
RAL-TR-1999-027

Developments and Trends in the Parallel Solution

of Linear Systems1

Iain S. Du�2 and Henk A. van der Vorst3

ABSTRACT
In this review paper, we consider some important developments and trends in
algorithm design for the solution of linear systems concentrating on aspects that
involve the exploitation of parallelism. We brie
y discuss the solution of dense linear
systems, before studying the solution of sparse equations by direct and iterative
methods. We consider preconditioning techniques for iterative solvers and discuss
some of the present research issues in this �eld.

Keywords: linear systems, dense matrices, sparse matrices, tridiagonal
systems, parallelism, direct methods, iterative methods, Krylov methods,
preconditioning.

AMS(MOS) subject classi�cations: 65F05, 65F50.

1 Current reports available by anonymous ftp to ftp.numerical.rl.ac.uk in directory

pub/reports. This report is in �le duvoRAL99027.ps.gz. Report also available through

URL http://www.numerical.rl.ac.uk/reports/reports.html. Also published as Technical

Report TR/PA/99/10 from CERFACS, 42 Ave G. Coriolis, 31057 Toulouse Cedex, France.
2 I.Du�@rl.ac.uk
3 Mathematical Institute, Utrecht University, Budapestlaan 6, Utrecht, the Netherlands.

The work of this author was supported by the Netherlands organization for scienti�c

research NWO, through project 95MPR04. vorst@math.uu.nl

Computational Science and Engineering Department
Atlas Centre
Rutherford Appleton Laboratory
Oxon OX11 0QX

March 31, 1999.

http://www.numerical.rl.ac.uk/reports/reports.html

Contents

1 Introduction 1

2 Parallel techniques for direct solvers 2

3 Solution of tridiagonal systems 10

4 Iterative methods 13

5 Parallel Preconditioning 22

6 Current and future trends 30

i

1 Introduction

Solution methods for systems of linear equations

Ax = b; (1.1)

where A is a coe�cient matrix of order n and x and b are n-vectors, are usually
grouped into two distinct classes: direct methods and iterative methods. However,
this distinction is not really productive or even meaningful. The archetype for
direct methods is Gaussian elimination and the archetype for an iterative method
is Richardson's iteration method. In reality the two classes cannot be clearly
distinguished. A common and cheap technique for improving the solution obtained
by pure Gaussian elimination is iterative re�nement, which can be reformulated as
Richardson's iterative method with Gaussian elimination as a preconditioner. On
the other hand, true iterative methods are usually accelerated by preconditioning
which often involves the direct solution of a nearby system. Usually this nearby
system is chosen in such a way that it can be solved more economically or so that
the solution process can better exploit parallelism. In any case, the solution of
a system used in preconditioning must be much cheaper than the solution of the
original system. Thus, the main di�erence between solving the original system and a
preconditioning by direct methods is that, for the former case, we have to rearrange
computations or modify the algorithm in order to obtain better parallelism, whereas
with preconditioning we may simply discard entries from the nearby system if this
improves parallelism (under the condition that the convergence of the preconditioned
iterative solver is not a�ected too much).

In the early days of parallelism, attention was focussed on �ne-grained forms of
parallelism. For direct methods, that led to the design of vectorizable algorithms.
A major bottleneck with this approach was that the poor computation to memory
access ratio caused poor performance on many architectures, so that the building
blocks had to be matrix-vector operations rather than vector operations. For current
parallel computers, it has been necessary to look for even more coarse-grained
parallelism and this has been achieved by using building blocks of matrix-matrix
multiplication. This trend is nicely characterized by the successive levels of the Basic
Linear Algebra Subroutines: the Level 1 BLAS in 1979 [137], the Level 2 BLAS in
1988 [72], and the Level 3 BLAS in 1990 [73]. For dense systems, it has become
evident that the Level 3 BLAS can lead to optimal performance on a variety of
modern architectures, including serial computers, because of the potential to handle
memory hierarchy in an e�cient way. Additionally, for large sparse matrices this has
given rise to widely accepted direct methods, for example the multifrontal methods
and supernodal techniques. We will discuss these methods in Section 2.

For linear systems of very special form, for instance, tridiagonal matrices,
standard direct methods may not o�er su�cient possibilities for e�cient
implementation. Nevertheless, in this case also, the development has advanced from

1

�ne-grained methods (cyclic reduction; recursive doubling) to more coarse-grained
approaches (Wang's method, Mehrmann's algorithm, Bondeli's divide and conquer
algorithm). These techniques will be reviewed in Section 3.

For iterative methods, attention has been paid to the iteration technique itself
(block methods, s-step methods) and to the preconditioner. The techniques for
creating more parallelism in the iterative algorithm seem to receive less attention
now, mainly because modern computers can handle the inner products su�ciently
well. In the past, this was a notorious bottleneck and many techniques revolved
around the e�ective grouping of inner products, often sacri�cing some of the
numerical stability of the method. We will discuss this in more detail in Section 4.

For preconditioners, the early approaches were also aimed at detecting
parallelism at a rather �ne-grained level (hyperplane, truncated Neumann, frontal
approach). For the preconditioner, we now see very much the same implementation
techniques as for direct methods, but one often concentrates on the selection of
special structured preconditioners which makes a separate discussion for these
techniques necessary. In many cases, the parallelism in the preconditioner is based on
a domain-splitting technique, which leads to the solution of large independent blocks.
Techniques for creating parallel preconditioners will be reviewed in Section 5.

2 Parallel techniques for direct solvers

The �rst real library of subroutines for linear algebra on dense matrices was
developed in Algol by Wilkinson and Reinsch [208]. These were used as the basis
for the LINPACK Project where a wide range of software for solving dense systems
of equations was developed in Fortran and is described in the LINPACK book
[71]. The LU factorization code has been used as a basis for the benchmarking of
computers with the latest results being available on the Web [70]. The codes in the
LINPACK package used Level 1 BLAS [137] and were portable over a wide range
of machines but sometimes performed poorly on vector or cache-based machines.
This was addressed in the development of the LAPACK package for linear algebra
[11]. Codes in this package incorporated Level 2 and Level 3 BLAS ([72] and [73]
respectively) and had a much improved performance on modern architectures. Many
vendors of shared memory computers o�er parallel versions of the BLAS and so at
this level parallelization is trivial. However, LAPACK was not designed for parallel
machines and, in particular, not for machines with distributed memory that use
message passing to communicate data. This last class of machines is targeted by
the ongoing ScaLAPACK project [33] that supports distributed computation using
tools like the BLACS (Basic Linear Algebra Communications Routines) [207].

Sparse factorization
The main issue in the implementation of direct methods for solving sparse linear
equations lies in preserving as much sparsity as possible in the matrix factors. For

2

this reason, the LU decomposition is favoured and strategies are developed to retain
much of the sparsity of the original matrix in the LU factors. This leads to a need
to compromise the numerical pivoting strategy in order to choose pivots to limit
the �ll-in. A common strategy for limiting �ll-in, due to Markowitz [144], chooses
entries so that the product of the number of other entries in the row and column of
the candidate pivot is minimized. An entry is accepted as a pivot only if it is within
a threshold of the largest in its column. This Markowitz-threshold strategy and a
range of other similar possibilities are discussed in detail by [80]. Complicated data
structures are designed so that only the nonzero entries of the matrix and of the
factors need to be held. This, coupled with the fact that it is often non-trivial to
determine what part of the matrix is updated at each pivot step, has meant that
early experiments on parallelizing sparse direct methods gave poor speedups [95].

However, there are three levels at which parallelism can be exploited in the
solution of sparse linear systems by direct methods. We consider each of these levels
in turn.

The �nest grain lies in the elimination operations themselves. Most modern
sparse codes (we will discuss this more shortly) use higher level BLAS to perform
most or all of the
oating-point operations and so can bene�t from their e�cient
implementation and parallel support in a similar way to software for dense linear
systems.

