Profiling Tools for MPI Programming

J.V. Ashby

11 Jan 2008

RAL-TR-2007-017

© Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional copies of this report
should be addressed to:

Library and Information Services

SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot

OX11 0QX

UK

Tel: +44 (0)1235 445384

Fax: +44 (0)1235 44 6403

Email: Library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the Chilbolton,
Daresbury, and Rutherford Appleton Laboratories is available online at:
http://epubs.cclrc.ac.uk

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising
from the use of information contained in any of their reports or in any communication about
their tests or investigations.

mailto:Library@rl.ac.uk
http://epubs.cclrc.ac.uk/

Profiling Tools for MPI Programming
J.V. Ashby

Computational Science and Engineering Department
STFC Rutherford Appleton Laboratory
J.V.Ashby@rl.ac.uk

Abstract

Programming parallel applications using MPI for optimum performanceis a difficult task given the
multiplicity of options for communication. In this report we discuss the use of four tools which can
assist in profiling and analysing the performance of MPI programs. The tools are applied to two
scientific codes on small problems to illustrate their use. A brief discussion of applying the tools to
larger problems requiring maderate numbers of processors is also given. The four profiling tools
presented can give insight into possible performance bottlenecks in MPI applications. They each have
their strengths and weaknesses,both text-based tools and graphical displays, and we recommend that
application programmers familiarise themselves with several of these tools.

mailto:J.V.Ashby@rl.ac.uk

1. Introduction

Programming parallel applications using MPI for optimum performanceis a difficult task. Often there
is no single correct method, and the multiplicity of options governing the method of communication
(blocking, non-blocking, one-sided, asynchronous, broadcast, point-to-point, etc.) can lead to
different results depending on the combination of algorithm and the underlying hardware. Indeed,
were this not the case there would be no need for so many options. The best approachcould be
chosen, enshrined in the standard and nobody would need to use anything else.

Given that there are many approaches which can be used, getting maximum performance from a code
means, amongst other things, optimising the use of MPI. While simple overall timings can give an
impression of how well different communication strategies work, in complex codes a more
sophisticated approach is necessary to identify bottlenecks.

In this report we discuss the use of four tools which can assist in profiling and analysing the
performance of MPI programs. This is not an exhaustive set of tools. It deliberately omits, for
example, one of the best known MPI analysis tools, Vampir (also known as the Intel Trace Analyzer)
since this has been discussed by Sunderland [1]. We also omit detailed discussion of the capabilities
of some of the tools beyond monitoring and profiling MPI usage. Some other tools were not available
to us during the period oftime this evaluation was undertaken.

To look at these tools we ran two application codes with the tools applied to them on HPCx, an IBM
Regatta machine.whichfeatures 96 IBM eServer575 compute nodes, each containing 16 1.5GHz
IBM Power5 64-bit RISC processors. The 16 processorsin a compute node are packaged into 2
MCMs. Each processor has a private L1 instruction cache of 64KB and L1 data cache of 32KB. The
L2 combined data and instruction cache of 1.9MB is sharedbetween 2 processors. The L3 cache of
36MB is also shared between 2 processors. Within a node, MCMs communicate via shared memory
and a High Performance Switch provides communication between nodes.

The problems used wererelatively small and did not use large numbers of processors. Thus this
report only discusses an impression of how easy to use the tools are and does not cover how well they
cope with large quantities of data produced by alarge problem using several hundred processes. It is
by no means an exhaustive evaluation, but is intended to introduce application developers to tools
which may be of use to them. Wedo look briefly at tool use on moderate numbers of processors in
section 7.

The tools are: mpitrace [2] (which also includes mpiprof and mpihpm), a simple profiler from IBM
available on HPCx; fpmpi, a similar profiler produced by Argonne National Labs [3]; KOJAK which
is more sophisticated and requires instrumentation of the code [4]; and TAU [5], a general profiler
which can profile much more than smply MPI, and which can be used in a number of different
modes from simple profiling to detailed instrumentation of the code. Kojak and TAU share a pedigree
to some extent. TAU is the result ofa collaboration between the Universty of Oregon, Los Alamos
National Laboratory and the Forschungszentrum Jiilich. Jiilich and the University of Tennessee
together produced Kojak which uses TAU to irstrument a user's code (in a way which does not
require the user to know TAU itself).

2. The Applications

To look at how easythe various tools are to use we have applied them to two scientific applications,
SIC-LMTO [6] and Flite3D [7].

The SIC-LMTO code of Temmerman and Szotek [6] is a self-consistent spin polarised calculatian of
the electronic band structure of a crystalline material. It uses the Linear Muffin-Tin Orbitals approach
with a Self-Interaction Correction and is written mostly in Fortran95, although there is some legacy
code still in Fortran77. We used a dataset for what constitutes a reasonably large problem for this
code, the magnetic half metal NiFe,O, in an inverse spinel structure. In this case the program treats 26
“atoms” (2 types of Fe, 1 Ni, 2 O and 4 empty spheres) with 98 bands leading to a Hamiltonian
matrix of dimension 234. This is diagonalised at 512 points within the Brillouin zone.

The essence of the program is the solution of the eigenproblem, H(k)yi=Eiyi. The Hamiltonian H(k)
depends on all the y, through the electron density n(r)=Z.; occupica staes | Wi (r) | > . Initially a guess is
made at an electron density, the eigenproblem is solved and a new electron density generated. This is
then fed back until self-consistency is reached. Within this self consistency loop each k-value can be
solved for independently. The programis parallelised by farming out the k-points among the
available processorsand then performing aglobal broadcast of theresults so that each processor can
then calculate the electron density to use for the next iteration. The code is known to scale poorly for
numbers of processors above about 16 dueto its parallel strategy. The partitioning of the problem is
in k-space, farming out paints in the Brillouin Zone. There is no point in using more than ~512 points
in the Brillouin Zone, and if these are distributed among too many processors thecommunications
swamp the computation. For our experiments we used 16 processors which gave job times of the
order of 20 minutes and kept the amourt of MPI profiling data to a level that could beassimilated.

FLITE3D [7] is a three-dimensional CFD code which solves the Navier Stokes equations using a
multigrid method on an unstructured mesh of finite elements. The space around an object in which
fluid flows is divided into a set of tetrahedral cells. These cells and the points which make up their
vertices form a mesh, and the continuous equations are transformed to adiscrete form on this mesh so
that the pressure and velocity of the fluid are found at each of the points. The Navier-Stokes equations
define the density, pressure and velocity of the fluid. When discretised and linearised these equations
generate a large sparse linear system in the variables Ui(r;), P(r;) noting that the pressureimplies the
density through the equation of state.

