
Technical Report

RAL-TR-2006-026

Council for the Central Laboratory of the Research Councils

October 2006, revised March and December 2007

J. K. Reid and J. A. Scott

HSL OF01, a virtual memory system in
Fortran



c© Council for the Central Laboratory of the Research Councils

Enquires about copyright, reproduction and requests for additional copies of this report should be addressed to:

Library and Information Services

CCLRC Rutherford Appleton Laboratory

Chilton Didcot

Oxfordshire OX11 0QX

UK

Tel: +44 (0)1235 445384

Fax: +44(0)1235 446403

Email: library@rl.ac.uk

CCLRC reports are available online at:

http://www.clrc.ac.uk/Activity/ACTIVITY=Publications;SECTION=225;

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from the use of

information contained in any of their reports or in any communication about their tests or investigations.



RAL-TR-2006-026

HSL OF01, a virtual memory system in Fortran 1,2

by

J. K. Reid and J. A. Scott

Abstract

HSL OF01 is a Fortran 95 package that provides facilities for reading from and writing to direct-access files.

A buffer is used to avoid actual input/output operations whenever possible. The data may be spread over

many files and for very large problems these may be held on more than one device. We describe the design

of HSL OF01 and comment on its use within an out-of-core sparse direct solver.

Keywords: virtual memory, out-of-core, Fortran.

1 Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.html”.

2 The work of the second author was supported by the EPSRC grant GR/S42170.

Computational Science and Engineering Department,

Atlas Centre, Rutherford Appleton Laboratory,

Oxon OX11 0QX, England.

December 2007.



1 Introduction

We have recently designed and developed new direct solvers for the efficient solution of very large sparse

linear systems [5], [6]. The new codes are serial multifrontal solvers that are written in Fortran 95 and

are designed to allow the original matrix, its factorization, and the bulk of the intermediate data to be

held on disk. For a given amount of main memory, this enables much larger problems to be solved than

would otherwise be possible. Fortran 95 offers two forms of file access: sequential and direct. Using

sequential files is too restrictive for our purposes because the multifrontal algorithm requires that the data

of the original matrix be accessed non-sequentially and other data has to be accessed backwards as well as

forwards and, in our experience, backwards access is slow. We therefore use direct-access files. A serious

limitation of direct-access files is that each file has fixed-length records but we need to be able to read

and write different amounts of data at each stage of the multifrontal computation and thus, to enable

the use of direct-access files, we need to buffer the data. Since such buffering may be needed by other

applications, we have developed a separate package, called HSL OF01, which is available in the HSL 2007

Library [2]. Although designed primarily for use by our new multifrontal solvers, HSL OF01 is a general-

purpose package. Our aim here is to describe the design and key features of HSL OF01 and to illustrate its

performance.

This article is organised as follows. In the remainder of this introductory section, we give a brief

overview of HSL OF01 and the language used to write it. In Section 2, we briefly describe the user interface.

Key features of HSL OF01 are discussed in Section 3. Numerical experiments are reported on in Section 4

and, finally, some concluding remarks are made in Section 5.

We note that HSL OF01 supersedes the Fortran 77 code OF01, that was written by the first

author in the early 1980s for use within his out-of-core solver for symmetric positive-definite finite-

element problems [4] and is now available within the HSL Archive Library (details are available at

http://hsl.rl.ac.uk/archive/hslarchive.html).

1.1 Brief overview of HSL OF01

HSL OF01 offers facilities for reading from and writing to direct-access files using a buffer (that is, a work

array held in main memory) to avoid actual input/output operations whenever possible (how this achieved

is explained in Section 3.2). A separate buffer is used for each data type that needs to be stored but because

more than one set of data of a given type may need to be held, a single buffer may be associated with more

than one direct-access file. The buffer is divided into fixed-length pages that correspond to the fixed-length

records of the files. All input/output is performed by transferring a single page of the buffer to or from a

single record of a file.

In order to provide a friendly interface to HSL OF01, each set of data is addressed as a virtual array,

that is, as if it were a very large array. Any contiguous section of the virtual array may be read or written.

