
RAL-TR-2007-014

December 2007

J. K. Reid and J. A. Scott

An efficient out-of-core multifrontal solver
for large-scale unsymmetric element
problems

c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional
copies of this report should be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the
Chilbolton, Daresbury, and Rutherford Appleton Laboratories is available
online at: http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation

An efficient out-of-core multifrontal solver for

large-scale unsymmetric element problems1,2

by

J. K. Reid and J. A. Scott

Abstract

In many applications where the efficient solution of large sparse linear systems of equations is required,

a direct method is frequently the method of choice. Unfortunately, direct methods have a potentially

severe limitation: as the problem size grows, the memory needed generally increases rapidly. However,

the in-core memory requirements can be limited by storing the matrix and its factors externally, allowing

the solver to be used for very large problems. We have designed a new out-of-core package for the large

sparse unsymmetric systems that arise from finite-element problems. The code, which is called HSL MA78,

implements a multifrontal algorithm and achieves efficiency through the use of specially designed code for

handling the input/output operations and efficient dense linear algebra kernels. These kernels, which are

available as a separate package called HSL MA74, use high level BLAS to perform the partial factorization

of the frontal matrices and offer both threshold partial and rook pivoting. In this paper, we describe the

design of HSL MA78, explain its user interface and the options it offers. We also describe the algorithms

used by HSL MA74 and illustrate the performance of our new codes using problems from a range of practical

applications.

Keywords: large sparse unsymmetric linear systems, element problems, out-of-core solver, multifrontal,

rook pivoting, partial pivoting, Fortran 95.

1 Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.html”.

2 The work of this author was supported by the EPSRC grants GR/S42170 and EP/E053351/1.

Computational Science and Engineering Department,

Atlas Centre, Rutherford Appleton Laboratory,

Oxon OX11 0QX, England.

December 17, 2007.

Contents

1 Introduction 1

2 The out-of-core multifrontal method 2

3 Design of HSL MA78 3

3.1 Overview of the structure of HSL MA78 . 3

3.2 Language . 4

3.3 Data structures and files . 5

4 User interface 6

4.1 User-callable routines . 6

4.2 Derived types . 7

5 Dense linear algebra kernels 7

5.1 Overview of HSL MA74 . 8

5.2 Pivoting options . 8

5.3 Singular matrices . 10

6 Virtual memory management 10

6.1 The virtual memory package HSL OF01 . 10

6.2 Option for in-core working within HSL MA78 . 11

7 Numerical experiments 12

7.1 Effect of the block size . 12

7.2 Times for each phase . 13

7.3 Comparison of partial and rook pivoting . 15

7.4 Comparison with HSL MA42 ELEMENT . 15

8 Concluding remarks 16

i

1 Introduction

Many areas of computational science and engineering rely on finite-element analysis of large and complex

structures. In general, most of the computation time for such analyses is spent on solving the systems of

linear equations associated with the finite-element model. These systems take the form

AX = B, (1.1)

where the system matrix A is of order n× n, B is an n× nrhs (nrhs ≥ 1) matrix of right-hand sides and

X is the n × nrhs solution matrix. The matrix A can be written as the sum

A =

nelt
∑

k=1

A(k), (1.2)

where nelt is the number of elements in the model and A(k) corresponds to the contribution from element k

and has nonzeros in only a small number of rows and columns. In practice, each A(k) is held as a small dense

matrix, called an element matrix, of order equal to the number of nodes in element k times the number of

degrees of freedom per node. A list of the global indices of the variables associated with element k, which

identifies where the entries in A(k) belong in A, must also be held. Each A(k) is symmetrically structured

(the list of indices is both a list of column indices and a list of row indices) but, in the general case, is

numerically unsymmetric.

To minimise the overall computational cost of the finite-element analysis, it is essential that an efficient

and robust solver is used for (1.1). Over the last forty years or so, significant effort has been expended on

the development of suitable solvers. In broad terms, these solvers can be divided into two main classes:

iterative solvers and direct solvers (in recent years, hybrid methods that combine iterative and direct

techniques have begun to emerge). The main advantages of iterative solvers are that they require little

memory (typically, a small number of vectors of size the order of the system) and are straightforward

to implement. Their main weakness is that, in general, without a good preconditioner they are slow to

converge or may fail to converge altogether. By contrast, direct solvers are much harder to write and, even

when well implemented, the memory they require increases rapidly with problem size. However, direct

solvers are generally much more robust for a wide range of problems and they are often preferred for

systems with multiple right-hand sides. They can also be used (sometimes in modified form) to provide

preconditioners for iterative methods.

One way of extending the size of problem that can be solved using a direct method is to work out of

core, that is, to hold the system matrix A and its factors (and possibly some of the work arrays used by

the solver) in files. We recently developed an out-of-core frontal solver for unsymmetric element problems

called HSL MA42 ELEMENT [18]. This package is part of the HSL mathematical software library [8]. In

general, for large-scale problems, multifrontal methods are more efficient than frontal methods. Thus,

in this paper, we extend our work on multifrontal solvers and report on the design and development

of an out-of-core multifrontal solver for unsymmetric element problems. The new solver is included in

HSL as package HSL MA78. This paper is organised as follows. Section 2 provides a brief overview of the

multifrontal method for element problems. In Section 3, we discuss the design of HSL MA78 and then,

in Section 4, we describe the user interface. Two important aspects of the new package are discussed

in the next two sections, namely, the dense linear algebra kernels that are at the heart of HSL MA78 and

are implemented in a separate HSL package called HSL MA74, and the efficient handling of input/output

operations, which is essential for the success of any out-of-core solver. In Section 7, we present numerical

experiments and compare the performance of HSL MA78 with that of HSL MA42 ELEMENT for a range of

practical problems.

We note that HSL is a Fortran library and the names HSL MA74 and HSL MA78 follow the HSL naming

convention that routines written in Fortran 95 have the prefix HSL (which distinguishes them from the

Fortran 77 codes).

1

2 The out-of-core multifrontal method

The first out-of-core solvers were based on the original work on the frontal algorithm by Irons [9]. The

frontal method is a variant of Gaussian elimination and involves the matrix factorization

A = PLDUQ,

where P and Q are permutation matrices, D is a diagonal matrix, and L and U are unit lower and upper

triangular matrices, respectively. The solution process is completed by performing the forward substitution

PLY = B, (2.1)

then the diagonal solve

DZ = Y, (2.2)

followed by the back substitution

UQX = Z. (2.3)

Clearly, the diagonal solve and one of the substitution phases may be combined and very often D and U are

stored together as the upper triangular matrix Ũ = DU ; (2.2) and (2.3) are then replaced by ŨQX = Y .