In the multigrid method several different grids of varying degrees of fineness are overlaid. The
problem is solved approximately on one grid, then transferred to the next gridby a process known as
prolongation (moving from coarse to fine) or restriction (moving from fine to coarse). At each mesh
level the problem is solved (on coarse grids the problem s solved to give correctionsto the solution
on the finer grid). There are many different approaches to moving between grids — in FLITE3Dthe
V-cycle is used in which the grid levels are fully traversed from fine to coarse and then back again.
Parallelisation is achieved by domain decomposition. The meshes are divided into as many sections
as there are processors available andthe discrete problem is solved on each individual section or
partition. Then the values atthe interface between partitions are exchanged and provide new
boundary conditions for the next stage of the solution process. This requires inter-process
communication where each partition sends its boundary values to each of its neighbouring partitions

and receives boundary values from each of them.

We used a dataset for a wing-body assembly where the mesh consisted of 51737 points and 302079
tetrahedra. This is quite small for this code, and the run times were further reduced by only running
for 100 timesteps instead of the 1000 used when the codeis being analysed for computational
performance. Since we are not interested in comparing the performance of MPI implementations one
against the other, merely understanding how to use the profiling tools, the poor statistics that this
reduction entails are unimportant.

3. mpitrace

mpitrace is a library of wrapper routines which instrument the actual MPI library, and against which
an application can be linked. The result of running the application is then to produce a set of files
summarising the MPI activity, one file for each process. There are three tools in the mpitrace suite:
mpitrace itself which produces anexecutable which wil provide low-overhead elapsed time
measurements of MPI calls,mpihpm provides additional hardware performance data such as floating
point operations, cache misses, etc., and mpiprof which gives more detailed call-graph data for MPI
calls.

mpihpm goes beyond the scope of this study. To invoke it the documentation suggests linking the
application adding in- L/ usr/l ocal /lib -1 npitrace -I| pmapi, then setting the
environment variable HPM_GROUP to the number of a Power-4 Hardware Performance Monitor
Group [8], e.g. 5. A set of files, file, "pi _prof i | e_gr oupx. y is produced where X is the group
number and Yy the process rank.

To use mpitrace it is sufficient (on HPCx)to link the application with -L/ usr/ 1 ocal /i b

- | mpi t r ace before the MPI library is referenced, e.g. by - | npi . This will then load the wrapper
library as an intermediate layer between the application and the subgantive MPI. Running the
application produces a set of files npi _pr of i | e. y wherey is again the process rank. A typical
file, the O-th instance from a 4 processor run of Flite3D looks like this:

MPI Routine #cal |l s avg. bytes ti me(sec)
MPl _Comm si ze 2 0.0 0. 000
MPI _Comm r ank 1 0.0 0. 000
MPI _Send 16827 4714. 6 0. 067
MPlI _Recv 16833 4810. 6 0. 483
MPI _Probe 6 0.0 0. 000
MPI _Bcast 201 7.4 0. 013
MPI _Barrier 1 0.0 0. 000
MPI _Gat her 2 4.0 0. 000
MPI _Gat herv 3 23240.0 0.013
MPI _Reduce 300 9.3 0.818
MPI _Al | reduce 504 13.5 0. 028

total conmmunication time = 1.422 seconds.
total elapsed tine = 24.526 seconds.
user cpu time = 24. 408 seconds.
systemtine = 0. 030 seconds.
maxi mum menory size = 15428 KByt es.

Message size distributions:

MPI _Send #cal |l s avg. bytes ti me(sec)
102 116.0 0. 000

204 170.0 0.001

306 332.0 0.001

3906 768.5 0.012

4002 1681. 3 0.013

2905 3250.9 0.011

2801 6410.5 0.012

1301 12819.1 0. 008

1300 19520. 0 0. 010

MPI _Recv #cal |l s avg. bytes ti me(sec)
102 116.0 0. 000

204 170.0 0. 000

306 332.0 0. 017

3906 768.5 0. 022

4002 1681. 3 0.114

2905 3250.9 0.104

2801 6410.5 0. 075

1301 12819.1 0. 007

1300 19520. 0 0. 143

6 274133. 3 0.001

MPl _Bcast #cal |l s avg. bytes ti me(sec)
1 0.0 0. 000

182 4.0 0.013

10 14.0 0. 000

2 20.0 0. 000

3 49. 3 0. 000

2 88.0 0. 000

1 256. 0 0. 000

MPlI _Gat her #cal |l s avg. bytes ti me(sec)
2 4.0 0. 000

MPI _Gat herv #cal |l s avg. bytes ti me(sec)
1 4.0 0.012

1 20.0 0. 000

1 69696. 0 0.001

MPI _Reduce #cal |l s avg. bytes ti me(sec)
200 4.0 0. 817

100 20.0 0. 001

MPI _Al'l reduce #cal |l s avg. bytes ti me(sec)
4 4.0 0. 000

400 12.0 0. 027

100 20.0 0.001

First of all comes an overall summary of activity for each MPI routine giving the number of times
each was called, the average message length and the time in seconds spend in eachroutine. Several
points emerge from this section. MPI_Send and MPI_Recv are the main workhorses of the code in
terms of the number of calls. There is a large imbalance between these two routines with MPI_Recv
taking 8 times as long as MPI_Send, time spent waiting for messages. A large amount of data is
transferred in three calls to MPI_Gatherv. The bulk of the time is spent in the 300 calls to
MPI_Reduce. This summary is followed by anotherof the times involved, showing that for this
problem MPI calls constitute 6% of the total time.

After the summaries comes a detailed picture of the message size distributions. This can take a bit of

interpreting. For each routine which transfersdata (thus routines such asMPI_Comm_size are not
included) there are three columns: the number of calls, the average message size and the time taken.
The data here has been binned logarithmically; the first line covers messages of 1 byte, the second of
2 bytes, the third 3-4 bytes, the fourth, 5-8 bytes and so on. Note that lines where no calls appearhave
been suppressed, so for example MPI_All_reduce, the final routine in the list, has entries for 3-4
bytes, 9-16 bytes and 17-32 bytes, there being no messages of 1, 2 or 5-8 bytes in lengh. The bins
can be inferred from the average message length (which must perforce lie in the bin). The number of
calls is then the frequencyof calls in the bin and the time is the total time taken by messages in that
bin. Of interest here is the last three lines of the MPI_Recv entry. Firstly we note that there are 6
MPI_Recvs of large amounts of data that are not matched by MPI_Sends, although the other smaller
messages match up. The exact matching of these smaller messages is characteristic of the halo
exchange algorithm used by the program.These larger messages do not take up much time, however,
and are matched by MPI_Sends in he other processes. More interestingly from the point of view of
performance is the two entries above where similar numbers of calls take 20 times longer to receive
when they are only on average 60% larger.