At the coarsest level, techniques for partitioning the matrix are often designed
for parallel computing and are particularly appropriate for distributed memory
computers. Indeed, partitioning methods are often only competitive when
parallelism is considered. The PARASPAR package [210] uses a preordering to
partition the original problem. The MCSPARSE package [91, 101] similarly uses
a coarse matrix decomposition to obtain an ordering to bordered block triangular
form.

At an intermediate level, we can use the sparsity of the matrix to advantage.
Clearly, there can be substantial independence between pivot steps in sparse
elimination. For example, if the matrix were a permutation of a diagonal matrix all
operations could be performed in parallel. Two matrix entries aij and ars can be used
as pivots simultaneously if ais and arj are zero. These pivots are termed compatible.
This observation [38] has been the basis for several algorithms and parallel codes for
general matrices. The central theme is to select a number of compatible pivots that
would give a diagonal block if ordered to the top left of the matrix. The update
from all these pivots is then performed in parallel. The procedure is repeated on
the reduced matrix. The algorithms di�er in how the pivots are selected (clearly
one must compromise criteria for reducing �ll-in in order to get a large compatible
pivot set) and in how the update is performed. Alaghband [1] uses compatibility
tables to assist in the pivot search. She uses a two-stage implementation where
�rst pivots are chosen in parallel from the diagonal and then o�-diagonal pivots are
chosen sequentially for stability reasons. She sets thresholds for both sparsity and

3

stability when choosing pivots. Davis and Yew [56] perform their pivot selection in
parallel, which results in the nondeterministic nature of their algorithm because the
compatible set will be determined by the order in which potential compatible pivots
are found. Their algorithm, D2, was designed for shared-memory machines and was
tested extensively on an Alliant FX/8. The Y12M algorithm [211] extends the notion
of compatible pivots by permitting the pivot block to be upper triangular rather
than diagonal, which allows them to obtain a larger number of pivots, although the
update is more complicated. For distributed memory architectures, van der Stappen,
Bisseling, and van de Vorst [195] distribute the matrix over the processors in a
grid fashion, perform a parallel search for compatible pivots, choosing entries of low
Markowitz cost that satisfy a pivot threshold, and perform a parallel rank-m update
of the reduced matrix, wherem is the number of compatible pivots chosen. We show
some results from using their code in Table 2.1. The slow processor speed masks the
communication costs but nevertheless these results show that good speedups can
be obtained on some machines. Their code was originally written in OCCAM and
run on a network of 400 transputers, but they have since developed a version using
PVM [133].

In the context of reduced stability of the factorization due to the need to preserve
sparsity and exploit parallelism, it is important that sparse codes o�er the possibility
of iterative re�nement both to obtain a more accurate answer and to provide a
measure of the backward error. Quite recently there has been suggestions made to
compute in increased precision to avoid some of the problems from this compromise
of stability pivoting [139].

Matrix Order Entries Number of processors
1 16 100 400

Secs. Speedup
SHERMAN 2 1080 23094 1592 15 49 102
LNS 3937 3937 25407 2111 13 56 89

Table 2.1: Factorization times in seconds on one processor and speedups on more
than one for code of van der Stappen, Bisseling, and van de Vorst (1993) on a
PARSYTEC SuperCluster FT-400

Elimination tree
A common structure for both visualizing and implementing parallelism is the
elimination tree, or other trees derived from it. The elimination tree is de�ned
for any sparse matrix whose sparsity pattern is symmetric. For a sparse matrix of
order n, the elimination tree is a tree on n nodes such that node j is the father
of node i if entry (i; j); j > i is the �rst entry below the diagonal in column i of

4

the triangular factors. An analogous graph for an unsymmetric patterned sparse
matrix is the directed acyclic graph [55, 102]. The main property that we exploit
in this tree is that computations corresponding to nodes that are not ancestors or
descendants of each other are independent (see, for example, [77, 140]). The tree
can thus be used to schedule parallel tasks. For shared memory machines, this can
be accomplished through a shared pool of work with fairly simple synchronizations
that can be controlled using locks protecting critical sections of the code [7, 78].
Since any sparse LU or QR factorization can be represented by an elimination tree,
we can use this structure to exploit parallelism. One of the main issues for an
e�cient implementation on shared memory machines concerns the management of
data, which must be organized so that book-keeping operations such as garbage
collection do not cause too much interference with the parallel processing.

Sparse Cholesky factorization by columns can be represented by an elimination
tree. These can either be left-looking (or fan-in) algorithms, where updates are
performed on each column in turn by all the previous columns that contribute to it,
then the pivot is chosen in that column and the multipliers calculated; or a right-
looking (or fan-out) algorithm where, as soon as the pivot is selected and multipliers
calculated, that column is immediately used to update all future columns that it
modi�es. The terms left-looking and right-looking are discussed in detail in the
book [74]. Either way, the dependency of which columns update which columns is
determined by the elimination tree. If each node of the tree is associated with a
column, a column can only be modi�ed by columns corresponding to nodes that are
descendants of the corresponding node in the elimination tree.

One approach to using higher level BLAS in sparse direct solvers is a
generalization of a sparse column factorization. Higher level BLAS can be used
if columns with a common sparsity pattern are considered together as a single block
or supernode and algorithms are termed column-supernode, supernode-column, and
supernode-supernode depending on whether target, source, or both are supernodes.

Another major approach for utilizing Level 3 BLAS within a sparse direct code
is a multifrontal technique [84]. In this approach, the nonzero entries of the pivot
row and column are held in the �rst row and column of a dense array and the outer-
product computation at that pivot step is computed within that dense submatrix.
The dense submatrix is called a frontal matrix. Now, if a second pivot can be chosen
from within this dense matrix (that is there are no nonzero entries in its row and
column in the sparse matrix that lie outside this frontal matrix), then the operations
for this pivot can again be performed within the frontal matrix. In order to facilitate
this multiple elimination within a frontal matrix, an assembly tree is preferred to an
elimination tree where, for example, chains of nodes are collapsed into a single node
so that each node can represent several eliminations. Ordering schemes, arti�cial
enlargement of frontal matrices, and �ll-in in Gaussian elimination can be used so
that the kernel of the multifrontal scheme can be represented by the computation

F22 F22 � F21F
�1
11 F12 (2.1)

5

performed within the dense frontal matrix
F11 F12

F21 F22

!
:

These operations can clearly be performed using the Level 3 BLAS. If the
factorization is represented by an elimination tree, nodes of this tree can be
amalgamated to form an assembly tree where each node corresponds to a
factorization of the form (2.1) and each edge to the communication of the resulting
Schur complement (F22) to the parent node.

Several authors have experimented with these di�erent algorithms (right-looking,
left-looking, and multifrontal) and di�erent blockings. Ng and Peyton [155] favour
the left-looking approach and Amestoy and Du� [8] show the bene�ts of Level 3
BLAS within a multifrontal code on vector processors. Rothberg and Gupta [171]
�nd that, on cache-based machines, it is the blocking that a�ects the e�ciency (by
a factor of 2 to 3) and the algorithm that is used has a much less signi�cant e�ect.
Demmel, Eisenstat, Gilbert, Li, and Liu [66] have extended the supernodal concept
to unsymmetric systems although, for general unstructured matrices, they cannot
use regular supernodes for the target columns and so they resort to Level 2.5 BLAS,
which is de�ned as the multiplication of a set of vectors by a matrix where the vectors
cannot be stored in a two-dimensional array. By doing this, the source supernode
can be held in cache and applied to the target columns or blocks of columns of the
\irregular" supernode, thus getting a high degree of reuse of data and a performance
similar to the Level 3 BLAS. We now examine some of the history of attempts to
parallelize sparse direct codes.