The frontal method aims to limit in-core memory requirements by assembling the contributions from each

element one at a time and, by interleaving assembly and elimination operations, avoids storing the whole

coefficient matrix A. This allows the computation to be performed using a small (dense) frontal matrix

that at each stage may be expressed in the form

F =

(

F1 F2

F3 F4

)

,

where the p rows and columns of F1 are fully summed, that is, all the entries in these rows and columns

of the overall matrix have already been assembled, while the rows and columns of F4 are not yet fully

summed. Provided p pivots can be chosen stably from F1, the partial factorization of F takes the form

F =

(

P1 0

0 I

) (

L1 0

L2 I

) (

D1 0

0 FS

) (

U1 U2

0 I

) (

Q1 0

0 I

)

, (2.4)

where P1 and Q1 are permutation matrices, L1 and U1 are unit lower and unit upper triangular matrices,

and D1 is a diagonal matrix, all of order p. The Schur complement FS is given by

FS = F4 − L2D1U2.

At the next stage of the frontal method, the contributions from another element are assembled with the

Schur complement to form a new frontal matrix; the process continues until all element matrices have

been assembled and the final elimination operations are performed. The matrices Li, Ui and Di (i = 1, 2),

and the permutation matrices P1 and Q1, are part of the factorization and are not again needed until the

forward and back substitutions are performed. Thus, as they are generated, they can be transfered to a

file. The data in these files is read into main memory as it is required (one record at a time) during the

forward and back substitution phases.

In the frontal method, there is a single front at each stage of the computation (that is, there is a single

set of variables that have not yet been eliminated but are involved in one or more of the elements that

have been assembled) and, provided the elements are assembled in a suitable order, this front gradually

moves across the whole finite-element domain as elements are assembled and fully summed variables are

eliminated. Duff and Reid [7] extended the frontal concept to use more than one front and, reflecting

the use of several fronts, their generalisation is called the multifrontal method. If we assume that a pivot

2

order (that is, a tentative order in which the eliminations are to be performed) has been chosen then, for

each pivot in turn, the multifrontal method first assembles all the elements that contain the pivot into the

frontal matrix and performs a partial factorization. The computed entries of the factors are stored and the

Schur complement matrix FS is treated as a new element, called a generated element (the term contribution

block is also used in the literature). The generated element is added to the set of unassembled elements

and the next uneliminated pivot then considered. The basic algorithm is summarised in Figure 2.1.

Basic Multifrontal Factorization

do for each pivot in the given pivot sequence

if the pivot has not yet been eliminated

assemble all unassembled elements and generated elements that contain

the pivot into a frontal matrix;

perform a partial factorization of the frontal matrix;

add the generated element to the set of elements

end if

end do

Figure 2.1: Basic multifrontal factorization

The assemblies can be recorded as a tree, called an assembly tree. Each leaf node represents an original

element and each non-leaf node represents a set of eliminations and the corresponding generated element.

The children of a non-leaf node represent the elements and generated elements that contain the pivot. If

A is structurally irreducible there will be a single root node, that is, a node with no parent. Otherwise,

there will be one root for each independent subtree.

The partial factorization of the frontal matrix at a node v in the tree can be performed once the partial

factorizations at all the nodes belonging to the subtree rooted at v are complete. If the nodes of the tree

are ordered using a depth-first search, the generated elements required at each stage are the most recently

generated ones of those so far unused. This makes it convenient to use a stack for temporary storage

during the factorization. This, of course, alters the pivot sequence, but the arithmetic is identical apart

from the round-off effects of reordering the assemblies and the knock-on effects of this.

In general, numerical stability considerations mean that q ≤ p pivots can be chosen at non-root nodes

and the matrices Li, Ui and Di (i = 1, 2) in (2.4) are then of order q, while the permutation matrices P1

and Q1 remain of order p. In this case, p − q pivots must be delayed and the generated element will be

larger than anticipated on the basis of the sparsity pattern alone. It may be expressed as

FG =

(

FG1 FG2

FG3 FS1

)

, (2.5)

where the order of the leading submatrix FG1 is p− q and FS1 has the same order as the matrix FS in the

partial factorization (2.4).

3 Design of HSL MA78

In this section, we briefly discuss the overall design of HSL MA78 and highlight some of the key features of

the package.

3.1 Overview of the structure of HSL MA78

One of the important initial design decisions for HSL MA78 was to use a reverse communication interface,

with control being returned to the calling program for each element. This is explained further in Section 4.

Reverse communication keeps the memory requirements for the initial matrix to a minimum and gives the

user maximum freedom as to how the original matrix data is held.

3

The effectiveness of the multifrontal method is dependent upon having a suitable pivot order. For

the first release of HSL MA78, we require the user to supply a suitable pivot order for his or her problem.

The main reasons for making this design decision were that research in this area is still active and no

single algorithm produces the best pivot sequence for all problems. By not incorporating ordering into

the package, the user can use whatever approach works well for his or her problem. A number of stand-

alone ordering packages already exist. For example, the code METIS NodeND [11], [12]. can be used to

compute a nested dissection ordering while the HSL package HSL MC68 offers efficient implementations of

the minimum degree algorithm [19] and the approximate minimum degree algorithm [1], [2]. As far as

we are aware, no satisfactory ordering code that holds the matrix data out of core is currently available;

instead, the sparsity pattern plus some additional integer arrays of size related to the order and density

of A must be held in main memory. Users of HSL may use MC57 to assemble the sparsity pattern of A,

which can be discarded as soon as the pivot order has been chosen.

Given the pivot sequence, the multifrontal method can be split into a number of phases:

• An analyse phase that uses the index lists for the elements and the pivot sequence to construct the

assembly tree. It also calculates lower bounds on the work and storage required for the subsequent

numerical factorization (the bounds become equalities if numerical considerations do not cause any

pivots to be delayed).

• A factorize phase that uses the assembly tree to factorize the matrix (incorporating numerical

pivoting as necessary) and (optionally) solves AX = B.

• A solve phase that performs forward substitution followed by back substitution using the stored

matrix factors.

The HSL MA78 package has separate routines for each of these phases; this is discussed further in Section 4.

3.2 Language

HSL is a Fortran library and many of the older solvers in the library are written in Fortran 77. However,

with high quality Fortran 95 compilers becoming more widely available (including the freely available

g95 compiler at g95.sourceforge.net), in recent years a number of Fortran 95 solvers have been

included within HSL. For HSL MA78, Fortran 95 offers us a number of advantages, including allocatable

arrays, enabling a more friendly user-interface, derived types (see Section 4.2), and recursion. In a serial

implementation of a multifrontal algorithm, recursion is a convenient and efficient way to visit the nodes

of the assembly tree. When called for a node of the tree, the factorize subroutine calls itself for each of the

node’s children, assembles their elements (original or generated), and performs the partial factorization of

the resulting frontal matrix. A direct call for the root node performs a complete factorization. Similarly,

subroutines that recursively perform forward substitution and back substitution are called during the solve

phase.

To allow the package to solve very large problems, we selectively make use of long (64-bit) integers,

declared in Fortran 95 with the syntax selected int kind(18) and supported by all the Fortran 95

compilers to which we have access. These long integers are used for addresses within files and for operation

counts. We assume that the order of A is less than 231, so that long integers are not needed for the variable

indices.

