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ABSTRACT

The proof that the Witten’s 3-vertex solves the comma overlap
equations is completed. The ghost sector is discussed in detail,
using the fermionic formulation of the ghosts. The BRST op-
erators in the comma theory, Q%, Q7 | are constructed and the
identity Q® + Q* = Q is discussed.
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1 Introduction

In this paper we complete the proof of equivalence of the comma theory
and Witten’s string field theory (WSFT) at the level of vertices that we
have started in [1, 2]. In [1, 2] we concentrated on the matter sector of
the theory where we demonstrated that the Witten’s interaction vertex.
V¥ (N=1,2,3,4) is indeed a solution to the comma overlap equations. We
also discussed in some detail the invariance and potential anomalies of the
theory due to the K, generators (i.e., invariance under reparametrizations
generated by K, ). However, we failed to address issues related to the
BRST invariance (Qinvariance). Here we give a complete construction
of the comma ghosts in the fermionic representation?. The ghosts were
considered in [1, 2] in the bosonized form as presented by Witten [3]. How-
ever, to address the BRST invariance, the bosonizied form is cambersome
as compared to that in the fermionic representation.

First let us review briefly the full string ghost sector. Recall that the
ghost coordinates of the open bosonic string are the anticommuting fields

ci(o) = :i: cne® = c(o) £ imy(o), (1.1)
bi(o) = i bpet™? = (o) + ib(0). (1.2)

The ¢, (c_) are the ghosts for reparameterization of 2 = 7440 (Z =7 -0
) respectively and the by are the corresponding antighosts. Theses obey

2The ghost sector of the comma theory was also constructed in [4]. However, the
ambiguity related to the mid-point was not settled there. One was not sure how to view
the midpoint, since it was common to both the comma theory and WSFT. This lead
to the modified definition of the comma introduced in [1, 2]. In the modified definition
of the comma, the mid-point is excluded and is used to constrain the comma degrees
of freedom. For more details see ref. [1]. Here also the comma definition is slightly
modified along the lines of refs. 1, 2].




the anticomutation relations
{¢n, Cm} = {bn, b} =0, (1.3)

{Cn7 bm} = 6n+m,0- (14)

The fermionic Fock space is constructed in terms of a vacuum state an-
nihilated by c,,b,; n > 1. Since the zero modes ¢y and bo anticommute,
such a ground state is a doublet of states, |+ >, with ghost number +1/2.
The overlap equations for N — strings are

o)+ Hr—0)=0, (1.5)

me(o) —=m " (m — o) =0, (1.6)

where 7 =1,2,..,, N (and r — 1 = 0 = N). They are similar equations for
b(c) and m,(o), with the role of coordinates and momenta exchanged. The
ghost Fock space vector (N = 1) satisfying the above overlaps (ignoring
midpoint insertions, by (7/2)b_(7/2)) is

IIghost >— eZ:o:l(—)"c_nb—nIQ’ Co = 0 > . (17)

The Witten’s vertex expressing the coupling of three string (N = 3), sat-
isfying the overlaps, takes the form (see ref. [5, 6, 7, 8, 9]

[Vghost 5 0327 mt Tonmo ey VMMl s (1.8)

The explicit values of the Neumann coefficients have been constructed in
in refs. [5, 6, 7, 8, 9]. There are no ghost insertions at the midpoint, since
the vacuum state in (1.8) has ghost number 3/2 which is the correct ghost
number. We also recall that the Virasoro generators of reparametrization,
LgMst is given by

LZ% =37 (n 4 m)by_mm, (1.9)

m

and the BRST charge is

Q=) [ccnln+ L nca] + co[Lo — 1] (1.10)
n=1
where ]
L,=L%+ §ngwst. (1.11)




Now we are ready to address our problem. Let us denote by ¢%. (o) =
c"(o) £ im} the comma ghost coordinate analogous to c1(o) = ¢(o) £ im
where the comma ghost coordinates are defined through the relation®

clo) ,ifr=1,
c(o)=1 c(r—0) ,if r=2, (1.12)
oc€l0,%).

and likewise for 7]. Theses ghost coordinates are subjected to the con-
straint,

lim c“f(0) = ¢(7/2) (1.13)

o3
and likewise for 7. If one expands the comma ghost, (1.12) in a Fourier
series then they can be related to the full string ghosts. The comma bound-
ary conditions are dictated by the boundary conditions of the full string
and the comma definition. Choosing an even extension to the interval
(m/2,7] for ¢" (o) with ¢"(¢) = ¢"(—0), only the even modes in the Fourier
expansions of ¢"(o) survive. Hence,

(o) =cy+ V23 gh.cos2no, o €[0,7/2), (1.14)

n=1

where
(=)
2n—1

2 o0
cop = co + (—)r; 2 (C2n-1 + C—2n+1) » (1.15)
n=1

1 o0
Gop = E (con + C—2n) + ﬁ(-)r Z Bonom—1 (Cam—1 + C—2m+1) , (1.16)

m=1
and r = 1, 2 refers to the left (L) and right (R) parts of the string* respec-
tively. The change of representation matrix (B) is given by

1

Bnm=(_)"? ( L ) (1.17)

T n4+m n—m

3note that the only difference between this new definition of the comma and that in
ref. [4] is the exclusion of the midpoint c(7/2).