Historic survey of techniques to exploit parallelism
Early experiments on the massively parallel SIMD Connection machine [103] were
a little disappointing although they did indicate the possibility of using massive
parallelism in sparse factorization. The experiments did show that a grid-distributed
multifrontal implementation substantially outperformed an algorithm based on a
left-looking approach that exploited the parallelism in the elimination tree. Conroy,
Kratzer, and Lucas [52] used a mapping strategy that can trade work against data
movement to design a multifrontal algorithm for machines supporting a data-parallel
programming model. They tested their code on a TMC CM-5 and a MasPar MP-2
and showed it to be competitive with codes on vector supercomputers. Manne and
Hafsteinsson [143] have implemented a supernodal fan-out algorithm on the MasPar
MP-2 and use a graph colouring algorithm to map the matrix to processors.

The earliest work on parallelizing sparse codes for distributed memory machines
was based on column oriented Cholesky factorizations, either the fan-in or the
fan-out algorithm. The original codes just used a column-column formulation of
the algorithm as in the fan-in algorithm of [94] but it was soon apparent that
better e�ciency could be obtained using a supernode-column fan-in approach as

6

in [156]. Some of this early work on parallel algorithms for distributed memory
computers is reviewed by Heath, Ng, and Peyton [117]. For distributed memory
machines, processors can be assigned work corresponding to subtrees, but this
requires quite balanced trees. A breadth-�rst search strategy can be used to assign
work to processors using a heuristic bin-packing algorithm to achieve reasonable
load balancing [92]. However, the results of runs on L-shape domains on an INTEL
iPSC/2 comparing their strategy with wrap mapping and with a nested-dissection
ordering and subtree-to-subcube mapping are rather
at, showing only a slight
advantage for their heuristic. Pothen and Sun [164] have adapted the heuristic of
[92] to a multifrontal scheme and have compared this with a generalized version of a
subtree-to-subcube mapping and have found their algorithm to be twice as fast on an
INTEL iPSC/2. All approaches to sparse Cholesky factorization have been used to
develop parallel factorization routines on hypercubes: fan-out [96], fan-in [15], and
multifrontal [189, 190]. In comparative testing of all three approaches none of the
methods shows very high performance [16]. Even in a distributed environment, it is
very bene�cial if some memory is available as shared memory to hold information
such as mapping vectors [99]. The �rst work to exploit parallelism at all phases of
the sparse solution process was by [212], later developed by [104] and [213]. More
recently, the work of [118] also exploits parallelism in all phases, although the matrix
must be held in Cartesian form; that is, in a two or three dimensional coordinate
system. While this is quite natural in the context of discretized PDEs, it is not a
convenient interface in general.

Schreiber [180] presents a clear discussion showing that a one-dimensional
mapping of columns or block columns to processors is inherently unscalable and
that a two-dimensional mapping is needed to obtain a scalable algorithm. Bisseling,
Doup, and Loyens [31] have developed an interior point solver for linear programming
containing sparse algorithms for Cholesky factorisation, triangular system solution,
and matrix multiplication, all based on a two-dimensional mapping of data to
processors. Dumitrescu et al. [85] �nd that a two-dimensional block fan-in
algorithm (with proportional mapping of the elimination tree) is usually superior
to a two-dimensional block fan-out algorithm. They record performances of over
360 M
op/s on 32 nodes of an IBM SP1. Rothberg [170] compares a block fan-out
algorithm using two-dimensional blocking with a panel multifrontal method using
one-dimensional blocking and favours the former, obtaining a performance of over 1:7
G
op/s on 128 nodes of an Intel Paragon, which is about 40% of the performance of
the GEMM kernel on that machine. He points out that the bene�t of using higher
level BLAS kernels, coupled with the then recent increases in local memory and
communication speed of parallel processors, had at last made the solution of large
sparse systems feasible on such architectures. The 2-D block fan-out algorithm is
further investigated by [172], and some block mapping heuristics are used to improve
the performance to over 3 G
op/s for a 3-D grid problem on a 196-node Intel Paragon
[173]. A similar type of 2-dimensional mapping is used [111] in an implementation

7

of a multifrontal method, where much of the high performance is obtained through
balancing the tree near its root and using a careful and regular mapping of the dense
matrices near the root to enable a high level of parallelism to be maintained when
the trivial parallelism from subtree assignment is exhausted. Although the headline
�gure of nearly 20 G
op/s on the CRAY T3D was obtained on a fairly arti�cial
and essentially dense problem, large sparse problems from structural analysis were
factorized at between 8 and 15 G
op/s on the same machine for which a tuned
GEMM code will execute at around 50 G
op/s. This code is available in compiled
form on an IBM SP2 [110] and source code versions of a portable implementation
are available from the authors. More recently, Li and Demmel [139] have been
developing a version of the SuperLU code [67] for distributed memory machines and
the MUMPS multifrontal code [9], developed within the EU PARASOL Project, is
also targeting message passing architectures.

Parallelism of other phases than factorization
Partly because of the success of fast and parallel methods for performing the
numerical factorization, other phases of the solution are now becoming more critical
on parallel computers. The package [118] executes all phases in parallel, and there
has been much recent work in �nding parallel methods for performing the reordering.
This has been another reason for the growth in dissection approaches (for example,
see [130, 168]). Parallelism in the triangular solve can be obtained either using
the identical tree to the numerical factorization [10] or by generating a tree from
the sparsity pattern of the triangular factor [12]. However, in order to avoid the
intrinsically sequential nature of a sparse triangular solve, it is possible to hold the
denser but still sparse L�1, or better a partitioned form of this to avoid some of the
�ll-in that would be associated with forming L�1 explicitly [6]. Various schemes for
this partitioning have been proposed to balance the parallelism (limited by number of
partitions) with the �ll-in (for example, [4, 5, 161]) and, more recently, the selective
inversion of submatrices produced by a multifrontal factorization algorithm has been
proposed [167].

E�ect of ordering schemes
We now turn to the crucial issue of ordering the rows and columns (choosing the
pivots) to preserve sparsity and to exploit parallelism. The classical technique for
symmetric systems is to choose at each stage the entry from the diagonal with the
least number of entries in its row and column. This minimum degree criterion was
�rst proposed in 1967 [194] and has stood the test of time well. George [93] proposed
a di�erent class of orderings based on a non-local strategy of dissection. In his nested
dissection approach, a set of nodes is selected to partition the graph, and this set
is placed at the end of the pivotal sequence. The subgraphs corresponding to the
partitions are themselves similarly partitioned and this process is nested with pivots
being identi�ed in reverse order. Minimum degree, nested dissection and several

8

other symmetric orderings were included in the SPARSPAK package [97, 98]. Many
experiments were performed using the orderings in SPARSPAK and elsewhere, and
the empirical experience at the beginning of the 90s indicated that minimum degree
was the best ordering method for general or unstructured problems.

However, when one considers parallel implementation, a problem with the
minimum degree ordering is that it tends to give elimination trees that are not well
balanced and so not ideal for use as a computational graph for driving a parallel
algorithm. The elimination tree can be massaged [141] so that it is more suitable
for parallel computation but the e�ect of this is fairly limited for general matrices.
The use of dissection techniques would appear to o�er the promise of much better
balanced trees, although the inferior performance of the early dissection codes needs
to be addressed for them to be viable. We now discuss recent advances in dissection
techniques.

The beauty of dissection orderings is that they take a global view of the
problem; their di�culty until recently has been the problem of extending them
to unstructured problems. Recently, there have been several tools and approaches
that make this extension more realistic. The essence of a dissection technique is a
bisection algorithm that divides the graph of the matrix into two partitions. If node
separators are used, a third set will correspond to the node separators. Recently,
there has been much work on obtaining better bisections even for irregular graphs.
Perhaps the bisection technique that has achieved the most fame has been spectral
bisection [23]. In this approach, use is made of the Laplacian matrix that is de�ned
as a symmetric matrix whose diagonal entries are the degrees of the nodes and
whose o�-diagonals are �1 if and only if the corresponding entry in the matrix is
nonzero. This matrix is singular because its row sums are all zero but, if the matrix
is irreducible, it is positive semide�nite with only one zero eigenvalue.

