach, we

rely on system buffers (or page caching) to access the disk, referred to as the System based

method. A second approach consists in a direct access to the disk and will be referred to

as a Direct IO based method.

5 System based demand driven approach

A simple way to implement the OOC solution phase is to make a demand driven approach.

We do not use any explicit prefetching. We let the operating system handle intermediate

caches when loading data.

To illustrate the potential and the limitations of a demand driven approach we compare

in Table 5.1 its behaviour on our two test matrices. We analyse the situation when the

matrix fits in the main memory (the matrix Grid 300-100-10); and when the memory is

critical (the larger matrix Qimonda07).

5.1 Performance

Factor Solve

Strategy Time Fwd Bwd Disk access

(sec) (sec) (sec) (MB/s)

Grid 300-100-10

in-core 34.91 0.39 0.37 -

OOC 34.90 1.26 1.17 616

Factor Solve

Strategy Time Fwd Bwd Disk access

(sec) (sec) (sec) (MB/s)

Qimonda07

in-core(∗∗) 40.4 0.9 0.9 -

OOC 88.8 161.6 221.6 13

Table 5.1: a) Demand driven approach. b) (∗∗) In-core time obtained on 8 processors.

Let us first focus on the grid matrix with factors of size 748 MB. We compare the in-core

and OOC time for the solution phase. The time for the factorization phase is included only

for information. We see that the extra time required in both forward and backward phases

for the OOC execution corresponds to copying the factor data at a rate of 616 MB/s so

that the copy is not from the disk (bandwidth of 16 MB/s) but from the system buffers.

Indeed the system based demand driven approach unpredictably affects the behaviour

of our processes in an intrusive way. Even if the factors were written to the disk during

the factorization, a significant part of them still remains in the system caches, so that the

cost of accessing them during the solution phase is the cost of a main-memory access.

On the larger problem (Qimonda07), the size of the total workspace for sequential in-

core factorization (5084 MB) is bigger than the available memory (4 GB). In out-of-core, a

working space of size 2 GB is needed during factorization so that the system cannot keep all

12

the factors in the system caches at the end of the factorization phase. Some factor blocks

then must be loaded from the disk. In this case, increasing the number of disk accesses

will decrease the time performance. Note that in Table 5.1-b) the backward step takes

37% more time for the same number of operations than the forward step. We compare the

time for in-core, obtained on 8 processors, with the OOC sequential run. This time the

disk access is more realistic - 13 MB/s. Note that, the peak speed of a memory read from

the disk is 16 MB/s, so that the minimum time to only load all the factor blocks is 158

seconds.

We thus see that, even in a simple context (sequential reading of data from the disk in

an identical order to that used when writing) the performance is far from the minimum.

The reason is that even in this relatively simple case the system I/O mechanism is in

conflict with the automatic system swapping mechanisms.

5.2 Limitations of the demand driven algorithm

As shown in Table 5.1-b), the System based method is inefficient on large matrices, when

the volume of data on the disk is larger than the memory size. In this case, we observe

the so called swapping effect: the system decides when and which data to swap to the

disk. The decision is done by the system and is often based on a variant of a least recently

used strategy. Note that, the system has no knowledge of the data access pattern of the

algorithm.

Furthermore, even more critical is the fact that the system cache grows with each disk

access (reading or writing data). It is impossible to control the memory effectively used: its

size or effective bandwidth to access the disk. So we do not know how much real memory

is used. Moreover the system cache management may lead to user space swaps - on our

own or on other user’s data. Thus, if we consider that OOC is requested when the memory

is limited, this unpredictable behaviour is more likely to occur very often.

These drawbacks lead us to look for a new mechanism to load data from the hard disk.

6 Direct IO based method

In this section we present a new approach based on a direct access to the hard disk, that

will be named Direct IO based method. Using the Direct IO access, the user has full

knowledge and control of the memory used. This is a specific feature existing on many

operating systems that can be specified while opening the files. Data must be aligned

in memory when using direct I/O mechanisms: the address and the size of the buffer

must be a multiple of the page size and/or of the cylinder size. The use of this kind of

I/O operations ensures that a requested I/O operation is effectively performed and that no

caching is done by the operating system. Strategies can then be used to prefetch data. The

13

inconvenience of this method is that the System based cache mechanism is not available,

it is more complex to implement and requires more algorithmic effort.

