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ABSTRACT

The problem of �nding good preconditioners for the numerical solution of in-

de�nite linear systems is considered. Special emphasis is put on preconditioners

that have a 2 � 2 block structure and which incorporate the (1; 2) and (2; 1)

blocks of the original matrix. Results concerning the spectrum and form of

the eigenvectors of the preconditioned matrix and its minimum polynomial are

given. The consequences of these results are considered for a variety of Krylov

subspace methods. Numerical experiments validate these conclusions.
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1 Introduction

In this paper we are concerned with investigating a new class of preconditioners

for inde�nite systems of linear equations of a sort which arise in constrained

optimization as well as in least-squares, saddle-point and Stokes problems. We

attempt to solve the inde�nite linear system

"
A BT

B 0

#
| {z }

A

"
x1

x2

#
=

"
b1

b2

#
| {z }

b

; (1.1)

where A 2 IRn�n is symmetric and B 2 IRm�n. Throughout the paper we shall

assume that m � n and that A is non-singular, in which case B must be of full

rank.

Example 1. Consider the problem of minimizing a function of n variables

subject to m linear equality constraints on the variables, i.e.

minimize
x2IRn

f(x) � 1

2
xTAx� cx

subject to Bx = d:

(1.2)

Any �nite solution to (1.2) is a stationary point of the Lagrangian function

L(x; �) = 1

2
xTAx� cx+ �T (BTx� d);

where the �i are referred to as Lagrangian multipliers. By di�erentiating L with

respect to x and � the solution to (1.2) is readily seen to satisfy n+m linear

equations of the form (1.1) with x1 = x, x2 = �, b1 = c and b2 = d. For this

application these are known as the Karush-Kuhn-Tucker (KKT) conditions. 2

Example 2 (The Stokes Problem). The Stokes equations in compact form are

de�ned by

�� �u+ grad p = f

div u = 0

)
in 
: (1.3)

Discretising equations (1.3) together with the boundary conditions

u = 0 on �

de�nes a linear system of equations of the form (1.1), where b1 = f , b2 = 0,

x1 = u and x2 = p. 2
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Among the most important iterative methods currently available, Krylov sub-

space methods apply techniques that involve orthogonal projections onto sub-

spaces of the form

K(A; b) � spanfb;Ab;A2b; � � � ;An�1b; � � �g:

The most common schemes that use this idea are the method of conjugate

gradients (CG) for symmetric positive de�nite matrices, the method of mini-

mum residuals (MINRES) for symmetric and possibly inde�nite matrices and

the generalised minimum residual method (GMRES) for unsymmetric matrices,

although many other methods are available|see for example Greenbaum [12].

One common feature of the above methods is that the solution of the linear

system (1.1) is found within n+m iterations in exact arithmetic|see Joubert

and Manteu�el [14, p. 152]. For very large (and possibly sparse) linear systems

this upper limit on the number of iterations is often not practical. The idea

of preconditioning attempts to improve on the spectral properties, i.e. the

clustering of the eigenvalues, such that the total number of iterations required

to solve the system to within some tolerance is decreased substantially.

In this paper we are speci�cally concerned with non-singular preconditioners

of the form

G =

"
G BT

B 0

#
; (1.4)

where G 2 IRn�n approximates, but is not the same as A. The inclusion of the

exact representation of the (1; 2) and (2; 1) matrix blocks in the preconditioner,

which are often associated with constraints (see Example 1), leads one to hope

for a more favourable distribution of the eigenvalues of the (left-)preconditioned

linear system

G�1Ax = G�1b: (1.5)

Since these blocks are unchanged from the original system, we shall call G a

constraint preconditioner. A preconditioner of the form G has recently been

used by Luk�san and Vl�cek [16] in the context of constrained non-linear pro-

gramming problems|see also Coleman [4], Polyak [18] and Gould et al. [11].

Here we derive arguments that con�rm and extend some of the results in [16]

and highlight the favourable features of a preconditioner of the form G. Note

that Golub and Wathen [10] recently considered a symmetric preconditioner of

the form (1.4) for problems of the form (1.1) where A is non-symmetric.

In Section 2 we determine the eigensolution distribution of the precondi-

tioned system and give lower and upper bounds for the eigenvalues of G�1A
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in the case when the submatrix G is positive de�nite. Section 3 describes the

convergence behaviour of a Krylov subspace method such as GMRES, Section 4

investigates possible implementation strategies, while in Section 5 we give nu-

merical results to support the theory developed in this paper.

2 Preconditioning A

For symmetric (and in general normal) matrix systems, the convergence of an

applicable iterative method is determined by the distribution of the eigenval-

ues of the coe�cient matrix. In particular it is desirable that the number of

distinct eigenvalues, or at least the number of clusters, is small, as in this case

convergence will be rapid. To be more precise, if there are only a few distinct

eigenvalues then optimal methods like CG, MINRES or GMRES will termi-

nate (in exact arithmetic) after a small and precisely de�ned number of steps.

We prove a result of this type below. For non-normal systems convergence as

opposed to termination is not so readily described|see Greenbaum [12, p. 5].