We have adhered to the Fortran 95 standard except that we use allocatable structure components

and dummy arguments. These are part of the official extension that is defined by Technical Report TR

15581(E) [10] and is included in Fortran 2003. It allows arrays to be of dynamic size without the computing

overheads and memory-leakage dangers of pointers.

Addressing is less efficient in code that implements pointer arrays since it has to allow for the possibility

that the array is associated with a array section, such as a(i,:), that is not a contiguous part of its parent.

Furthermore, optimization of a loop that involves a pointer may be inhibited by the possibility that its

target is also accessed in another way in the loop.

4

3.3 Data structures and files

The multifrontal method needs data structures for the original matrix A, the frontal matrix, the stack

of generated elements, and the matrix factor. If the stack and frontal matrix are held in main memory

and the factors are written to disk as they are generated, the method performs the minimum possible

input/output for an out-of-core method: it writes the factor data to disk once and reads DU once during

back substitution or L and then DU when solving for further right-hand sides. However, for very large

problems, it may be necessary to hold further data on disk. The first release of HSL MA78 holds the frontal

matrix in main memory and allows the multifrontal stack and the original matrix data on be held disk

but, by using a system for virtual memory management (which we explain further in Section 6), avoids

much of the actual input/output.

The virtual memory management system used by HSL MA78 includes the facility of grouping a set

of files into a superfile that is treated as an entity. HSL MA78 uses four superfiles: one holds integer

information, one holds real information, one provides real workspace, and the last one holds real data

associated with delayed pivots. We refer to these as the main integer, main real, main work and delay

superfiles, respectively.

The main real superfile holds the reals of the original element matrices A(k) followed by the columns

of the factor PL and the rows of the factor DUQ, which are in the order that they were calculated.

When supplying the list of indices associated with an element matrix A(k), the user may include

duplicated and/or out-of-range entries. We check the user-supplied lists and flag this case, then we store

in the main integer superfile the list of indices left after the duplicates and/or out-of-range entries have

been squeezed out, the number of entries in the original user-supplied index list, and a mapping from the

original list into the compressed list.

During the analyse phase, for each non-leaf node of the tree, we store the list of original indices of the

variables in the front. At the end of the analyse phase, these lists are rewritten in the elimination order

that this phase has chosen. This facilitates the merging of generated elements during the factorization.

During the numerical factorization, after each partial factorization of a frontal matrix, the permuted row

and column indices are stored in the main integer superfile. The lists of these indices are stored after

the analyse data; we do not overwrite the analyse data so that the user can factorize more than one

matrix with the same sparsity pattern but different numerical values without recalling the analyse phase.

By default, the factorization uses unsymmetric pivoting to maintain numerical stability (we discuss the

pivoting options in detail in Section 5.2) and thus, at non-leaf nodes, it is necessary to hold both a list

of the row indices and and a list of the column indices. Each list of row (respectively, column) indices

starts with a list of the row (respectively, column) indices of the chosen pivots, and is followed by a list of

the row (respectively, column) indices of the delayed pivots (pivots that could not be chosen for stability

reasons).

The principal role of the main work superfile is to hold the stack of intermediate results that are

generated during the depth-first search. When the partial factorization of a frontal matrix is processed,

a generated element is stacked, which increases the stack size; when this is later merged into the frontal

matrix at the parent node, it is taken from the top of the stack and the stack size decreases. A long integer

is used to store the position of the top of the stack.

During the factorization phase, after the partial factorization of a frontal matrix, the delay superfile

is used to hold (in a stack) the remaining rows and columns that are fully summed but, for numerical

reasons, could not be pivoted on. Refering back to (2.5), FS1 is stacked in the main workspace superfile

while FG1, FG2, and FG3 are stacked in the delay superfile. Once all the contributions FS1 at the parent

node have been assembled into its frontal matrix Fp, the contributions corresponding to the delayed pivots

for each of its child nodes are assembled into the leading rows and columns of Fp. Thus, at each non-leaf

node v, the frontal matrix takes the form

Fp =

(

Fp1 Fp2

Fp3 F

)

, (3.1)

5

where the order of F is the anticipated order of the frontal matrix (that is, the order if no pivots were

delayed) and Fp1, Fp2, Fp3 correspond to the delayed pivots passed to v from its children. We note that

it is not necessary to hold integer information on the delayed rows and columns in a stack since this data

can be retrieved from the row and column lists stored in the main integer superfile.

4 User interface

In this section, we give brief details of the routines within the HSL MA78 package that may be called by the

user and of the derived types used by the package. Full details are provided in the user documentation.

4.1 User-callable routines

HSL MA78 uses a reverse communication interface. The main routines that comprise this interface are as

follows:

MA78 open: must be called once for a problem to initialize the data structures and open the superfiles,

which were described in Section 3.3.

MA78 input vars: must be called once for each element to specify the variables associated with it. The

index lists are written to the main integer superfile.

MA78 analyse: must be called after all calls to MA78 input vars are complete. As already noted, the pivot

order must be supplied by the user. MA78 analyse uses the sparsity pattern of the matrix to construct

the assembly tree. The index lists for each node of the tree are written to the main integer superfile.

The analyse phase is as for the symmetric case; full details, including the use of supervariables, node

amalgamation, and the ordering of the child nodes, are given by Reid and Scott in [17].

MA78 input reals: must be called for each element to specify the entries. The index list must have already

been specified by a call of MA78 input vars. Each element matrix must be input by columns. For large

problems, the data may be provided in more than one adjacent call. The data is written to the main real

superfile. If data is entered for an element that has already been entered, the original data is overwritten.

MA78 factor: may be called after all the calls to MA78 input reals are complete and after the call to

MA78 analyse. The matrix A is factorized using the assembly tree constructed by MA78 analyse and the

factor entries are written to the main real superfile as they are generated. It may be called afresh after

one or more calls of MA78 input reals have specified changed real values.

MA78 factor solve: may be called in place of MA78 factor if the user wishes to solve the system AX = B

at the same time as the matrix A is factorized.

MA78 solve: uses the computed factors generated by MA78 factor for solving the system AX = B or the

transpose system AT X = B. A partial solution may be computed by setting the parameter job to have

one of the following values:

1 for solving PLX = B (or QT UT X = B)

2 for solving DUQX = B (or DLT P T X = B)

In addition to the above routines, MA78 resid may be called after a call to MA78 factor solve or

MA78 solve to compute the residual R = B − AX (or R = B − AT X). This involves reading the original

user-supplied matrix data from the main integer and real superfiles. There is an option to compute an

upper bound on the infinity norm of the system matrix (it is an upper bound because the absolute values

6

of the element entries are taken before they are summed). Denoting this bound by ‖A‖b,∞, the user can

compute the scaled residuals

‖resj‖∞
‖A‖b,∞‖xj‖∞ + ‖bj‖∞

(4.1)

where bj is the jth right-hand side and xj and resj are the corresponding solution and residual vector,

respectively. If the user decides that the computed residual is unacceptably large, iterative refinement can

be performed by recalling MA78 solve with the right-hand side set to R.

