Technical Report
RAL-TR-1999-025

CLRC

The Rational Lanczos Method for the
Hermitian Eigenvalue Problem

K Meerbergen

1S02066-NV DS

30th April 1999

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

VAINID ‘SIRIVIAIT NIAD



© Council for the Central Laboratory of the Research Councils 1999

Enquiries about copyright, reproduction and requests for
additional copies, of this report should be addressed to:

The Central Laboratory of the Research Councils
Library and Information Services

Rutherford Appleton Laboratory

Chilton

Didcot

Oxfordshire

OX11 0QX

Tel: 01235 445384 Fax: 01235 446403
E-mail library@rl.ac.uk

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.




RAL-TR-1999-025

The rational Lanqzos method for the
Hermitian eigenvalue problem

Karl Meerbergen

ABSTRACT

Applications such as the modal analysis of structures and acoustic cavities require a
number of eigenvalues and eigenvectors of large scale Hermitian eigenvalue problems.
The most popular method is probably the spectral transformation Lanczos method. An
important disadvantage of this method is that a change of pole requires a complete restart.
In this paper, we investigate the use of the rational Krylov method for this application.
This method does not require a complete restart after a change of pole. We prove that for
a specific implementation, numerical instabilities can occur when the pole is not chosen
carefully. Numerical examples illustrate the theory.
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1 Introduction

The subject of this paper is the computation of a number of eigenvalues and the corre-
sponding eigenvectors of the matrix pencil

Az =Bz , z#0, (1.1)

where A and B are large and sparse Hermitian matrices and B is positive (semi) definite.
We call A an eigenvalue and z a corresponding eigenvector ; (A, z) is called an eigenpair.
Applications of this form arise in structural engineering (Grimes, Lewis and Simon 1986)
and acoustic modal analysis (Pierce 1981). The most commonly used methods are the
spectral transformation Lanczos method (Ericsson and Ruhe 1980, Nour-Omid, Parlett,
Ericsson and Jensen 1987) and its block version (Grimes, Lewis and Simon 1994). The
Lanczos method builds a Krylov space for the spectral transformation (A—uB)~! B start-
ing from a nonzero vector v;. The method typically converges quickly for the eigenvalues
of (1.1) near the pole p. Very often, a relatively large number of eigenvalues is wanted,
say 10, a 100 or more, and then it may be advantageous to change the pole to speed-
up the convergence of the Lanczos method. Unfortunately, this requires restarting the
method with a new v;." The disadvantage is that the Krylov basis is completely thrown
away. We propose using the rational Krylov method, developed by Ruhe (Ruhe 1984),
which does not require a complete restart when u changes.

In the Lanczos method, the approximate eigenpairs, called Ritz pairs, are computed
from a Hermitian tridiagonal matrix and in the rational Krylov method from an upper
Hessenberg matrix pair. In this paper, we use an alternative for the rational Krylov
method, first formulated in (Ruhe 1998), so that the Ritz values are computed from a
Hermitian matrix. For this reason, we call the method rational Lanczos. It differs from
rational Krylov as Lanczos (Hermitian problems) differs from Arnoldi (non-Hermitian
problems). The contribution of this paper is a stability analysis that shows that the pole
should be selected carefully in order to prevent numerical instabilities.

The plan of the paper is as follows. First, we review the spectral transformation
Lanczos method in §2. We introduce the rational Lanczos method in §3 and show some
of its properties. In §4, we explain how converged Ritz pairs can be locked and how we
can purge unwanted Ritz vectors for restarting purposes. This is not new work, but is
used by a numerical example. In §5, the numerical stability of the method is studied. In
§6, we present some numerical results. We conclude the paper with the main conclusions
in §7.

Throughout the paper, z*y denotes the standard inner product, and ||z|| the induced
two-norm, z*By the B inner product and ||z||p = v/z*Bz the induced B norm. The
B norm of the matrix C, denoted by ||C||s, is defined by the two-norm ||+ BC|| with
(vVB)? = B. By u, we denote the machine precision defined as the difference between
1 and the next floating point number (Higham 1996). By A(A, B) we denote the set of
eigenvalues of (1.1).