2.1 Eigenvalue Distribution

The eigenvalues of the preconditioned coe�cient matrix G�1A may be derived

by considering the general eigenvalue problem

"
A BT

B 0

# "
x

y

#
= �

"
G BT

B 0

# "
x

y

#
: (2.6)

Let QR =
h
Y Z

i h
RT 0T

iT
be an orthogonal factorisation of BT , where

R 2 IRm�m is upper triangular, Y 2 IRn�m and Z 2 IRn�(n�m) is a basis for

the nullspace of B. Premultiplying (2.6) by the non-singular and square matrix

2
664
ZT 0

Y T 0

0 I

3
775

and postmultiplying by its transpose gives

2
664
ZTAZ ZTAY 0

Y TAZ Y TAY R

0 RT 0

3
775
2
664
xz

xy

y

3
775 = �

2
664
ZTGZ ZTGY 0

Y TGZ Y TGY R

0 RT 0

3
775
2
664
xz

xy

y

3
775 ; (2.7)

with x = Zxz + Y zy and where we made use of the equalities BZ = 0 and

R = (BY )T . Performing a simultaneous sequence of row and column inter-
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changes on both matrices in (2.7) reveals two lower block-triangular matrices

~A =

2
664

RT 0 0

ZTAY ZTAZ 0

Y TAY Y TAZ R

3
775 ; ~G =

2
664

RT 0 0

ZTGY ZTGZ 0

Y TGY Y TGZ R

3
775 ;

and thus the preconditioned coe�cient matrix G�1A is similar to

m (n�m) m

P = ~G�1 ~A =

2
664

I 0 0

� (ZTGZ)�1(ZTAZ) 0

� � I

3
775

m

(n�m)

m

: (2.8)

Here the precise forms of �, � and � are irrelevant for the argument that

follows; they are in general non-zero. We just proved the following theorem.

Theorem 2.1. Let A 2 IR(n+m)�(n+m) be a symmetric and inde�nite ma-

trix of the form

A =

"
A BT

B 0

#
;

where A 2 IRn�n is symmetric and B 2 IRm�n is of full rank. Assume Z is

an n� (n�m) basis for the nullspace of B. Preconditioning A by a matrix

of the form

G =

"
G BT

B 0

#
;

where G 2 IRn�n is symmetric, G 6= A and B 2 IRm�n is as above, implies

that the matrix G�1A has

(1) an eigenvalue at 1 with multiplicity 2m; and

(2) n � m eigenvalues which are de�ned by the generalised eigenvalue

problem ZTAZxz = �ZTGZxz.

Note that the inde�nite constrained preconditioner applied to the inde�nite lin-

ear system (1.1) yields the preconditioned matrix P which has real eigenvalues.

Remark 1. In the above argument we assumed that B has full row rank and

consequently applied an orthogonal factorisation of BT which resulted in a
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upper triangular matrix R 2 IRm�m. If B does not have full row rank, i.e.

rank(B) = m�k for some integer k � m, then k zero rows and columns can be

deleted from both matrices in (2.7), thus giving a reduced system of dimension

(n+m�k)� (n+m�k). This removal of the redundant information does not

impose any restriction on the proposed preconditioner, since all mathematical

arguments equivalently apply to the reduced system of equations.

2.2 Eigenvector Distribution

We mentioned above that the termination for a Krylov subspace method is

related to the location of the eigenvalues and the number of corresponding

linearly independent eigenvectors. In order to establish the association between

eigenvectors and eigenvalues we expand the general eigenvalue problem (2.7),

yielding

ZTAZxz + ZTAY xy = �
h
ZTGZxz + ZTGY xy

i
; (2.9)

Y TAZxz + Y TAY xy +Ry = �
h
Y TGZxz + Y TGY xy +Ry

i
; (2.10)

RTxy = �RTxy: (2.11)

From (2.11) it may be deduced that either � = 1 or xy = 0. In the former case

equations (2.9) and (2.10) simplify to

ZTAZxz + ZTAY xy = ZTGZxz + ZTGY xy;

Y TAZxz + Y TAY xy = Y TGZxz + Y TGY xy;

which can consequently be written as

QTAQw = QTGQw; (2.12)

where Q =
h
Y Z

i
and w =

h
xTy xTz

iT
. Since Q is orthogonal, the general

eigenvalue problem (2.12) is equivalent to considering

Aw = �Gw; (2.13)

with w 6= 0 if and only if � = 1. There are m linearly independent eigenvectorsh
0T 0T yT

iT
corresponding to w = 0, and a further i (1 � i � n) linearly

independent eigenvectors (corresponding to eigenvalues � = 1 of (2.13)).

Now suppose � 6= 1, in which case xy = 0. Equations (2.9) and (2.10) yield

ZTAZxz = �ZTGZxz (2.14)

Y TAZxz +Ry = �
h
Y TGZxz +Ry

i
: (2.15)
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The general eigenvalue problem (2.14) de�nes n � m eigenvalues, where j

(1 � j � n�m) of these are not equal to 1 and for which two cases have to be

distinguished. If xz 6= 0, y must satisfyh
Y TAZ � �Y TGZ

i
xz = (�� 1)Ry;

from which follows that the corresponding eigenvectors are de�ned byh
xTz 0T yT

iT
:

If xz = 0, we deduce from (2.15) that

Ry = �Ry;

and hence that y = 0 since � 6= 1. As
h
xTz xTy yT

iT
= 0 in this case, no

extra eigenvectors arise.