This is done by first looking for parts of the section that are in the buffer and performing a direct copy of

these. For any remaining parts, there may have to be actual input and/or output of pages of the buffer. If

room for a new page is needed in the buffer, by default the page that was least recently accessed is written

to its file (if necessary) and is overwritten by the new page.

All the entries of the virtual array are regarded as having the initial value zero, but a note is kept of

the final page in which data has been placed explicitly so that pages beyond this need not be written to

the corresponding file record.

In our early tests with our multifrontal solver, we sometimes found that the virtual array was too big

for a single file, either because the disk partition was too small or because the file size was limited by

32-bit addressing. We therefore added the ability to handle secondary files, which may reside on different

devices. We refer to the primary file and its secondaries as a superfile.

We illustrate in Figure 1.1 the correspondences between the pages of the buffer, sections of the virtual

arrays, and records of the files of the superfiles for a case of two superfiles associated with the buffer, one

with three files and one with one file.

1



Figure 1.1: The buffer, virtual arrays, and files of the superfiles.

Superfiles

Virtual arrays

temp_filemain_file main_file1 main_file2

Buffer

1.2 Language

HSL OF01 is written in Fortran 95. We have adhered to the Fortran 95 standard except that we use

allocatable structure components and dummy arguments. These are part of the official extension that is

defined by Technical Report TR 15581(E) [3] and is included in Fortran 2003.

The extension allows arrays to be of dynamic size without the computing overheads of pointers.

Addressing is less efficient in code that implements pointer arrays since it has to allow for the possibility

that the array is associated with an array section, such as a(i,:), that is not a contiguous part of its

parent. Furthermore, optimization of a loop that involves a pointer may be inhibited by the possibility

that its target is also accessed in another way in the loop.

The extension also avoids the memory-leakage dangers of pointers since an allocatable array never

creates an anonymous object that can be accessed only through another anonymous object. Each

allocatable array is either allocated or not allocated.

To allow the package to be used for very large data sets, we selectively make use of long (64-bit)

integers, declared in Fortran 95 with the syntax selected int kind(18) and supported by all the Fortran

95 compilers to which we have access. These long integers are used for addresses within virtual arrays.

Fortran 95 offers only sequential-access files and direct-access files; Fortran 2003 offers a third form of

file access: stream. This is more flexible but, at the time of writing, no compilers fully support Fortran

2003. Since the Nag Fortran compiler does support stream access, we have constructed a version of

HSL OF01 that uses it, which allows us to consider the advantages and disadvantages of stream access.

This is reported on in Section 4.2.

2 Description of the user interface

Before looking at the key features of HSL OF01, we briefly describe its user interface. Full details are given

in the accompanying user documentation.

There are separate versions of the package for single precision, double precision, integer, complex, and

double complex data. We refer to the type of the data as the package type. Each version of HSL OF01 is

provided in the form of a module and uses an array of the package type as a buffer for reading to and

writing from one or more virtual arrays. The advantage of having one buffer for several virtual arrays is

that the available memory is dynamically shared between them according to their needs at each stage of

the computation. It might be desirable in some applications to have a single buffer for two or more data

types (for example, for the real and integer data), but this is not possible in standard Fortran 95 without

some copying overheads. Thus if it is required to read and write more than one data type, more than one

module must be employed (our multifrontal solvers, for example, employ the real and integer modules).

For the user’s convenience, the buffer and all the data needed to index it and access it efficiently are

held in an object of derived type that must be declared by the user and passed as an argument to each of

2



the HSL OF01 subroutines. This allows the package to be run in a threaded environment with a separate

object for each thread. The type for this object is OF01 data and is accessible from the HSL OF01 module.

HSL OF01 has six subroutines that can be called by the user:

• OF01 initialize must be called once to initialize the object of type OF01 data that holds the buffer

and its data.

• OF01 open must be called for each superfile that is to be accessed through HSL OF01. It gives the

superfile an index and opens its file or files.

• OF01 read performs reading from a superfile.