4Throughout the paper we will refer to the left and right parts of the string by 1
and 2 respectively; however to make things more transparent and to aveid confusion,
sometimes we may refer to the left and right parts of the string by the letters L and R
respectively. When dealing with more than one string the indices may become confusing;
therefore indices referring to the parts of the string will always be written as superscripts
while those labeling the string will be written as subscripts whenever possible.
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Equations (1.16) and (1.17) can be inverted with the help of the identities
1

Z BZn2k IBZan 1= 6km1 (118)
n=1
= 2m
B n m — = “TUnm - .
I§2k—1 2n 2k— IB2k 12 45 (1 19)
Thus one gets
1 2
o = §Zc6, (1.20)
r=1
1 13
W(C2n+c—2n) = EZQ‘Zn; nZ 17 (121)
“~ r=1
1 2 = 2m
s n— —2n = =) Bn_ m A , >1.
\/5(02 1+ Coontr) ;( ) mglzn_l n—12mYJom, N =21

(1.22)
However, in (1.22) there are redundant degrees of freedom. Now, the con-
straint on the comma modes (1.13) can be explicitly solved and what results
are the modes with no subsidiary condition. Hence one gets

2 00
o+ (=) Y Bomon-1ghn, n>1,

r=1 r=1 m=1
(1.23)
for (1.22). Likewise for its conjugate momentum 77 (o) we obtain
(o) =65+ V2 Sy cos2no, o€ [0,7/2), (1.24)
n=1
where > = (<
by = b + (—) ; Z C— (b2n 1+ b 2n41), (1.25)

—

1 (e )
Yon = f(bzn+b—2n )+ V2(=) Z Bonam-1 (bam-1 + b_zmy1) . (1.26)

The inverse of equations (1.25) and (1.26) reads®

1 2 Wl Lo d
52_:18)0, (1.27)

°In arriving at these equations we used the midpoint constraint as before to remove

the redundancy.




1

1 2
75(62,,+b_2n = Zyzn, n>1. (1.28)

i— n

[S™]

L&)

2 0o
Z bg"“Z(‘)T Z Bom an—1Y5m , 1> 1,

1
—= (ban-1 + b_ont1) =
\/§ r=1 r=1 m=1
(1.29)

The comma modes have been treated so far as classical objects. One
way of quantizing them is to interpret them as q — operators and demand
that they satisfy the desired anticommutation relations, i.e., one imposes

{O;, 835 } =6 0nm (1.30)
for fermi operator, O7. If we introduce the operators
ar 1. ~r L,
Co = ECO: 9n = Eg2n1 (1.31)
b= sty 5=~ (1.32)
vz "=

we see that &, g7 are conjugate to b7, Yn respectively as desired. These
with their counter part obtained in the expansion of b"(¢) and 73 (o) will be
used later to define the comma ghost modes 47 and B7. The construction
of b"(c) and its conjugate momentum 7j(c) are given in appendix A.

2 Construction of the three-string comma overlaps

The fermionic coordinates ¢" (o) and »" (o) are canonically conjugate. Thus
only one of them is to be identified about the midpoint. the other one must
be identified, as a momentum, with opposite sign. The correct prescription
is that b"(0), b5.(0) and 77(o) are treated like coordinates and c"(0), (o)
and 77 (o) are treated as momenta. The comma overlap equations in terms

of

0
C(Ui)=08+\/§Zg;nc0327w, (2.1)
and -
(o) =b6+\/§2y§nc082na, (2.2)
n=1




for the N — string are

o) = —cR (o), (2.3)
ﬂc;f(o) = ch_l(a), (2.4)

where j =1,2,..,Nand j -1 =0 = N. For b"(0) and 7}(c) we obtain
similar equations (the same form with the relative sign exchanged). Now
we are ready to consider the overlaps for the cubic vertex®. In terms of the
complex coordinates

1 3 "
Cl(o) = %E ()™ B s = LR k=123, (2.5)
=1

the overlaps (2.3) yields
[CL(O') + ez”i/3CR(a)J [V3em™e >=0, o € [0,7/2), (2.6)

[C3(0) + CR(o)] V5™ >=0, o € [0,r/2), (2.7)

where C7(0) = CJ(0) = C5(0). Similarly , in the complex space of the
commas, the overlaps specified by (2.4) are given by the same equations
with C"(0) — II7(0) and the relative sign flipped. The overlaps for B"(o)
and II} (o) are given in appendix A.