2 The spectral transformation Lanczos method

In this section, we describe the spectral transformation Lanczos method for Hermitian
eigenvalue problems. For theoretical and implementation details, we shall refer to the
literature. ‘

The aim is to compute, for given v; and g, a basis vy, ..., vy, for the Krylov space
Ki+1 = spanf{vi, (A — uB) ' Buw,...,((A — uB)"'B)*v,} . (2.1)

The matrix (A — uB)~ !B is called the spectral transformation. The name spectral trans-
formation comes from the fact that if (X, z) satisfies (1.1) then (8 = (A — )™, z) is an
eigenpair of (A — uB) 1 B. The spectral transformation Lanczos method computes eigen-
pairs (6, z) of the spectral transformation. The relation A = p+ 67! allows us to compute
the corresponding A’s.

The (Hermitian) Lanczos method (Lanczos 1950, Parlett 1980, Ericsson and Ruhe
1980, Nour-Omid et al. 1987) builds a Krylov space for Hermitian matrices, but because
the spectral transformation is non-Hermitian, the method cannot be used for (A—uB)~'B
in its standard form. Since (A — uB)™!B is self-adjoint with respect to the B inner
product, the method can be used when B orthogonalization is employed. (See (Nour-
Omid et al. 1987) for the details.) An algorithm is given below.

Algorithm 1 (Spectral transformation Lanczos)
1. Given v; € R" such that v;Bv; = 1.

Let By = 0 and vy = 0.
2. Forj=1,..,k

2.1. Transformation : w; = (A — uB)™ ' Bu,.

2.2. Computation of coefficient : a; = v} Buw;.

2.3. B orthogonalization : s; = w; — a;v; — B;_1v;_1.

2.4. Computation of coefficient : 3; = ||s;|| 5.
2.5. Normalization : vj41 = s;/06;.
Endfor

From Steps 2.1-2.5 it follows that Vi,; = [vy, ..., vk41] forms a B orthogonal basis of the
Krylov space (2.1). In fact, Step 2.3 is a Gram-Schmidt orthogonalization step, where «;
and (;_; are Gram-Schmidt coefficients. This orthogonalization step can lose stability
and therefore one often employs modified Gram-Schmidt with partial reorthogonaliza-
tion (Grimes et al. 1994) or even full reorthogonalization (Daniel, Gragg, Kaufman and
Stewart 1976, Sorensen 1992). Elimination of w; and s; from Algorithm 1 leads to the
three term recurrence relation

(A - ,uB)_lB’uj = v;410; + vioy +vi_1F-1 .
Collecting the three term recurrence relations for 7 = 1,..., & leads to

(A= uB)"'BV; = Vi Ty , (2.2)




where

a; B

B
T = e T Bra
Br-1 o
Br

is a £ + 1 x k tridiagonal matrix, formed by the coefficients a;,3;. Note that T =
ViiB(A — uB)™'BVi. Let Ty be the k x k leading submatrix of T;. Then another
notation for the recurrence relation is

(A — uB) 'BVy = ViTx + vrs10ke} .

The B orthogonal projection of (A — uB) !Bz = 6z onto the Krylov subspace pro-
duces approximate eigenpairs, called Ritz pairs, and can be computed as follows. Let
(8, 2) satisfy Tz = 8z, then (8,y) with y = V;z is called a Ritz pair with residual

r = (A—uB) 'By—06y (2.3)
= PrUrs1€;2
and residual norm p = ||r||g = Vr*Br = Gi|e}z|.
If 8; = 0 at Step 2.4 of Algorithm 1, then span{v;, ..., v;} forms an invariant subspace
of (1.1). This means that the corresponding Ritz pairs are exact. This is very unlikely to

occur in practice and therefore, we assume that §;,...,0; > 0. In this case, T, is called
unreduced (Golub and Van Loan 1996, page 346) and is of full rank.

3 The rational Lanczos method

The rational Lanczos method is an extension of the spectral transformation Lanczos
method, that makes a change of pole y to v possible without restarting the method. It
is a special case of the rational Krylov method, which is extensively discussed by Ruhe
(Ruhe 1984, Ruhe 1994, Ruhe 1998).

By multiplying (2.2) by A — B and reorganising the terms, we have

AV Ty = BV (L + pLy) (3.1)

This is the rational Krylov recurrence relation of Ruhe (Ruhe 1984). (The columns of T,
follow from the orthogonalization process, while the columns of I, are the ‘continuation’
vectors.) Suppose we want to change the pole to v. Rewrite (3.1) as

(A= vB)ViriTy = BVp (L + (1 — v)Tk) - (3-2)

Let Ly = Iy + (1 — v)I;, and consider the QR decomposition

L-or=q| |




where @@ is a kK + 1 X k + 1 unitary matrix and R is upper triangular. It is important
to note that L; is unreduced tridiagonal and thus of full rank. This implies that R is
invertible. Let Wiy = V411Q and W, denote the first k& columns of Wi,;. Then by
multiplying (3.2) on the left by (A — vB)~! and on the right by R~!, we have

(A—'VB)_IBWk == Wk+lK[c

Ki = QTR (3.3)
Wi BWip, = I
Wi, B(A—vB)"'BW, = K.