• OF01 write performs writing to a superfile.

• OF01 close should be called for each superfile that is no longer required to be accessed through

HSL OF01 to close the primary file and its secondary files. Any information that belongs to the

superfile but is in the buffer is optionally transferred to the files and the files are closed. An option

exists to delete the files on closure.

• OF01 end should be called to deallocate array components of the object of type OF01 data that holds

the buffer and its data once no further superfiles are required to be accessed through it.

The object of type OF01 data has a number of components that the user can access to control the

execution of the package and to obtain information. The control components include parameters that

determine the size of each file (the default value is 221, measured in scalars of the package type) and the

number and size of each page of the in-core buffer (the defaults are 1600 and 212, respectively). Information

is available on the the total number of calls made to OF01 read and OF01 write, and the number of records

read and written (that is, the actual number of executions of Fortran read and write statements). Note

that a call to OF01 read may cause an actual write to occur in order to free a page. Error checking is

provided and, in the event of an error, a flag is set, a message is optionally printed and, where possible,

additional information (such as the Fortran STAT parameter) is made available.

The default settings for the controls are provided as initial values in the type declaration, which means

that the values will be set when the user declares an object of the type. Our choice of default value for

the file size is discussed in Section 3.1 and for the number npage and length lpage of the buffer pages in

Section 4.1. If values other than the defaults are required, optional arguments may be used on the call to

OF01 initialize to specify the required values.

The derived type also has a component that holds private data, that is, data that is intended not to

accessed by the user. Since Fortran 95 does not permit selected components to be declared as private,

we have to trust the user. No details of this data are provided in the documentation. This private data

includes the buffer itself as an allocatable array and several other allocatable arrays that are needed by

the package.

3 Key features of HSL OF01

As already explained, HSL OF01 performs all actual input/output by transferring pages between its buffer

and the records of one or more direct-access files. The buffer is an array of shape (lpage,npage) that

is allocated on the call of OF01 initialize. If lpage and npage are chosen sufficiently large and no

allocation error is returned, actual input/output to and from a file can be avoided, except on calling

OF01 close with a request to keep the files associated with the superfile.

Each superfile is addressed, using 64-bit integers, as a virtual array of rank one with lower bound

1. OF01 read and OF01 write allow any contiguous section of this virtual array to be read and written,

without regard to page boundaries. The superfile is given an index when it is presented to the package

by a call of OF01 open. This index is used to refer to the superfile during subsequent read and write

3



actions and by an eventual call of OF01 close to terminate the connection. The secondary files are given

identifiers that consist of the superfile name appended by 1,2,... . OF01 open finds unused units for the

primary file and any wanted secondary files and opens them all. If a subsequent call of OF01 write needs

more secondary files, units are found for these and they are opened.

3.1 HSL OF01 files

To allow the secondary files to reside on different devices, the user may optionally supply (on the call to

OF01 initialize) an array path of path names. If this array is absent, the behaviour is as if it were

present with size 1 and the value (/’’/). The full name of a file is the concatenation of a path name with

the file name. We need to limit the character lengths of the superfile and path names because the Fortran

OPEN statement requires the file name to be specified as a scalar character expression and Fortran 95 lacks

a means to construct a character scalar of variable length. We have chosen to limit the length of path

names and superfile names to 400. Since we believe that these lengths should always be sufficient and we

are anxious to minimise the number of parameters the user needs to understand and be concerned about,

we do not offer the user the option of resetting these lengths. To avoid wasting memory, we record the

names in allocatable arrays of character length 400, but avoid copying them except to a temporary scalar

variable needed for the file name in an OPEN statement

When a new file is opened by OF01 open with size(path)>1, all the alternatives in path are tried

until one is found on which a file may be opened, fully written with data (we take the opportunity to

initialize the file data to zero), closed, and reopened. If this fails, the next path is tried. Checking that the

whole file can be written adds an overhead, but without this check we would run the risk of a later failure

from which recovery is not possible. This is because the input/output may be buffered by the system.

If there is no room when writing a record for the first time or when unloading the system buffer before

closing the file, there is no way to recover the data still in the system buffer.