6.1 General presentation of the Direct IO based method

To solve large problems efficiently, which is the main target in designing an OOC solver, we

propose to use small user buffers to explicitly control how data is prefetched from the disk.

User Buffer Emg buffer

Prefetching zone Emergency zone

Figure 6.1: User defined buffers.

The memory is divided in two areas: a prefetching zone and an emergency one -

Figure 6.1. In the prefetching zone, the whole available free space is used to load data. We

prefetch each time a large enough contiguous block (1 MB in our experiments) is free. The

emergency zone is used when a block factor is not prefetched or not ‘on the way’ (part of a

prefetch request - see Algorithm 5). It has to be as large as the largest frontal matrix. In

this zone we load only one factor data at a time and it is used only in so called emergency

cases.

The implemented algorithm reduces the disk access to the strict minimum - each data

is loaded only once and kept in memory until it is used. To handle this, four states of the

node are used to describe these transitions, (see Figure 6.2).

For every node the possible states are:

— on disk only - data is not available in the main memory

— on the way - data is not available, but it is being loaded

— ready - data is in the buffer and is ready to be processed

— used - data is in the buffer but has been already used. Corresponding space can

be freed.

on the way

ready

used

on disk only

Figure 6.2: The 4 possible states of the node

The statement ‘on disk only’ means that the factors are not yet accessed. If we need

to access data ‘on disk only’, we have to verify that there is enough free space in the

14

buffer to load the data. The statement ‘on the way’ corresponds to data that is not yet

in main memory, but we know that it is being loaded. So we may have to wait until the

data is ‘ready’. After the prefetching process, all loaded data in the user buffers are in the

state ‘ready’.

Here we use again the algorithms presented for the in-core execution (see Algorithms 2

and 3) with some additional functionalities (see Algorithm 5). Loading data is performed

each time enough free space becomes available in the user buffer. Before processing a

node, we check whether it is ‘ready’ or ‘on the way’, or whether we need to load it in the

emergency buffer. The verification of data availability is done each time we have ‘Use

factors’ in the algorithms. Prefetching data is done every time enough contiguous space

is freed in the buffers.

Algorithm 5 : OOC functionalities for Direct IO based method
if (OOC run) then

if (factors of Inode are ‘on disk only’) then

Load data from disk (emergency loading of Inode)

else if (the factors of Inode are ‘on the way’) then

wait until the end of the prefetch

end if

end if

Use factors to do ...

We compare the performance of the System based and the Direct IO based method on

the large matrix Qimonda07 in a sequential environment and also analyse the behaviour

of our algorithm of using one or two buffers (emergency buffer and/or user buffer).

Methods T Fwd T Bwd Nb Req Nb Req Nb Req Nb Req

1buffer Emg zone 1buffer Emg zone

(sec) (sec) Fwd Fwd Bwd Bwd

Direct IO (Emg) 1160.6 1295.8 0 3 083 998 0 3 083 998

Direct IO (Emg+1) 171.5 176.8 541 0 496 0

System based 161.6 221.6 — — — —

Table 6.1: Influence of the number of buffers on the uni-processor performance on Qimonda07.

Fwd=forward phase. Bwd=backward phase. Emg=emergency buffer:1 MB; User buffer:10MB.

When only the emergency buffer (Emg) is used, the total number of requests to the

disks (Nb Req Fwd and Nb Req Bwd) is high and incurs a very significant time overhead

(see Table 6.1). Using an additional single buffer (of small size 10 MB only), our prefetching

mechanism can anticipate and in this case suppress the use of the emergency buffer.

In this case, the System based and the Direct IO approaches have similar execution

times for the solution step. Even if the Direct IO based method is marginally better for

the backward substitution (20% time reduction), it is not in this case the main advantage.

Indeed, the memory effectively used for buffers in Direct IO is 10 MB whereas the cache

for the System based method may be as large as 2.5 GB (the size of the factors). The

15

performance of the solve is stabilized, while controlling the size of the buffers being

effectively used.