Once all other calls are complete for a given problem, MA78 finalise should be called. This routine

deallocates the components of the derived data types used by HSL MA78 and closes the superfiles associated

with the problem. MA78 finalise includes an option to keep the superfiles and store all the in-core data

for the problem (in another file) so that the computation can be restarted later. This is done by calling

MA78 restart. The main use of MA78 restart is to solve for further right-hand sides using a previously

computed factorization, but it also allows the reuse of the analysis data to factorize a matrix of the same

structure but different real values.

4.2 Derived types

HSL MA78 uses derived types to pass data between the different routines within the package. The following

derived types are available to the user:

MA78 keep has private components. The user must declare an object of this type for each problem and pass

it on each subroutine call. An important use of MA78 keep is for holding copies of some of the user-defined

parameters so that checks can be made. Checking the user’s data is particularly important, we believe, in

a package such as this with a reverse communication interface because reverse communication increases

the opportunities for errors to be made.

MA78 control has components that control the action within the package. They are given default values

when a variable of this type is declared. The controls include parameters that determine the level of

diagnostic printing, the virtual memory management (Section 6), the block size for full-matrix operations

on the frontal matrix (Section 5) and the choice of numerical pivoting (Section 5.2). The defaults have

been chosen on the basis of our numerical experiments and are likely to be appropriate for most users.

However, for maximum flexibility, these parameters may be reset by the user.

MA78 info has components that return information from each subroutine call. At the end of the analyse

phase, information is returned on the expected maximum front size, the number of entries in the factors,

and the number of floating-point operations, based on the assumption that no pivots are delayed for

numerical reasons. At the end of the factorization phase, the actual statistics are returned, as well as the

computed determinant of A (its sign and the logarithm of its absolute value). Information is also available

on the number of integers and reals that have been written to files and on the maximum stack size, as well

as information on the pivots chosen during the factorization. We have attempted to make the information

available to the user at the end of the computation as comprehensive as possible so that he or she can

assess how well the code has performed on his or her problem and, if necessary, can use the information

to reset one or more of the control parameters for a subsequent problem.

5 Dense linear algebra kernels

The efficiency of the factorization phase is dependent upon the partial factorization of the frontal matrices.

Since the frontal matrices are held as full matrices, dense linear algebra kernels may be used. In particular,

we can make use of high level BLAS [4] when performing the factorizations and the forward and back

substitutions. We have chosen to write a separate package, HSL MA74, that is called by MA78 factor to

perform the partial factorizations of the frontal matrices and by MA78 solve to perform the partial forward

7

and back substitutions. In this section, we describe HSL MA74 and discuss the pivoting options that it offers

and that may be used by users of the multifrontal solver HSL MA78.

5.1 Overview of HSL MA74

Given a dense unsymmetric m × m matrix F , HSL MA74 performs a partial factorization, limiting

eliminations to the leading p ≤ m rows and columns. Stability considerations may lead to q ≤ p

eliminations being performed (that is, fewer than p pivots are chosen). The factorization takes the form

(2.4) where the matrices L1, U1 and D1 are of order q and the permutation matrices P1 and Q1 are of

order p. Subroutines are provided for partial solutions, that is, solving systems of the form

(

L1 0

L2 I

)

X = B,

(

D1 0

0 I

)

X = B,

(

D1 0

0 I

) (

U1 U2

0 I

)

X = B, and

(

U1 U2

0 I

)

X = B,

and the corresponding equations for a single right-hand side b and solution x. Subroutines are also provided

for partial solutions to transposed systems.

The user inputs the matrix F in a rank-2 array which, on exit, is overwritten by the factorized matrix.

Each diagonal entry holds either the inverse of a pivot or, if a zero pivot is chosen, the corresponding

diagonal entry is set to zero (see Section 5.3). A rank-1 array pperm of length p is used to hold the row

permutations P1 so that, on exit, pperm(i) holds the index of the row of F that is permuted to row i,

i = 1, ..., p. Similarly, a rank-1 array qperm is used to hold the column permutations Q1.

HSL MA74 uses a block algorithm. If the factorization was to proceed by choosing a single pivot at a

time, the updates to the rest of F could only be performed using Level 2 BLAS. To take advantage of the

more efficient Level 3 BLAS, the partial factorization is programmed as a sequence of block steps. The

block size nb is a parameter under the user’s control (we will discuss the choice of this parameter further

in Section 7.1). If q is the number of pivots chosen so far, the code searches columns q + 1 to p of F in

turn for a pivot. If the column to be searched has had k < q updates, it is first updated with the q − k

most recently chosen pivots. Since a single column is being updated, this is performed using the Level

2 BLAS kernels trsv and gemv. Each time a pivot is chosen, q is incremented by one and the pivotal

column is swapped with column q. The position m1 of the right-most column of F that has been searched

for a pivot is held and, whenever a pivot is chosen, columns q + 1 to m1 are updated (using the Level 2

rank-1 update routine ger) so that all the columns that have been tested and rejected are fully updated.

In this way, we avoid holding an array of updates. Once nb pivots have been chosen or q = p, columns

m1 + 1 to n are updated using the Level 3 BLAS kernels trsm and gemm. If q < p, m1 is reset to q + 1

and the column search restarts from column q + 1. We search the remaining columns cyclically to avoid

repeatedly searching a previously rejected column.

In MA78 factor, the rows and columns corresponding to delayed pivots are assembled into the leading

rows and columns of the frontal matrix (see (2.5)). Since these columns have already been rejected as

potential pivot columns, we do not want to search them again until the remaining fully summed columns

have been searched and pivotal operations performed. To facilitate this, MA74 factor has an optional

parameter s which, if present, specifies the column of F from which the search is to start. If s is present and

less than p, on entry to MA74 factor each column i is swapped with column p−i+1 (1 ≤ i ≤ min(s, p−s))

before the computation begins.

5.2 Pivoting options

During the partial factorization, a potential pivot is selected only if it satisfies a numerical stability test.

HSL MA74 offers a number of options that are controlled using the parameters pivoting, small, static,

8

and u. The default strategy is threshold partial pivoting (pivoting = 1). In this case, an entry fij of the

reduced matrix is normally only chosen as a pivot if it satisfies

|fij | ≥ max(u ∗ max
l>q

|flj |, small). (5.1)

Here u is the pivoting threshold parameter. Values of u close to zero will generally result in a faster

factorization with fewer entries in the factors but values close to 1 are more likely to result in a stable

factorization; the default of 0.01 is a compromise between stability and sparsity and is recommended in

the user documentation for other direct solvers (for example, HSL MA42 ELEMENT). Values that are less

than 0.0 are treated as 0.0 and values greater than 1.0 are treated as 1.0. small controls the size of the

smallest pivot that is acceptable. The default value is tiny(small), where tiny() is the Fortran numeric

inquiry function that returns the smallest positive number that is stored in full precision. In HSL MA74,

the row index r corresponding to the largest entry in rows q +1 to m of the reduced matrix is found using

the BLAS kernel i amax. If r ≤ p, the pivot has been found, q is incremented by 1 and rows q and r are

swapped. If r > p, the largest entry in rows q to p of column i is found (again using i amax) and, if this

satisfies (5.1), it is chosen as the next pivot.