If the user is sure that there is enough space, the check may be avoided by specifying only one path.

Each of the superfiles may still be placed on different devices by suitable choices of file names in the calls

of OF01 open (but for each superfile, the primary and any secondary files will reside on a single device).

The overheads of these checks on the files make it important that they are not much bigger than

necessary. This is why we have chosen the default file size to be 221 scalars of the package type, which

on our test platform with a file of type double precision, took 0.16 seconds to establish a local file and

2.0 seconds for a remote file. For machines with 32-bit addressing, there is a limit on the file size. If the

system uses signed integers, it is probably 231
− 1 bytes (228

− 1 8-byte reals). If the system uses unsigned

integers, it is probably 232
− 1 bytes (229

− 1 8-byte reals).

Note that the file size does not limit the size of a superfile, which in practice may consist of many files.

3.2 HSL OF01 buffer

The most active pages of the virtual array are held in the HSL OF01 buffer. For each buffer page, the

index of the superfile and the page number within the virtual array are stored. Wanted pages are found

quickly with the help of a simple hashing function, and hash clashes are resolved by holding doubly-linked

lists of pages having identical hash codes. A special test is made for the page being the one most recently

accessed since it can happen that there are many short reads and writes that fit within a single page.

Once the buffer is full and another page is wanted, the least active buffer page is freed. It is identified

quickly with the aid of a doubly-linked list of pages in order of activity. By default, whenever a page is

accessed, it is regarded as the most active, is removed from its old position in the doubly-linked list and

is inserted at the start, unless it is already there. In the factorization phase of our multifrontal codes,

this means that the most active part of the multifrontal stack (its top) will be in the buffer while the

less active part (its bottom) is written, if necessary, to a file. Furthermore, during the solution phase of

the symmetric solver, as many as possible of the later columns of the matrix factor, read during forward

substitution, are retained in the buffer for the back substitution.

4



There are situations where is it known that data accessed in the virtual array are unlikely to be needed

again soon and do not deserve to be given priority in the buffer. For example, when writing the entries

of the matrix factors in our multifrontal solvers, it is known that they will not be needed until after

the factorization has been completed. OF01 write therefore offers an option for ‘inactive’ access. If the

optional argument inactive is present, it identifies a range of entries in the superfile that are unlikely to be

needed before other data in the buffer. When n entries from position loc are read with inactive present,

the range is inactive:loc+n-1 if inactive < loc; otherwise, the range is loc:max(loc+n-1,inactive).

Any page involved that lies entirely within the inactive range is regarded as the least active of the buffer

pages, which has the effect that it is very unlikely to stay long in the buffer; any other page involved is

regarded as having unchanged activity.

OF01 read includes an option to declare that the data will not be needed after they have been read.

This is used in the factorization phase of the multifrontal solvers when reading data from the multifrontal

stack since it is known that they will not be needed again. We refer to a call of OF01 read that has the

logical optional argument discard present with the value .true. as a discarding read. For each superfile,

a range of discarded entries is kept. If a discarding read touches the discarded range at either end, the

discarded range is expanded to include the newly discarded entries; otherwise, the discarded range consists

of the newly discarded entries. If the discarded range is overlapped on an OF01 write, it is reset to be

null (it was not felt worthwhile to identify a part of the old discarded range that is not overlapped). If a

page that is held only in the buffer is found to lie in the discarded range, the page is freed without writing

its data to the actual file. It is not treated as an inactive page because, in the multifrontal application, it

usually corresponds to the top of the stack and is likely to have new data written to it very soon.

A ‘dirty’ flag is kept for each page to indicate whether it has changed since its entry into the buffer

without subsequently been discarded by a discarding read. Only pages flagged dirty need be written to

file when they are freed. On each call of OF01 read or OF01 write, all wanted pages that are in the buffer

are accessed before those that are not in the buffer in order to avoid freeing a page that may actually be

needed.

The efficiency of reading to and writing from files using HSL OF01 depends on the size of the buffer and

the size of each page. This is discussed further in Section 4.1.

