Computational Steering Toolkits for Grid Environments

J.V. Ashby

11 Jan 08

RAL-TR-2007-018



© Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional copies of this report
should be addressed to:

Library and Information Services

SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot

OX11 0QX

UK

Tel: +44 (0)1235 445384

Fax: +44 (0)1235 44 6403

Email: Library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the Chilbolton,
Daresbury, and Rutherford Appleton Laboratories is available online at:
http://epubs.cclrc.ac.uk

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising
from the use of information contained in any of their reports or in any communication about
their tests or investigations.


mailto:Library@rl.ac.uk
http://epubs.cclrc.ac.uk/

Computational Steering Toolkits for Grid Environments
J.V. Ashby

Computational Science and Engineering Department
STFC Rutherford Appleton Laboratory
J.V.Ashby@rl.ac.uk

Abstract

Computational steering is a netural extension of interactive computing in which the
parameters of a program may be altered as the programis running. We discuss two software
libraries for Computational Steering, gViz and RealityGrid, which are targeted at Grid
Environments. The architectures and functionality of these two libraries are outlined. We
also present a discussion of the desirable features an application should have to make use of
these libraries to achieve the desired goal of more and better scientific understanding.


mailto:J.V.Ashby@rl.ac.uk

1. What is Computational Steering?

The basic notion of Computational Steeringis, to a large extent, inherent in interactive computing.
With Computational Steering, one alters the parameters of a program to achieve some desired
solution or output state, while the program is running. At one level, acommand line interface to an
operating system is “steering” the OS to perform particular tasks and hence to produce certain
outputs. At a much more intimately bound level, a flight simulator is steered to respond in near real
time by altering the controls of the simulated aeroplane, whether these are a physical reproduction of
the real controls, keyboard shortcuts or mouse events.

For the purposes of this report we shall consider a more restrictive view of Computational Steering.
We shall consider the case where the state of the program is congtantly (or regularly) monitored,
usually with some visualisation. The command line interface only presents the system state when
prompted and so fails this test. A graphical representationof the filestore, however, comes closer
since there is immediate visual feedback when changes are made such as deleting or renaming afile.
The OS remains responsive,however. There is no sense in which left to its own devices the computer
would evolve its state in one direction, but intervention from a user can redirect that evolution. This is
the essence of computational steering in the sensewe wish to discuss.

We also rule out the flight simulator since for the most part such applications are tightly coupled to
their visualisation and interaction loops. Of more interest to us hereis the case of a scientific
application code, perhaps developed for batch running, where it can make sense to intervene during a
program run to change the program's trajectory.For example, a program might have a parameter, .,
whose value for best performanceor scientific outcome may not be known, and which may be
problem specific. By monitoring the solution process it may bepossible to capture poor behaviour
such as divergence of iterative methods or the generation of unphysical regions, and change «,
steering the program to the desired state.

Wright [1] distinguishes between two different types of Computational Steering. A computer program
can be thought of as a map between parameterspace and a solution space. Usually one thinks of this
as a mapping of a single point in the parameter space (the set of inputs) to a single point in solution
space, the output of the completed program. However, in reaching its final state the programfollows
a trajectory in the solution space, and by interrogating intermedate results this trajectory can be
visualised. In Type 1 steering we are interested mainly in exploring the parameter space, possibly
with a desired solution in mind. By monitoring the trajectory we can, for example, prematurely abort
simulations with parameters which are leading away from the desideratum. Alternatively we could
spot interesting regions of parameterspace and revise the exploration strategy accordingly.Type 1
steering is thus akin to process farming, but with the added advantage of being able to interactively
intervene in processes which appearto be exploring parts of the solution space which is uninteresting.
In Type 2 steering, on the other hand, the intervention is more immediate and one can change
parameters “on-the-fly” to control the solution towards a desired (previously determined) goal. Type
2 steering is looking for the set of input parameters which map to aparticular solution..

Both Type 1 and Type 2 forms of Computational Steering rely on human interaction with and
analysis of the data. Computational Steering is thus closely connected with visualisation and data
presentation systems. It is usually to be found embedded within a Problem Solving Environment. For



more information on general Computational Steering systems, see [2,3].