In some applications, using a value of u equal to 0.1 or 0.01 can lead to a large number of delayed

(rejected) pivots. In this case, the size of the frontal matrices as the factorization moves up the tree

can grow significantly beyond that which was anticipated by the analyse phase. This results in a more

expensive factorization, both in terms of the number of flops required to perform the factorization and the

number of entries in the matrix factors; this, in turn, leads to a more expensive solve phase. Furthermore,

more memory will be required for the frontal matrix (which is held in main memory). In recent years, this

has led to a number of direct solvers offering options for static pivoting (see, for example, [6], [13]). Here,

the essential idea is not to allow pivots to be delayed but, instead, if necessary to choose pivots that do not

satisfy condition (5.1) so that the pivot selection closely follows that provided by the user to the analyse

phase. The danger is that there will be a potential loss of accuracy in the factorization and it may be

necessary to perform refinement steps after the solve phase to try to recover the required accuracy. How

this should be done is still a subject of research (see, for example, [3]).

Within HSL MA74, static pivoting is controlled by the parameter static. If static is positive and

fewer than p pivots can be chosen that satisfy (5.1), the pivot that came closest to satisfying this condition

is chosen, that is, the pivot for which the ratio

max
q<i≤p

|fij | / max
q<l≤m

|flj |, q ≤ j ≤ p, (5.2)

is the largest. If its absolute value is greater than static, the information parameter usmall (which is

initialised to u) is set to the minimum of usmall and (5.2). Otherwise, the pivot is given the value that has

the same sign but absolute value static and usmall is set to zero. On exit, usmall holds the threshold

parameter that was used or is zero if any pivots are replaced by static, num thresh holds the number of

pivots that did not satisfy the threshold criteria based on the user-supplied value of u, and num perturbed

holds the number of pivots that were replaced by static.

For threshold diagonal pivoting (pivoting = 2), pivots may only be chosen from the diagonal and

should satisfy the threshold criteria (5.1) (with i = j). Threshold diagonal pivoting may be combined

with static pivoting by setting static to be positive. If p = m (which occurs at a root of the tree) and

fewer than p pivots can be chosen from the diagonal, the code issues a warning and switches to choosing

off-diagonal pivots. The number of pivots that are chosen from the diagonal is returned to the user.

The partial pivoting threshold test (5.1) controls the size of the entries in L. In general, this works

well but examples can be found for which the computed factors are not sufficiently accurate. Thus, in

the 1990s, the more stringent (but more costly) rook pivoting strategy was introduced (see, for example,

[14], [15]). Rook pivoting controls the size of the entries in both L and U by checking a potential pivot

candidate against the entries in both its row and column. Threshold rook pivoting may be selected in

HSL MA74 by setting pivoting = 3. A pivot candidate fij is chosen as a pivot if it satisfies (5.1) and,

9

additionally,

|fij | ≥ u ∗max
l>q

|fil|. (5.3)

In other words, for rook pivoting the pivot candidate must satisfy the threshold test in both its column and

its row. Having found a candidate pivot with row index r in the column that is currently being searched,

row r must be updated so that all q pivots chosen so far have been applied to it, before it can be searched

for its largest entry and then tested. Thus, rook pivoting involves more Level 2 BLAS updates (and hence

fewer Level 3 BLAS operations) and the additional overhead of row searches. Because it is generally more

costly, it is not the default pivoting strategy within HSL MA74.

5.3 Singular matrices

HSL MA74 is designed to factorize singular matrices and to (partially) solve consistent singular systems. If

all the entries in the column currently being searched for a pivot are less than small, all the entries in the

column are set to zero and the column is swapped with column p1, where p1 ≤ p is the largest index of a

candidate column that is not all zeros. To prevent a zero column from being searched again, a flag is set.

Once all possible pivots have been chosen that satisfy the threshold test (5.1), a check is made to see if

any of the rows p1 + 1 to p are zero rows (or, at least, have all entries less than small). For each such row

of zeros, a zero pivot is chosen (the corresponding entry of D is set to zero). The number of zero pivots is

returned to the user.

6 Virtual memory management

A key part of the design of HSL MA78 is that all input and output to disk is performed through a set of

Fortran subroutines that manage a virtual memory system so that actual input/output occurs only when

really necessary. This set of subroutines is available within HSL as the Fortran 95 package HSL OF01 [16].

Fortran 95 offers two forms of file access: sequential and direct. Sequential access is not suitable for

us because the original matrix data must be accessed non-sequentially and other data has to be accessed

backwards as well as forwards and our experience has been that backwards access is slow; thus we use

direct-access files. A disadvantage of direct-access files is that they use fixed-length records but we need

to be able to read and write different amounts of data at each stage of the multifrontal computation.

To get around this, the data is buffered and, as we explain below, this is done for us by HSL OF01. We

note that Fortran 2003 offers a third form of file access: stream. At the time of writing, no compilers are

available that fully support Fortran 2003, although the Nag compiler does support stream access. Our

experience with this compiler has been that using stream access within the multifrontal solver is currently

less efficient than using direct-access files within HSL OF01 (see [16]) and so do not use stream access in

the current release of our solvers.

6.1 The virtual memory package HSL OF01

HSL OF01 provides facilities for reading from and writing to direct-access files. There is a version for

reading and writing real data and a separate version for integer data, both of which are used by HSL MA78.

Each version has its own buffer, which is used to avoid actual input/output operations whenever possible.

One buffer may be associated with more than one direct-access file. We take advantage of this within

HSL MA78 to enable the available memory to be dynamically shared between the main real superfile, the

main work superfile and the delay superfile, according to their needs at each stage of the computation. It

would be desirable to have a single buffer (and a single version of the package) for both the real and the

integer data, but this is not possible in standard Fortran 95 without some copying overheads.

Each HSL OF01 buffer is divided into pages that are all of the same size, which is also the size of each file

record. All actual input/output is performed by transfers of whole pages between the buffer and records of

10

the file. The size and number of pages are parameters that may be set by the user. Numerical experiments

that we report in [16] were used to choose default settings of for these parameters within HSL MA78.

The data in a file is addressed as a virtual array of rank one. Because it may be very large, long integers

are used to address it. The most active pages of the virtual array are held in the buffer. Any contiguous

section of the virtual array may be read or written, without regard to page boundaries. HSL OF01 does

this by first looking for parts of the section that are in the buffer and performing a direct transfer for

these. For any remaining parts, there may have to be actual input and/or output of pages of the buffer.

If room for a new page is needed in the buffer, by default the page that was least recently accessed is

written to its file (if necessary) and is overwritten by the new page. Note that, because HSL OF01 reads

and writes contiguous sections of the virtual array, when HSL MA78 needs to write the computed rows of

the DU factor to file, it is necessary first to copy each row to a temporary column vector and then write

the column vector to file.

A file is often limited in size to less than 232 bytes, so the virtual array may be too large to be

accommodated on a single file. In this case, secondary files are used; a primary file and its secondaries are

refered to as a superfile. The files of a superfile may reside of different devices.