3.3 HSL OF01 read with mapped accumulation

As already noted, HSL OF01 was designed with the requirements of our multifrontal solvers in mind.

Because of the importance of assembly steps in the multifrontal method, we provide an option in OF01 read

to add a section of the virtual array into an array under the control of a map. If the optional array argument

map is present and the section starts at position loc in the virtual array, OF01 read behaves as if the virtual

array were the array virtual array and the statement

read_array(map(1:k)) = read_array(map(1:k)) + virtual_array(loc:loc+k-1)

were executed. Without this, a temporary array would be needed, the call would behave as if the following

statement were executed:

temp_array(1:k) = virtual_array(loc:loc+k-1)

and the calling code would need to execute the statement

read_array(map(1:k)) = read_array(map(1:k)) + temp_array(1:k)

OF01 write does not provide the corresponding write feature

virtual_array(map(1:k)) = virtual_array(map(1:k)) + write_array(1:k)

because we see no way of doing this more effectively than reading the portion of the virtual array that is

subject to change into a temporary array, adding write array(1:k) into it, and writing it back to the

5



virtual array. This can be better done in the calling procedure because bounds on the values of map(1:k),

which determine the size of the temporary array, may be known there and a single temporary array may

suffice for many calls.

3.4 Use of BLAS

The real and complex versions of OF01 read and OF01 write use the Level-1 BLAS copy for copying data

from the array argument to the buffer or vice-versa since we have found it to be faster than in-line code

in our test environment. Its speed is obtained by loop unrolling. The default BLAS code uses 7-fold loop

unrolling. Since there is no integer version of copy, we have written our own subroutine OF01 icopy that

uses 7-fold loop unrolling. For OF01 read with the optional argument map present, we have also written

special code for each version of the package that uses 7-fold loop unrolling.

3.5 Closing and reopening superfiles

When a superfile is closed by OF01 close, the default action is for its changed pages in the buffer to be

written to the files and the files to be closed and kept. Trailing pages that still have their initial value of

zero are not written. The number of pages in the superfile, excluding these trailing pages, is returned in

the argument lenw. There is an option for the files to be deleted. If the virtual array still has its initial

value of zero, the file will be empty and it is always deleted.

A superfile that has been closed by OF01 close may be reopened by calling OF01 open and specifying

the number of pages in the optional argument lenw, whose value must be as returned by OF01 close.

Once all the input/output through the buffer is complete and the superfiles have been closed, the

subroutine OF01 end should be called to deallocate the buffer and the other private arrays that have been

used by the package.

4 Numerical experiments

Since our multifrontal solver HSL MA77 [5] makes extensive use of the proposed virtual memory management

system, we use its performance on large positive-definite problems to choose default values of the

HSL OF01 control parameters and to make comparisons with stream input/output. Our numerical

results were obtained using double precision (64-bit) reals on a Dell Precision 670 with 4 Gbytes of

RAM. The Nag f95 compiler with the -O3 option was used together with ATLAS BLAS and LAPACK

(math-atlas.sourceforge.net). Unless stated otherwise, the files used by HSL MA77 are held locally on

our test machine.

The test problems reported on here are those used by Reid and Scott [5]. For most of our experiments,

we only present results for the subset are listed in Table 4.1. Each test example arises from a practical

application and is available from the University of Florida Sparse Matrix Collection [1].

Table 4.1: Positive-definite test matrices and their characteristics. n denotes the order. nz(A) and nz(L)

denote the number of entries in A and L, respectively, in millions. front denotes the maximum front size.
∗ indicates pattern only. † indicates stored in element form.