3 The Comma Overlaps in FS Oscillator Hilbert Space

The fact that the Witten’s vertex solves the comma overlaps only prove
that the Witten’s vertex is a solution of the comma, overlaps and not neces-
sarily the only solution”. If this turn to be the case it will be interesting to
see what other solutions are admitted by the comma formulation; certainly
one of them will be the comma vertex itself if one can show that it is differ-
ent from the Witten’s vertex (i.e., possesses different properties from the
Witten’s vertex.). These questions will be addressed later in the paper.
The proof that the operator form of the Witten’s 3 — vertez solves the

®The overlaps for the 1 — vertez is given in appendix B.
"This statement is true. since no one has vet proven that Witten’s interaction fixes
the form of the vertex uniquely.

-~J




comma overlaps is not a trivial one; it involves double infinite sums (the
second coming from integrating o over the range [0,7/2) in formulating
the comma theory). The double infinite sums may not converge absolutely
and the convergence may depend on the order of the sums. The case of the
full string [5, 6, 7, 8, 9] is different, the expression for the vertices involve
absolutely convergent sums. This ambiguity is not an accident, we have
seen in [10, 4] that Witten’s theory can be viewed as an infinite dimen-
sional local matrix algebra where the star product “*” becomes matrix
multiplication over infinite dimensional matrices that does not conserve
associativity. To establish that the Witten’s 3 — vertezr solves the comma
overlaps we to show that it solves the comma overlaps stated in the previ-
ous section. First we observe that (2.7) has the same form as the identity
vertex® and therefore the proof follows from the form of the vertex. How-
ever, this is not the case for eq. (2.6) and therefore one must prove it
explicitly. The overlap conditions on C"(o) and II." (o) imply that their
Fourier components satisfy

[Ch +e™PCh] [Vsomme >=0, n20 (3.1)

HcL _ e21ri/3HcR |Vcomma >= 07 n>0. (32)
2n 2n 3

Now we have to show that the comma equations, (3.1) and (3.2), hold for
the Witten’s cubic vertex constructed in [5, 6, 7, 8, 9]. Let us start with
(3.1). It is fairly easy to express the comma overlaps, (3.1), in the Hilbert
space of the full string, by using the change of representation formulas
derived earlier. After a little algebra one finds that (3.1), for the Witten’s

vertex, may be written as

Lo o 2v3 & ()"
el irr /3 |
\/?—)Z_;e [Co _— z:2n+1

for n =0 and

(e + )] V¥ >=0 (33)

n=0

3 o0
-\_/1_‘6_,',,-/3 Z e2i7rr/3 l:(cgﬂ + Ct-2n) + 2’[,\/5 Z B2n2m+1
6 = m=0

8We have checked that the identity vertex in WSFT indeed satisfy the comma over-

laps derived in appendix B. However, we will not produce the proof here since it is a

straight forward proof.




(c;m+1 + c:2m—l)] V3V >=o0, (3.4)
for n > 1. Using the identity

r W __ Arrs s
V5" >= NI mes.

m V3V >, (3.5)

eqs. (3.3) and (3.4) may be written in the form

3 o
Do WiV >=0; n>0. (3.6)
k=0

s=1
The coefficients of ¢S ., are given by

3. - V3E& (=),
%5 = e (gt = 025 O g, 9], @)
r=1 =0
and 5
Qe = e¥m/3 [Nggkk +06"0mk + 2iV3 Y Bonoman
r=1 m=0

(N33 i ok + §0miik)]; n>1. (3.8)

Now to prove (3.6) we must show that the identity
Wi =0 (3.9)

is true separately for all s = 1,2, 3 and all k,n > 0. The proof of this
identity is highly nontrivial (apart from the case n = k& = 0 which is
obvious); it involves performing a large number of infinite sums over the
change of basis matrix B and the Neumann coefficients N;fn The proof of
the zero mode (i.e., n =0,k > 1) of the identity is relatively easier than
that for higher modes (i.e., n > 1,k > 0). Therefore we shall not give it
here®. Before proceeding to prove (3.9) for the non zero modes let us give
the values of Neumann coefficients Nzg, (for n,m > 0) as derived in ref.
[5]. For m +n odd we have

. 2 2 .
Ny = ~3 sin §7r(r = 8)Npn s (3.10)

with

) (=)™ [bman o+ bntty, | bin = bnamJ , (3.11)