A currently favoured approach is for the dissection technique only to be used
for the top levels and the resulting subgraphs to be ordered by a minimum degree
scheme. This hybrid technique was used many years ago [100] and is included in
many current implementations (for example, [17, 122]). Current empirical evidence
would suggest that these schemes are at least competitive with minimum degree on
some large problems from structural analysis [17, 169] and from �nancial modelling
[29]. In these studies, dissection techniques outperform minimum degree by on
average about 15% in terms of
oating-point operations for Cholesky factorization
using the resulting ordering, although the cost of these orderings can be several times
that of minimum degree and may be a signi�cant proportion of the total solution
time [17].

Of course, dissection techniques are important for purposes other than generating
an ordering for a Cholesky factorization. They can be used to partition an underlying
grid for domain decomposition and are equally useful for the parallel implementation
of many iterative methods. Two of the major software e�orts for developing graph

9

partitioning based on some of the above techniques are CHACO [121] and METIS
[129].

3 Solution of tridiagonal systems

In the early days of parallel computing, much attention was paid to the parallel
solution of banded linear systems, in particular, tridiagonal systems. In this case, as
in the more general case mentioned in Section 1, there has been a trend from �ne-
grained parallelism towards coarse-grained parallelism. We will brie
y discuss this
development, solely for the sake of illustration, because in our opinion most of the
algorithms are only practical for very large narrow-banded systems and such systems
occur infrequently. Moreover, because of numerical stability, the techniques can only
be safely used for diagonally dominant systems. Generalizations, in particular of the
cyclic reduction technique, to block tridiagonal systems can be practical for speci�c
classes of matrices. As a prime example, we think of the Fast Poisson Solvers.

Discussion of approaches to parallel factorization
For the factorization of tridiagonal matrices there is not much that can be done
in parallel if we do not want to do additional work, by rearranging the order of
computation. For large enough bandwidths, we can use block algorithms and Level
3 BLAS as for dense matrices (see Section 2). The di�erent parallel techniques for
the factorization of tridiagonal matrices fall into four classes:

1. Twisted factorization [19]

2. Recursive doubling [187]

3. Cyclic reduction [120, 135]

4. Divide and Conquer [34, 42, 146, 147, 205]

We will brie
y discuss these techniques in the following paragraphs.

Twisted factorization
Twisted factorization amounts to starting Gaussian elimination simultaneously from
top-down and from bottom-up. In matrix notation, if T is the matrix being
factorized, this leads to a factorization T = RS, in which the �rst half of R is a lower
bidiagonal matrix and the second half is an upper bidiagonal matrix. The matrix
S has the transpose form of this structure. The process is also known, for obvious
reasons, as the BABE (Burn At Both Ends) algorithm. It was known to Wilkinson
and was used in LINPACK [71]. This factorization was analysed by Babuska [19],
who studied it for the accurate computation of the k-th component of the solution
vector. The degree of parallelism is clearly only two. The approach is sometimes

10

used for the construction of parallel preconditioners, where it is generalized to
block tridiagonal systems. This may lead to additional parallelism on top of other
techniques for the construction of parallel preconditioners, see Section 5 for more
details.

Recursive doubling
The recursive doubling approach works as follows. We assume that the matrix T
has been scaled so that diag(T) = I, and we write T as T = B + I + C, where B
is the strictly lower diagonal part and C is the strictly upper diagonal part. After
multiplying the system by �B+ I�C we obtain a matrix with again three nonzero
diagonals, but now the o�-diagonal nonzero entries are in positions (i; j) with ji�jj =
2, that is their distance to the main diagonal is doubled. We can repeat this and,
after dlog2(n)e steps, there is only a diagonal matrix left. The only operation is to
multiply vectors and matrices by matrices with three nonzero diagonals so that all
steps can be done in parallel, and the system Tx = b can be solved in dlog2(n)e steps.
This approach is elegant but has not led to practical implementations, because it
requires n processors to complete in dlog2(n)e steps. The parallelism is too �ne-
grained, after each step there is much communication for redistribution of the data,
and progressively more processors become idle in the process, which leads eventually
to poor e�ciency. We are not aware of generalizations of recursive doubling for
banded systems.

Cyclic reduction
With Cyclic reduction, the entry in position (2i; 2i � 1) is eliminated using the
(2i � 1)-th row, and entry (2i; 2i+ 1) is eliminated using row 2i+ 1. This leads to
�ll-in in positions (2i; 2i � 2) and (2i; 2i + 2). This eliminates all odd numbered
unknowns, and clearly the even numbered unknowns are now coupled only to
each other and we have a tridiagonal system for the even numbered unknowns.
This reduction to a tridiagonal system of order n=2 can be done in parallel. If
this reduced system is solved, the odd numbered unknowns can be recovered in
parallel as well. The reduction can be nested until the remaining system is small
enough to be solved by a few serial computations. From a parallel point of view,
this approach is not very practical because the parallelism is too �ne-grained, but
since the computational complexity is only increased by a factor of about two, the
technique has been exploited for constructing e�cient code for vector computers for
which the vector speed is signi�cantly faster than the scalar speed [59, 159, 178, 201].
The technique was generalized to banded systems by Dubois and Rodrigue [75]. For
block tridiagonal systems, recursive reduction can lead to very e�cient (serial as
well as parallel) algorithms (for example, in Fast Poisson Solvers [37, 191, 80]).
The performance of a block tridiagonal solver, based on a block cyclic reduction
technique, on the 28-processor Fujitsu VPP500, is reported in [188].

11

Divide and conquer
For Divide and Conquer, we partition T , perhaps after augmenting it, into p blocks
of size k. We eliminate in parallel the lower diagonal entries within the diagonal
blocks of T . Of course, this leads to �ll-in outside the diagonal blocks. In what
is known as Wang's method ([205], but proposed earlier in a more general form by
[42]) the method proceeds by eliminating the upper diagonal entries in each diagonal
block, and the entry in the o�-diagonal block above the diagonal block, starting with
those in row k � 2 and upwards. This produces �ll-ins in the last column of each
diagonal block, in the same column of T where the �ll-ins in the downward sweep
occurred.

With row k of the �rst block, the �ll-ins below the diagonal entry can be
eliminated in parallel, without producing new �ll-ins. This can be repeated for the
other diagonal blocks in succession. After the downward sweep, a similar upward
sweep can be done for the elimination of the �ll-ins in the upper triangular part of
T . These steps require redistribution of the �ll-ins for each o�-diagonal block over
the processors, because all the �ll-in columns cannot be processed simultaneously.
This part of the process yields �ne-grained parallelism. It was shown in [153], that
this is not e�cient because of all the data movement. Therefore, the original variant
has been superseded by a more coarse-grained one [80, 153, 154], which proceeds as
follows. The downward and upward sweep for elimination of o�-diagonal elements
is exactly the same as for the original algorithm, but the removal of the spikes is
di�erent. If we take row k from each block of the partially reduced matrix, then
these rows together form a tridiagonal system of dimension p. We solve this small
system in serial mode, and then the remaining part of the system can be solved
again in parallel, without further data redistribution.

In [153] it is shown that, if the size of the blocks is much larger than p, then
the wall-clock time on a p-processor system is roughly p=2 times less than standard
Gaussian elimination on a single processor: the parallel process is almost perfectly
parallel, which gives a factor p, but is about twice as expensive as serial Gaussian
elimination. For the original �ne-grained approach the speedup is bounded by the
minimum of p=2 and �=�, where � denotes the cpu-time for one
oating-point
operation and � is the time for transport of one datum to another processor. For
modern computers, this ratio is usually less than 1:0, which makes the original
method impractical. A generalization of Wang's divide and conquer technique for
banded systems is discussed in [153].