The detailed statistics on MPI_Gatherv show that the three calls have very different characteristics.
One call only passes 4 bytes, one passes 20 bytes and theother transfers nearly 70 kilobytes. The
routine is called threetimes within the code, once in the main program andtwice in the routine input.
The main program instance collects the number of mesh points, an integer, on each process into an
array on the master process; this is the 4 byte instance. Within input, MPI_Gatherv first collects the
array which maps local node numbers to global ones — this is a large amount of data, nearly 70kb per
process. Then the number of nodes in each level of the multigrid mesh is collected, in this case five
levels leads to messages of 20 bytes. At first sight there is an anomalously low time for the large
message. This is because an optimised MPI implementation can simply use a memory copy for
messages from one process to itself. The times for the other processes reflect this by being much
longer (~0.05s). Looked at this way the anomaly becomes the long time taken by the main program
instance. We suspect that load imbalance is the cause — the slave processes show shorter times than
the master in this instance suggesting that they reach this point in the code, send their messages and
proceed. The master, on the other hand, has to wait until all the messages havebeen received and so
can only proceed when the slowest process has reported. The ability to show message traces within
Vampir would confirm this.

Looking at the summary we saw that MPI_Reduce was a potential bottleneck. The detail for this
routine shows 200 very small (4 byte) calls taking 800 times as much time as 100 larger (20 byte)
calls. Examination of the other three processes show that process1 and 2 have similar time profiles for
MPI_Reduce, while process 3 is more balanced. Looking at the code shows MPI_Reduce is used in
several places, always to find the maximum of a real field or to sum integers. Distinguishing
definitively which of these is responsible for the disparity in times requires more detailed analysis.

This further detail is provided by mpiprof. For this the application must be compiled and linked either
with - g (the debugging flag) or - qt bt abl e=f ul | . Either of these will produce a trace-back table
which mpitrace (linked as described above) can use to determine which application routine called an
MPI function. The profile files produced start the same as for mpitrace, but contain an additonal call
graph section. For the case above this looks like this:

Call Graph Section:

conmuni cation tine
MPlI Routi ne
MPI _Reduce

conmuni cation tine

MPlI Routi ne
MPI _Send
MPlI _Recv

conmuni cation tine
MPI Routi ne
MPI _All reduce

conmuni cation tine

MPI Routine
MPl _Gat her
WPl _Gat herv

comuni cation tine
MPl Routi ne
MPI _Bcast

conmuni cation tine
MPlI Routi ne
MPI _Reduce
MPI _All reduce

conmuni cation tine

MPl Routi ne
MPI _Recv
MPI _Probe

conmuni cation tine
MPlI Routi ne
MPI _Gat herv

conmuni cation tine
MPlI Routi ne
MPI _Bcast

conmuni cation tine
MPI Routi ne
MPI _Al |l reduce

conmuni cation tine
MPl Routi ne
MPI _Bcast

conmuni cation tine
MPlI Routi ne
MPI _Bcast

conmuni cation tine
MPI Routi ne
MPI _Comm r ank

conmuni cation tine
MPlI Routi ne
MPI _Barrier

conmuni cation tine
MPlI Routi ne

. 826

. 565

. 027

. 016

. 014

. 002

. 002

.001

. 000

. 000

. 000

. 000

. 000

. 000

. 000

sec, parent
#cal | s
200
sec, parent
#call s
16827
16827
sec, parent
#call s
400
sec, parent
#cal | s
2

1

sec, parent
#call s
100
sec, parent
#call s
100
100
sec, parent
#cal | s
6

6

sec, parent
#call s
2

sec, parent
#cal | s
85
sec, parent
#call s
4

sec, parent
#call s
14
sec, parent
#cal | s
1

sec, parent
#call s
1

sec, parent
#call s
1

sec, parent
#cal | s

supsp
ti me(sec)
0. 826

xchang
ti me(sec)
0. 069
0. 496

getforce
ti me(sec)
0. 027

flite3d fs
ti me(sec)
0. 000
0.016

ng
ti me(sec)
0.014

rsd
ti me(sec)
0. 001
0.001

gat her
ti me(sec)
0.001
0. 001

i nput
ti me(sec)
0.001

readnam
ti me(sec)
0. 000

vol cel
ti me(sec)
0. 000

bc fs _comand
ti me(sec)
0. 000

get fs_conmand
ti me(sec)
0. 000

pinit
ti me(sec)
0. 000

pfini sh
ti me(sec)
0. 000

mai 1
ti me(sec)

MPI _Bcast 1 0. 000

conmuni cation tinme = 0.000 sec, parent = pstart
MPI Routi ne #cal |l s ti me(sec)
MPI _Comm si ze 2 0. 000

It is clear from this that the MPI_Reduce which is taking the most time is being called from Supsp, a
routine which count the total number of nodes in the mesh where the flow is supersonic (by counting
the number of supersonic nodes for each process and summing them across processes) and the
maximum Mach number in the flow field (by finding the maximum on a process, then using
MPI_Reduce to find the maximum over all processes). Thus supsp calls MPI_Reduce twice, first to
sum a set of integers (the number of supersonic nodes), then to find the maximum of a set of reals, the
maximum Mach number on each process, so we still cannot completely distinguish which call is
giving the problem, but we have homed in on the areaof code to look at in more detail. Sincein each
case only one number is being passed it is again a problem of load balancing. Looking across the
processes we see that processes 0, 1 and 2 each take about 0.8s forthese calls, whereas process 3
takes only 0.004s. It appearsthat the other processes are all waiting for process 3, which is
computationally more heavily loaded and lags behind in reaching Supsp. This could be verified by
altering, if possible, the way in which the mesh partitions are assigned to processes. No such help is
available to determine what is gong on with MPI_Send and MPI_Recv. As the call graph shows,
these are all in the same routine, Xxchang, where the processes exchange interface data during the
iterations. All four processes display the same differential time between MPI_Send (~0.07s) and
MPI_Recv (between 0.5 and 4s). This could present scope for examining the way in which the
algorithm is structuredin case the waits that MPI_Recv is having to perform can be avoided. The
exceptions (the six calls unaccounted for above) are the MPI_Recv calls in gather. Looking at the
other profiles shows that they areindeed matched by calls to MPI_Send in gatheron other processors.

We have thus seen how with fairly simple tools and text based output it is possible to elicit useful
information about the performanceof an MPI application. We applied the same process to
SIC_LMTO, the electronic structure code, with slightly different results. Obviously the actual
analysis was different since SIC_LMTO only uses MPI_Bcast and MPI_Allreduce but the profile files
for the individual processes were empty and the information was instead appended to standard output
without identifying which data came from which process. We discuss this further in the next section.