Summarising the above, it is evident that P has m + i + j eigenvectors.

We now show that, under realistic assumptions, these eigenvectors are in fact

linearly independent.

Theorem 2.2. Let A 2 IR(n+m)�(n+m) be a symmetric and inde�nite ma-

trix of the form

A =

"
A BT

B 0

#
;

where A 2 IRn�n is symmetric and B 2 IRm�n is of full rank. Assume the

preconditioner G is de�ned by a matrix of the form

G =

"
G BT

B 0

#
;

where G 2 IRn�n is symmetric, G 6= A and B 2 IRm�n is as above. Let Z

denote an n� (n�m) basis for the nullspace of B and suppose that ZTGZ

is positive de�nite. The preconditioned matrix G�1A has n+m eigenvalues

as de�ned by Theorem 2.1 and m+ i+ j linearly independent eigenvectors.

There are

(1) m eigenvectors of the form
h
0T 0T yT

iT
that correspond to the

case � = 1;
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(2) i (0 � i � n) eigenvectors of the form
h
xTz xTy yT

iT
arising from

Aw = �Gw with w =
h
xTy xTz

iT
linearly independent, � = 1 and

� = 1; and

(3) j (0 � j � n �m) eigenvectors of the form
h
xTz 0T yT

iT
that

correspond to the case � 6= 1.

Proof. To prove that the m + i + j eigenvectors of P are linearly inde-

pendent we need to show that

2
664

0 � � � 0

0 � � � 0

y
(1)
1 � � � y

(1)
m

3
775
2
6664
a
(1)
1
...

a
(1)
m

3
7775 +

2
664
xz

(2)
1 � � � xz

(2)
i

xy
(2)
1 � � � xy

(2)
i

y
(2)
1 � � � y

(2)
i

3
775
2
6664
a
(2)
1
...

a
(2)
i

3
7775 (2.16)

+

2
664
xz

(3)
1 � � � xz

(3)
j

0 � � � 0

y
(3)
1 � � � y

(3)
j

3
775
2
6664
a
(3)
1
...

a
(3)
j

3
7775 =

2
664
0
...

0

3
775

implies that the vectors a(k) (k = 1; � � � ; 3) are zero vectors. Multiplying

(2.16) by A and G�1, and recalling that in the previous equation the �rst

matrix arises from the case �k = 1 (k = 1; � � � ;m), the second matrix from

the case �k = 1 and �k = 1 (k = 1; � � � ; i) , whereas the last matrix arises

from �k 6= 1 (k = 1; � � � ; j), gives

2
664

0 � � � 0

0 � � � 0

y
(1)
1 � � � y

(1)
m

3
775
2
6664
a
(1)
1
...

a
(1)
m

3
7775+

2
664
xz

(2)
1 � � � xz

(2)
i

xy
(2)
1 � � � xy

(2)
i

y
(2)
1 � � � y

(2)
i

3
775
2
6664
a
(2)
1
...

a
(2)
i

3
7775 (2.17)

+

2
664
�1

. . .

�j

3
775
2
664
xz

(3)
1 � � � xz

(3)
j

0 � � � 0

y
(3)
1 � � � y

(3)
j

3
775
2
6664
a
(3)
1
...

a
(3)
j

3
7775 =

2
664
0
...

0

3
775 :

Subtracting Equation (2.16) from (2.17) we obtain

2
664
�1 � 1

. . .

�j � 1

3
775
2
664
xz

(3)
1 � � � xz

(3)
j

0 � � � 0

y
(3)
1 � � � y

(3)
j

3
775
2
6664
a
(3)
1
...

a
(3)
j

3
7775 =

2
664
0
...

0

3
775 ;
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which simpli�es to

2
664
xz

(3)
1 � � � xz

(3)
j

0 � � � 0

y
(3)
1 � � � y

(3)
j

3
775
2
6664
a
(3)
1
...

a
(3)
j

3
7775 =

2
664
0
...

0

3
775 ; (2.18)

since �k 6= 1 (k = 1; � � � ; j).

The assumption that ZTGZ is positive de�nite implies that xz
(3)
k (k =

1; � � � ; j) in (2.18) are linearly independent and thus a
(3)
k = 0 (k = 1; � � � ; j).

Similarly, a
(2)
k = 0 (k = 1; � � � ; i) follows from the linear independence ofh

xz
(2)
k

T
xy

(2)
k

T
iT

(k = 1; � � � ; i), and thus (2.16) simpli�es to

2
664

0 � � � 0

0 � � � 0

y
(1)
1 � � � y

(1)
m

3
775
2
6664
a
(1)
1
...

a
(1)
m

3
7775 =

2
664
0
...

0

3
775 :

But y
(1)
k (k = 1; � � � ;m) are linearly independent and thus a

(1)
k = 0 (k =

1; � � � ;m). 2

Remark 2. Note that the result of Theorem 2.2 remains true if ZT (
A+ �G)Z

is positive de�nite for some scalars 
 and �|see Parlett [17, p. 343] for details.

To show that the eigenvector bounds of Theorem 2.2 can in fact be attained,

consider the following two examples.