In a pure Divide and Conquer approach, the tridiagonal matrix would be split
into smaller tridiagonal matrices and one would concentrate on the elimination of
the few o�-diagonal entries that are left over outside the blocks. The algorithm
by Bondeli [34] is based on the observation that if we split o� from T a block
diagonal part (which can be processed in parallel), then the remaining o�-diagonal
blocks have only at most a single nonzero entry. They can be interpreted as
rank one matrices, for example tk;k+1eke

T
k+1. These matrices link the unknowns

12

associated with the di�erent blocks and, by using expressions for rank-one updates;
the corrections for all the blocks can be computed from the solution of a small p by
p subsystem. If one simply splits o� blocks along the diagonal, without attempting
to correct these blocks for the o�-block elements, then this can be interpreted as
a Dirichlet-Dirichlet coupling in a domain decomposition setting. Mehrmann [146]
has generalized Bondeli's approach by changing some entries within the diagonal
blocks or, in domain decomposition terms, by changing the interface conditions.
This leads to higher rank update corrections that can be removed iteratively. He
also discusses the parallel solution of block tridiagonal matrices related to PDE's in
two dimensions. In [192], the Sherman-Morrison-Woodbury formula (see [105]:page
50) is used to eliminate the rank-one corrections. All these approaches lead to
coarse-grained parallelism, and a reduction of the serial step. Bondeli's approach
has even a slightly lower computational complexity than that of Wang. He reports,
on experiments with systems of order 8190, a parallel e�ciency of the order of 90%,
which reduces to an e�ective e�ciency of about 45%, relative to standard Gauss
elimination on a single processor.

Discussion
In conclusion, we see that there has been a shift from almost completely parallel,
but �ne-grained and communication-intensive algorithms to algorithms that have
coarse-grained parallelism with very low communication, but at the price of a serial
step. This serial step becomes relatively less important when the block sizes can be
chosen large enough. The �ne-grained cyclic reduction approach may still be useful
for vector processing, and for special block tridiagonal systems. The modern coarse-
grained algorithms are only attractive for parallel processing if the size of the matrix
is large, say in the order of a few hundred times the number of processors. Moreover,
the computational complexity of the divide and conquer approach is about twice as
great as the computational complexity of the serial implementation of Gaussian
elimination. This means that this approach is seldom useful for the tridiagonal
systems associated with single grid-lines, that arise when discretizing PDEs over
regular grids with �nite di�erences in two or three dimensions. The tridiagonal
subblocks in the matrices will not often be of order greater than, say, 1000. For
such block tridiagonal matrices, one usually considers solution techniques in which
the tridiagonal subsystems are solved in parallel (for instance as in Block Jacobi
Preconditioning) rather than solving each separate tridiagonal subsystem in parallel.
We will discuss these types of solution techniques in Section 5.

4 Iterative methods

In our discussion of the past and current trends in the parallelisation of iterative
methods, we distinguish between two di�erent aspects of the iterative solution of a
linear system Ax = b. The �rst one that we address in this section is the particular

13

acceleration technique for a sequence of iteration vectors, that is the technique used
to construct a new approximation for the solution x, with information from previous
approximations. This leads to speci�c iteration methods, such as SOR, Conjugate
Gradients, etc. The second aspect is the transformation of a given system to one
that can be more e�ciently solved by a particular iteration method. This is called
preconditioning, and it will be addressed in the next section.

For the early parallel computers, in existence in the eighties, it was observed that
the single iteration steps of most iteration methods o�ered too little opportunity for
e�ective parallelism, in comparison with, for instance, direct methods for dense
matrices. In particular, the few inner products that are required per iteration step
for many iteration methods, were identi�ed as obstacles because of communication.
This has led to attempts to combine iteration steps, or to combine the message
passing for di�erent inner products. For more modern parallel computers, the inner
products are relatively less important and we see that attention has shifted more to
the preconditioning aspect. Nevertheless, we believe that there is still value in many
of the approaches for parallelism in the iteration methods, in particular, because they
may help to reduce performance degrading e�ects of memory hierarchy. This is still
a problem for iterative sparse matrix solvers. As we have seen in the section on
direct methods, one tries to exploit blocking techniques as much as possible in order
to exploit local memories and to hide delaying e�ects of data transport from slower
memory. For some relevant large sparse systems, this leads to performances of about
50% of those for large dense matrices. For standard iterative solvers this is more in
the order of 10%, which makes it still opportune to seek for techniques that help to
bridge that gap.

Comments on methods and kernels
The currently most popular iterative methods belong to the class of Krylov subspace
methods. We will �rst give a brief overview of some characteristic and well known
Krylov subspace methods, where we denote the Krylov subspace by K i(A; r0) which
is de�ned as the space spanned by the vectors fr0, Ar0, A

2r0, ..., A
i�1r0g.

(a) If A is symmetric positive de�nite, then the Conjugate Gradient method [123]
generates, using two two-term recurrences, the xi for which (x�xi; A(x�xi))
(the so-called A�norm or energy norm) is minimized over all vectors in the
current Krylov subspace K i(A; r0), where r0 is the initial residual b� Ax0.

(b) If A is only symmetric but not positive de�nite, then the Lanczos [136] and the
MINRES methods [160] may be considered. In MINRES, the xi 2 K

i(A; r0) is
determined for which the two-norm of the residual (kb�Axik2) is minimized,
while the Lanczos method leads to an xi for which b � Axi is perpendicular
to the Krylov subspace. From a parallel implementation point of view, these
methods have very similar performance to Conjugate Gradients.

(c) If A is unsymmetric, then we can compute the xi 2 K i(A; r0), for which

14

the residual is minimized in the Euclidean norm. This is done by the GMRES
method [177]. Unfortunately, this requires i inner products at the i-th iteration
step, as well as i vector updates. In a parallel environment, the communication
required for the inner products may seriously degrade the performance of
GMRES.

(d) If A is unsymmetric, it is in general not possible to determine an optimal xi 2
K i(A; r0) with short recurrences. This was proved in [87]. However, with short
recurrencies as in Conjugate Gradients, we can compute the xi 2 K i(A; r0),
for which b � Axi ? K i(AT ; s0) (usually, one selects s0 = r0). This leads to
the Bi-Conjugate Gradient method [88]. Apart from the fact that this requires
operations with AT , this method has very much the same parallel properties
as Conjugate Gradients. A clever variant is QMR [89] that has smoother
convergence behaviour and is more robust than Bi-Conjugate Gradients.

(e) An interesting observation is that the operations with AT in the Bi-Conjugate
Gradient method can be replaced by operations with A itself, by using the
observation that < x;ATy > equals < Ax; y >, where < ::: > represents
the inner-product computation. Since the function of the multiplications by
AT in Bi-CG serves only to maintain the dual space to which residuals are
orthogonalized, the replacement of this operator by A allows us to expand the
Krylov subspace and to �nd better approximations, for virtually the same costs
per iteration as for Bi-Conjugate Gradients. Indeed, a rule of thumb is that
the CGS method converges twice as fast as Bi-CG, although the downside is
that it can diverge twice as fast also !! This leads to so-called hybrid methods
such as CGS [186], Bi-CGSTAB [200], Bi-CGSTAB(`) [183], TFQMR [90],
and hybrids of QMR [39]. In particular the Bi-CGSTAB(`) methods o�er
some possibilities for further improving the parallel performance, as we will
see later.

The dominant computational kernels for these iterative methods are:

1. Sparse matrix-vector product computations, that is the computation of Ap
and/or ATp, for vectors p that are generated by the algorithm.

2. A preconditioning step, that is either the computation of Mq, where M is an
approximation for A�1, or the solution of a system Kz = q, where K is an
approximation for A. See Section 5 for more information on this.

3. Vector updates (so-called (s)axpy's).

4. Inner products.

There is a current activity, called the BLAS Technical Forum, which
includes an attempt to standardize and provide model implementations

15

for the sparse BLAS, that includes both triangular solves with sparse
triangular matrices and sparse matrix-vector and sparse matrix-(dense)
matrix multiplication. This activity is described in the Web page
http://www.netlib.org/cgi-bin/checkout/blast/blast.pl from where current
versions of the standard can be obtained. A proposal for a User Level interface to
a set of sparse BLAS kernels speci�cally designed for use with iterative methods is
presented in [82].