These equations denote a relation similar to the Lanczos recurrence relation. The main
difference is that K, is not a tridiagonal matrix. The Krylov subspace can now be
expanded by adding

(A —vB) ' Bwii1, (A — vB) 'B)?wiqq, ...

to Range(W}.), as for the Lanczos method.

Note that the tridiagonalization of K is straightforward by the application of orthog-
onal transformations on both sides of K; and on the right of W;;;. (See the discussion
on the QR method in (Golub and Van Loan 1996) and Appendix A). In that case, (3.3)
can really be considered as a three-term Lanczos recurrence relation.

We now have a procedure for changing the pole of the spectral transformation Lanczos
method without a complete restart. Note that implicit restarts (Sorensen 1992), deflation
and purging (Lehoucq and Sorensen 1996), developed for the Lanczos method, are now
possible in combination with a change of pole. This approach is mathematically equiva-
lent, but quite different in practice, from the implicitly filtered rational Krylov method
(De Samblanx, Meerbergen and Bultheel 1997) that works immediately on the rational
Krylov recurrence relation (3.1). An algorithm for the change of pole is given below.

Algorithm 2 (Change of Pole)
1.Form Ly = I, + (p — v)Ty.

2. Factorize L = Q ](?
R—l
3. Compute K; = Q*T,R™! = p—iy (I - Q* [ 0 ])
: Pol .
4. Apply the orthogonal transformation P such that 0 1 K. P is tridiagonal.

P 0
4. Update Wi,y = Vi 1Q [ 0 1 ]

We define the rational Lanczos method by a combination of Algorithms 1 and 2, i.e.
after Step 2.5 in Algorithm 1, a change of pole is possible at any time. An algorithm
for a specific application is given in Algorithm 3. The rational Lanczos method is an
extension of the Lanczos method, so it inherits many properties of the latter. The only
difference lies in the change of pole. This has implications on the Krylov subspace :




Theorem 3.1 Let Vi1 and T}, be computed by the spectral transformation Lanczos
method with pole p and let Wi, 1 and K, be the result of the change of pole, then

Range(Wy.1) = Range(Vii1) , (3.4)
Range(W,) = Range((A — uB) (A —-vB)V;) . (3.5)

Proof Since Wiy = Vi1Q, (3.4) follows. Equation (3.5) is shown as follows. Since
Wiy = V1@ and L, = QR, we have Wi 1 R = W R = V1 L;,. Following the definition
of L; and (2.2), we have

Vitrily = Vi+ (u—v)VigaDy
= Vi+(A—uB) BV
= (A= uB)'(A-vB)V; .

The proof follows from the observation that Range(W;) = Range(Viy1Ly)- m]

So, the eigenvalues near p are enhanced in Range(W)},) and those near v are damped by
the function (A —v)/(A— ). This will be illustrated by a numerical example in §6. (Note
that Algorithm 2 can be considered as a transition of harmonic Ritz values with target
4 to harmonic Ritz values with target v (Sleijpen and van der Vorst 1996).)

4 Purging, implicit restarts and locking

When k is very large, the storage of the basis vectors becomes prohibitive and it may
be interesting to restart the Lanczos method. An elegant restarting algorithm is the
implicitly restarted Lanczos (or Arnoldi) method (Sorensen 1992, Calvetti, Reichel and
Sorensen 1994). This method compresses the Lanczos basis into one of smaller dimension
by throwing away a part of the subspace that is unlikely to have a large contribution to
the convergence of the wanted eigenvalues. After the compression, the Lanczos method
can add new Lanczos vectors to the basis. A similar restart was developed for the rational
Krylov method (Ruhe 1998, De Samblanx et al. 1997).

The following is not new, but we have to explain it in order to discuss the results of a
numerical example in §6. We can use an implicit restart (Sorensen 1992) in the Lanczos
method or equivalently, we can purge unwanted Ritz vectors (Lehoucq and Sorensen 1996,
Morgan 1996). Let T2y = Z; O with ©, = diag(6s,...,6,) be the eigendecomposition
of 7). Multiplying (2.2) on the right by Zx, we have

(A —uB) 'BViZi = Vir1TiZx

With
Z Z * Q
Yiri = [Y2 vrt1] = Vi [ k 1 } and S; = [ * 1 ] IyZ = l:ﬁke;ﬁkzk ] ’

we get the relation
(A -_— /,LB)—IBY]C = Y18, .