4. fpmpi

fpmpi is a similar wrapper library to mpitrace. Versions are available to work with the MPI libraries
from SGI, IBM and MPICH. To profile applications - L<f pnpi di rectory> -|fpnpi must
be added to the link step before the MPI library is linked. For Fortran programs using either SGI or
IBM MPIs, an additional object file,f ar g. 0, source for which is supplied, must be linked
sandwiched betweentwo - | f pnpi flags.

Running the application produces in this case just one file, f pnpi _profi | e. t xt which contains
information about the whole run.The file name can be changed using the MPI _PROFI LE_FI LE
environment variable. The profile for our 4 process Flite_3D runis:

MPI Routine Statistics (FPWMPI2 Version 2.1d)

Expl anati on of data:
Times are the tinme to performthe operation, e.g., the time for MPI _Send

Average tinmes are the average over all processes, e.g., sum(tine on each
process) / nunber of processes

M n and nax values are over all processes(Data is always average/ m n/ nmax)
Amount of data is conputed in bytes. For point-to-point operations,it is the
data sent or received. For collective operations, it is the data contibuted to
the operation. E.g., for an MPlI _Bcast, the anount of data is the nunber of
bytes provided by the root, counted only at the root. For synchronizing
col l ective operations, the average, mn, and max tinme spent synchronizing is
shown next .

Calls by nessage size shows the fraction of calls that sent messages of a
particul ar size. The bins are 0 bytes, 1-4 bytes, 5-8 bytes, 9-16, 17-32, 33-
64, -128, -256, -512, -1024, -4K, -8K, -16K, -32K, -64K, -128K, -256K, -512K
-1M -4M -8M -16M -32M -64M -128M -256M -512M -1GB, >1GB.

Each bin is represented by a single digit, representing the 10's of percent of
messages within this bin. A O represents precisely 0, a . (period) represents
nmore than O but less than 10% A * represents 100%

Messages by nessage size shows simlar information, but for the total nessage
si ze.

The experimental topology information shows the 1-norm distance that the |ongest
poi nt-to-poi nt nessage travelled, by process.

MPlI _Pcontrol may be used to control the collection of data. Use the val ues
defined in fpnpi.h, such as FPMPI _PROF_COLLSYNC, to control what data is
coll ected or reported by FPMPI 2.

Dat e: Tue Sep 11 09:58:56 2007

Processes: 4

Execute time: 5.694

Timng Stats: [seconds] [m n/max] [M n rank/ max rank]

wal | -cl ock: 5.694 sec 0.000000 / 22.775240 1/ 0
user: 22.83 sec 22.776878 / 22.851238 0/ 1
sys: 0.04978 sec 0. 045403 / 0.061962 1/ 0
Menory Usage Stats (RSS) [m n/max KB]: 13204/14932

Average of suns over all processes

Rout i ne Calls Time Msg Length % me by nmessage | ength
O......... 1........ 1........
K M
MPI _Al | reduce : 504 0.00843 6.82e+03 0.08200000000000000000000000
MPI _Bcast : 201 0. 0249 372 .*0..... 00000000000000000000
MPI _Gat her : 2 3.8le-05 8 0*00000000000000000000000000
MPI _Gat herv : 3 0. 0404 6. 8e+04 0. 00. 00000000037000000000000
MPI _Reduce : 300 0. 316 2. 8e+03 0*00. 00000000000000000000000
MPl _Recv : 16828 0.563 7. 74e+07 000000...14112000. 0000000000
MPI _Send : 16828 1.83 7.74e+07 000000...24121000. 0000000000
MPI _Pr obe : 1 1.17e-05
MPI _Barrier : 1 0. 182

Details for each MPI routine
Average of suns over all processes
% by nessage | ength

(max over 0......... 1........ 1........
processes [rank]) K M
MPI _Al | reduce
Calls : 504 504 [0] 0.08200000000000000000000000
Ti me : 0. 00843 0. 0086 [3] 0.08200000000000000000000000
Data Sent : 6. 82e+03 6816 [0]
SyncTime 0. 022 0. 0405 [2] 0.08200000000000000000000000
MPI _Bcast:
Calls : 201 201 [0] .90..... 00000000000000000000
Ti me : 0. 0249 0.037 [1] .*0..... 00000000000000000000

Data Sent : 372 1488 | 0]

MPI _Gat her:

Calls 2 2 [0] 0*00000000000000000000000000
Ti me 3.81e-05 6.41e-05 [0] 0*00000000000000000000000000
Dat a Sent 8 8 [0]

MPl _Gat herv:
Calls 3 3 [0] 0300300000000013000000000000
Ti me 0. 0404 0.0847 [3] 0.00.00000000037000000000000
Dat a Sent 6. 8e+04 70424 | 1]

MPI _Reduce:
Calls 300 300 [0] 0700300000000000000000000000
Ti me 0. 316 0.631 [2] 0*00.00000000000000000000000
Dat a Sent 2. 8e+03 2800 [0]

MPI _Recv:
Calls 16828 16833 | 0] 000000. ..24111000. 0000000000
Ti me 0. 563 0. 756 [0] 000000. ..14112000. 0000000000
Dat a Sent 7. 74e+07 98199240 [3]
SyncTi ne 0. 33 0.515 [0] 000000. ..14112000. 0000000000

MPI _Send:
Calls 16828 16829 | 1] 000000...24111000. 0000000000
Ti me 1.83 3.76 | 3] 000000. ..24121000. 0000000000
Dat a Sent 7. 74e+07 98749040 | 3]
SyncTi ne 1.71 3.64 | 3] 000000. ..23121000. 0000000000
Part ners 3 max 3(at 0) mn 3(at 0)

MPI _Pr obe:
Calls 1
Ti me 1.17e-05
SyncTi e 0

WPl _Barrier:
Calls 1
Ti me 0.182

MPI _Comm split(all conmunicators):
Calls 1 max 1(at 0) min 1(at 0)

MPl _Comm split (MPI _COVM WORLD) :
Calls : 1 max 1(at 0) min 1(at 0)

Sunmary of target processes for point-to-point conmunication:

1-norm di stance of point-to-point with an assunmed 2-d topol ogy

(Maxi mum di st ance for point-to-point comruni cati on fromeach process)
2 2

2 2
Detail ed partner data: source: destl dest2 ...
0:123
1:0 2 3
2:01 3
3:012

The preamble explains how the data is presented and indicates that more control over what data is
collected and presented is possible. Then come some overall statistics for the run, then data for the
MPI calls. In this case we see that the average time for MPI_Send (over processes) is three times that
for MPI_Recv. At first sight this contradicts what we learnt using mpitrace but looking at the detailed
data for individual routines we see that there is a much larger maximum time for MPI_Send from
process 3 than the maximum for MPI_Recv, located on process 0. and it suggests that the problem
lies in synchronisation, given the large value of the maximum SyncTime, also located on process 3.