Nmn=
2 m—n m+n

9We have checked that the identity in (3.9) for the zero mode is indeed satisfied.
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and for (m +n) = even (excluding the case m = n = 0),

- —_\ym+1 -
NS = 5rs()_(5mn — gcos g71’(7" — 8) N (3.12)
3 3
with
m:tn
~ —_ bm n _bn m bm n bn m
A [ On — Onm_, Om@n + a],m;én, (3.13)
2 m-—n m+n

Ny __r i(—)kaz—l(—)mcf +1)+ (_)mambm. (3.14)
m \{= 2 " m

The coefficient Ny is not needed in the proof. It is worth observing that

(3.13) and (3.14) may be combined into a single expression using several

results from ref. [2]. Hence (3.12) takes the form

TS (_)m+1 rs 2 2 \ 3(_)711 b a
N = 8" bum— 3 cos Z(r—s) | N — (amSh + bmS2) Gmn |,
(3.15)
where b
§e0 = a(b)m (3.16)

ntm—even W+ M

It is clear that the above expression for the off diagonal elements reduces
to (3.12) with N,,, given by (3.13). For the diagonal elements one has to
take the limit n — m in (3.15) to recover (3.12) with N, given by (3.14).
The limits needed here can easily be evaluated using results derived in [2].

Here we only give their values

V3

~2 (a2 b))+ o, @an)

Nnn = limm——)nN2n 2m = 2

where

Sa(b) — = a(b)n 1
S (319

can be evaluated using the integral representation of the Taylor modes (see
refs. [5, 11, 2]). Now we are ready to prove (3.9) for the non zero modes
(n > 1). For k = 0 it is clear that (3.9) is true for all values of s = 1,2, 3.
Next we consider k£ = even > 2. For this case (3.8) reduces to

3 oc -
QL = Zl e 3Nk NGS o + 6700k + 2iV/3 Z_O Bonams12kN3S 1o | -
B B (3.19)

10




To evaluate the sum in the above expression we substitute the explicit
values of the Neumann Coefficients and make use of the various identities
in ref. [2] to obtain

[=9) - 9 _
Boromy1 NIS = sin — 7r Nom , 3.20
mZ::O 2n2m+1 V20 41 2k 3\/— — 8)Nomy1 2k (3.20)

for &£ # n. Similarly we obtain

= /TS 1 .2
‘mZ=O B2n2m+1N2m+1 m = T3 sin 57(7" —s)
™ a2nb2n a 'a
[m o — aan (28, +5b,,) + ban (S5, -% ZN)J , (3.21)
for & = n. Substituting (3.20) into (3.19), we get after some algebra,
2 - iws/3 Om a4

Vnselern = —S(R)Nj15e ™S 8 _g (309

r=1

since 32_, e*™/3 = 0. For the case k = n we still need to simplify (3.21).
Using the following identity (see ref. [2] for derivation)

v@—+()ﬂw ”“_ﬂh (3.23)

eq. (3.21) reduces to

bl ~ 2
Bonomt1 N1 on = sin 7r( - )
mzzo n 2m+12n 3\/_

a2an'n _ _@
2(2n) 27

Recalling (3.17) the above expression reduces to

(a2nh, — 02052, — 2 (22058, + bz,lsgn)} . (3.24)

2 3 )
- f sin = (r — s) [NMn — < (28t + bgnszn)] . (3.25)

Substituting this back into (3.19) we see that

2

- 3 3
Q;nZn = _5 (N2n2n - 9 ) Z egmr(Qr 9 = 0. (326)
= =1

11




Combining (3.22) and (3.26) we see that
Qonae =0, (3.27)

for all values of s =1,2,3 and all n, & > 1. To complete the proof of (3.9)
we still have the case k = odd > 1 to deal with. For k = odd > 1, eq. (3.8)
reduces to

3
2inr /3 [ (o). Y
Snoker = p_e! [(2]‘ + 1N 2kt

r=1
+2iV3 S Banamsr (26 + 1)NGE 4y 0ps + 5’85m,c)} : (3.28)
m=0

Here NJ2,.., is given by (3.11) and N32 12541 18 given by (3.15). The only
difficulty in (3.28) is the sum over the Neumann coefficients since this sum
is potentially divergent. Let us first consider the sum over Noms12k41 iD
2Trsn+1 2k+1° i'e"

oo ~

Z BQn2m+1N2m+12k+1 . (329)

m=0
Recalling the explicit expression for Nami12k41, the above expression re-

duces to
_)k+1 0o

o0
Z B2n2m+1N2m+1 2k+1 = ) Z Banam+1
m

m=0 =0
(=)™ (2m + Dbomt1a2k+1 — (2k + 1)b2kt102m41
(2m +1)2 — (2k+1)2 '