Note that S; is a matrix with k& + 1 rows and k columns that consists of a k x k diagonal
matrix in the & first rows with the Ritz values 64, .. ., §; on the main diagonal and Sie} Zi
in the k+1 st row. The last row contains the residual information for the Ritz pairs. The
columns of Y} are the B orthogonal set of Ritz vectors and the last column y;,; = UVkt1
is the direction of the residual (5.2).

Suppose that the columns of Y; and S, are ordered so that the p Ritz values of interest
are in the leading columns of S; and the k£ — p less interesting Ritz values are at the end.
When we take the first p columns S, into S, we have

61

(A—uB)'BY, =[Y, ynlS, with S, = ,
P

BrerZyp

Transforming the p + 1 X p matrix S, to tridiagonal form to Tp by orthogonal transfor-
mations and applying these transformations to Y}, yields a new recurrence relation

(A= uB) "BV, — V. T, =0 . (4.1)

From here, & — p additional Lanczos iterations produce a Lanczos basis of dimension
k + 1. We call this truncation plus transformation to tridiagonal form purging. It is also
achieved by k — p implicit restarts with exact shifts (Sorensen 1992, Morgan 1996).

Ritz pairs with a residual norm fyle}z;| smaller than a given tolerance are locked.
They are considered as exact eigenpairs. We lock them in the recurrence relation by
setting the elements 1,...,¢ in the p + 1 st row of S, equal to zero. If we assume that
the locked Ritz pairs are exact eigenpairs, (4.1) takes the form

~ ~ © 0
A=wB) B[ Y, Vo= [V G )| 20 =0 )

with ©, = diag(fy,...,6,) and ip_q ap—g+1Xxp— g tridiagonal matrix. The Lanczos
method can be continued from this point. Since the Ritz pairs are not exact eigenpairs,
the right-hand side of (4.2) is nonzero : the error on the recurrence relation is of the
order of the residual tolerance.

When (6, z) is a locked Ritz pair for (4 —pB)~! B, we consider (A, z) with A = p+6~1
a locked Ritz pair for Az = ABz. When the pole changes to v, we consider ((A—v)71,z) a
Ritz pair for (A —vB)~'B. When a Ritz pair is locked and the pole changes, the residual
norm also changes. There is a risk that the residual norm becomes much larger. Locking
Ritz pairs with a relatively large residual norm prevents the accurate computation of
other Ritz pairs.

The following theorem gives a new upper bound on the residual norm after change of
pole.

Theorem 4.1 Let (A — p)™',z) be a Ritz pair for (A — uB)™'B with residual norm

p= (A~ pB) "Bz — (A - 1) "alla .




After the change of pole, the new residual norm satisfies

A p max A p I
A —v| \xex(4a,B) | A — v p-

Proof By multiplying (A — uB) !Bz — 6z = r with 8§ = (A — x)~! by (A — uB), we
have

y=I(A~vB) "Bz ~ (A~ 1) el <

Az(—0) + Bz(1l + uf) = (A — pB)r .
By reorganising the equation into
(A—vB)z(—0) + Bx(l + (p —v)8) = (A — uB)r
and by multiplying with (4 — vB)™!, we have

) 0 _ 1 _1
(A—vB)"'Bz — mm = m(A —vB)" (A—uB)r,
_ %(1 4 (v—w(A-vB)'B)r.

The proof follows from

NI+ =mw)(A-vB)'B)rlls = (I +(v—uvVB(A-vB)'VB)VBr|

v—p
(Aeril("}ffa) ‘1 i VD Irlls -

IN

O

It is clear that when v is close to an eigenvalue, ||(A — vB)~}(A — uB)|| can be very
large, and so may the residual norms of locked vectors after the change of pole. This is a
good reason for not choosing the pole close to a Ritz value. It is also clear that the factor
(A — )/ (X —v) does not change the residual norm much when X is far away from p and
v. Ritz values near p get a smaller residual norm, however. Those near v get a larger
residual norm. As a conclusion, we better put the new pole away from the locked Ritz
pairs. This is very natural, since it is useless picking the pole v near locked Ritz values.