Looking at the data for MPI_Reduce confirms what we learnt from mpitrace, that virtually 100% of
the time this routine uses is in sendng short 4 byte messages.

The profile finishes with an analysis of the process topology. In this case it is uninteresting, all
processes communicate with every other process, but in more complex cases, in particular with much

larger numbers of processes, this could provide useful information to improve performance by
locating processes which needto communicate “close” to one another.

Again, we also applied fpmpi to SIC_LMTO, but in this case were unable to find any sign of the
profile output. We surmise that in bath cases something in the code was interfering with the I/O
system used by the profiling libraries. If this is the case, the usefulness of the tools is limited, though
as we have seen, when they do workthey can provide important information.

5. KOJAK

KOJAK (which stands for Kit for Objective Judgement and Knowledge-based Detection of
Performance Bottlenecks) represents a different approach to profiling MPI applications. It is also
capable of profiling OpenMP and SHMEM applications, as well as combinations of the three
programming models.

KOJAK is built of five components, EPILOG [9], OPARI [10], EARL [11], EXPERT [12] and CUBE
[13]. EPILOG is a binary event trace format, combined with an API and run-time library for
generating trace files. The first stage in using KOJAK s to pass the application code through the
OPARI instrumenter. This is a source-to-source translator which adds calls to the EPILOG and
POMP profiling libraries automatically. A fully automatic method of doing this is provided, but the
semi-automatic method is recommended. Routines are identified for profiling by adding directives to
the code: to profile a procedure in C the following must be inserted before the first executable
statement in the procedure:

#pragma ponp inst begi n(nane)

and before the procedure finally returns:
#pragma ponp end(nane)

If there are alternative returns, then

#pragnma ponp al tend(namne)

should be inserted. In Fortran the equivalents are
I POVP$ | NST BEAQ N(nane)

I POVWPS$ | NST END(nane)

I POVWP$ | NST ALTEND(nane)

Additionally the main program must have
#pragma ponp inst init

or

I'POWS INST INIT

as the first executable statemert.

The application is built in the usual way, except that the compiler command with all its arguments
must be preceded by Ki nst - ponp. The usual way to do this is to redefine the compiler in the
Makefile, e.g. FOO0=ki nst - ponp npx| f 90_r . When the application is run, a file a. el g is
produced. This is an EPILOG trace file. Some environment variables canbe used to control this file,

see [14] for details. The analysis of the data within this file is done by thethree remaining
components using the command kanal a. el g. This uses EARL, a high level interface to the
EPILOG event traces and the EXPERT component which searchesthe event trace for patterns which
indicate low performance. The results of this analysis are translated into a CUBE file and the final
component, CUBE, is used to present and browse it. If desired the analysis and presentation canbe
split up by using EXPERT and CUBE separately. This might be appropriate where presentation is to
be done remotely from the application machine.

If greater control is desired, the code can be completely manually instrumented. For this work we
used the semi-automatic approach and only profiled those routines with MPI calls.

KOJAK is freely downloadable, but we did not find installation completely straightforward. It was
complicated by the need to build two versions, one for 32 bit and one for 64 bit operation on the IBM,
and also by the number of subsystems that need to be correctly built. When it was eventually
installed, however, with the help of the HPCx administrators, the process worked smoothly.

Once the program has been instrumented and executed, the bulk of a user's interaction with KOJAK is
through the CUBE interface. CUBE presents the results of the EXPERT analysis in three panes each
of which shows a hierarchical tree view. The leftmost shows performance metrics, the central pane
locates the problem in the call tree and the rightmost displays process information. To illustrate the
use of these we consider the use of CUBE on the datafrom an instrumented Flite3D run. The initial
window is

CUBE: a.cube (on I1LF401)

File ¥iew Help
Performance ketrics | Call Tree | System Tree
34.00 Time 34.00 flite 34.00 |BM Al POWER (64-hif)
2.08 Wisits
FIIII”i I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIW
47.00 34.00
|4 w1 |Time -=flite: 00:01:33.9960392 (100%) incl.

The three panes can be seen, and the overall numbers show that the execution took 94 seconds and
that 208000 events were registered (the number of visits is normalised between 1 and 10, clicking on
Visits displays the actual number on the colour bar at the bottom of the screen. As can be seen, the
entries are expandable and a few levels of expansion gives the following screen:

CUBE: a.cube (on I1LF401)

File ¥iew Help
Ferformance hetrics | Call Tree | System Tree
= [0.1 flite = [] 0.00IBM &% POWER (B4-hif)
B [0.00 pinit =Sl 0.00 111403
= [0.00 mMPI [0.00 get_fs_command [0 2040 Process 0
O 1021 Communication [0.00 pstart O 20.00 Process 1
[] oooio [0.00 be_fs_command [0 18.28 Process 2
[0.09 InitExit [0.00 MPI_Gathery [0 16.82 Process 3
066 Synchronization & 0.00 readnam
] 0.37 Overhead [] 0.00 MPI_Gather
2.08 Visits = [0.03 mait
.36 input
[0.01 volcel
[0.00 xchang
[J .00 kPI_Beast
= u R
3.23 xchang
[011 report
O 016 rsd
1.05 supsp
[] 0.o0 kPI_Boast
O o.00 gather
[0.00 pfinish
FIIII ERNEENNNENNERRNEEENNRRNNRREEEEN
47.00 94.00
|4 %1 |Executinn -=my: 00:07:15.493432 (80.3213%) excl.

Because the Execution time entry is highlighted the numbers in the other panes relate to that — thus
subroutine Y took the major share of the execution time — 75.5 seconds out of 82.66. We can
instantly see by looking at the system tree that there is some load imbalance in the g routine with
process 3 taking over three seconds less than processes 0 and 1. Looking back to the Performance
Metrics, the time in MPI calls is split between Communications and Synchronization wth the former
clearly the larger. Highlighting this shows that as expected the two major consumers of MPI time
were Xxchang and supsp. It also shows one of the deficiencies of CUBEsince the colours displayed
still relate to the overall time, and since numbers are only displayed to 2 decimal places, the point is
rapidly reached where all colouration is in dark blue and the numbers are all close to zero.