There are situations where is it known that data accessed in the virtual array is unlikely to be needed

again soon and do not deserve to be given priority in the buffer. During the factorization phase of HSL MA78,

once the rows and columns of the factors have been written to the main superfile it is known that most

of them will not be needed for some time and so it is more efficient to use the buffer for the stack. We

therefore make use of the HSL OF01 option for ‘inactive’ access, which has the effect that the relevant pages

do not stay long in the buffer unless they contain other data that makes them do so. HSL OF01 also has

an option to specify that data read need not be retained thereafter. If no part of a page in the buffer is

required to be retained, the page may be overwritten without writing its data to an actual file. This is

used when reading data from the multifrontal stack and from the delay superfile since it is known that it

will not be needed again. Further details of these options are included in [16].

HSL OF01 also offers an option to add a section of the virtual array into an array under the control of

a map. If the optional array argument map is present and the section starts at position loc in the virtual

array, OF01 read behaves as if the virtual array were the array virtual array and the statement

read_array(map(1:k)) = read_array(map(1:k)) + virtual_array(loc:loc+k-1)

were executed. Without this, a temporary array would be needed, the call would behave as if the following

statement were executed:

temp_array(1:k) = virtual_array(loc:loc+k-1)

and the calling code would need to execute the statement

read_array(map(1:k)) = read_array(map(1:k)) + temp_array(1:k)

We use this option in the factorization phase of HSL MA78 to efficiently assemble elements into the frontal

matrix.

6.2 Option for in-core working within HSL MA78

If its buffer is big enough, HSL OF01 will avoid any actual input/output, but there remain the overheads

associated with copying data to and from the buffer. For HSL MA78, this is particularly serious during the

solve phase for a single right-hand side since each datum read during the forward or back substitution

is used only once. We have therefore included within HSL MA78 an option that allows the superfiles to

be replaced by arrays. The user can specify the initial sizes of these arrays and an overall limit on their

total size. If an array is found to be too small, the code attempts to reallocate it with a larger size. If

this breaches the overall limit or if the allocation fails because of insufficient available memory on the

computer being used, the code automatically switches to out-of-core working by writing the contents of

11

the array to a superfile and then freeing the memory that had been used by the array. This may result

in a combination of superfiles and arrays being used. To ensure the automatic switch can be made, we

always require path and superfile names to be provided on the call of MA78 open. If a user specifies the

total size of the arrays without specifying the initial sizes of the individual arrays, the code automatically

chooses suitable sizes.

In some applications, a user may need to factorize a series of matrices of the same size and the same

(or similar) sparsity pattern. We envisage that the user may choose to run the first problem using the

out-of-core facilities and may then want to use the output from that problem to determine whether it

would be possible to solve the remaining problems in-core (that is, using arrays in place of superfiles). On

successful completion of the factorization, HSL MA78 returns the number of integers and reals stored for

the matrix and its factor, and the maximum size of the multifrontal stack, together with the maximum

size of the stack used for holding delayed pivots. This information can be used to set the array sizes for

subsequent runs. Note, however, that additional in-core memory is required during the computation for

the frontal matrix and other local arrays. If the allocation of the frontal matrix fails at the start of the

factorization phase, the arrays being used in place of superfiles are discarded one-by-one and a switch to

superfiles is made in the hope of achieving a successful allocation.

7 Numerical experiments

In this section, we report on using HSL MA78 to solve a number of problems from practical applications.

The test problems are listed in Table 7.1 in order of the predicted number of entries in the factors (that

is, the number of entries if no pivots are delayed) when the analysis phase of the HSL solver MA57 [5]

is used to compute the pivot order. The problems range in size from fewer than 1000 elements to more

than 70,000 elements with almost 225,000 degrees of freedom. If only the sparsity pattern is available,

numerical values for the matrix entries are generated using the HSL pseudo-random number generator

FA14. The right-hand side for each problem is selected so that the required solution is the vector of ones.

The numerical results were obtained using double precision (64-bit) reals on a 3.6 GHz Intel Xeon dual

processor Dell Precision 670 with 4 Gbytes of RAM. The Nag Fortran f95 compiler with the optimization

flag -O was used together with the ATLAS BLAS and LAPACK (math-atlas.sourceforge.net). In all

our tests, the scaled residual (4.1) was computed; in each case, this was found to be less than 10−12.

7.1 Effect of the block size

The efficiency of the kernel code HSL MA74 that performs the partial factorization of the frontal matrices

is dependent upon the choice of the block size nb. As explained in Section 5.1, the partial factorization

proceeds by finding a block of pivots and then (for nb > 1) uses Level 3 BLAS kernels to update the

remaining rows and columns. Factorization timings (CPU times in seconds) for a subset of our test

problems using a range of block sizes are presented in Tables 7.2 and 7.3. These timings are for the

default pivoting strategy (threshold partial pivoting). At the root node, a complete factorization of the

final frontal matrix must be performed and, if partial pivoting is in use, this can be done by using either

MA74 factor or the LAPACK subroutine getrf. Table 7.2 reports the factorization time at the root node

and Table 7.3 reports the total time for the factorization phase and the Mflop rates. The last column in

Table 7.3 is for using MA74 factor with nb = 80 at non-root nodes and getrf at the root node. The

results illustrate the importance of using a block algorithm and show that, for some examples, the root

node factorization can account for more than 20 per cent of the total factorization time. For our test

computer and our test set, the blocksize nb =80 appears to be a good choice; this is the default within

HSL MA78. Using getrf at the root node gives some modest gains.

12

Table 7.1: The test problems. n and nelt denote the number of variables and elements, respectively, and

nz(L) is the predicted number entries in L, in millions. ∗ indicates only pattern available.

Identifier n nelt nz(L) Description/discipline

1. trdheim∗ 22098 813 1.74 CFD simulation; mesh of Trondheim fjord

2. cham∗ 12834 11070 2.58 Part of an engine cylinder

3. crplat2∗ 18010 3152 2.94 Corrugated plate field

4. tubu∗ 26573 23446 4.87 Engine cylinder model

5. opt1∗ 15449 977 5.27 Part of condeep cylinder

6. tsyl201∗ 20685 960 6.43 Part of condeep cylinder

7. srb1∗ 54924 9240 10.01 Space shuttle rocket booster

8. ship 001 34920 3431 15.61 Ship structure - predesign

9. thread 29736 2176 24.66 Threaded connector

10. x104 108384 26019 27.15 Beam joint

11. mt1 97578 5328 32.68 Tubular joint

12. shipsec8 114919 32580 36.30 Section of a ship

13. shipsec1 140874 41037 38.70 Section of a ship

14. shipsec5 179860 52272 54.22 Section of a ship

15. fcondp2∗ 201822 35836 55.16 Oil production platform

16. ship 003 121728 45464 60.28 Ship structure - production

17. troll∗ 213453 41084 63.68 Structural analysis

18. halfb∗ 224617 70211 66.20 Half-breadth barge

19. fullb∗ 199187 59738 75.02 Full-breadth barge

20. inv-ext-2∗ 78142 7193 126.05 Fluid flow

7.2 Times for each phase

In Section 4, we discussed the different phases of the HSL MA78 package. In Table 7.4, we report

the elapsed times for each phase for our five largest test problems (this includes the time taken

to perform the input/output operations). The input time is the time taken by the calls to

MA78 input vars and MA78 input reals, and the ordering time is the time for MA57 to compute the

pivot sequence. MA78 factor(0) and MA78 factor(1) are, respectively, the times for MA78 factor and

for MA78 factor solve when called with a single right-hand side and the L factor is stored for future

solves. MA78 factor(1) (no L) is the time for MA78 factor solve with a single right-hand side but

without storing the L factor. MA78 solve(k) is the time for MA78 solve with k right-hand sides.