Example 3 (Minimum bound). Consider the matrices

A =

2
664
1 2 0

2 2 1

0 1 0

3
775 ; G =

2
664
1 3 0

3 4 1

0 1 0

3
775 ;

so that m = 1 and n = 2. The preconditioned matrix P has an eigenvalue at

1 with multiplicity 3, but only one eigenvector arising from case (1) in Theo-

rem 2.2. This eigenvector may be taken to be
h
0 0 1

iT
. 2

Example 4 (Maximum bound). Let A 2 IR3�3 be de�ned as in Example 3,

but assume G = A. The preconditioned matrix P has an eigenvalue at 1 with

multiplicity 3 and clearly a complete set of eigenvectors. These may be taken

to be
h
1 0 0

iT
,
h
0 1 0

iT
, and

h
0 0 1

iT
. 2
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2.3 Eigenvalue Bounds

It is apparent from the calculations in the previous section that the eigenvalue

at 1 with multiplicity 2m is independent of the choice of G in the preconditioner.

On the contrary, the n �m eigenvalues that are de�ned by (2.14) are highly

sensitive to the choice of G. If G is a close approximation of A, we can expect a

more favourable distribution of eigenvalues and consequently may expect faster

convergence of an appropriate iterative method. In order to determine a good

factorisation of A it will be helpful to �nd intervals in which the n�m eigen-

values are located. If G is a positive de�nite matrix one possible approach is

provided by Cauchy's interlace theorem.

Theorem 2.3 (Cauchy's Interlace Theorem, see [17, Theorem 10.1.1]).

Suppose T 2 IRn�n is symmetric, and that

T =

"
H ?

? ?

#
;

where H 2 IRm�m with m < n. Label the eigenpairs of T and H as

T zi = �izi; i = 1; � � � ; n; �1 � �2 � � � � � �n;

Hyi = �iyi; i = 1; � � � ;m; �1 � �2 � � � � � �m:

Then

�k � �k � �k+(n�m); k = 1; � � � ;m:

Proof. See Parlett [17, p. 203]. 2

The applicability of Theorem 2.3 is veri�ed by recalling the de�nitions of Q and

Z given in the previous section, and by considering the generalised eigenvalue

problems

QTAQv = �QTGQv (2.19)

and

ZTAZw = �ZTGZw: (2.20)
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Since G is positive de�nite so is QTGQ, and we may therefore write

QTGQ =

"
ZTGZ ZTGY

Y TGZ Y TGY

#
=

"
L 0

R S

#
| {z }

M

"
LT RT

0 ST

#
| {z }

MT

;

where LLT = ZTGZ, R = Y TGZL�T and SST = Y TGY � RRT . Rewriting

(2.19) and (2.20) gives

M�1QTAQM�Tu = �u (2.21)

and

L�1ZTAZL�T z = �z; (2.22)

where u =MT v and z = LTw.

Now, since the matrix M�1QTAQM�T is similar to G�1A, equation (2.21)

de�nes the same eigenvalues �i (i = 1; � � � ; n) as G�1A. We may therefore

apply Theorem 2.3 directly. The result is that the n � m eigenvalues �i of

(2.14) satisfy �k � �k � �k+m (k = 1; � � � ; n �m). In particular, the �i are

bounded by the extreme eigenvalues of G�1A so that the �i will necessarily be

clustered ifG is a good approximation of A. Furthermore, a good preconditioner

G for A implies that ZTGZ is at least as good a preconditioner for ZTAZ. To

show that the preconditioner ZTGZ can in fact be much better, consider the

following example, taken from the CUTE collection [3].

Example 5. Consider the convex quadratic programming problem BLOWEYC

which may be formulated as

minimize u(s)TAu(s) + u(s)Tw(s)� v(s)TAu(s)� 2:0v(s)Tw(s)� u(s)T v(s)

subject to Aw(s) = u(s); u(s) 2 [�1; 1] and

Z 1

0
u(s) ds = 0:4:

Selecting a size parameter of 500 discretisation intervals de�nes a set of linear

equations of the form (1.1), where n = 1002 and m = 502. Letting G be the

diagonal of A, we may deduce by the above theory that the extreme eigenvalues

of G�1A give a lower and upper bound for the n �m eigenvalues de�ned by

the general eigenvalue problem (2.14). In Figure 2.1 (a) the 1002 eigenvalues

of G�1A are drawn as vertical lines, whereas Figure 2.1 (b) displays the 500

eigenvalues of (ZTGZ)�1ZTAZ.

The spectrum of Figure 2.1 (a) is equivalent to a graph of the entire spectrum

of P, but with an eigenvalue at 1 and multiplicity 502 removed. Rounded to two

decimal places the numerical values of the two extreme eigenvalues of G�1A are
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

size of eigenvalue

(a) Eigenvalues of G�1A

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

size of eigenvalue

(b) Eigenvalues of (ZT
GZ)�1ZT

AZ

Figure 2.1: Continuous vertical lines represent the eigenvalues of (a) G�1A and

(b) (ZTGZ)�1ZTAZ

0:02 and 1:98, whereas the extreme eigenvalues of (ZTGZ)�1ZTAZ are given

by 0:71 and 1. Note that for this example a large number of eigenvalues of

G�1A are clustered in the approximate intervals [0:02; 0:38] and [1:65; 1:97]. The

eigenvalue distribution in Figure (2.1) (b) reveals that there is one eigenvalue

near 0:71 and a group of eigenvalues near 1. It follows that any appropriate

iterative method that solves (1.5) can be expected to converge in a very small

number of steps; this is veri�ed by the numerical results presented in Section 5.