In the next section weshall briefly discuss the capabilities of some available Computational Steering
systems. In section 3 we consider what features of a scientific application make the use of
computational steering worthwhile and finally we present some conclusions.

2. Available Software

In 1998 Mulder, van Wijk and van Liere [4] surveyed Computational Steering Environments, and in
2001 Allan and Ashworth [5] surveyed tools for high performance computing, including
computational steering systems. Between them they identified nine systems of which one, VASE, was
already no longer under development in 2001. Of the remaining eight one, COVISE, is available
commercially and is being developed actively, with a focus on Virtual Reality as a visualisation
technique, another, SciRun, is available as open source and has a most recent release in February
2007 while the remaining six appear to have become defunct. Both COVISE and SciRun based
themselves originally on AVS, although they have both branched out to interface to other
visualisation systems such as MATLAB. There is clearly a high historical attrition rate amongst
Computational Steering tools.

There are two recent projects which were unmentioned in either [4] or [5], gViz and RealityGrid.
Both of these embed their Problem Solving Environments in a computational Grid and use their
computational steering libraries as part of the middleware for the Grid.

gViz

The gViz Project [6] was a collaboration betweenthe Universities of Leeds, Oxford Brookes and
Oxford, CCLRC, NAG Ltd, IBM UK and Streamline Comptting. It was funded under the UK
eScience Initiative to develop the mddleware needed to support visualisation in a Grid environment.
The major output was thus the gViz library, gViz Lib, [7] which allows application developers which
can be executed on remoteresources but controlled and interactedwith by user interface (UI)
components running on alocal desktop. The level of abstraction encapsulated in ths library is such
that it can be used as a more general model of communication between remote and local processes. It
has been designed to have minimal impact in terms of changes to a simulation code and on

performance. It is also independent of any particular visualisation system, and it has been used with
both IRIS Explorer and MATLAB.

The library is in two parts: gVizLibC for routines appropriateto simulation and gVizLibP for routines
called from the User Interface. The simulation must initialise the gViz library at start-up; this spawns
a thread to listen for the Ul and initialises internal datastructures.lIt also registers a connection with an
external agent and passes information about steerable and viewable parameters, the services it
provides. The Ul retrieves this information and uses it to establish a connection. Routines are
provided to establish the connection and handle requestsfor various services from both UI and
simulation sides.

Parameters for the simulation are divided into two classes, steerable and viewable. Steerable
parameters are a subset of viewable parameterswhich can be changed in a simulation by an external
process. These parameters can be any tunable parameters in the code — they may be physical
boundary conditions, the “constants” of various physical models or purely numerical andalgorithmic



quantities. Examples include wind speed and direction in the simulation of a pollution incident, the
diffusivity of the pollutant in the atmosphere and the size of the residual to use as a stopping criterion
in an iterative linear algebra routine. The simulation process determines which ofits parameters are
steerable, but the Ul uses this information to build a graphical interface to the program, showing the
current state and providing interactors. The set of steerable parameters is fixed at the time of
connection. If the simulation decides to change which parameters are steerable, perhaps as the result
of a change of state which makethis sensible, any steering processesalready connected are not
updated.

Viewable parametersalso include parameters within the simulation which can be viewed by the Ul
(and hence by the user) but which cannot be altered. They are Read Only as opposed to the Read-
Write of the steerable parameters. Viewable parameters can be updated at any time during the
simulation, not just at the end of a time step or iteration, or when the steerable parameters are
updated. It is expected that all steerable parameters will also be viewable. The Ul is free to drop
intermediate changes to a viewable parameter if changes are being made faster than it can respond.

The simulation can also pass datato connected processes, either as data objects in teir own right or
by reference to data files which canthen be accessed by other retrieval tools such as GridFTP.

Because of the Grid environment in which gViz is expected to work, some tools are provided to
assist in managing simulations which are run in batch queues and/or on cluster nodes not immediately
visible to the outside world. GvizDS is a simple directory service which provides a connection point
for simulations which register their details with the service, Uls which interrogate the service to find
out what and how to connectto, and proxies which canuse the serviceto verify details of a process to
which they are being asked to connect. It would normally run on the head node or a cluster, visible to
both the cluster and the external network. gVizProxy also runs on such anode and mediates the
transfer of information between simulation and UI.