We see that the time for inputting the matrix, ordering, and performing the analyse phase is very small

comapred with the factorization time which, for these examples, dominates the total solution time. As

expected, because of the better use of high level BLAS and because the amount of data to be read from

Table 7.2: Comparison of the CPU time (in seconds) required to factorize the root node with different

blocksizes (nb) and getrf. nroot is the order of the root node.

HSL MA74

nroot nb =1 nb =10 40 80 120 getrf

9. thread 3099 88.1 9.42 10.6 5.75 6.94 4.93

10. x104 2350 68.5 9.37 12.3 6.78 5.67 5.01

17. troll 2313 36.7 4.51 4.87 2.91 3.26 2.30

19. fullb 3053 89.1 11.0 11.4 7.69 6.96 5.00

13

Table 7.3: Comparison of the factorization phase CPU times (in seconds) and Mflop rates using HSL MA74

with different blocksizes (nb) and getrf.

HSL MA74 nb =80

nb =1 10 40 80 120 getrf

9. thread 323/ 224 42.2/ 1720 45.3/ 1599 29.8/ 2434 32.2/ 2250 28.5/ 2546

10. x104 225/ 227 37.7/ 1415 42.6/ 1347 30.9/ 1768 32.2/ 1863 29.9/ 1832

17. troll 460/ 228 71.2/ 1472 76.0/ 1379 55.6/ 1885 58.0/ 1806 54.8/ 1913

19. fullb 865/ 230 133/ 1494 136/ 1468 96.0/ 2079 102/ 1947 94.2/ 2117

disk is independent of the number of right-hand sides, solving for multiple right-hand sides is significantly

more efficient than solving repeatedly for a single right-hand side.

Table 7.4: Elapsed times (in seconds) for the different phases of HSL MA78.

Problem 16 17 18 19 20

Phase

Input 0.73 0.75 1.12 1.06 2.36

Ordering 1.74 2.92 2.52 2.44 1.54

MA78 analyse 0.41 0.35 0.47 0.45 0.39

MA78 factor(0) 114 58.6 71.8 94.0 263

MA78 factor(1) 116 59.2 74.8 98.5 269

MA78 factor(1)(no L) 108 53.8 67.4 90.7 245

MA78 solve(1) 3.95 3.38 3.77 4.12 17.2

MA78 solve(8) 6.19 5.33 5.80 6.42 20.9

MA78 solve(64) 21.7 20.9 22.5 23.1 35.5

Unfortunately, we found that the elapsed times can be very dependent on the other activity on our

machine, as may be seen by the time for MA78 factor(0) plus MA78 solve(1) sometimes being less than

the MA78 factor(1) time (problem 19). Another way to judge the performance is to look at the number

of records actually read or written using HSL OF01, see Table 7.5. By comparing the sum of the number of

records read and written for MA78 factor(0) and MA78 solve(1) with the number read and written for

MA78 factor(1), we see that there are worthwhile i/o savings if the solve is performed at the same time

as the factorization. There are further significant savings if the L factor is not stored.

Table 7.5: Records read and written (in thousands) for the factorization and solve phases of HSL MA78.

— Problem 16 17 18 19 20

Phase

MA78 factor(0) read 18.88 9.79 20.32 31.77 90.46

write 50.27 38.52 46.99 56.83 112.1

both 79.15 48.31 77.31 88.60 202.2

MA78 factor(1) read 39.82 29.94 41.20 54.22 122.9

write 50.27 38.53 47.00 56.83 112.1

both 90.09 68.47 88.20 111.0 235.0

MA78 factor(1) read 18.85 9.70 20.23 31.70 90.44

(no L) write 32.12 22.86 30.68 38.37 81.23

both 50.97 32.56 50.71 70.07 171.7

MA78 solve(1) read 41.87 40.32 41.89 44.9 64.78

14

7.3 Comparison of partial and rook pivoting

As we discussed in Section 5.2, HSL MA78 offers partial threshold pivoting and rook threshold pivoting. In

Table 7.6, we compare the performance of both options for the test problems that are supplied complete

with numerical values. For the default threshold tolerance of 0.01, the total solution time, the number

of flops required to compute the factors, the number nz(L) of entries in the L factor, the number delay

of delayed eliminations, and the scaled residuals (see (4.1)) are given. If pi and qi are, respectively, the

numbers of candidate and actual pivots chosen at node i then

delay =
∑

i

(pi − qi).

Table 7.6: Comparison between the elapsed times (in seconds), flops, the number of entries in L, the

number of delayed eliminations, and the scaled residuals for factorization with rook and partial threshold

pivoting.

Problem Time flops∗108
nz(L)∗106 delay Residual

rook partial rook partial rook partial rook partial rook partial

8. ship 001 15.0 13.4 224 224 15.6 15.6 33 33 5.7 ∗ 10−16 3.1 ∗ 10−16

9. thread 37.8 35.4 725 725 24.7 24.7 0 0 3.1 ∗ 10−16 4.0 ∗ 10−16

10. x104 34.0 37.8 365 548 30.3 34.5 19918 31596 6.2 ∗ 10−16 9.9 ∗ 10−14

11. m t1 55.7 94.9 688 1584 40.2 56.2 34161 67467 4.7 ∗ 10−16 8.5 ∗ 10−14

12. shipsec8 91.6 92.8 1297 1753 49.0 55.6 61004 78033 5.3 ∗ 10−16 2.4 ∗ 10−14

13. shipsec1 110 174 1505 3047 58.6 78.2 96811 135258 4.0 ∗ 10−16 7.6 ∗ 10−14

14. shipsec5 175 275 2460 4919 80.4 105 120881 168479 1.8 ∗ 10−15 6.8 ∗ 10−13

16. ship 003 146 118 2065 2281 70.8 74.0 49985 61262 7.9 ∗ 10−16 1.5 ∗ 10−13

In our tests, if there are only a few delayed eliminations, rook pivoting adds a small overhead (problems

8 and 9). However, the more stringent test used by rook pivoting can result in less growth and smaller

residuals. Smaller growth can also lead to fewer delayed eliminations for rook pivoting, which in turn gives

sparser factors that are computed using fewer flops. Because looking for each pivot is more expensive than

for partial pivoting, the time can still increase (as illustrated by problem 16) but in some cases, the total

time using rook pivoting is significantly faster than for partial pivoting (notably for problems 11, 13 and

14).