2

It is readily seen from Example 5 that in this case the bounds provided by

Theorem 2.3 are not descriptive in that there is signi�cantly more clustering of

the eigenvalues than implied by the theorem.

3 Convergence

In the context of this paper, the convergence of an iterative method under pre-

conditioning is not only in
uenced by the spectral properties of the coe�cient

matrix, but also by the relationship between the dimensions n and m. In par-

ticular, it follows from Theorem 2.1 that in the special case when n = m the

preconditioned linear system (1.5) has only one eigenvalue at 1 with multiplicity

2n. For m < n, matrix (2.8) gives an eigenvalue at 1 with multiplicity 2m and

n�m (generally distinct) eigenvalues whose value may or may not be equal to

1. Before we examine how these results determine upper bounds on the number
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of iterations of an appropriate Krylov subspace method, we recall the de�nition

of the minimum polynomial of a matrix.

De�nition 1. Let A 2 IR(n+m)�(n+m). The monic polynomial f of minimum

degree such that f(A) = 0 is called the minimum polynomial of A.

The importance of this de�nition becomes apparent when considering sub-

sequent results and by recalling that similar matrices have the same minimum

polynomial.

The Krylov subspace theory states that the iteration with any method with

an optimality property such as GMRES will terminate when the degree of the

minimum polynomial is attained|see Axelsson [1, p. 463] (To be precise, the

number may be less in special cases where b is a combination of a few eigenvec-

tors that a�ect the 'grade' of A with respect to b). In particular, the degree of

the minimum polynomial is equal to the dimension of the corresponding Krylov

subspace (for general b) and so the following theorems are relevant.

Theorem 3.1. Let A 2 IR(n+m)�(n+m) be a symmetric and inde�nite ma-

trix of the form

A =

"
A BT

B 0

#
;

where A 2 IRn�n is symmetric and B 2 IRm�n is of full rank. Let m = n.

If A is preconditioned by a matrix of the form

G =

"
G BT

B 0

#
;

where G 2 IRn�n , G 6= A and B 2 IRm�n is as above, then the Krylov

subspace K(P; b) is of dimension at most 2 for any b.

Proof. Writing the preconditioned system (2.8) in its explicit form we

observe that P is in fact given by"
I 0

� I

#
; (3.23)

where � is non-zero if and only if A 6= G. To show that the dimension

of the corresponding Krylov subspace is at most 2 we need to determine

the minimum polynomial of the system. It is evident from (3.23) that the
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eigenvalues of P are all 1 and P � I 6= 0. However, (P � I)2 = 0 and so the

minimum polynomial is of order 2. 2

Remark 3. It is of course possible in the case n = m to solve the (square)

constrained equation Bx1 = b2 and then to obtain x2 = B�T (b1 �Ax1). This

gives motivation for why the result of Theorem 3.1 is independent of G.

Remark 4. The important consequence of Theorem 3.1 is that termination

of an iteration method such as GMRES will occur in at most 2 steps for any

choice of b, even though the preconditioned matrix is not diagonalisable (unless

A = G).

Theorem 3.2. Let A 2 IR(n+m)�(n+m) be a symmetric and inde�nite ma-

trix of the form

A =

"
A BT

B 0

#
;

where A 2 IRn�n is symmetric and B 2 IRm�n is of full rank. Assume m <

n and that A is non-singular. Furthermore, assume A is preconditioned by

a matrix of the form

G =

"
G BT

B 0

#
;

whereG 2 IRn�n is symmetric, G 6= A and B 2 IRm�n is as above. If ZTGZ

is positive de�nite, where Z is an n� (n�m) basis for the nullspace of B,

then the dimension of the Krylov subspace K(P; b) is at most n�m+ 2.

Proof. From the eigenvalue derivation in Section 2.1 it is evident that the

characteristic polynomial of the preconditioned linear system (1.5) is

(P � I)2m
n�mY
i=1

(P � �iI):

To prove the upper bound on the dimension of the Krylov subspace we need

to show that the order of the minimum polynomial is less than or equal to

n�m+ 2.
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Expanding the polynomial (P � I)
Qn�m

i=1 (P � �iI) of degree n�m+ 1 we

obtain a matrix of the form2
664

0 0 0hQn�m
i=1 (S � �iI)

i
� (S � I)

Qn�m
i=1 (S � �iI) 0

�n�m �
Qn�m

i=1 (S � �iI) 0

3
775 (3.24)

where S = (ZTGZ)�1ZTAZ and

�n�m = �
n�mY
i=1

(I � �iI) + �

"
n�m�1Y
i=1

(S � �iI)

#
�+ �	n�m:

Here 	n�m is de�ned by the recursive formula

	n�m =

"
	n�m�1 +

"
n�m�2Y
i=1

(S � �iI)

#
�

#
(I � �n�mI) (n�m > 2);

with base cases 	1 = 0 and 	2 = �(I � �2I).