5 The numerical stability of the rational Lanczos
method

A question that remains is the numerical stability of the rational Lanczos method. The
numerical behaviour of the Lanczos method is well understood. Typically, the method
behaves numerically well when it is carefully implemented : this includes modified Gram-
Schmidt orthogonalization with partial reorthogonalization (Grimes et al. 1994) or full
reorthogonalization (Daniel et al. 1976). An implicit restart may lose stability when the
implicit shift is close to a Ritz value. Purging instead of implicit restarting is preferred in
that situation (Lehoucq and Sorensen 1996). Also see (Meerbergen and Spence 1997) for
another numerical stability result. The only difference between the Lanczos method and
the rational Krylov method is the change of pole, so it is sufficient to study the stability
of this step.
The following is the main conclusion of this paper.
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The transition from pole u to v may make the recurrence relation lose accu-
racy, when v lies close to an eigenvalue of Ax = A\Bz.

We now give a mathematical justification for this statement. Suppose that the spectral
transformation Lanczos method produces an accurate recurrence relation, i.e.

(A= uB) "BV — Vini Ty = B

with ||E|| small compared to the other terms in the equation. We assume that when
(modlﬁed) Gram-Schmidt orthogonalization (with reorthogonalization) is used for mak-
ing (A — uB)~!'Bv; orthogonal versus v; _; and v; in Algorithm 1, we have

1Ells ~ lI(A—pB)~ BVi||pu
IVB(A - ul‘"i’)‘l\/—llu

P 1
A, A —al”

A

See (Bjorck 1996, §2.4.5) and (Higham 1996, Theorem 18.12) for modified Gram-Schmidt
when B = I. The error E can become large when p is close to an eigenvalue. Suppose
that Algorithm 2 is executed in exact arithmetic. (This is a simplification of reality, but
even under this assumption, loss of stability may occur.) Then

(A—vB) 'BW;, — Wy K = (A~ vB)™Y(4 — uB)ER™' . (5.1)

The factor (A — vB)™'(A — uB) usually has a modest norm unless v is close to an
eigenvalue, see the following lemma.

Lemma 5.1

(A —-vB) ™" (A - uB)||zp < +/||B|| max

AEA(A,B)

—V

Proof First note that

IVB(A~vB)"'VB|| = m

,\eA AB) )\
Second, since (A — vB) Y (A — uB) = I + (v — p)(A — vB)~' B, we have

IVB(A~vB) ™ (A—uB)| = [|(I+(v—p)VB(A—vB)'"VB)VB|
< |1+ (v —wVB(A-vB)'VB)|VB|
1/-p| .

1B =

max
AEA(A,B)

The observation ||(A~vB) Y (A—uB)||p = [|[VB(A—vB) ' (A— uB)|| proves the lemma.
O

The factor R~! can play a vital role in (5.1). A lower bound for ||R!|| can be found as
follows.




Lemma 5.2 Denote the eigenpairs of Ty, by (6;,2;) with ||z;|| = 2 for j = 1,..., k with
0; = (A\j — 1)~'. Define the residual norm p; = ||(A — uB) 'BViz; — 0;Vizi||g. Then

X —vl?

IRl > 1/ min ( v
7

1/2
+(p - V)pr) :

Proof First note that [|R7Y|| = 1/0umin(L;) Where o, denotes the smallest singular
value. Following the definition of the smallest singular value, we have that o, (L) <
||Lxz|| for any z € C* with ||z|| = 1. From the assumptions of the lemma, we derive

2

S 3

= (N 2Jr(u—l/)%,2
=)

O

When v is close to A and the residual norm p is small, then ||R™!|| is large, which may
imply a large error in the new recurrence relation. The following lemma allows us to
make a more precise statement.

Lemma 5.3 Let Kj denote the upper k x k submatriz of K. Let Kju = nu with
lull = 1 and = = Wiu be the corresponding Ritz vector. Then, with p = let 1 Ku| and
6 = 1+ 2|u — v|max(p, |n|), we have

WA-vB) 'z —nz|lz < p+ed (5.2)
|e*B(A—vB) !Bz —n| < €8%. (5.3)
with
6 = (A-vB) (A-puB)Blls < ( max |22 |iE|, (5.4)
! B = \aea@n) [N = u
2 _
€ = (A —uB)E|s + ||E*(A — uB)(A —vB) {(A—uB)E|lz  (5.5)

I — v

Proof First, with p = |e},Ku| and Kju = nu, we have that

(- =[n]

{ R(‘)lu } = QU — (u—v)K})u

Kyu =

This implies

and
IR ull S 1+ |u—vl(p+n]) <6.