6.2 Influence of scheduling on the sequential performance

The order in which nodes are extracted from the pool can be very critical for the execution

time because this will influence the order in which data is read from the disk. Indeed

solving a matrix using irregular access to the hard disk could slow down the time for both

forward and backward steps by a factor of more than 10 (see Table 6.2). Therefore an

efficient scheduler has to be implemented to reduce the number of disk accesses and to

improve the regularity of accesses.

Scheduling the order of a node’s processing is possible in the pool of tasks. We add

nodes only at the end of the pool, but we can extract them in any order. We show the

differences between two strategies - FIFO and LIFO, in terms of disk access (Figures 6.3

and 6.4 respectively). We describe how the factor data are stored on the hard disk and

how, by using the assembly tree, we add into the pool all the ready tasks at each step.

We use three data structures: the assembly tree (tasks dependency), the pool of tasks

(only for the ready tasks) and the user buffers (to load data from the disk). Two user

buffers are used here: one with a prefetch mechanism and one for ‘emergency’ loading.

We do not differentiate the states ‘on the way’ and ‘ready’. All prefetched data are

thus ready to be used. In our figures, the arrows point to the node to be processed. The

numbers in grey with a diagonal line across represent already used data. Each time we

have to process a node, that is not in memory, we load it to the emergency (Emg) buffer.

Prefetching is performed, in this example, each time half of the user buffer is free, because

the associated node factors are in the state ‘used’.

11109

10 7 6 4 2 1

54321 6 7 8 9 10 11

10 7 6 4 3

... POOL − beginning of BWD

USER Buffer EMG

 1 2

 3 4

 5

 6 7

 8

9 10

 11

Post−order numbering
of the assembly tree

POOL − beginning of FWD

9

5 8

9

11
BWD

FWD

Factor block locations on disk

7 89

810

10

9 7

1 3

1 3

5 3

2

2

6

4

4

4

10

86 75

10 7 6 4 2

end of the pool

Figure 6.3: Algorithm with a LIFO processing of the tree in sequential mode

16

In Figure 6.3, we present the optimal (for sequential execution) LIFO (Last In

First Out) strategy for extracting a node from the pool. Hence we have no calls to the

emergency zone during both forward and backward steps.

 1 2

 3 4

 5

 6 7

 8

9 10

 11

54321 6 7 8 9 10 11

11

9 10

1 2 3 4

1 2 3 4

1 2 3 4

10 7 6 4 2 1

end of the pool

... POOL − beginning of BWD

EMGUSER Buffer

of the assembly tree
Post−order numbering

7

6

10

11109

9 7 810

9 7 810

beginning of FWD

BWD

FWD

Factor block location on disk

Figure 6.4: Algorithm with a FIFO processing of the tree in sequential mode

In Figure 6.4 we use a FIFO (First In First Out) strategy to extract the nodes from

the pool. Starting with the forward step, the leaf nodes are added into the local pools

so that the post-ordering is respected (from the end to the beginning of the pool). The

user buffer prefetches data in the forward direction from the disk. Nodes 10, 7, and 6 are

loaded through the emergency buffer. Loading data in the Emg buffer often leads to an

irregular access (of relatively small size) to the data on the hard disk. This will influence

the execution time of the whole phase.

For the backward step, the user buffer has prefetched in the reverse direction. Firstly,

the root node is extracted from the pool and processed. Nodes 7 and 8 are, in our case,

prefetched in place of the root factor blocks. This time we have less emergency calls

and more regular access to the disk. Similar effects are observed on real matrices, which

explains the relatively better behaviour of the backward step with the FIFO strategy (see

Table 6.2).

We present the results of the two strategies in Table 6.2. We compare the time for

the forward and for the backward step with the minimum time needed if all factor data

could be loaded at once (T min). We compare, also, the number of requests per step for

the user buffer and the emergency one (Nb Req). Note that the FIFO strategy, which

does not respect the node order on the disk, is significantly slower than the LIFO strategy.

Furthermore, as expected, the forward step is even slower than the backward step in this

case.

Running sequentially, the FIFO based extraction shows how critical the scheduling can

be on the performance. In parallel, we cannot guarantee a post-ordering and a contiguous

access to the factors and thus similar effects can be expected.