Identifier n nz(A) nz(L) front Application/description

m t1 97,578 4.926 34.613 1926 Tubular joint

shipsec1 140,874 3.977 40.353 2532 Ship section

crankseg 1 52,804 5.334 33.714 2124 Linear static analysis

troll
∗† 213,453 6.099 63.678 2643 Structural analysis

af shell3 504,855 17.562 97.715 2205 Sheet metal forming matrix

inline 1 503,712 18.660 179.269 3261 Inline skater

6



4.1 Effect of buffer size on performance

We first examine how sensitive the performance of HSL MA77 is to the size of the HSL OF01 buffers. As

noted in Section 3.2, the number of pages in the HSL OF01 buffers and the number of scalars held in each

page are parameters (called npage and lpage, respectively) that are under the user’s control. The code

allows for separate values for the real and integer buffers, but we did not use this option in our tests.

When called by HSL MA77, HSL OF01 allocates a real buffer and an integer buffer each as an array of size

npage∗lpage. If HSL MA77 returns an allocation error, the user may be able to rerun his or her problem

successfully by reducing npage and/or lpage.

In Table 4.1, we report the complete solution times for different choices of npage and lpage, grouped

by buffer size npage∗lpage. We see that, as the buffer size increases (that is, npage∗lpage increases), the

Table 4.1: HSL MA77 complete solution times for different values of npage and lpage.

npage lpage m t1 shipsec1 crankseg 1 troll af shell3 inline 1

400 210 20.7 27.6 33.0 39.2 50.8 142.7

100 212 22.0 27.8 30.9 39.8 53.1 131.1

1600 210 19.8 26.9 31.8 36.9 50.6 126.5

400 212 21.4 24.5 30.2 37.0 52.3 120.2

100 214 22.0 28.2 31.8 37.5 50.7 127.4

6400 210 20.4 27.9 33.2 36.3 49.0 124.0

1600 212 19.4 24.1 30.3 35.8 50.5 121.5

400 214 18.6 26.7 31.5 38.7 49.1 119.8

100 216 19.2 27.0 33.1 37.6 54.4 126.1

timings generally reduce but the precise choice of npage and lpage is not critical, with a range of values

giving similar performances. However, using either a small number of pages or a small page length can

adversely effect performance. Based on our findings, we have chosen the default values for these control

parameters to be 1600 and 212, respectively, so that the buffer size is 6.6× 106 (measured as the number

of scalars).

4.2 Stream access

We have constructed a version of HSL OF01 that uses the stream access that is part of Fortran 2003. This

allows the file to be positioned by ‘file storage units’ (probably bytes) starting at position 1 and allows any

number of variables to be accessed. On the assumption that the system will provide buffering for short

transfers, this version of HSL OF01 performs no buffering of its own, which significantly simplifies the code

and reduces the number of parameters. Other aspects of the code are retained and remain important. It

makes sure that there is room on the device for a file when opening it and tries other paths if necessary.

It allows superfiles to span many files, perhaps not all residing on the same device.

Besides code simplicity, the stream access approach has the advantage that the system will be able to

share buffering for files holding data of different types. Also, there is no way in Fortran to specify that

system buffers should not be used for direct-access transfers, so the direct-access version cannot avoid

additional memory being used for two sets of buffers and additional copying between them.

On the other hand, stream access has the disadvantages of there being no way to specify the size of

the buffer or the size of the data transfers, and there is no way to tell the system that the data will either

not be needed again or not needed for some time.

In Table 4.2, we compare the complete solutions times for HSL MA77 run on our test problems using

HSL OF01 with default values of npage and lpage with those with the files replaced by arrays held in

core and those with the stream-access version of HSL OF01. It may be seen that stream-access version is

always the slower than the out-of-core and in-core versions and indeed the margin by which it is slower is

7



greater than the margin by which the direct-access version of HSL MA77 is slower than the in-core version.

Furthermore, our experience has been that the speed of the stream-access version is more sensitive to other

activity on the machine. In Table 4.2 we also include timings for the out-of-core version of HSL MA77 when

the files are held remotely (that is, on a file system not belonging to the test machine). It is clear that

this has a significant adverse effect on the efficiency of HSL MA77.