To overcome this we can switch to display relative percentages using the View menu. The display
above then becomes

CUBE: a.cube (on ILF401)

File ¥iew Help

Fetformance hMetrics | Call Tree | sSystem Tree
=[] 0.0 Time = O 0.3 fite =1 [] 0.0 IBM &lX POWER (64-bit)
= £7.9 Exacution o 0.0 pinit =1 [e
= [0.0 MFI [0.0 get_fs_command [z7.0 Process 0
[108 Communication [0.0 pstart [265 Process 1
[] ooio [0.0 be_fs_command [24.2 Process 2
O 0.1 InitExit [J 0.0 MPI_Gathery [223 Process 3
0.7 Synchronization [0.0 readnam
] 0.4 Overhead [] 0.0 MPI_Gather
100.0 Visits = [0.0 mail
2.9 input
[0.0 volcel
[0.0 xchang

[01 report
O oz rsd
1.3 supsp
[] 0o kPI_Bcast
[0.0 gather
[0.0 pfinish

100

FIIII} 3 il "'i"liHJllII!Dﬁ’E.'J il ‘ I

|4 =1 |Executinn: 00:01:22 GEABA3 (G7.9446%) e=cl

I"f'J‘IEIlIlIlIFIlIIIIlIl NERNNNNAREENRRNANY
70 a0 30

SD| 60

Note that in this mode the numbers displayed in each pane sum to 100% and are percentages of the
highlighted entry to the left. Finally we look down at the MPI communications and see that in the
point-to-point section there is a large amount of time caused by Late Senders.

CUBE: a.cube (on ILF401)

File ¥iew Help

Fetformance hMetrics I Call Tree | sSystem Tree
=[] 0.0 Time =[] 0.0 ite 21 = [0.0 IBM &% POWER (84-bit)
= 87.9 Execution # [] 0.0 pinit =[] [RAET]
= [0.0 MFI [] 0.0 get_fs_command [0.1 Process 0
= [J 0.0 Communication # [] 0.0 pstart [9.3 Process 1
= 1.9 Collective [0.0 be_fs_command [] 355 Process 2
] 0.0 Early Reduce [J 0.0 MPI_Gathery [551 Process 3
] 0.0 Late Broadcast [] 0.0 readnam
O] 01 ‘aitat ko= [] 0.0 MPI_Gather
&l 1.0 PzP =[] 0.0 mail
=1 [0.0 Late Receiver =[] 0.0 input
[] 0.0 Messages in i + [02 volcel
= [= : = [0.1 xchang
O 0.5 Messages in ‘e [] 0.0 mPI_Bcast
[]ooio =1 [] o0mg
O 01 InitExit = [] 0.0 xchang
0.7 Synchronization] 0.0 cdtim
] 0.4 Overhead [] 0.0 MPI_Send
100.0 Visits
[+ [] 0.0 repor
] 0.0 rsd
+ [] 0.0 supsp
[0.0 mPI_Brast
= [] 0.0 gather
- : &[] 0.0 pfinish m
FIIII ‘ ‘ ‘ | }.-E'HIFIIIIIIIII RN]]
10 20 30 40 a0 G0 70 i1 30 100
|4 %1 |Late sender -= MPI_Recy: 00:00:06.832533 (7.26902%) incl.

These are all in MPI_Recv, as we know from earliersections, but in this case we are easily able to
identify the processes responsble as process 3 and, to a lesser extent, process 2.

Missing from this analysis, of course, is the message length information that both mpitrace, and fpmpi
were able to provide.

A screendump from SIC_LMTO's datais interesting, in that it shows a large imbalance in one
particular area. As was said in sectim 3, SIC-LMTO only uses MPI_Bcast and MPI_Allreduce, so all
its MPI time is spent in collective operations. The performance problems arise from Late Broadcasts
and from non-synchronisation waiting. This latter shows a major contribution to this from just one
process, process 15 when called from subroutine band, and almost as much from hsi c¢. In band,
there are three calls to MPI_Allreduce, two of which are called once for each atom in the simulation
for each invocation of band. These all perform summations over the Brillouin Zone as part of the
self-consistency program. In hsi ¢, which calculates quanities related to the self-interaction
correction, it is the real space wavefunctions which are accumulated. Other calls to MPI_Allreduce
from vsi c21 (the spin-dependent potentials) and t et occ do not show similar imbalance.

File ¥iew Help

CUBE: a.cube (on I1LF401)

= [J 0.0 Communication
[=] 1.6 Collective
] 0.0 Early Reduce

= [] 0.0 Late Receiver
] 0.0 Messages in
= [] 0.0 Late Sender
] 0.0 Messages in ‘W
[] 0010
O 0.0 InitExit
[0.0 synchronization
O 0.0 Overhead
100.0 Visits

= [] 0.0 band
=1 [] 0.0 bands
[0.0 MPI_Bcast
3248 MPI_Allreduce
=[] 0.0 hsic
] 23.2 MPI_alreduce
= [] 0.0 vsic2l
O &7 MPI_alireduce
= [] 0.0 tetocc
O 11.3 MPI_allreduce
[] 0.0 MPI_Barrier
[] 0.0 MPI_Finalize

Fetformance Metrics | Zall Tree | System Treea
=[] 0.0 Time =[] 0.0 Imto =[] 0.0 IBM AlX POWER (B4-hif)
= 34.0 Execution [] 0.0 MPI_Init = [] 0.0 uf203
= [] 0.0 mMPI [] 0.0 check_input 2.9 Frocess 0

24 Process 1
3.2 Process 2
3.4 Process 3
1.5 Process 4
21 Process 5
3.6 Process 6
2.5 Process 7
1.6 Process §
1.7 Process 9
4.1 Process 10
3.0 Process 11
2.9 Process 12
21 Process 13
2.7 Process 14
[O B05 Process 15

~]
e | ‘ ‘ | | "IFIIIIIIIIIFIIIIIIIIIFIIIIIIIIW
10 el 30 40 al g0 70 al a0 100
|1 6x1 |Wait at Mox N -= MPI_allreduce: 00:01:21.509665 (0.430996%) incl.
6. TAU

TAU (Tuning and Analysis Utilities) is a portable profiling and tracing toadlkit for performance

analysis of parallel programs written in Fortran, C, C++, Java, Python. As with KOJAK, TAU

operates at several levels of user intervention, from automatic to hand intrumented. It makes

extensive use of the Program Database Toolkit (PDT) [15] and has its own profile visualisation tool,
ParaProf [16]. The TAU profile datafiles canalso be exportedto CUBE using a utility, tau2cube.

Our experience of installing TAU was that it required several components to be installed with the

appropriate options in order that it would performto what it promised. When that is sorted out,

however, TAU is a powerful and flexible tool. Among these components is one that gives TAU an

interface to VampirTrace [17], so that TAU tracescan be displayed in VampirTrace using the Open

Trace Format (OTF) and a similar interface to the Intel Trace Analyzer [18] (formerly Vampir) using

the VTF3 format.

Since we were focussing on profiling MPI applications we took the path of installing a version

configured to use MPI and PDT. This produced a makefile which can be included in the applicaton

makefile to define various entities such as the Fortran or C compiler TAU expects to use. As with

KOJAK, TAU passes the code through an instrumentation phase, and this is automated by using the

variable $(TAU_COWPI LER) in the makefile. For example:

F90=$(TAU_COMPI LER) $(OPTS) $(TAU_F90)

This also takes care of loading the correct MPI libraries and any other libraries TAU might need. A
large set of examples are provided with the TAU distribution, the one calledt auconpi | er
illustrates this way of using TAU. When the code is run a set of files pr of i | e. x. 0. 0 are
produced where X is the process ID (the other suffices label the context andthe thread respectively).
These may be converted for viewing by CUBE orother systems, including Vampir, or viewed in
ParaProf, TAU's own visual profile presenter.