The API for gViz is written in Cand currently only a C binding is available.

RealityGrid

RealityGrid [8] was also a project funded by the UK eScience Initiative and involved University
College, London, the Universities of Edinburgh. Manchester, Loughborough and Oxford and Imperial
College as Academic Partnersin collaboration with Computation for Science Consortium,
Schlumberger Cambridge Research Ltd, Edward Jenner Institute for Vaccine Research, Silicon
Graphics Inc., Advanced Visual Systems Inc., Fujitsu Ltd and BTexact. The project also drew on
resources in US universities and nationd laboratories as well as supercomputing centres. The
project's aim was to produce a framework in which experimental facilities, databases, computational
resources and visualisation can be coupled in atransparent, high-throughput fashion to produce
scientific results that would not otherwise have been possible.

The Computational Steering component, the RealityGrid Steering Grid Service (SGS) [9], was one
middleware component among several which addressed different issues of job scheduling, resource
discovery, and application coupling. It is written in Perl and uses the OGSI:Lite hosting
Environment. The architecture is very similar to that used by gViz: there is a Registry to which the
simulation supplies details of what parameterscan be steered or what commands it accepts. Standard



Grid Services methods are then used by the UI to discover this data. Before launching the UI, the
launching script queries the registry for the Grid Service Handle of the simulation SGS, then queries
the SGS itself for a list of IOTypes. This is returned as an XML document which the UI can then
parse and present to the user in whatever way is deemed appropriate. An SGS associated with the Ul
client is created (if necessary) and initialised. The addresses of the two Steering Grid Services are
passed to theirrespective programs by means ofan environment variable.

On reaching a call to Register_IOTypes, the UI queries its SGS and uses the IOType list to populate
its datastructures. This list contains not only the name of the parameters available, but also their Grid
Service Handles from which the Ul candiscover how to connectto it.

Once connected the UI and simulation communicate through a Steering Protocol which sypports
various methods. These include Attach, Detach, GetNotifications, GetNthDataSource, GetStatus,
Pause, PutControl, Resume and Stop. Many of the communications initiated by these methods are
mediated by XML, accordingto a specific schema.

3. What makes Computational Steering worthwhile?

Computational Steeringis a powerful tool, but like all such tools it must be used with respect. We
have seen in section 1 that thereare two basic modes of operation for steering, and here we discuss
their advantages and pitfalls. There are some commonalities as well. The clearest is that for either
form of steering to be applicable to a simulation, the timescales involved must be appropriate. There
are four such timescales: the time for a simulation to alter its state sufficiently to warrant an update of
its output, normally a few timesteps or iterations in an iterative process;the communication time
needed to pass data between simulation and Ul; the rendering time in which the UI processesthe raw
data coming from the simulation and presents itto the user; and by no means the least important the
time taken for the user to make any decision based on the presentation of thedata. If the simulation
time is very short in comparisam with any of the others, the simulation will have moved on to a very
different state by the time any user intervention is received. If, on the other hand, it is very long, the
element of interactivity is lost — steering may stll be appropriate, but will be more a case of checking
in every hour or so to see how the simulation is progressing. In some cases it may be better to
perform a full parameter sweep, save all the data one possibly can and use off-line datamining
techniques to explore it. However, in some cases the quantity of data will preclude this. Again a
judgement has to be made on the most appropriate strategy to follov. Note that this may change over
time as storage or compute costs alter.

When Computational Steering is being used in Type 1 mode, for sweeps of the parameter space we
should consider firstly whether abandoning apparently uninteresting simulations is the best thing to
do, and if so whether steering is the only (or best) way to achieve it. By selecting out “uninteresting”
solutions we may be biassing the simulation results towards the expected, and missing genuinely
interesting results because they do not fit our pre-conceived notions. This is, of course, a perpetual
problem in interpreting the results of simulations, but as with all techndogy which makes things
apparently easier, steering has the potential to make us forget. In those cases where the decision is
clear about aborting a simulation it may be that it can be made automatically by, forexample, a
simple algorithm examining the results as they are created. The generation of non-physical results or
numerical divergence are possible scenarios where this can apply, but these may not requirehuman



intervention. There are cases where an algorithm might be too expensive to apply and human
judgement more applicable, and here steering may be of use.