17

Strategy Nb of T min T Fwd T Bwd Nb Req Nb Req Nb Req Nb Req

Procs 1buffer Emg zone 1buffer Emg zone

(sec) (sec) (sec) Fwd Fwd Bwd Bwd

LIFO 1 158.4 171.5 176.8 541 0 496 0

FIFO 1 158.4 2360.9 1480.1 338 3 054 580 30 053 2 877 695

Table 6.2: Influence of the scheduling of the tasks on Qimonda07. Size of Emg buffer is 1 MB; Size of

the user buffer is 10 MB per processor

6.3 Influence of parallelism on the performance

In this section, we study the impact of the scheduling used on the performance of the

parallel OOC solution step. We compare again the time for the forward and backward

steps with the minimum time (T min) to load factors from the disk and with the maximum

bandwidth (16MB/s) on the most loaded processor. We also show the number of requests

for the buffers per step.

Strategy Nb T min T Fwd T Bwd Nb Req(∗) Nb Req(∗) Nb Req(∗) Nb Req(∗)

of 1buffer Emg zone 1buffer Emg zone

Procs (sec) (sec) (sec) Fwd Fwd Bwd Bwd

LIFO 1 158.4 171.5 176.8 541 0 496 0

LIFO 2 79.9 89.6 88.7 274 0 250 0

LIFO 3 57.9 64.9 262.1 190 3 169 422 497

LIFO 4 41.3 47.2 91.6 138 0 127 0

LIFO 6 31.5 38.0 186.7 102 6 86 422 498

LIFO 8 21.8 24.9 137.6 70 0 64 321 871

LIFO 16 11.9 13.2 94.4 39 2 32 214 245

LIFO 25 9.1 10.4 50.6 30 5 26 120 131

Table 6.3: Influence of the parallelism on Qimonda07. Size of Emg buffer is 1 MB; Size of the

complementary buffer is 10 MB per processor; (∗): Max per processor.

On one processor, a LIFO order to extract tasks from the pool leads to a contiguous

access to the hard disk. In parallel, we cannot guarantee that the order of processing of

the tasks (and the factor blocks) will correspond to the order used to write them to the

disks. We thus see in Table 6.3 that work needs to be done on the scheduling to reduce

the gap between the minimum time to load factors and the actual time, particularly for

the backward substitution. In fact, this gap results from the large number of emergency

calls during the backward step. Note that, in this example, we have almost no emergency

requests during the forward step. One reason is that we use a relatively small number of

processors. Another reason is that our large matrix has many frontal matrices (nodes in

the tree) of relatively small size, so we have a relatively small number of type 2 tasks that

could require the use of the Emg buffer.

On a large number of processors, we can expect the performance of both steps (Fwd

and Bwd) to be even more sensitive to the order in which nodes are extracted from the

pool. On a limited number of processors, however, one can expect the backward to be

more sensitive than the forward step.

Indeed, at the beginning of the backward step, we have a small number of root-nodes,

mapped onto a few processors. The other processors have no work and are waiting. During

the backward step, the end of one task results in the freeing of multiple other tasks without

18

prioritizing them. But choosing one instead of another task in the pool is critical for the

performance. Furthermore, if we choose to process a node Inode, a LIFO strategy will

induce the processing of all of its children before the brother of Inode. If the factors

of this node, Inode, are not in memory then the factors of the children will not be in

memory either. This will lead to emergency requests. We will further illustrate this in

Figure 6.5. On the other hand, during the forward phase, where we exploit the large task

independence of the leaves, all processors often have at least one node to process. In this

case, all processors start working almost at the same moment. As the work is distributed

regularly among the processors, they will progress in a synchronous way. The algorithm

will more naturally process the complete tree respecting the post-ordering of the nodes in

the tree.

For all these reasons and since we have seen in Table 6.3 that the performance of the

backward phase is critical even on a limited number of processors, we discuss a modification

of the scheduler and will illustrate it for the backward phase.

2 76

4 75

76 1 4 5

 3

3 6

4 5 1

77P1 P2

P2P1

P1

POOL

P2

P1

P2

P1P2

 2

 6

 7 Disk User Buffer
Location of factors:

4 751 3P1

P1P1

P1 P2

P1 , P2

time

Figure 6.5: Parallel backward phase with LIFO extraction from the pool. The nodes with

the same colouring are mapped on the same processor. The root node is of Type3 and is

mapped on both processors.