Launching ParaProf in the Flite3D directory finds the 4 profile files and opens two windows. The
main window is the ParaProf manager which presents a tree view of the data (a very simple one in
this case) which can be of use when more experiments have been run and one wishes to compare
results.

TAU: ParaProf Manager (on ILT401)

File Options Help

@ Applications §§ TrialField Walug
@ O standard Applications |Mame w4 /RUN/jva/c01/c01/ho. .
§ [Default App “|application 1D 0
@ [Default Exp |Experiment ID 0
@ [wh4/RUN/jvafc01/co1fhame/hpex/ oTrial ID 0
@ Time :

The other window shows the time taken in all routines of the application. Hovering over a coloured
bar will pop up a tooltip with details about which routine it refers to, where the source code can be
found, the exclusive and inclusive time spent in the routine (exclusive tme is the time spent in the
routine itself, excluding time spent in subroutines called by it, inclwsive time includes this), the
number of times this routine is called andthe number of calls to otherroutines that it makes.

TAU: ParaProf:. /hpcx/home/cOLl/cOLl/jva/RUN/wb4 (on ILr401)

File Options Windows Help

Metric: Time
Walue: Exclusive

std. dev. T | I |

mean [e s s [] [Dol G
IR A e e [e o
not L 0,0 i e Y}YEYEYY e e [[W

r— <kl 00 s 00 mesw [1] [PR
... 00 s 000000 e [[Gl

n,c,t 2,00
n,c,t 2,00

The time in this display is normalised on a per process basis, so all the bars are the same length.
Switching to unnormalised display via the options menu is a good way of spotting load imbalancing.
Here the overall computational load appears well balanced.

TAU: ParaProf: /hpcx/home/cOLl/cOLl/jva/RUN/wb4 (on ILFf401)

File Options Windows Help

mMetric: Time
Walue: Exclusive

st dev. [l W (1§
mean

n,c,t 00,0
n,c,t 1,00
n,c,t 2,00
h,c,t 3,00 LAPLAC [{laplac.fa0t {20, 181
Exclusive Time: 2420207.0
Inclusive Time: 2088548.0
Calls: 200.0

uhCalls: 2000

However, individual routines may still exhibit an imbalance, and turning off the stacking of bars can
identify this.

As the tooltip shows, there is a large imbalance in MPI_Recv with process 3 spending roughly 7
times as long in the routine as process 0. This further localises the differencebetween MPI_Send and
MPI_Recv we noted with mpitrace. Various other displays are available by right clicking on either
the coloured bars or the process identifiers (n,c,t0,0,0 etc.). This provides, for example, access to per
thread or per routine barcharts, text or table displays of statistics.

A clear disadvantage with ParaProfis that TAU has profiled all routines in this case, so the MPI calls
are to some extent swamped by the more time-consuming computationally intensive routines. Using a
profiling method which allowed more control over which parts of the code were profiled would help
this problem.

TAU: ParaProf:. /hpcx/home/cOLl/cOLl/jva/RUN/wb4 (on ILr401)

File Options Windows Help

Metric: Time
Walue: Exclusive

std. dev.] i | = [| 0 O 0 1 N

mean [) e—] —] [IEE00 280 0 =

nct 0,00] —] — [S0 #2801 100 =

nct 1,00] e—] [—] [EE0 =80 100 1 =

nct2,00] e—] [—] I_IEjl_ll_lgi il —

not 3,00) ee—] :EHPIIR?&@F' £049696.0 acen I
HCIUShe T 1me: .

Incluzivie Time: 2949696 0
Calls: 1e827.0
ubCalls: 0.0

Running ParaProf on the data from SIC-LMTO clearly identifies the same imbalance in
MPI_Allreduce with process 15 taking much longer than the others (this is the green bar twelfth from
the left). From this screen it appears that the problem is one of load imbalance, with process 15
having less computational work to do (fewer k-points) as shown by the shorterbars for other routines,
and then having to wait in MPI_Allreduce for the other processes to catch up. The routines with less
work are all called approximaely 10% fewer times in process 15 than in the other processes (this
information is available fromthe tooltip by hovering the mouse over a bar). Again, a full message
trace analysis of the sort provided by Vampir would confirm this.

|"'- TAU: ParaProf: /hpcx/home/c01l/cOLl/jva/SIC_tau/Examples/NiFe204inv (on ILf401) Sl

File Options Windows Help

mMetric: Time

Walue: Exclusive
std. dew, | | | |

mean | [— (] [—] —]] e]] EHOERE01=

AL E— | | — = OEEE0Il=
R I E— | — [—] = = =] E EEE =
net2,00] —] f—] S]] M E BEE (1=
not3,00] — e —] — S S]] E E HEE (1=
notd,00] (— | —] — | [] = E EEE 1=
not500] — | —] —]]]]] E EEE s
ncte,00] (— | —] —]]]]] EH EEE =
R E— | — | —] = =] E EEE =
notE 00 | — | — [] E E HEE 1=
IR E-ROU N E— | — [W] E EEE 1=

nct 10,00] —] (—] —]] S] = E BEE I

notl1l00] — | — . [ECIEE E EHEE 1=

not12,0,0] — | —] — [EE E EHEE =

NN — [—) —] - E EHEE =

N B E— | — | — = .= E EHEE =

metl500) s] B) (B EHOOESEE G680 (1=

7. Larger Numbers of processors

While some useful information can be gathered about MPI performance at the low number of
processors used here, many programs will not exhibit communications problems worth invedigating
until they are run on much largernumbers of processors. With this in mind we tried the tools on
Flite3d running on 64 processors. Since we used the same small grid, this is an artificial problem
where communication swamps computation and is only of interest to indicate the usability of the

tools.

Using mpitrace the most obvious difference is that instead of producing 4 profiles, the code now
produces 64, with an accompanying increase in the difficulty of interpreting the output across
processors. The higher the processor count, the more relevant a graphical interface to the data
becomes, though the detail mpitrace provides can be useful once a pattern or deviations from the
pattern have been spotted. One useful detail is that in this implementation the logfiles can distinguish
between MPI_Send and MPI_Recv which communicate within a node and MPI_Send_Ext
(MPI_Recv_Ext) communicating between nodes.