In Type 2 steering the same problems of bias apply as one alters parameters to look for the desired
solution. In time dependent simulations steering can be useful to investigate the impact of specific
interventions, particularly if the steerable parameters relate directly to controllable physical
parameters. For example, in the case of a pollution release while it is interesting to steer the wind
speed and direction to investigate various “what if?”” scenarios, it may be of more consequence to be
able to control the aperture through which the pollutant is released to see whether a fast release or a
slow release is preferable, and at what point in the simulation any such changes should be made. With
such experiments amechanism to backtrack to a point in the simulation history and change how the
parameters were altered is highly desirable.

It cannot be too strongly stressed that the results of a steered simulation are only as good as those of
the unsteered simulation, and that well-validated programs must be a priority. Having said that,
steering can assist in the validation process, particularly in assiging the developer to define the
regions of parameter space over which the simulation can be trusted. Once this is done, then a steered
simulation can be handed over to less expert hands for use. This is particularly important as
simulations start to be used in clinical contexts to assess the efficacy of surgical or other
interventions, and in similarly important areas.

4. Conclusions

We have examined the potential of Computational Steering for controlling scientific applications,
both for simple desktops and on High Performancesystems. Two pieces of middleware which assist
Computational Steeringin a Grid-based system have been described. Some of the pitfalls of
Computational Steering have been discussed. In spite of these, steering is arelevant and potentially
powerful tool, providing it is used wisely and judiciously. In that case it is capable of enabling the
discovery of good science more speedily than would be possible by traditional methods, and of
generating improved understandng, both of the simulated phenomena and of the simulation process
itself.

References

1. Wright H., Introductory remarksto the CompuSteer Workshop, Hull (unpiblished) (2007)

2. Kreylos O., Computational Steering of CFD Simulations,
http://graphics.cs.ucdavis.edu~okreylos/ResDev/CEFDSteering/index.html

3. Avis N., Computational Steering, www.wesc.ac.uk/resouices/presentationsy/pdf/vc-lecture-
feb04.pdf

4. J. Mulder, J. van Wijk, and R. van Liere. A Survey of Computational Steering Environments.
Future Generation Computer Systems, 13(6), (1998)
http://citeseer.ist.psu.edu/article/muder98survey.html

5. Allan R.J. And Ashworth M., A Survey of Distributed Computing, Computational Grid, Meta-
computing and Network Information Tools, UKHEC Technical Report (2001)


http://citeseer.ist.psu.edu/article/mulder98survey.html
http://www.wesc.ac.uk/resources/presentations/pdf/vc-lecture-feb04.pdf
http://www.wesc.ac.uk/resources/presentations/pdf/vc-lecture-feb04.pdf
http://graphics.cs.ucdavis.edu/~okreylos/ResDev/CFDSteering/index.html

http://www.ukhec.ac.uk/publications/reports/survey.pdf

. Brodlie K. and Wood J., gViz: Visualization and Computational Steering on the Grid, All Hands
Meeting 2004 http://www.comp.leeds.ac.uk/vvr/gViz/mblications/AHM04 wshop paper.pdf

. gViz Lib, http://www.comp.leeds.ac.uk/vvr/gviz/Vizl.1.tgz

. RealityGrid: moving the bottleneck out of the hardware and back into the human mind
http://www.realitygrid.org/

. The RealityGrid project http://www.rcs.manchester.acuk/research/realitygrid



http://www.rcs.manchester.ac.uk/research/realitygrid
http://www.realitygrid.org/
http://www.comp.leeds.ac.uk/vvr/gviz/gViz1.1.tgz
http://www.comp.leeds.ac.uk/vvr/gViz/publications/AHM04_wshop_paper.pdf
http://www.ukhec.ac.uk/publications/reports/survey.pdf

	Computational Steering Toolkits for Grid Environments
	gViz
	RealityGrid