This expression is very delicate since it is potentially divergent when m

(3.30)

takes the value k. We recall that this problem of potentially divergent
sums have been studied in detail in ref. [2] and various identities were

derived there. Thus using the following identity (derived in ref. [2])

i azk+1bong1 + (= )b2ks102n41 _ 2(—1)

2k+1)+(-)2n+1)  2k+1° (3.31)

m=0

and many other identities derived in [2], we see after a lengthy otherwise
a straight forward calculation that eq. (3.30) reduces to

o | o=

[e o]
Z Bonam+1Nomt12k+1 =

™=0

s 1
— — B, ———— Bo ok . 3.32
2\/§(a2k+1b2nB2k+12n bok+102nBan2k+1) + 5% 1 1 2 2k+1:| ( )

12




Noting that the expression in the round bracket in (3.33) is proportional

to N2n2k+1 we obtain

iB N. S I +—L B (3.33)
n2m+14¥2m+412k41 = 2 \/g 2n2k+1 2]‘J+1 2n2k+11| - .

m=0
Now using (3.33) and the explicit value of Nis 2k+1 one finds, after a little
manipulation , that (3.28) reduce to

3 .
s inr 2 Y 2im(r—
Winokyr =D /3 [_3 (2k + 1) Nop g 415770

r=1
: 2 2
+4Z\/§an2k+1 (6,-5 - g cos '3'71'(7" - S))] y (334)
which is identically zero for all s = 1,2,3 as required, since
2 S 2 2
STetd < S emss <5rs — 3 cos gw(r — s)) =0. (3.35)
r=1 r=1

This completes the proof of (3.9) and consequently (3.1) follows. It remains
to show that (3.2) is also true in the full string Oscillator Hilbert space.
The proof follow exactly the same lines and one only need to prove the
identity given in (3.9) with Q given by

3 . 2 &
Q;nk = Z 62”"‘/3 [2TI,N;:,C - (srsdznk - = Z BZn2m+1
r=1 \/g m=0
((2m + 1)NGS 1\ - 8 Gomsix)|s n>0,k>0. (3.36)

At this point it is worth mentioning that the sum over m in (3.36), is
different from that in (3.8); it has a an extra factor (2m + 1) multiplying
the neumann coefficient N{,“;LH,C. This extra factor may easily cause the
convergent series in (3.8) to diverge. Luckily this is not the case as we shall
see bellow. To prove (3.2) we only need to show that

5, =0, (3.37)

is true separately for all s = 1,2 3 and all n > 0,k > 0. Now there are
three cases to consider k = 0, even > 2,0dd > 1 for each value of n. The
k = 0 case can easily be checked using the identity

% - 1. 2 .
riid‘o an2m+1(2m + 1)N27'16n+10 = —\/—5 sin §7T'(T‘ — S) (—) bgn . (338)

13




This identity can easily be verified using the fact

1 1 /1\'/2
£, =55 = on (5) byom > 1. (3.39)

The other two case are more involved and more identities are needed to
carry out the proof. Let us start with & = even > 2. For this case (3.36)
becomes

3 .
. - 2 &
Qs — 621,7r1~/3 InNIS. — 6’rsé'n = B "
2n 2k ,; 2n 2k k \/5,";0 2n 2m+1
(2m + 1)Ngo L - (3.40)

Let us consider the sum in the above expression, i.e.,
e ] .
> Banams1(2m + )N 2k - (3.41)
m=0
This sum can be evaluated, by using several results from ref. [2] . For
k # n, we get
1

e TS .2 "
mZ:O an2m+1(2m + 1)N2m+1 2k|k¢n = % sin EW(T - S)(2N)N2n2k. (342)

Now using this and the explicit value of N33,, we obtain

2 Y —2irms > inr
Qon2klkzn = —5(2n)N2n2k€ Zims/3 Z e/ = . (3.43)

r=1

Similarly for ¥ = n the sum can be performed using the various identities
of ref. [2]. Thus

ad ~ 1 2
Bonam+1(2m + 1)N3; 15, = —=sin =7 (r — 5)(2n)
mzzo ARV R
V l b bor GO 44
N2n2n + 1 (G/QTLSQn + 02y, 2n> - (3 4)

By explicit substitution we see that

3. .. 2 . -
an o = Z 6211rr/3 [_5621,#(1-—5)(2”)]\72"2”
r=1

14




1 2 i, 2
-2 (6,.5 — 5 cos §7r(r —-s)+ 5 sin grr(r - s))] =0, (3.45)

since
3 3 :
. 1 2 .
T; etmr/3 = ; (6,5 = 5 C0s 571'(7' —S8)+ -é—sin gw(r - s)) =0. (3.46)