Note that the (2; 1), (2; 2) and (3; 2) entries of matrix (3.24) are in fact zero,

since the �i (i = 1; � � � ; n �m) are the eigenvalues of S, which is similar to

a symmetric matrix and is thus diagonalisable. Thus (3.24) may be written

as 2
664

0 0 0

0 0 0

�n�m 0 0

3
775 ; (3.25)

and what remains is to distinguish two di�erent cases for the value of �n�m,

that is �n�m = 0 and �n�m 6= 0. In the former case the order the minimum

polynomial of P is less than or equal to n�m + 1 and thus the dimension

of the Krylov subspace K(P; b) is of the same order. In the latter case the

dimension of K(P; b) is less than or equal to n�m+ 2 since multiplication

of (3.25) by another factor (P � I) gives the zero matrix. 2

The upper bound on the dimension of the Krylov subspace, as stated in The-

orem 3.2, can be reduced in the special case when (ZTGZ)�1(ZTAZ) has re-

peated eigenvalues. This result is stated in Theorem 3.3. The following (ran-

domly generated) example shows that the bound in Theorem 3.2 is attainable.

Example 6. Let A 2 IR6�6 and BT 2 IR6�2 be given by

A =

2
66666666664

2:69 1:62 1:16 1:60 0:81 �1:97

1:62 6:23 �1:90 1:89 0:90 0:05

1:16 �1:90 4:01 �0:16 �0:16 �1:60

1:60 1:89 �0:16 1:45 0:01 �0:89

0:81 0:90 �0:16 0:01 1:94 0:38

�1:97 0:05 �1:60 �0:89 0:38 5:38

3
77777777775
; BT =

2
66666666664

0 �0:59

�0:59 0

0 2:00

0 0

�0:02 0

0:33 0:17

3
77777777775
;
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and assume that G = diag(A). For the above matrices the (3; 1) entry of (3.25)

is

�4 =

"
0 �0:07

�0:22 �0:02

#
:

It follows that the minimum polynomial is of order 6 and thus the bound given

in Theorem 3.2 is sharp. 2

Theorem 3.3. Let A 2 IR(n+m)�(n+m) be a symmetric and inde�nite ma-

trix of the form

A =

"
A BT

B 0

#
;

where A 2 IRn�n is symmetric and B 2 IRm�n is of full rank. Assume

m < n, A is non-singular and that A is preconditioned by a matrix of the

form

G =

"
G BT

B 0

#
;

where G 2 IRn�n is symmetric, G 6= A and B 2 IRm�n is as above.

Furthermore, let Z be an n � (n � m) basis for the nullspace of B and

assume (ZTGZ)�1(ZTAZ) has k (1 � k � n � m) distinct eigenvalues

�i (1 � i � k) of respective multiplicity �i, where
Pk

i=1 �i = n�m. Then

the dimension of the Krylov subspace K(P; b) is at most k + 2.

Proof. The proof is similar to the one for Theorem 3.2. In the case

when (ZTGZ)�1(ZTAZ) has k distinct eigenvalues of multiplicity �i we

may, without loss of generality, write the characteristic polynomial of P as

(P � I)2m�2
"

kY
i=1

(P � �iI)
�i�1

#
(P � I) (P � I)

"
kY
i=1

(P � �iI)

#
| {z }

(y)

:

Expanding (y) we obtain the matrix2
664

0 0 0hQk
i=1(S � �iI)

i
� (S � I)

Qk
i=1(S � �iI) 0

�k �
Qk

i=1(S � �iI) 0

3
775 (3.26)
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where S = (ZTGZ)�1ZTAZ and

�k = �
kY
i=1

(I � �iI) + �

"
k�1Y
i=1

(S � �iI)

#
�+ �	k:

Here 	k is given by the recursive formula

	k =

"
	k�1 +

"
k�2Y
i=1

(S � �iI)

#
�

#
(I � �kI) (k > 2);

with base cases 	1 = 0 and 	2 = �(I � �2I).

Note that the (2; 1), (2; 2) and (3; 2) blocks of matrix (3.26) are in fact zero.

It follows that, for �k 6= 0, a further multiplication of (3.26) by (P� I) gives

the zero matrix and thus the dimension of Krylov subspace K(P; b) is less

then or equal to k + 2. 2

To verify that the bound in Theorem 3.3 is attainable consider the following

example.

Example 7. Let A 2 IR4�4, G 2 IR4�4 and BT 2 IR4�1 be given by

A =

2
666664
6 0 0 0

0 6 0 0

0 0 2 0

0 0 0 2

3
777775 ; G =

2
666664
3 0 0 0

0 3 0 0

0 0 1
2 0

0 0 0 1
2

3
777775 ;

and B =
h
0 0 1e�3 1e�3

i
. Then two of the n �m eigenvalues that are

de�ned by the generalised eigenvalue problem (2.14) are distinct and given by

[2; 4]. It follows that the (3; 1) entry of (3.26) is non-zero with

�3 =
h
�1071:41

i
;

and so the minimum polynomial is of order 4. 2

4 Implementation

There are various strategies that can be used to implement the proposed pre-

conditioner, two of which are used in the numerical results in Section 5. The

�rst strategy applies the standard (preconditioned) GMRES algorithm [20],

where the preconditioner step is implemented by means of a symmetric indef-

inite factorisation of (1.4). Such a factorisation of the preconditioner may be

much less demanding than the factorisation of the initial coe�cient matrix if

G is a considerably simpler matrix than A. The second approach, discussed in

the next section, is based on an algorithm that solves a reduced linear system

[11].
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4.1 Conjugate Gradients on a Reduced Linear System