On the given assembly tree, mapped on two processors (P1 and P2), see Figure 6.5,we

represent the beginning of the backward step and the data in the user buffer and in the

pool of tasks. To simplify the illustration of our algorithm, we assume that the root is

mapped on both processors and that all other nodes are on only one processor (type1

nodes). We will comment on type 2 nodes in our algorithm later.

Some data are pre-loaded in the user buffer on both processors, respecting the backward

step direction of needed data. After processing the root node, P1 continues with the only

node in its POOL (node 3). This node is not ‘in memory’ and requires an emergency

access. If node 1 is added to the pool after the end of node 6 (that would add nodes

4 and 5 to the pool of processor P1) on processor P2, then accessing the factors of node 1

will lead to another emergency call.

19

The natural way to improve performance could be to strictly follow the write sequence

of the factorization step. Doing so we would always get the node at the top of the memory.

We hope that this algorithm will free more contiguous space in the user buffer, so that less

emergency calls will be needed.

In our new algorithm (Algorithm 6), a new ‘blocking receive’ (at line β) has been

introduced with respect to the Algorithm 1. The main difference between the blocking

receive from the original algorithm (at line α of Algorithm 6) and the one introduced at

line β is that, at line β, our blocking receive is performed while we have tasks ready to be

activated in the pool. Since this is done separately on each processor (local pool) we have

to prove that it does not introduce a deadlock between processes.

Changes made to our scheduling Algorithm 1 are written with larger font in

Algorithm 6. All unchanged parts are written in tiny characters.

Algorithm 6 : Scheduling the POOL with next node in the sequence (NNS) strategy

step = Fwd step or Bwd step

if (step = Fwd step) then

Initialise POOL with the leaf nodes mapped on Myid

Initialise pointer to the first leaf node
else

Initialise POOL with root nodes mapped on Myid

Initialise pointer to the first root node
end if

while (Not finished) do

if (POOL is not empty) then

Try to receive a message and then Process Message(message)

else

α Wait to receive a message and then Process Message(message)

end if

if (POOL is not empty) then

Try to extract node Next Node in the Sequence from POOL

if (Inode 6= NNS) then

β Wait to receive a message and Process Message(message)

cycle (to while)

else

Update position of the pointer to the next node master task in the sequence
end if
Step Process node(Inode)

end if

end while

To prove the correctness of our new algorithm, we will formulate and demonstrate two

more properties, based on the assembly tree and the task dependency.

Property 6.1 Forcing the sequence to schedule nodes in Algorithm 6 does not introduce

deadlock.

Proof: First of all, as explained before, Type2 slave tasks do not go through the pool of

tasks and are processed ‘on the fly’ (at the reception of a message MASTER2SLAVE for both

forward and backward steps). Therefore, our blocking receive will not prevent us from

treating such slaves tasks. Type3 tasks are only concerned with the largest root node of

20

which only the master task will go through the pool. In our proof, we can thus focus on

the master tasks (of any type) since they are the only ones that might be blocked in the

local pool.

Let us focus on the backward case. (The proof for the forward case is similar and can

be easily deduced from the backward case.)

Let NBps be the number of processes and let us suppose that we have a deadlock

between r processes (r ≤ NBps). On each process Pi (Pi ≤ r) let NPi
be the next

node not processed in the sequence of processes Pi.

We first mention/prove a simple intermediate property between nodes ready to be

activated in the local pools.

Property 6.2 During the backward step, if node j is ready on process Pi, then j is not

an ancestor of NPi
.

Proof: Thanks to the elimination main property, if j were an ancestor of NPi
then it

would be in the sequence of the backward step before NPi
. This contradicts the definition

of NPi
. �

Proof of property 6.1 (continued)

Let NPi
i ∈ [0 .. r − 1] be the nodes in the sequence that processes Pi are waiting for. If

NP0 is not ready (not in the pool), then it means that one of its ancestors (j1) has not been

processed. Because of Property 6.2, j1 cannot be ready in the pool of P0. Let us suppose,

without loss of generality, that j1 is in the pool of process P1. Furthermore, on process P1,

NP1 is not in the local pool. (Note that NP1 might be equal to j1). Therefore there exists

an ancestor j2 of NP1, ready to be activated on another process P2. Either NP2 is equal to

NP0 and we have a cycle of dependencies between processes, or we can continue and will

end up with a cycle between r processes.