Table 4.2: HSL MA77 complete solution times.

m t1 shipsec1 crankseg 1 troll af shell3 inline 1

out-of-core 19.4 24.1 30.3 35.8 50.5 121

in-core 15.2 21.1 25.0 31.6 40.1 97.8

stream 23.3 28.3 32.0 48.0 55.0 189

remote files 56.1 75.6 74.9 101 144 280

4.3 Effect of the discard and inactive options

As explained in Section 3.2, OF01 write has an option for inactive access and OF01 read includes an

option for discarding the data after it has been read. In HSL MA77, we use the inactive option for writing

the matrix factor and we use the discarding option when reading stack data.

To assess the effectiveness of the inactive option, we show in Figure 4.1, for each problem in the test

set of Reid and Scott [5], the ratio of the number of input/output records transferred within a call to

MA77 factor solve without the inactive option to the number with it. There is a slight loss in two cases,

presumably because data computed near the end of the factorization would have better kept in the buffer

for the back substitution. Apart from this, there is a worthwhile gain, averaging at about 7%.

0 5 10 15 20 25 30

1

1.1

1.2

Problem Index

IO
 / 

(IO
 u

sin
g 

dis
ca

rd
 a

nd
 in

ac
tiv

e 
op

tio
ns

)

 

 

Discard option not used
Inactive option not used

Figure 4.1: The ratios of the total number of input/output records within MA77 factor solve with and

without the discard and inactive options.

To assess the effectiveness of the discarding option, we also show in Figure 4.1, the ratio of the number

of input/output records transferred without the option to the number with it. Here, there is always a gain

(it is never worthwhile to write data that is know not to be needed), but it is quite slight.

8



Within MA77 factor solve we are able to obtain the saving both from the inactive option and from

the discarding option. The overall saving is modest but, for a very large example, even a reduction of 5

to 10 per cent can lead to a useful saving in the computation time.

5 Concluding remarks

We have explained the design of the Fortran virtual-memory system HSL OF01, which uses direct-access

files for any actual input/output that is needed. It is able to handle several files, perhaps on different

devices, as a single superfile. HSL OF01 is used to support input/output operations in our new out-of-core

multifrontal packages HSL MA77 and HSL MA78 and we have used the speed on these packages on large

actual applications to choose default values for the page and buffer sizes. We have constructed a version of

HSL OF01 that uses stream-access instead of direct-access and in our tests found this caused a deterioration

in the performance of HSL MA77, with a margin that ranged between about 5% and 55%. As a result, we

do not currently plan to make the stream-access version available.

HSL OF01 is included in the HSL mathematical software library [2]. All use of HSL requires a licence;

details of how to obtain a licence and the packages are available at www.cse.clrc.ac.uk/nag/hsl/.

6 Acknowledgements

We are very grateful to our colleagues Nick Gould and Iain Duff for their help. Nick made constructive

suggestions during the design of HSL OF01 and Iain read a draft of this article and suggested improvements

to the presentation. It was the very helpful reports of the anonymous referees of our paper on HSL MA77

that led us to make comparisons with stream-access input/output and we would like to thank them for

this.

References

[1] Tim Davis. The University of Florida sparse matrix collection. Technical Report, University of Florida,

2007. http://www.cise.ufl.edu/ davis/techreports/matrices.pdf.

[2] HSL. A collection of Fortran codes for large-scale scientific computation, 2007. See http://hsl.rl.ac.uk/.

[3] ISO/IEC. TR 15581(E): Information technology - Programming languages - Fortran - Enhanced data

type facilities (second edition), edited by Malcolm Cohen. Technical Report, ISO/IEC, 2001. ISO,

Geneva.

[4] J.K. Reid. TREESOLV, a Fortran package for solving large sets of linear finite-element equations.

Report CSS 155, AERE Harwell, 1984.

[5] J.K. Reid and J.A. Scott. An out-of-core sparse Cholesky solver. Technical Report RAL-TR-2006-013,

Rutherford Appleton Laboratory, 2006. Submitted to ACM Transactions on Mathematical Software.

[6] J.K. Reid and J.A. Scott. An efficient out-of-core multifrontal solver for large-scale unsymmetric

element problems. Technical Report RAL-TR-2007-014, Rutherford Appleton Laboratory, 2007.

9