In [11] Gould et al. propose a Conjugate Gradient like algorithm to solve

equality constrained quadratic programming problems such as the one described

in Example 1. The algorithm is based on the idea of computing an implicit basis

Z which spans the nullspace of B. The nullspace basis is then used to remove

the constraints from the system of equations, thus allowing the application of

the Conjugate Gradients method to the (positive de�nite) reduced system.

Assume that Wzz = ZTGZ is a symmetric and positive de�nite precondi-

tioner matrix of dimension (n�m)� (n�m) and Z is an n� (n�m) matrix.

The algorithm can then be stated as follows.

Algorithm 4.1: Preconditioned CG for a Reduced System.

(1) Choose an initial point x satisfying Bx = b;

(2) Compute

r = Ax+ c

g = ZW�1
zz Z

T r (4.27)

p = �g

(3) Repeat the following steps until j (r+)T g+ j ! 0 is satis�ed:

� = rT g=pTAp

x  x+ �p

r+ = r + �Ap

r+  r+ �BT v (4.28)

g+ = ZW�1
zz Z

T r+ (4.29)

� = (r+)T g+=rT g

p  �g+ + �p

g  g+

r  r+

The computation of the preconditioned residual in (4.29) is often the most

expensive computational factor in the algorithm. Gould et al. suggest avoiding

the explicit use of the nullspace Z, but instead to compute g+ by applying a
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symmetric inde�nite factorisation of"
G BT

B 0

# "
g+

v+

#
=

"
r+

0

#
: (4.30)

In practice (4.30) can often be factored e�ciently by using the MA27 package

of the Harwell Subroutine Library when G is a simple matrix block, whereas

the direct application of MA27 to the original system (1.1) is limited by space

requirements as well as time for large enough systems [6]. In this context the

factorisation consists of three separate routines, the �rst two of which analyse

and factorise the matrix in (4.30). They need to be executed only once in Step

(1) of Algorithm 4.1. Repeated calls to the third routine within MA27 apply

forward- and backward-substitutions to �nd the initial point x in Step (1), solve

for g in (4.27) and also to �nd g+ in (4.29).

Remark 5. The computation of the projected residual g+ is often accompa-

nied by signi�cant roundo� errors if this vector is much smaller than the residual

r+. Iterative re�nement is used in (4.28) to rede�ne r+ so that its norm is closer

to that of g+. The result is a dramatic reduction of the roundo� errors in the

projection operation|see Gould et al. [11].

5 Numerical Results

We now present the results of numerical experiments that reinforce the analysis

given in previous sections. The test problems we use are partly randomised

sparse matrices (Table 5.1) and partly matrices that arise in linear and non-

linear optimization (Table 5.2)|see Bongartz et al. [3]. As indicated through-

out, all matrices are of the form"
A BT

B 0

#
; (5.31)

where A 2 IRn�n is symmetric, B 2 IRm�n has full rank and m � n.

Four di�erent approaches to �nding solutions to (1.1) are compared{three

iterative algorithms based on Krylov subspaces, and the direct solver MA27

which applies a sparse variant of Gaussian elimination|see Du� and Reid [6].

To investigate possible favourable aspects of preconditioning it makes sense to

compare unpreconditioned with preconditioned solution strategies. The indef-

inite nature of matrix (5.31) suggests the use of MINRES in the unprecondi-

tioned case. As outlined in Section 4 we employ two slightly di�erent strategies

in order to implement the preconditioner G. The �rst method applies a stan-

dard (full) GMRES(A) code (PGMRES in Tables 5.1 and 5.2 below), which is
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mathematically equivalent to MINRES(A) for symmetric matrices A, whereas

the second approach implements Algorithm 4.1 (RCG in Tables 5.1 and 5.2 be-

low). The choice G = diag(A) in the preconditioner is made for both PGMRES

and RCG.

Random I Random II Random III Random IV

n 578 2178 8450 8450

m 32 128 236 46

non-zero entries in A 2316 9740 39948 39948

non-zero entries in B 427 1871 3600 686

MINRES # of iterations 174 387 639 515

time in seconds 0:4 3:1 17:5 13:1

PGMRES # of iterations 46 87 228 242

time in seconds 0:2 3:9 96:0 108:9

RCG # of iterations 36 67 197 216

time in seconds 0:1 1:0 5:9 5:9

MA27 time in seconds 0:1 0:9 5:4 2:9

Table 5.1: Random test problems (G = diag(A))

All tests were performed on a SUN Ultra SPARCII-300MhZ (ULTRA-30)

workstation with 245 MB physical RAM and running SunOS Release 5:5:1.