Let us suppose that we have reached a cycle of size r′, r ≥ r′ ≥ 2. Let

(NP0, j1), (NP1, j2), (NP2 , j3), ...(NP
r′
, j0)

be such a cycle, where j0 is ready on process P0 and is an ancestor of NP
r′
. In each couple

(NPi
, ji+1) ji+1 is an ancestor of NPi

and is thus processed strictly before NPi
in the

backward sequence. Furthermore, by the definition of NPi
, NPi

is in the sequence before

any node in the local pool of Pi. Let → denote the precedence in the backward sequence.

x → y mean that x is before y in the backward sequence.
a
→ indicates an ancestor

relation, x
a
→ y indicates that x is before y because x is an ancestor of y. (Note that x

a
→ y

implies x → y and x 6= y). We thus have :

j0
a
→ NP

r′
→ jr′

a
→ NP

r′−1
... j2

a
→ NP1 → j1

a
→ NP0 ,

which means that NP0 is not the first ready node in the sequence of process P0, since j0

is ready and is before NP0 in the sequence. Thus j0 is equal to NP0 . Furthermore, thanks

to our cycle, j0 is before j1 in the sequence (j1 6= j0), which contradicts the fact that j1 is

21

an ancestor of NP0(= j0) located on process P1. We have thus proved that our algorithm

does not introduce any deadlock. �

In our algorithm, we use a pointer to the next node in the sequence, that is why we

call this strategy Next Node in the Sequence (NNS). Each time we have to extract

a node from the pool, we choose this particular node. The NNS strategy is illustrated in

Figure 6.6. One can see that with a LIFO strategy node 3 is added to the pool of process

P1 at the end of the process of the root node 7 mapped on both processes. Node 3 is then

treated by P1 before nodes 4 and 5. On the other hand, with the NNS strategy, node 3 is

not processed and P1 waits for node 5 to be added to the pool since it the next node in

the sequence after node 7.

3 6

77

3 4 5

2 76

4 75

76

3 6

4 5 1

 1 4 5

 3

77P1 P2

P2

P1 P2

P1

P1 P2

POOL NNS strategy

Wait

P2

P1

P2

P1P2

P2P1

P1

 2

 6

POOL LIFO strategy

Disk User Buffer
Location of factors:

4 751 3P1

P1P1

P1 P2

P2P1 ,
 7

Figure 6.6: Comparison of LIFO and NNS extraction from the pool.

Note that slave tasks are not considered in this sequence. The slave tasks, for type 2

nodes, are processed on the fly (do not use the pool) and are driven by the order in which

the messages are received. Our pointer thus only considers master tasks that are scheduled

through the POOL. In our new algorithm the slave tasks of type 2 nodes might still involve

requests to the Emg buffer and/or to be prefetched out of sequence. This will influence

the performance mostly on a large number of processors.

Normally, the next node in the sequence is located at the end of the user buffer, and

processing this node will free more contiguous space in the buffer. We hope that this

will lead to more regular disk access and will improve the performance especially for the

backward step in a parallel environment.

The results, presented in Table 6.4 show that using the NNS strategy helps to reach

good performance in the backward step on parallel runs. Qimonda07 has a large number of

relatively small nodes, with a relatively small number of Type2 nodes. This explains why

with our NNS algorithm in general we have no emergency calls in both steps of the solution

phase. The time for the backward step has a more realistic behaviour and is reduced by a

factor of 5 (see 6 processors: using LIFO strategy — 186.7 sec and NNS strategy — 37.9

22

Strategy Nb of T min T Bwd Nb Req(∗) Nb Req(∗)

Procs 1buffer Emg zone

(sec) (sec) Bwd Bwd

NNS 1 158.4 177.2 496 0

NNS 2 79.9 93.7 250 0

NNS 3 57.9 65.5 174 1

NNS 4 41.3 50.5 117 0

NNS 6 31.5 37.9 93 0

NNS 8 21.8 45.2 57 0

NNS 16 11.9 13.8 36 0

NNS 25 9.1 10.7 25 0

Table 6.4: Influence of the scheduling NNS of the tasks on Qimonda07. Emg= 1 MB; User buffer = 10

MB per processor; (∗): Max per processor.

sec). As shown, the NNS strategy is much closer to the minimum time for loading factors

from disk.