This completes the proof of (3.37) for k = even > 0. Still need to consider
k = odd > 1. For this case, (3.36) gives

oo

3 2 .
. ~ Z
s - 2inrr/3 rs
Qohgs = D €%/ [QnNZn it = 7 >~ Banomyr
r=1 m=0

((2m + DNG s 12501 — 6o 2k+1)] : (3.47)
Now we proceed to evaluate
Z Banoami1(2m + 1)N2r:z+1 2k+1 - (3.48)
m=0

By direct substitution, we have

> ~ 2
Y- Bonomir(2m + DN 12641 = (5” — Cos 3”(7' - 5)) Binaks1

m=0

2 2 o -
—5 CoSs g'ﬂ'(?" - S) Z Bgn2m+1 (2m + 1)N2m+12k+1 . (349)
m=0

The sum in the above equation can be evaluated using many results from
ref. [2] and the fact

2m +1 _ 2k+1

@n+ D) x@k+1) T GmADEORTD)

(3.50)

After a rather lengthy algebraic exercise in the use of various identities
from ref. [2] we obtain

oo 3 \/g . 3
> Banamia(2m + DNomy1 2641 = 7(‘)’“r A2k 41b2n — EanZk—H
m=0
V3 2k +1
T ( 2 ) [Ban2it12841b2n — Baky12nboki2as,] (3.51)




Using (4.9) and recalling the fact

N _ (‘“)n+k banGok+1 + b2kt102n  bonQoky1 — b2xt1Q2n
an 2kt 2 I — (2k + 1) I + (2k + 1)
.
= -3 (B2k+12nb2n02k+1 — Baonok+1b2k+102,) (3.52)

Eq. (4.6) becomes

- 3
¥y ) .
s _ -2 3 4 3
an2k+1 = ——3 (27&) (sz+1 2nb2na2k+1 - an2k+1bzk+1azn) € ims/ E etinr/ ,
r=1

(3.53)
which is identically zero. In arriving at the above result we have also used
the fact

V3

2

&

2k+1

k+n
(—) a2k+lb2n + ( ) (an 2k+1a2k+1b2n - B2k+12nb2k+1a2n)

V3
T [(2n)azi41ban + (26 + 1)boky102n] Baks12n (3.54)

which can be verified by direct substitution. This completes the proof for
the overlap equation of II7 (o).

Exactly the same procedure is used to to prove the comma overlaps for
b"(o) and I} (o), given in appendix A, in the Oscillator Hilbert space of the
full string. They are seen to hold too. This completes the demonstration
of the basic comma overlaps on the fermionic ghost three-point vertex of
WSFT. In the next section we consider the comma BRST operators, Q%
and Q% in the full string representation.

4 BRST Operator

In ref. [1] it was shown that the identity
Py + Pt =po, (4.1)

holds in the full string Oscillator Hilbert space. However, there we were
not in a position to address the identity which relates the BRST operator
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(QL) to the corresponding BRST operator (Qr). Recall that Witten’s
action has a local gauge invariance [3] which requires

[Ql + Q2 + QB] |‘/3Witten >—= O, (42)

where @ is the BRST charge. This fact was checked explicitly'® using
oscillators in ref. [5]. The transformation to the comma theory requires
the stronger condition

(Q;‘? + Qz+l) I‘/Scomma >=0 , (43)

where Q; and Qg are the comma BRST charges and r = 1,2,3, with4 =
1. Now it is not obvious that the Witten's vertex satisfies the comma over-
laps (4.3). In the full string theory, the BRST current may be expanded

in modes

ilo) = Q0+‘/§i Jocosno; o € [o, 7], (4.4)
n=1
where )
In = 7 (@n+Q-) , (4.5)
and, up to normal ordering ambiguities,
Qn ~ ZL: C—kLpii . (4.6)

Lr is defined in the standard way (see eq. (1.11)). The zero mode Qo is
Just the usual BRST operator @ (see eq. (1.10)). In the comma theory
the BRST currents are defined in the usual way

Jlo) ,ifr=1=1L,

JT (o) = J(m—o) yifr=2=R (4.7)
cel0,%),
with
lim;5, (o) = j(/2). (4.8)

The mode expansion of the comma BRST currents reads

J (o) =Q + ﬂig’;ﬂ cos2ro; o €[0,7/2) (4.9)

Eq. (4.2) was also proven, using the comma formulation of WSFT in ref, (4]
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with r = 1,2 refers to the left, right parts of the string respectively. The
comma modes are given by

n

QL =Q

F2
; (Qan-1 + Q_2n41) , (4.10)

iy 2

n=1 n-—

;n = % (an + Q_2n)+\/§(—)r z_: B'Zan—l (QZm—l + Q—2m+1) ' (4'11)

and their inverse is given by

- % (@"+@"), (4.12)