Programs were written in standard Fortran 77 using the SUN WorkShop f77

compiler (version 4:2) with the -0 optimization 
ag set. In order to deal with

large sparse matrices we implemented an index storage format that only stores

non-zero matrix elements|see Press et al. [19]. The termination criterion for

all iterative methods was taken to be a residual vector of order less than 10�6

in the 2-norm.

As part of its analysis procedure, MA27 accepts the pattern of some coef-

�cient matrix and chooses pivots for the factorisation and solution phases of

subsequent routines. The amount of pivoting is controlled by the special pa-

rameter u (�1=2 � u � 1=2). Modifying u within its positive range in
uences

the accuracy of the resulting solution, whereas a negative value prevents any

pivoting|see Du� and Reid [6]. In this context, the early construction of some

of the test examples with the default value u = 0:1 was accompanied by di�cul-

ties in the form of memory limitations. We met the trade-o� between less use

of memory and solutions of high enough accuracy by choosing the parameter

value u = 0:01 in Tables 5.1 and 5.2 .

The time measurements for the eight test examples indicate that the itera-
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BLOWEYC CVXQP1 MOSARQP2 FIT2P

n 1002 100 930 13525

m 502 100 30 3000

non-zero entries in A 3004 672 1020 13525

non-zero entries in B 2503 295 148 50284

MINRES # of iterations 363 no convergence 51 180

time in seconds 1:8 no convergence 0:1 14:2

PMGREM # of iterations 2 2 6 1

time in seconds 0:6 0:1 0:2 13:2

RCG # of iterations 2 2 6 1

time in seconds 0:6 0:1 0:2 16:2

MA27 time in seconds 0:5 0:1 0:1 15:6

Table 5.2: CUTE test problems (G = diag(A))

tion counts for each of the three proposed iterative methods are comparable as

far as operation counts, i.e. work, is concerned. The numerical results suggest

that the inclusion of the (1; 2) and (2; 1) block of A into the preconditioner,

together with G = diag(A), results in a considerable reduction of iterations,

where the appropriate bounds of Theorems 3.1, 3.2 and 3.3 are attained in all

cases. Speci�cally, Theorem 3.1 applies in context of problem CVXQP1.

Test problems RANDOM III and RANDOM IV in Table 5.1 emphasise the

storage problems that are associated with the use of long recurrences in the

PGMRES algorithm. The time required to �nd a solution to both RANDOM

III and RANDOM IV via the PGMRES algorithm is not comparable to any

of the other methods, which is due to the increased storage requirements and

the data tra�cking involved. A solution to the memory problems is to restart

PGMRES after a prescribed number of iterations, but the iteration counts for

such restarts would not be comparable with those of full PGMRES.

The relevance of the time measurements for MA27 are commented on in the

next section.

6 Conclusion

In this paper we investigated a new class of preconditioner for inde�nite linear

systems that incorporate the (2; 1) and (2; 2) blocks of the original matrix.

These blocks are often associated with constraints. In our numerical results

we used a simple diagonal matrix G to approximate the (1; 1) block of A,
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even though other approximations, such as an incomplete factorisation of A,

are possible. We �rst showed that the inclusion of the constraints into the

preconditioner clusters at least 2m eigenvalues at 1, regardless of the structure

of G. However, unless G represents A exactly, P does not have a complete set

of linearly independent eigenvectors and thus the standard convergence theory

for Krylov subspace methods is not readily applicable.

To �nd an upper bound on the number of iterations, required to solve linear

system of the form (1.1) by means of appropriate subspace methods, we used

a minimum polynomial argument. Theorem 3.1 considers the special condition

n = m, in which case termination is guaranteed in two iterations. For m < n,

Theorem 3.2 gives a general (sharp) upper bound on the dimension of the Krylov

subspace, whereas Theorem 3.3 de�nes a considerably stronger result if some

of the n�m eigenvalues, de�ned by (ZTGZ)�1(ZTAZ), are repeated.

In the special case when G is a positive de�nite matrix block we were able to

apply Cauchy's interlacing theorem in order to give an upper and lower bound

for the n�m eigenvalues that are de�ned by the (2; 2) block of matrix (2.8).

To con�rm the analytical results in this paper we used three di�erent sub-

space methods, MINRES of Paige and Saunders for the unpreconditioned ma-

trix system and RCG of Gould et al. and also PGMRES of Saad and Schultz for

the preconditioned case. Overall, the results show that the number of iterations

is decreased substantially if preconditioning is applied. The Krylov subspaces

that are built during the execution of the two preconditoned implementations

are in theory of equal dimension for any of the eight test examples, and thus

PGMRES and RCG can be expected to terminate in the same number of steps.

However, convergence to any prescribed tolerance may occur for a di�erent

number of steps since PGMRES and RCG minimize di�erent quantities. This

can be seen in some of the examples. Nevertheless, we note that convergence

for both methods is attained much earlier than suggested by the bounds in

Theorems 3.1, 3.2 and 3.3.

The time measurements for MA27 in the last section suggest that the pre-

conditioned conjugate gradients algorithm, discussed in Section 4.1, is a suitable

alternative to the direct solver. Whereas both MINRES and especially PGM-

RES are considerably slower than MA27, the timings for RCG are in virtually

all cases comparable. For problems of large enough dimension or bandwidth

the resources required by MA27 must become prohibitive in which case RCG

becomes even more competitive.
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