7 Concluding Remarks

We have described, in this paper, the main steps of a multifrontal algorithm for distributed

forward and backward substitutions. We have shown that our original algorithms can be

easily adapted for OOC execution. We have then compared two different approaches to

read factors from the hard disk. In this context a ‘naive’ System based OOC approach is

not suitable mostly because of its unpredictable memory use.

A direct IO access to the disk with small user buffers has thus been introduced to

control the memory effectively used. In a sequential environment we have first shown

how critical the task scheduling can be. We have observed that one important issue is to

control the number of hard disk accesses. Another issue is to obtain ‘regular’ disk accesses.

While controlling memory effectively used, we then studied the parallel behaviour of our

solver. We have shown that the optimal sequential task scheduling is not efficient in a

parallel context. To obtain more regular disk access, especially for the backward step, we

have constrained the scheduler to follow the factorization write sequence of factor matrices

during the factorization. We have proved the correctness of the algorithm and have shown

that we can significantly reduce the time for solution.

A possible extension to this work would be to experiment on a larger number of

processors to find the limitation of our constrained scheduling approach. In this context,

we may then have to exploit also the write sequence of the slave tasks of type 2 nodes.

Another extension to this work could be to study the overlapping between computations

and disk access in the context of multiple right-hand sides. Finally we may try to influence

the scheduler of the factorization to improve the solve (future collaboration with Agullo

and L’Excellent, INRIA-LIP-ENS Lyon).

23

Acknowledgement

We are very grateful to J.-Y. L’Excellent for many useful discussions and for comments on

the first draft of this work.

References

Agullo, E., Guermouche, A. and L’Excellent, J.-Y. (2006), A preliminary out-of-core

extension of a parallel multifrontal solver, in ‘EuroPar’06 Parallel Processing’,

pp. 1053–1063.

Amestoy, P. R., Duff, I. S. and L’Excellent, J.-Y. (2000), ‘Multifrontal parallel distributed

symmetric and unsymmetric solvers’, Comput. Methods Appl. Mech. Eng. 184, 501–

520.

Amestoy, P. R., Duff, I. S., Koster, J. and L’Excellent, J.-Y. (2001), ‘A fully asynchronous

multifrontal solver using distributed dynamic scheduling’, SIAM Journal on Matrix

Analysis and Applications 23(1), 15–41.

Amestoy, P. R., Guermouche, A., L’Excellent, J.-Y. and Pralet, S. (2006), ‘Hybrid

scheduling for the parallel solution of linear systems’, Parallel Computing 32(2), 136–

156.

Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrouchov, S., Petitet, A., Stanley, K.,

Walker, D. and Whaley, R. C. (1996), ‘ScaLAPACK: A portable linear algebra library

for distributed memory computers - design issues and performance’, Computer Physics

Communications 97, 1–15. (also as LAPACK Working Note #95).

Duff, I. S. and Reid, J. K. (1983), ‘The multifrontal solution of indefinite sparse symmetric

linear systems’, ACM Transactions on Mathematical Software 9, 302–325.

Duff, I. S. and Reid, J. K. (1984), ‘The multifrontal solution of unsymmetric sets of linear

systems’, SIAM Journal on Scientific and Statistical Computing 5, 633–641.

Duff, I. S., Erisman, A. M. and Reid, J. K. (1986), Direct Methods for Sparse Matrices,

Oxford University Press, London.

Liu, J. W. H. (1990), ‘The role of elimination trees in sparse factorization’, SIAM Journal

on Matrix Analysis and Applications 11, 134–172.

Rothberg, E. and Schreiber, R. (1999), ‘Efficient methods for out-of-core sparse Cholesky

factorization’, SIAM Journal on Scientific Computing 21(1), 129–144.

Rotkin, V. and Toledo, S. (2004), ‘The design and implementation of a new out-of-core

sparse Cholesky factorization method’, ACM Trans. Math. Softw. 30(1), 19–46.

24