Second, from (5.1), we have that the exact residual is
(A—vB) !Bz —nz=r+ (A—vB) Y (A— uB)ER 'u (5.6)
with r» = wi €5, Ku and ||r||g = p = |ef 1 K u|, which leads to
I(A = vB) e —nalls < p+ (A — vB) (A — uB)ER ull5

and proves (5.2).
In addition, with f = (A — uB)ER 1, we have, from (5.6),

z*B(A—vB) ' —nz* =r*+ f*(A—vB)™'.
Using *Bz = 1 and r*Bz = 0, multiplication on the right by Bz leads to
*B(A—vB) 'Bxr —n=2*B(A—vB)"'f.
Combining the last two equations leads to
+*B(A—vB)'Ba —n=na*f +7'f + f{(A—vB)'f,
from which (5.3) follows. This completes the proof. O

From this lemma, we see that (5.2) and (5.3) depend on 6, which is large when p or
7 are large. When ¢; is modest and p is small, then the exact residual norm is still small
compared to 7, which guarantees a small relative error on the eigenvalue : the error on
the eigenvalue is bounded from above by (5.2) following the Bauer-Fike theorem (Saad
1992, Theorem 3.6). As a conclusion, the factor R~ is not dramatic in general. However,
when v is close to an eigenvalue, the factor (A — vB)~! may blow up the factor ¢; and
maybe €.

6 Numerical examples
The first example illustrates the theory, and the second one solves a practical application.

Example 6.1 (Accuracy of the change of pole within rational Lanczos) This ex-
ample illustrates the rounding error conclusion from §5.

The matrix A is real symmetric and tridiagonal with 2’s on the main diagonal and —1’s
on the two off-diagonals and B is the identity matrix. Both have dimension 200 x 200.
The results of this example are generated using Matlab. We performed k£ = 20 steps
of the spectral transformation Lanczos method with 4 = —1 and an initial vector with
equal elements. The explicitly computed error in the recurrence relation is

NE| = (A — pB)'BVi — Vi Th|| =~ 3.19-107%¢,
(A — uB) ' BVi — Vi Till /Tl =~ 3.19-1071°.

Relative and absolute errors match since ||T;]| & 1. The Ritz values and their residual
norms are shown as bullets in Figure 6.1. Table 6.1 gives the error in the recurrence
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Table 6.1: Illustration of Lemma 5.2 for Example 6.1

v Omin(Ly) absolute error relative error
2.5 6.4-1072 1.54.10°13 3.50-10° 14
4.2 71-1072 1.31-107 4.53.10715

3.160930-10~* 5.5-10¢ 4.71-107° 2.58 - 1012

relation after change of pole for three different values of v. For the first and second
pole, the Ritz values lie relatively far from the new poles (see the vertical dashed lines
in Figure 6.1), so the singular values of L; are not expected to be very small. The third
pole is equal to a Ritz value. This implies that o.,in(L;) is bounded from above by the
corresponding residual norm.

The eigenvalues and corresponding residual norms for the Lanczos process with pole
p# = —1, are shown in Figure 6.1. We changed the pole into v; = 2.5 and 1, = 4.2.
The Ritz values corresponding to the new Lanczos process are plotted as boxes for pole
v and as circles for 5. This result corresponds to Theorem 3.1. The residual norms
corresponding to the Ritz values close to u are reduced, however, this is less pronounced
when v is closer to p. The Ritz values close to v disappear and/or get larger residual
norms.

Table 6.2 illustrates Lemma 5.3 for v = 3.1609 - 10~%. More specifically, we show

G = (A~ VB)—le —nNT — wk+1eZ+1KU“B (6.1)
= [(A—vB)™(A~uB)ER 'ul|s
¢ = |¢*B(A—vB) !Bz —1 (6.2)

and (1/6 and (3/6%. The third and fifth columns of Table 6.2 show that ¢; and (,
are proportional to & and 82 respectively. The results show that ¢ ~ 5. 10~!7 and
€~ 1410712

When we choose v = 1.0001A; with A; the smallest eigenvalue of A, then we have
that {; varies between 10° and 1075, which is larger than ¢; in Table 6.2, and (, varies
between 1071% and 10715, We also have that ¢; ~ 4 - 107° and € ~ -10~17. Clearly, the
factor (A — vB)~! blows up the error in the residual ({;).