7.4 Comparison with HSL MA42 ELEMENT

We now compare the performance of HSL MA78 with that of our out-of-core (uni)frontal solver

HSL MA42 ELEMENT [18]. In our tests, for both solvers the default settings are used for all control parameters.

Note that both use partial threshold pivoting with a threshold of 0.01. Table 7.7 reports the total solution

time (that is, the time for analyse, factorize and solve for a single right-hand side), the number of flops

required to compute the factors, and the number nz(L) of entries in the L factor. For two of the smaller

problems in the top half of the table, HSL MA42 ELEMENT is faster than HSL MA78 but, with the exception

of problems thread and ship 001, the later performed fewer flops and produced the sparser factors. For

the larger problems, HSL MA78 significantly outperforms HSL MA42 ELEMENT. Since both codes are written

to exploit Level 3 BLAS and to perform input/output efficiently, and for both codes the elements are

appropriately preordered, these results clearly illustrate the benefits of using a multifrontal algorithm in

preference to a (uni)frontal method.

15

Table 7.7: Comparison between the elapsed times (in seconds), flops and the number of entries in L for

HSL MA78 and HSL MA42 ELEMENT.

Problem Time flops∗108
nz(L)∗106

MA42 ELEMENT MA78 MA42 ELEMENT MA78 MA42 ELEMENT MA78

1. trdheim 0.82 0.92 5.87 3.38 2.22 1.74

2. cham 2.45 2.03 29.4 18.2 4.23 2.58

3. crplat2 1.81 1.43 21.7 17.7 4.36 2.94

4. tubu2 8.03 4.01 107 29.9 11.3 4.88

5. opt1 7.31 4.23 94.4 59.5 7.51 5.27

6. tsyl201 8.83 5.08 108 72.3 10.4 6.44

7. srb1 9.46 6.13 119 64.3 17.5 10.1

8. ship 001 10.6 13.4 146 224 15.6 15.6

9. thread 46.8 35.4 720 725 31.0 24.7

10. x104 1289 37.8 5206 548 137.4 34.5

11. m t1 556 94.9 4164 1584 138.5 56.2

12. shipsec8 993 92.8 7265 1753 186.1 55.6

13. shipsec1 4132 174 14673 3047 300.0 78.2

14. shipsec5 1988 275 9974 4919 196.3 104.9

15. fcondp2 683 61.4 11547 1106 304.8 55.2

16. ship 003 577 118 4706 2281 161.3 74.0

17. troll 3102 67.9 55184 1048 671.1 63.7

18. halfb 547 79.6 8256 1404 291.3 66.2

19. fullb 786 102 13304 1995 356.2 75.1

20. inv-ext-2 442 286 7588 6863 153.1 126.1

8 Concluding remarks

We have designed and developed a new multifrontal solver for unsymmetric finite-element problems. The

new Fortran 95 solver, HSL MA78, optionally holds the matrix data, the matrix factors and the multifrontal

stack out of core, allowing much larger systems to be solved than is possible with a conventional solver.

The efficiency of HSL MA78 is dependent upon the partial factorization and solution of the dense frontal

matrices and upon the writing to and reading from direct access files. We have developed separate HSL

packages to perform these operations.

HSL MA78, together with the subsidiary packages HSL MA74 and HSL OF01, are available as part of the

2007 release of the mathematical software library HSL. All use of HSL requires a licence; details of how

to obtain a licence and the packages are available at www.cse.clrc.ac.uk/nag/hsl/. For symmetric

problems (both positive definite and indefinite problems), the HSL solver HSL MA77 [17] should be used.

References

[1] P.R. Amestoy, T.A. Davis, and I.S. Duff. An approximate minimum degree ordering algorithm. SIAM

J. Matrix Analysis and Applications, 17:886–905, 1996.

[2] P.R. Amestoy, T.A. Davis, and I.S. Duff. Algorithm 837: AMD, an approximate minimum degree

ordering algorithm. ACM Trans. Mathematical Software, 30(3):381–388, 2004.

[3] M. Arioli, I.S. Duff, S. Gratton, and S. Pralet. A note on GMRES preconditioned by a perturbed

ldlt decomposition with static pivoting. Technical Report RAL-TR-2006-07, Rutherford Appleton

Laboratory, 2006.

16

[4] J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of Level 3 Basic Linear Algebra

Subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[5] I.S. Duff. MA57– a new code for the solution of sparse symmetric definite and indefinite systems.

ACM Transactions on Mathematical Software, 30:118–144, 2004.

[6] I.S. Duff and S. Pralet. Towards a stable static pivoting strategy for the sequential and parallel

solution of sparse symmetric indefinite systems. Technical Report RAL-TR-2005-07, Rutherford

Appleton Laboratory, 2005.

[7] I.S. Duff and J.K. Reid. The multifrontal solution of indefinite sparse symmetric linear systems. ACM

Transactions on Mathematical Software, 9:302–325, 1983.

[8] HSL. A collection of Fortran codes for large-scale scientific computation, 2007. See

http://www.cse.scitech.ac.uk/nag/hsl/.

[9] B.M. Irons. A frontal solution program for finite-element analysis. Inter. Journal on Numerical

Methods in Engineering, 2:5–32, 1970.

[10] ISO/IEC. TR 15581(E): Information technology - Programming languages - Fortran - Enhanced data

type facilities (second edition), edited by M. Cohen. Technical Report, ISO/IEC, 2001. ISO, Geneva.

[11] G. Karypis and V. Kumar. METIS: A software package for partitioning unstructured graphs,

partitioning meshes and computing fill-reducing orderings of sparse matrices - version 4.0, 1998.

See http://www-users.cs.umn.edu/ karypis/metis/.

[12] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.

SIAM Journal on Scientific Computing, 20:359–392, 1999.

[13] X.S. Li and J.W. Demmel. Making sparse Gaussian elimination scalable by static pivoting. In

Proceedings of Supercomputing, Orlando, Florida, 1998.

[14] L. Neal and G. Poole. A geometric analysis of Gaussian elimination, II. Linear Algebra and

Applications, 173:239–264, 1992.

[15] G. Poole and L. Neal. The rook’s pivoting strategy. J. Comp. Appl. Math., 123:353–369, 2000.

[16] J.K. Reid and J.A. Scott. HSL OF01, a virtual memory system in Fortran. Technical Report RAL-

TR-2006-026, Rutherford Appleton Laboratory, 2006.

[17] J.K. Reid and J.A. Scott. An out-of-core sparse Cholesky solver. Technical Report RAL-TR-2006-013,

Rutherford Appleton Laboratory, 2006.

[18] J. A. Scott. A frontal solver for the 21st century. Communications in Numerical Methods in

Engineering, 22:1015–1029, 2006.

[19] W.F. Tinney and J.W. Walker. Direct solutions of sparse network equations by optimally ordered

triangular factorization. Proc. IEEE, 55:1801–1809, 1967.

17