. 1 & . .
Jon = EZ A +i), n>1, (4.13)

= 2 Bomaner (J3m + i) - R 21,
=1
" (4.14)

Now we need to prove that

(QR+Q1) IVa¥ >= (Qh+Q3) 1" >= (Q%+ QL) V¥ >=0, (4.15)

i.e., to show that (4.15) continues to hold in the Witten’s cubic vertex rep-
resentation. The left (right) operators @, (Qr) entering (4.15) and given
by (4.10) are precisely (up to an overall factor) those obtained in ref. [11]
where eq. (4.15) has been verified, in a great detail. Therefore there is
no need to repeat the calculation here. A final word about the anomalous
symmetries of |V3 > generated by K**"¢" and K3"** in the comma repre-
sentation. These problems have already been addressed in ref. [4].

5 Conclusions

In this paper and in [1, 2] we have completed the proof of the comma
overlap cquations in the Hilbert space of the full string developed in ref.
[5. 6. 7, 8, 9]., We have shown that Witten’s cubic vertex (matter plus
ghost) indeed solves the comma overlaps thus establishing the equivalence
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of the two theories at least on the level of the vertices. We have seen that
multiplication (*) in WSFT is associative (1] and that Q is a derivation.
The invariance under (K,,) has been discussed inrefs. [1,4]. A challenging
problem remains; is the construction of a conformal operator connecting
the comma 3 — verter and Witten’s cubic — vertez (if it exists). Work in
this direction is in progress.

Appendix A

The comma antighost coordinate, b"(o), is defined exactly as in (1.12)

with ¢(o) being replaced by b(c). Thus we obtain

0"(0) = V23 hy,_sin(2n - 1)o, o€ [0,7/2), (A.1)

with
1

Ry | = 7 (b2n-1 = b-2n41) = V2(=)" 3" Ban12m (bom — b_smm). (A.2)
m=1

The inverse relations read

1 2 oo . on .
E (bgn - b_zn) = Z Z (“) (2m — 1) B2n2m—1 h'zm—l ) (AB)

r=1m=1

1 13
—= (bzn1 = b_gniy) = =S "R A4
\/5( 2n—1 2 +l) 9 ; 2n—1 ( )
Observe that eqs. (A.3) and (A.4) are readily consistent with the require-
ment that the neighboring points on the string are not allowed to wonder
to far from each other while the midpoint vary freely. Likewise, for the
conjugate momentum 7} (o), we obtain

(o) = \/§Z Zn18in(2n - 1)o, o € [0,7/2), (A.5)
n=1
with
1 e o]
oy = ﬁ (Con—1 — Coont1) — ﬁ(—)r Z Ban—12m (Cam — Coom) - (A'G)
m=1

The inverse relations read

% (Can — Cogn) = 22: > (=) ( 2n ) Banam—1 21 (A.7)

r=1m=1 2m -1
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1 13,
E (Can—1 = Coan1) = 5 2_21 Zon—1 - (A.8)

Again eqs. (A.7) and (A.8) are consistent with the constraint on the comma
modes. Quantization is carried out as before. Introducing the hated oper-
ators . .
. i . 7
b= —hh., H= e (A.9)

V2 V2

we see that the desired anticommutation relations are indeed satisfied.

The comma overlaps, for "(c), are are
[BY(0) + ¥ BR(g)] V5™ >= 0, o € [0,7/2), (A.10)

[Bf (o) + Bf(0)] V5™ >=10, o € [0,7/2), (A.11)

where B"(0) = Bj (o) = Bj(0) and
1 23: 2mitk/3
Bi(o) = —=) bj(g)e™ " r=L R, k=1,23. (A.12)
k \/g — {

Similarly , in the complex space of the commas, the overlaps for (o) are
given by the same equations with B"(o) — (o) and the relative sign
flipped.

Appendix B

The integration-identity overlap

Let us proceed to construct the ghost Fock space vector, [19%°% >. We first

introduce the comma ghost modes, v/ and 37,

1
= (L 45, n>1, B.1
Tn ﬁ(yn ) (B.1)
™ 1 ~T 'A’!‘

Br, = —=(g, +1ihy), n>1, (B.2)

Yo =6, B = b (B.3)
It is a straight forward vo check that the desired anticommutation relations
{8} = 6" bnsm.o, (B.4)
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are satisfied. Now we are ready to state the overlaps needed to construct
the ghost Fock space vector, [19%°st > in the comma representation. Recall
that the correct prescription is that ¢ "(0), m3(0) are treated like momenta

and 6" (o), 77(o) are treated like coordinates, i.e., we identify

o), (o) = —1f0), (B.5)

b5(0) =b%(0),  7l(o) = n(0). (B.6)