Example 6.2 (An application) This example is related to the acoustic simulation of
a 0.4m x 0.4m x 0.06m sample made of a poro-elastic material. The material is modelled
using a two-phase Biot model accounting for kinematic and mechanical interactions be-
tween the (elastic) skeleton and the pore (acoustic) fluid (Sandhu and Pister 1970, Simon,
Wu, Zienkiewicz and Paul 1986). The following material properties have been selected :
for the skeleton, the Young modulus is 140000N/m?, the Poisson ratio 0.35, and the
density 1300kg/m?. The pore fluid has density 1.225kg/m3, the sound speed is 340m/s,
the porosity 0.95, the flow resistivity is 0, the Biot factor is 1, the fluid bulk modulus
141600N/m2, and the tortuosity is 1.2. The discrete finite-element model relies on a u-w
formulation (Simon et al. 1986) where skeleton displacement components (u) and relative
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Table 6.2: Shows the errors on Ritz values and residual norms as the right-hand sides of
(6.2) and (6.2)

n G (2/8* 1 G1/6
180.5 [3.4-1071 47.10°17 359.107%99 1.4.10-12
4757 19.2-1071 47.1077 19-107% 1.4.10"12
21.10 | 43-107! 50-107Y7 13-107%° 1.4.10°12
11.68 |2.3-1071 50.1077 9.6-1071° 1.4.10°12
7291 |1.4-1001 49-107Y 75.1071° 14.10-12
4905 |95-107'%2 50-107Y 6.1-10710 1.4.10°12
3.467 |6.4-10712 48.107Y7 50-1071° 14.10°12
2.536 | 4.7-10712 49.1077 42.1079° 14.10°!2
1.902 [3.4-107'% 5.0-107Y 3.6-10"10 1.4.10"12
1.453 | 2.4-107'% 48.10"' 3.1-107 1.4.10°12
1.126 | 1.8-107'%2 4.9.10"' 26-10710 1.4.10°12
0.8825 |1.2-1071%2 4.7.107'" 22.10°10 1.4.10°12
0.6988 [9.2-1073 5.0-107Y7 1.9.10°% 14.10°12
0.5594 |6.1-10713 47.107 15.-1071° 1.4.10"12
0.4538 {4.1-1071 49.107' 1.3-10"1° 1.4.10°12
0.3750 | 25-107 4.8-10°7 1.0-1071® 1.4.10"12
0.3181 |{1.6-10713 55.107Y7 7.3.1071 1.4.10°12
0.2796 |5.1-107% 4.1.-10"Y 45.107% 1.3.10°2
0.2573 | 1.7-107* 5.3.10717 2.36-10"1' 1.3.10°12
—0.9982 [ 1.0-107°® 49.10"Y7 1.97-107% 1.4.10"12
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Figure 6.1: Residual norms as a function of the Ritz values. Bullets denote residual
norms and Ritz values for Range(V}). Boxes and circles denote residual norms and Ritz
values for Range(W},) for v; and v, respectively.
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fluid displacement components (weighted by the local porosity) (w) are selected as nodal
variables. The finite-element mesh has 324 nodes and 192 HEXAS elements. The total
number of degrees of freedom is n = 1944.

We use the Lanczos routine EA16 available with the next release of the Harwell
Subroutine Library (HSL 2000). The implementation is based on the (block) Lanczos
method with partial reorthogonalization (Grimes et al. 1994), purging of the unwanted
Ritz pairs and locking of converged Ritz pairs (see §4), an implicit restart (Sorensen
1992), and change of pole (see §3). In this experiment, we use the Lanczos method with
block size 1 in order to illustrate the theory in the paper. After purging, the Krylov
subspace dimension is reduced from & to p. We used £ = 50 and p = 25. The method is
described in Algorithm 3. The sparse linear systems are solved by the Harwell Subroutine
Library code MA27 (HSL 1996). For efficiency reasons, the matrix is factorized once for
each pole and the Lanczos method uses backtransformations. The residual tolerance used
for the eigenvalues was €, = /ul||T},|| with v/u ~ 1.05 - 1078, which is the square root
of the machine precision on a SUN Ultra 1. The goal is to compute s = 20 eigenpairs on
the right of 100.

A picture of the spectrum is shown in Figure 6.2. The intial pole is © = 100. A new
pole is chosen as the mean of two successive Ritz values, as indicated in Algorithm 3.
When the distance to a Ritz value is smaller than 50, we pick another pole. With this
choice, we try to prevent that the pole is picked close to Ritz or eigenvalues.

Algorithm 3 (Rational Lanczos)
0. Given v; € R" such that v;Bv; = 1.
Select an initial pole x and factorize A — uB = LDL*.
1. Perform p steps of the Lanczos method.
2. do until convergence :
2.1. Expand the Krylov space from dimension p to k by the Lanczos method.