For a distributed memory machine, at least some of the steps require
communication between processors: the accumulation of inner products and the
computation of the sparse matrix-vector products (the amount of communication
depending on the nonzero structure of the matrix and the distribution of the nonzero
entries over the processors).

Sparse matrix-vector products
We will �rst discuss parallel aspects of the sparse matrix-vector product
computation. In the early days of parallel computing when the architecture and
software were more primitive than today, the interconnection of the processors
was more visible to the programmer and it was very important to tune one's code
for the particular interconnect, particularly to avoid sending data over long paths
in the interconnection networks between processors. This caused a substantial
preoccupation with the distribution of the nonzero entries over the processors.
For instance, McBryan and van de Velde discuss the sparse matrix-vector product
computations on hypercube architectures [145]. Ortega ([159]:Chapter 3) discusses a
simple scheme for grid-oriented problems, based on domain decomposition. Radicati
and Vitaletti [166] investigated, amongst others, a generalization of the diagonal
representation of a matrix, that was suggested for regularly structured matrices by
Madsen, Rodrigue and Karush [142]. This compressed-diagonal representation led
to a good performance on parallel shared memory vector computers, in particular
the IBM 3090 VF computers. Pommerell [162] discusses the implementation of
sparse matrix-vector products for various data storage schemes and for various
multiprocessor architectures. He reports performances for irregular sparsity
patterns, using distribution heuristics suggested in [163], associated with matrices
from semiconductor device simulations. For �nite-element applications related to
CFD, Johan et al. [125, 126] report on a parallel implementation with minimal
communication overhead on the CM-5 computer. In this study, the emphasis was on
data parallel techniques for the sparse matrix-vector product. Bisseling and McColl
[32] have investigated the performance of two-dimensional matrix distributions in
the general-purpose framework of the bulk synchronous parallel model. They found
that good performance can only be achieved if the underlying physical structure of
the matrix is exploited. See also [181] for the partitioning of unstructured matrices
for parallel processing. Research on minimizing the number of messages, for the
matrix-vector product, and the lengths of the paths over which the messages are sent

16

http://www.netlib.org/cgi-bin/checkout/blast/blast.pl

have been reported in [45, 60]. In [61], it is shown that, if the matrices come from
discretized PDEs, the time for communication can almost completely be overlapped
with computational work. The distribution of the matrix over the processors is such
that there is only neighbour-neighbour communication, if carried out on a mesh-
connected parallel machine.

Access to main memory is a very serious issue, even for serial performance. In
fact, parallelism does sometimes alleviate the degradation in performance that is
observed for a single processor. If the number of processors is increased, then we
sometimes see a superlinear speedup. This is because more of the data can be
kept in the local memories (caches) of the processors. For much larger problems,
the required vectors usually cannot be kept entirely in fastest memory (cache or
registers). In that case, the vectors for each operation have to be transferred from
slower memory to the caches and because there is not enough computational work
to do, the speed of data transport from the slowest part of memory becomes the
dominating factor. Suggestions have been made to rearrange operations in iterative
algorithms to make Level 3 BLAS operations possible (be it to a very modest degree).
For Conjugate Gradients, the most well known approach is to combine a number of
s successive steps [46]. In this approach, the vectors fAr0, A

2r0, As�1r0g are
�rst all computed before any orthogonalization of the basis is performed. The main
problem is that the success of this approach depends critically on the eigenvalue
distribution of the matrix A, because it can lead to unstable computations, even for
modest values of s. This may explain why this approach has not become very popular
because the gain in performance does not necessarily compensate for the increased
instability (see also [175]). A similar approach, suggested by Chronopoulos and
Kim [47] for restarted processes such as GMRES(m), seems to be more e�ective,
mainly because the restarts prevent accumulated instability. The algorithm can
be made more robust by orthogonalization, in the ATA norm, of the direction
vectors within each s-block [49]. This permits values of s up to 16. They show,
by experiments on a CRAY C90, small performance improvements with respect to
a parallel implementation of regular GMRES. Li [138] proposes a variation on the
s-step GMRES method that performs better on processors with cache memory (even
in uniprocessor mode). His experiments also suggest a better behaviour with respect
to numerical stability.

A partial solution for the reduction of memory references is to combine the
updates for the approximate solution into one single block-vector update for a
number of successive iteration steps [197]. This does not a�ect the numerical
stability of the scheme. It can even be used to improve the accuracy of the iteration
method, especially if it is done for irregularly converging methods such as CGS, in
a way known as reliable updating [115, 184]. The main problem in this case is that
if large errors are introduced into the iterates xi (that are not usually computed
explicitly), they can swamp any meaningful information previously present in the
iterates, from which it is impossible to recover later (see, for instance, [107, Chapter

17

7.3]). In the reliable updating technique, corrections to the approximation are
not applied at each step but are grouped so that the resulting update is of more
comparable magnitude to the solution vector. Thus the disastrous consequences
of blips in the convergence process can be avoided. The decision on how to group
updates is based on monitoring the residual (which is normally computed at each
step) and the update is performed only when the residual vector has decreased
in norm since the previous group update. With certain precautions to preventing
groups being too large, this leads to very accurate approximate solutions.

A particularly favourable situation is when there are several right-hand sides for
which the system has to be solved. The Krylov subspace methods generate di�erent
subspaces for di�erent right-hand sides, but one can try to construct a slightly bigger
subspace that approximates the union of all the di�erent subspaces. This approach
is known as a Block method, see for instance [157, 158, 182]. From the point of
view of computational complexity, this is not very e�ective since the subspace is in
general not optimal for any of the systems separately but, for parallel processing
and for systems with limited fast local memory, many of the computations can be
logically combined. This may lead to better use of local data and less communication
overhead. If there are many more right-hand sides than processors, then it usually is
more e�cient to give each processor its own set of linear systems (if memory permits
the storage of all the required information).

Inner products
The emerging feeling is that, with adequate coding, the matrix-vector products do
not necessarily lead to serious performance-degrading communication problems on
modern parallel computers, not even for relatively small-sized problems. This is
not the case for the inner products. The common approach in Krylov subspace
iteration methods is to generate an orthogonal basis for the Krylov subspace and
then to consider the restriction of the given system Ax = b with respect to this
basis. Schematically, the computationally intensive part of these methods can be
represented as follows:

Let v1, : : :, vi�1 be the orthogonal basis at step i � 1, then vi is constructed, with
Modi�ed Gram-Schmidt, as:

t = Avi�1
for j = 1; : : : ; i� 1 do
t = t� (tT vj)vj

vi = t=ktk2

(4.1)

Inner products always act in a parallel environment as synchronization points
and require global communication. On distributed memory machines they form,
apart from the preconditioning, a major bottleneck. It is thus no surprise that this
aspect has received much attention in the literature. For the inner product, we
need global communication for both the reduction operation and for the broadcast

18

of the assembled inner product, because all processors need to know the result. For
a p � p processor grid (P = p� p), these communication costs are proportional to
p. This means that, for a constant length of vector segment per processor, these
communication costs will dominate when p is large enough. This is unlike the
situation for the matrix-vector product and may be a severely limiting factor in
achieving high speedups in a massively parallel environment, when n=P is only
modest, say a few hundred.

Of course, implementing an inner-product in parallel can lead to a di�erent
sequencing of the arithmetic operations in the inner product and thus, because of
�nite precision, could result in a di�erent value for the computed product. Since the
value could have an important bearing on the convergence of the iterative method,
concern has been expressed about this. We will not comment further other than to
remark that such a high sensitivity could well be a sign of poor conditioning of the
underlying problem.