The overlap equations that [19%°5t > must satisfy are then

(B + BE) + (8%, + BR)] 119 > =0, (B.7)
[0+ ) = (vE +4R)] |17 5= g, (B.8)
[ — (8L, - Bﬁ,)] |T9Rost > = g, (B.9)
[0 =) + (vE, = AR )] oot 5= 0. (B.10)

Expressing [79%°st > a5 the exponential of quadratic form in creation op-
erators acting on the Fock space vacuum (| >" ) annihilated by all Tr>1s

nZl-
,]ghost >= eﬂina,ﬁfn’ys_m,Q >z ,Q >R, (Bll)

and using eqs. (B.7) through (B.10) to fix the quadratic form, we obtain
Oy = ORE = 6,,.,,, OLL = 9RR — . (B.12)

No zero modes appear in the | 79host ~ since,

[0 + 28] 17t >= [5F — ] 1905t 5= 0. (B.13)

Since the zero modes ~5, 35 anticommute, the vacuum state, 2 >7)is a
doublet of states, |+ >". Now we have to determine which vacuum appears
in (B.11). Eq. (B.13) implies that Yo = 0 but that 85 # 0. Therefore we
choose the vacuum to satisfy

Y%l >"=0, r=LR. (B.14)

Construction of the cubic-string vertex




Now we are ready to construct the ghost interaction vertex. To simplify
the calculation we introduce the variables

reTES [ R k=123 (B.15)

IIMw

and likewise for B = BL(f7, 35, 35). Now the overlap equation in (2.6),
(A.10), and their conjugate momenta yield

(B + eBE) + (BE, +BR,)] [V >=0, (B.16)
(B — eBE) - o —eBE)] [V >=0, (B.17)
[T —el'?) + (FL — LR )] VP >=0, (B.18)
[CE + ) — (TE, + eT2 )] [V >=0, (B.19)
with e = e%"/3, whereas the overlap eqs. (2.7). (A.11) and their conjugate

momenta satisfy the usual (identity-type) equations. The most general
solution has the form

3
VI >= exp [-T25008, B2 + B Ko T2 + TL KB T 10 >F 10 >R

=1
(B.20)
Now using the overlaps, after a little algebra we obtain
(REs + eRE2) + (6% 0nm + €6%%60m) =0, (B.21)
(1‘(,5:,,_ - ekf,;) — (6560 m — €676 ) =0, (B.22)

and the same equations for K72 wi‘h e — —e. These equations are trivial

to solve. Hence, one obtains
KLs = —KEs =e6R°6,,,, s=L,R, (B.23)

Kf;:—kfrflze(sl‘sénm, s=L,R. (B.24)

It is left to specify which vacuum state occurs in (B.20). The overlap

equations for the zero modes dictate the choice

Q@ >I= (I =0> . (B.25)
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Rewriting [VJ®" > in the original creation operators, i.e., 81, v we obtain

V3 >= eap (BL02 R + BEELE 4 gL 2R 4 glR. 2L

+O209 00+ BERAEE) HI =0>|pf=0>. (B.26)

This is a very elegant form as Compared to that in the full string formulation
of WSFT.

We conclude this appendix by giving explicitly the equations relating
the full-string ghost modes (c,, , b ) and the comma ghost modes (vo,00, r=
L, R). For the full-string modes we have \

co = %Zv (B.27)
1 2 2 oo )
n =533 5 (B 80) = 2 3 (5220 Buna
%(%ﬁ—vﬁm) . on>1, (B.28)
2 _\n 2 1 2 2 o0 2 -1
Con-1 = %2;—)1,5;:(_)r 5_5,2_;%(7:‘_7:" ‘,;("r,;( T;m )
B, 12m% (ﬁ:n +,8:m) ) n>1, (B.29)

and c_, =cl, n > 1. The same equations are obtained for b, with v & = 4.
The inverse relations are

2 oo _\n
Yo = Co + ;(_)Tnz::l 2(n _) 1 (Con—1 + C—ony1) , (B.30)
ro 1 (ban + b )+L )TiB (ban—1 +b )
Tn = 2\/5 2n —2n \/‘5 = 2n2m—1 \U2n—1 —2n+1
1 1
— T =\Cp—1 — C_9p, + —=(=) B m\Con — C_2p) , N 2>1,
2\/5(21 2nt1) \/5()2:::1212(2 2n)
(B.31)
and v, = v}, n > 1. Likewise we obtain the same equations for S

with ¢ = b. One can check that all the desired anticommutation relations
are indeed satisfied. Observe that the change of representation does not
conserve species i.e., it mixes ghosts and antighosts degrees of freedom.
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