2.2. Compute the eigenpairs (6,,2;) 7 =1,...,k of T, and let X\; = u+ 9]-‘1.
2.3. Sort the A;’s in ascending order and reorder the z; accordingly.

2.4. Compute residual norms p; = filejz;| for j =1,... k.

2.5. Stop if p; < €at||Tk|| for j=1,...,s.

2.6. Lock the converged Ritz pairs and truncate the Lanczos recurrence relation from
order £ to p.

2.7. Compute the new pole as u = (A;+A;4+1)/2 with j > ¢ and such that |x— ;| > 50.

2.8. Change the pole using Algorithm 2.

end do

From Lemma 5.3 and (5.1), we can see that ||(A—vB)~'(A—uB)|| plays an important
role in the error bounds. When |A — v| > 50 for all eigenvalues A of Az = ABz, then

— ~1 —
(A = vB)" (A = uB)lls < VB | max

§\j—“| < VB(1 + | — v1/50)

This limits the growth of the error in the recurrence relation after a change of pole.
Lemma 5.2 is used for measuring the contribution from the factor R™! in (5.1). This
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Table 6.3: Number of locked Ritz values, the new pole and the estimate of Omin(Lyp)
following Lemma 5.2

restart locked pole estimate omin(L,)

1 5 1381. 8.3-1072
2 12 1764. 1.8-1071
3 18 2432. 1.3-10!
4 25
100 © 1381 1764 2432

Figure 6.2: Ritz values computed via the rational Lanczos method. The vertical lines
denote the positions of the poles.

was illustrated by Example 6.1 and is confirmed again by the results for this example.
Table 6.3 shows, after each restart, the number of converged Ritz values and the new pole
with the estimate for oyin(L,). Using the inertia count (Grimes et al. 1994), we found
that the number of eigenvalues between 100 and the poles 1380 and 1760 matches the
number of locked Ritz values in the corresponding intervals. This shows the reliability
of the algorithm for this example. After the last iteration, we found that, with full
reorthogonalization at each iteration of the Lanczos process, max; ;4 |wfBw;| ~5-1071°
and
(A= pB) " BWi, = Wi K ll#/|[(A — uB) ™' BWi||p ~ 2.4 - 1078

which is within the residual tolerance. With partial reorthogonalization, we have max; j»; |wj Bw;| ~
3-107% and

(A~ uB) ' BWi, — Wi 1 Ki||p/||(A ~ uB) ' BW|lp ~ 2.5 1078 .

7 Conclusions

In this paper, we introduced the rational Lanczos method for the solution of Hermitian
eigenvalue problems. It can be considered as a spectral transformation Lanczos method
with implicit restart and change of pole, or as the rational Krylov method with a Hermi-
tian projected problem. The major conclusion from this paper is that it may be dangerous
to select a pole close to a Ritz value for the following reason. First, the linear systems
may be difficult to solve, since they are nearly singular. Second, it may not only lead
to large absolute and relative errors in the recurrence relation, but also to large residual
norms for locked Ritz pairs after a change of pole. It is therefore advised to pick the pole
away from the locked Ritz pairs.

The rational Lanczos method is suitable for computing the eigenvalues of structural
eigenvalue problems in a frequency range (Grimes et al. 1994) or the right-most eigenvalue
in the determination of the stability of steady state solutions of non-linear equations
(Meerbergen and Roose 1996), where the pole is not selected near a Ritz value. It is not
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advised for algorithms that focus on the convergence of a single eigenvalue by putting
the pole as close as possible to that eigenvalue. In this case, numerical instabilities are
likely to occur.
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A Reduction of a rectangular matrix to tridiagonal
form

Consider the & + 1 x k& matrix T with the upper k X k submatrix Hermitian. The
following algorithm creates a unitary matrix P such that

Tu):{fg ” T7® p

is tridiagonal.

Algorithm 4
1.Let P=1
2.For j = k to 2 step —1 do
2.1. Let Hj be a Householder reflection such that e} +lz(j)Hj is a row vector with
7 — 1 zeros in the front.

2.2. Form

*
G0 = | Hi O g,
T - [ 0 1 } L7 H;
2.3 Form P = PH;
On iteration j the 7+ 1 st row of T is reduced to a row with 7 — 1 zeros in the front.

Since the Householder transformation is also applied on the front without touching the

j + 1 st row, the 7 + 1 st column is reduced to a column vector with 7 — 1 zeros in the
front.
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