The fpmpi version failed to run,citing insufficient memory during message passing initialization as a
reason. This is particularly unfortunate as the process topology could well have been of interest in this
case. The KOJAK version, on the other hand, ran to completion and produced an a. el g file, but
kanal ground to a halt and eventually was timed out when trying to read it. It is worth commenting
on the relative sizes of the files: each of the 64 npi _pr of i | e files produced by mpitrace is about
5.5kb, a total of approximatdy 350 kb, while the a. el g file is 87Mb. Clearly a. el g contains more
information when it is accessible, but how useful this is for our purposes can be judged by the 4-
processor case where a. el g is 10Mb and the a. cube file whichkanal derives from it to dsplay
in CUBE is 0.1Mb.

Finally, we were also able to run the TAU version on 64 processorswhich produced files ofa similar
size to mpitrace. As the number of processors increasesthe TAU windows become scrollable and the
same information is available. In a very large number of processors, spotting anomalies would be

difficult, but not impossible. TAU does not distinguish between intra- and extranodal communication.

We also tried to use the tods on another CFD code which, it was hoped, would exercise them at
~1000 processors. In this case the results were disappointing across the board. The mpitrace version
failed to run with an invalid communicator. fpmpi ran but produced no output. KOJAK also ran, but
the kanal stage aborted saying that messages had inconsistent timestamps. Surprisingly the most
difficult of all was TAU, whose model of a Makefile did not fit with the Makefile this code used. It is
probable that one of the other approaches possible with TAU would have yielded more positive
results.

8. Conclusions

We have seen in this report how the four profiling tools presented can give insight into possible
performance bottlenecks in MPI applications. They each have their strengths and weaknesses.
mpitrace and fpmpi are text based while KOJAK and TAU use visual presentation. Eachof these has
its place; visual presentation can give rapid information on where in a code to look for problems,
while the textual data may give amore quantitative feel for what is going on. TAU and mpitrace
present their results process by process, though it is much easier to compare processes one against the
other in TAU. The mpiprof facility of the mpitrace suite allows still further localisation by
distinguishing between calls to the same MPI routine from different application routines.

By using its three parameter space of Performance Metrics, program location and process, KOJAK is
potentially capable of presenting a large amount of useful information to the user. As with all of these
systems, though, there is a steep learning curve to discover how best to elidt that information. In the

long run, there is no easy way, other than to sit with the profiler, display some data and look at what
the presentation tells you about the code as you explore different options.

None of the tools are easy to use or foolproof enough to be applied automatically. As we saw, some
tools failed on some codes or problems, and none of them was universally successful.

All four tools discovered much the same things about the applicaions we profiled, though
interpreting them took different amounts of effort and some provided differentdetails. The Intel
Trace Analyzer and VampirTrace remain the gold sandard for profiling MPI applications (though
TAU should not be dismissed given its capacity to profile more widely). These four tools, though, are
useful where they are available and where access to the Intel Trace Analyzer or Vampir may be
restricted. Application programmers should consider familiarising themselves with several of these
tools.

References

1. Sunderland A. Profiling Parallel Performanceusing Vampir and Paraver, HPCx Technical Report:
http://www.hpcx.ac.uk/research/publicationdHPCxTRO704.pdf

mpitrace libraries: http://www.hpcx.ac.uk/support/dcumentation/IBMdocuments/mpitrace

FPMPI-2 Fast Profiling library for MPI: http://www-unix.mcs.anl.gov/fpmpi/WWW/

KOJAK - Automatic Performance Analysis Toolset: http://www.fz-juelich.de/zam/kojak/

TAU Tuning and Analysis Utilities: http://www.cs.uoregon.edu/research/tau/home.php

A T

Ashby J.V., SIC-LMTO -Benchmarking an Electronic Structure Code:
http://www.cse.scitech.ac.uk/arc/sicimto.shtml

7. Emerson D.R. and Ashworth M., Parallelisation of Flite3D:
http://www.cse.scitech.ac.uk/ceg/flite3d/fite3d.shtml

8. Hein J., Using the Hardware Performance Monitor Toolkit on HPCx, HPCx Technical Report:
http://www.hpcx.ac.uk/research/hpc/technical reports/HPCxTR0307

9. EPILOG Event Processing, Invetigating and LOGing: http:/www.fz-
juelich.de/zam/kojak/components/epilog/

10.0PARI OpenMP PragmaAnd Region Instrumentor: http:/www.{z-
juelich.de/zam/kojak/components/opari/

11.EARL Event Analysis and Recognition Library: http://www.{z-
juelich.de/zam/kojak/components/earl/

12.EXPERT Extensible Performance Tool: http://www.fzquelich.de/zam/kojak/components/expert/

13.CUBE Cube Uniform Behavioral Encodirg: http://www.fz-
juelich.de/zam/kojak/components/cube/

14. KOJAK usage document: http://www.fz-juelich.de/jsc/datapool/Kojak/USAGE.txt

15.PDT — Program Database Toolkit: http://www.cs.uoregon.edu/reseach/pdt/home.php

16.ParaProf — User's Manual: http://www.cs.uoregon.edu/research/tau/docs/paraprof/index.htrh

http://www.cs.uoregon.edu/research/tau/docs/paraprof/index.html
http://www.cs.uoregon.edu/research/pdt/home.php
http://www.fz-juelich.de/jsc/datapool/Kojak/USAGE.txt
http://www.fz-juelich.de/zam/kojak/components/cube/
http://www.fz-juelich.de/zam/kojak/components/cube/
http://www.fz-juelich.de/zam/kojak/components/expert/
http://www.fz-juelich.de/zam/kojak/components/earl/
http://www.fz-juelich.de/zam/kojak/components/earl/
http://www.fz-juelich.de/zam/kojak/components/opari/
http://www.fz-juelich.de/zam/kojak/components/opari/
http://www.fz-juelich.de/zam/kojak/components/epilog/
http://www.fz-juelich.de/zam/kojak/components/epilog/
http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0307/
http://www.cse.scitech.ac.uk/ceg/flite3d/flite3d.shtml
http://www.cse.scitech.ac.uk/arc/sic-lmto.shtml
http://www.cs.uoregon.edu/research/tau/home.php
http://www.fz-juelich.de/zam/kojak/
http://www-unix.mcs.anl.gov/fpmpi/WWW/
http://www.hpcx.ac.uk/support/documentation/IBMdocuments/mpitrace
http://www.hpcx.ac.uk/research/publications/HPCxTR0704.pdf

17.Vampir — Performance Optimization: http:/www.vampir.eu/

18.Intel Trace Analyzer and Collector 7.0 for Linux:
http://www.intel.com/cd/software/productyasmo-na/eng/306321.htm

http://www.intel.com/cd/software/products/asmo-na/eng/306321.htm
http://www.vampir.eu/

	Profiling Tools for MPI Programming
	 Science and Technology Facilities Council
	Profiling Tools for MPI Programming