We will �rst discuss this situation in more detail for the Conjugate Gradient
method. In the Conjugate Gradient method, the new basis vector has to be made
orthogonal to only the previous two basis vectors and this might lead one to expect
that the inner products are less of a problem for this method. In [54], it is shown
that, for matrices of order 90000P with only �ve nonzero entries per row, the
communication will dominate when the number of processors P is greater than
400 on a Parsytec GCel computer. Note that the order of the matrix scales with
the number of processors, but nevertheless the communication for the two inner
products will eventually dominate. The main problem is that the communication
for the two inner products cannot be combined, because the two inner products
cannot be executed immediately after each other.

Several authors ([46, 58, 86, 150, 151]) have attempted to reduce the number
of synchronization points (and to improve the computation to memory reference
ratio). The scheme of Meurant [150] is the prototype for these attempts: the two
separated inner products can be replaced by three consecutive inner products. They
can be computed in parallel and the communications can be combined. The iteration
parameters can be computed from these three inner products, although at the cost
of reduced numerical stability. In this scheme, the ratio between computations
and memory references is also better than for the standard scheme. A similar
scheme has been suggested by B�ucker and Sauren [36] for the BiCG and the QMR
method although they do not give any actual parallel performance results. The
numerical stability of these and other schemes is a point of serious concern, since
the restructured computations may lead to cancellation in the iteration parameters
of CG. See [57] for a discussion on the stability aspects of these GG schemes with
reduced synchronization.

In [65] another variant of CG was suggested, in which there is more possibility for
overlapping all of the communication time with useful computations. This variant is
nothing but a rescheduled version of the original CG scheme and is therefore equally

19

stable. The key trick in this approach is to delay the updating of the solution vector
by one iteration step. This creates a possibility for overlap, since the update does
not have to wait for the completion of the inner products. De Sturler [63] reports
some modest improvements (� 10%), using this approach for rather small systems
(order 10000) on a mesh-based Parsytec Supercluster (400 processors).

For stability reasons, the GMRES algorithm [177] is based upon the modi�ed
Gram-Schmidt orthogonalization scheme, described in (4.1), where clearly the
number of inner products per iteration step increases linearly, since the new basis
vector for the Krylov subspace has to be made orthogonal to all previous basis
vectors. In practical implementations, one often prefers to restart after each cycle
of m iterations (instead of increasing the value of m), and this is referred to as
GMRES(m). This then limits the maximum number of synchronization points and
the communication overhead (start-up time and the time for message passing) to m
on any one iteration. An alternative would be to compute �rst a suitable, but not
necessarily orthonormal, basis [48]:

fv1; f1(A)v1; : : : ; fm�1(A)v1g ; (4.2)

(the fi denote non-degenerate polynomials of degree i) and to orthogonalize the
ffi(A)v1g simultaneously. This o�ers more possibilities for parallelism. The notation
fi is used to indicate that the successive vectors are elements of Krylov subspaces
of increasing dimension. A suitable mechanism for creating such a basis is to use
the hij of a previous GMRES(m) cycle ([185, Section 6], see also [20]). Although
the resulting basis will not be orthogonal, it may still be a good basis since the
construction rules for the subspace may not have changed too much from the
previous sequence. The Gram-Schmidt orthogonalization can then be performed
on these basis vectors using Level 2 BLAS and the required communication can
be largely overlapped [61, 64]. The resulting entries for the new H matrix can
then be used for the next sequence of steps, as before. See [64] for an analysis
of the parallel performance of this approach and for illustrative experiments. The
remarkable result is that, in spite of the large number of inner products in GMRES,
we can obtain a more parallelizable code than for Conjugate Gradients although
CG has only two inner products per step. Vuik, van Nooijen, and Wesseling [204]
show that almost optimal scalability can be obtained for GMRES on a 128-processor
CRAY T3D, even with modi�ed Gram-Schmidt for the orthogonalization step, if one
uses a domain decomposition inspired partitioning for the evaluation of the inner
products, the matrix-vector product, and the preconditioning. The linear systems
came from CFD applications, and the number of unknowns was up to 65; 536 per
processor.

In recent years, so-called hybrid variants of Bi-CG have been proposed. The
most well-known variants are CGS [186], Bi-CGSTAB [200], and Bi-CGSTAB(`)
[114, 183, 185]. In these variants, the operations with AT have been replaced by
operations with A, and these operations are exploited in an attempt to construct

20

better approximations to the solution, as we discussed in bullet (e) near the
beginning of this section. The CGS method, which just replaces the AT product
by the same product with A, corresponds to applying the product of two Bi-CG
polynomials, but one has the freedom to use other polynomials for the replaced
AT operations. For example, if GMRES(1) iterations are used, we obtain the Bi-
CSTAB algorithm. The Bi-CGSTAB(`) methods can be seen as products of Bi-CG
and GMRES(`), that is the e�ect in the i � `-th iteration can be interpreted as
the combined e�ects of i � ` steps of Bi-CG and i times a GMRES process with `
iterations. These hybrid methods o�er better possibilities for parallelism, especially
on distributed memory computers. In these hybrid methods, the GMRES part
involves ` steps on top of every successive ` Bi-CG steps (in practice, ` � 4), and
the required basis can be generated in some convenient way (as in (4.2)), so that
the inner products for the orthogonalization can be computed simultaneously. Also
some of the vector updates can be combined which leads to fewer memory references.
For Bi-CGSTAB(`), this is discussed in more detail in [74, Section 8.2.11].

Discussion
We have the feeling that the e�orts for constructing more e�ective iterative methods
have come to a (temporary?) stop. The very large systems that one wants to
solve with parallel computers, usually have a special structure that can be exploited
to obtain an e�cient direct solution or, if that leads to too much �ll-in, have a
rather regular structure in the sense that for an iterative solver, the load balancing
per iteration is not any longer a serious point of concern. The main objective of
parallelization should always be to reduce wall-clock time and the approaches that
have been sketched in this section lead to marginal improvements when compared
with what an e�ective preconditioning can do. A good preconditioner may reduce
the CPU time by a large factor, whereas the approaches in this section lead to
modest percentages, especially for large problems (say n=P � 10000). Heise and
Jung [119] report on experiments on the Power Xplorer (16 processors), CG-Power
Plus (128 processors), Multicluster 2 (16 Transputers), and a Workstation cluster (8
SPARCs), that show very good scalability for preconditioned Conjugate Gradients
applied to a mixed FEM-BEM problem with 1; 514; 008 unknowns. Parallelism was
exploited in the matrix-vector product and a domain decomposition preconditioner;
the Conjugate Gradient method itself had not been modi�ed. More general
software packages for iterative methods also try to identify the parallelism in the
separate computational elements (matrix-vector products, inner products, axpy's,
and preconditioning steps), instead of reformulating the iterative schemes in the
ways that we have sketched above. For information on some of these packages we
refer to:

� AZTEC. For more information see:
http://www.cs.sandia.gov/HPCCIT/aztec.html

21

http://www.cs.sandia.gov/HPCCIT/aztec.html

� ITPACK. For the parallel implementation of this package see: [131].

� PARASOL. For more information see Section 6.

� PETSc. For more information see:
http://www.mcs.anl.gov/petsc/

� PIM. Information for this parallel software package can be obtained from:
ftp://unix.hensa.ac.uk/pub/misc/netlib/pim/

� PINEAPL. For more information see:
http://www.nag.co.uk/projects/PINEAPL/

� SPARSKIT and SPARSELIB. For more information see:
http://www/cs.umn.edu/�saad/

5 Parallel Preconditioning

There are many occasions and applications where iterative methods fail to converge
or converge very slowly. The usual remedy is to apply a preconditioner, that is
instead of Ax = b, one solves KAx = Kb or a spectrally equivalent system, for
example, AKy = b. The general problem of �nding an e�cient preconditioner, is to
identify a linear operator K (the preconditioner) with the properties that:

1. K is a good approximation to A in some sense.

2. The cost of the construction of K is not prohibitive.

3. The system Ky = z is much easier to solve than the original system.

By e�cient, we mean that the iteration method converges much faster, in terms of
CPU time, for the preconditioned system.

The choice of K varies from purely \black box" algebraic techniques which
can be applied to general matrices to \problem dependent" preconditioners which
exploit special features of a particular problem class. Although problem dependent
preconditioners can be very powerful, there is still a practical need for e�cient
preconditioning techniques for large classes of problems. We refer the reader to
[18, 41, 176] for further discussions on this. In this section, we will not go in
details about preconditioning but rather give a sketch of important ideas for the
construction of parallel preconditioners. For more details on implementation for
high performance computers, see [74].

Originally, preconditioners were based on direct solution methods in which part
of the computation is skipped. This leads to the notion of Incomplete LU (or ILU)
factorization [18, 149, 176], The incomplete factors eL and eU de�ne the preconditioner
K = (eL eU)�1. In the context of an iterative solver, this means that we have to

22

http://www.mcs.anl.gov/petsc/
http://www.nag.co.uk/projects/PINEAPL/
http://www/cs.umn.edu/~saad/

evaluate expressions like z = (eL eU)�1y for any given vector y. This is done in two
steps: �rst obtain w from the solution of eLw = y and then compute z from eUz = w.
Straightforward implementation of these processes leads to recursions, for which
vector and parallel computers are not ideally suited. This sort of observation has
led to reformulations of the preconditioner, for example, with reordering techniques
or with blocking techniques. It has also led to di�erent types of preconditioners,
including diagonal scaling, polynomial preconditioning, and truncated Neumann
series. These approaches may be useful in certain circumstances, but they tend to
increase the computational complexity, because they often require more iteration
steps or make each iteration step more expensive. Diagonal scaling can be done
explicitly, without any further complications for parallel processing. This can be
done before and in addition to the construction of another preconditioning.

Changing the Order of Computation
In some situations, it is possible to change the order of the computations without
changing the results. A prime example is the ILU preconditioner for the 5-point
�nite-di�erence operator over a rectangular m by m grid. Suppose that we have
indexed the unknowns according to their positions in the grid, lexicographically as
x1;1, x1;2, : : :, x1;m, x2;1, : : :, xm;m. Then, for the standard ILU(0) preconditioner,
in which all �ll-ins are discarded, it is easily veri�ed that the computations for the
unknowns xi;j can be done independently of each other along diagonals of the grid
(grid points for which the sum of the indices is constant). This leads to vector
code but, because there is only independence along each diagonal, the parallelism
is too �ne-grained. In three-dimensional problems, there are more possibilities for
obtaining vectorizable or parallel code. For the standard 7-point �nite-di�erence
approximation of elliptic PDEs over a regular rectangular grid, the equivalent of
the diagonal in two dimensions is known as the hyperplane: a set of grid points for
which the sum of the three indices is constant. It was reported in [179, 199] that
this approach can lead to satisfactory performance on vector computers. For the
CM-5 computer, a similar approach was developed in [30]. The obvious extension
of hyperplanes (or diagonals) to irregular sparse matrices, de�nes the wavefront
ordering, discussed in [166]. The success of a wavefront ordering depends very
much on how well a given computer can handle indirect addressing. In general, the
straightforward wavefront ordering approach gives too little opportunity for e�cient
parallelization.

Vuik, van Nooyen and Wesseling [204], generalize the wavefront approach to
a block wavefront approach, using ideas that were originally proposed for parallel
multigrid in [24]. They present results of experiments on a 128-processor CRAY
3TD. Van Duin [202, Chapter 3], uses graph concepts for the detection of parallelism.
He attempts to identify strongly connected components for which independent ILU
factorizations can be made. A drop tolerance strategy is used to create a large
enough number of such components. This leads to the concept of MuliILU.

23

Reordering the Unknowns
A standard trick for exploiting parallelism is to select all unknowns that have no
direct relationship with each other and to number them �rst. We discussed an
algorithm of this kind when considering cyclic reduction of tridiagonal systems in
Section 3. For the 5-point �nite-di�erence discretization over rectangular grids, this
approach is known as a red-black ordering. For elliptic PDEs, this leads to very
parallel preconditioners. The performance of the preconditioning step is as high
as the performance of the matrix-vector product. However, changing the order of
the unknowns leads in general to a di�erent preconditioner. Du� and Meurant [83]
report on experiments that show that most reordering schemes (for example, the
red-black ordering) lead to a considerable increase in iteration steps (and hence in
computing time) compared with the standard lexicographical ordering. For the red-
black ordering associated with the discretized Poisson equation, it can be shown
that the condition number of the preconditioned system is only about one quarter
that of the unpreconditioned system for ILU, MILU and SSOR, with no asymptotic
improvement as the grid size h tends to zero [134].

One way to obtain a better balance between parallelism and fast convergence, is
to use more colours [68]. In principle, since there is not necessarily any independence
between di�erent colours, using more colours decreases the parallelism but increases
the global dependence and hence the convergence. In [69], up to 75 colours are used
for a 762 grid on the NEC SX-3/14 resulting in a 2 G
op/s performance, which is
much better than for the wavefront ordering. With this large number of colours the
speed of convergence for the preconditioned process is virtually the same as with a
lexicographical ordering [68].

The concept of multi-colouring has been generalized to unstructured problems by
Jones and Plassmann [128]. They propose e�ective heuristics for the identi�cation
of large independent subblocks of a given matrix. For problems large enough to get
su�cient parallelism in these subblocks, their approach leads to impressive speedups
compared to the natural ordering on a single processor.

Meier and Sameh [148] report on the parallelization of the preconditioned CG
algorithm for a multivector processor with a hierarchical memory (for example the
Alliant FX series). Their approach is based on a red-black ordering in combination
with forming a reduced system (Schur complement).

Another approach, suggested by Meurant [151], exploits the idea of the two-
sided (or twisted) Gaussian elimination procedure for tridiagonal matrices that we
discussed in Section 4. This is generalized for the incomplete factorization. Van
der Vorst [198] has shown how this procedure can be done in a nested way. For 3D
�nite-di�erence problems, twisting can be used for each dimension, which gives an
increase in parallelism by a factor of two per dimension. This leads, without further
computational overhead, to incomplete decompositions, as well as triangular solves,
that can be done in eight parallel parts (2 in each dimension).

24

Meurant [152] reports on timing results obtained on a CRAY Y-MP/832, using
an incomplete repeated twisted block factorization for two-dimensional problems.
For this approach for preconditioned CG, Meurant reports a speedup of nearly 6 on
an 8-processor CRAY Y-MP. This speedup has been measured relative to the same
repeated twisted factorization process executed on a single processor. Meurant also
reports an increase in the number of iteration steps as a result of this repeated
twisting. This increase implies that the e�ective speedup with respect to the best
non-parallel code is only about 4.

Element by Element Preconditioners
In �nite-element problems, it is not always possible or sensible to assemble the entire
matrix, and it is as easy to form products of the matrix with vectors as when it is held
in assembled form. Furthermore it is easy to distribute such matrix multiplications
to exploit parallelism. Hence preconditioners are required that can be constructed
at the element level. Hughes et al. [124] were the �rst to propose such element by
element preconditioners.

A parallel variant is suggested in [112]. For symmetric positive-de�nite A, they
decompose each element matrix Ae as Ae = LeL

T
e , and construct the preconditioner

as K = LLT , with

L =
neX
e=1

Le:

In this approach, non-adjacent elements can be treated in parallel. An overview and
discussion of parallel element by element preconditioners is given in [203]. To our
knowledge, the e�ectiveness of element by element preconditioners is limited, in the
sense that it does not often give a substantial improvement of the CPU time.

Polynomial Preconditioning
The main motivation for considering polynomial preconditioning is to improve the
parallel performance of the solver, since the matrix-vector product is often more
parallelizable than other parts of the solver (for instance the inner products). By
doing so, all implementation tricks for the matrix-vector product can easily be
exploited. The main problem is to �nd e�ective low degree polynomials pk(A),
so that the iterative solver can be applied to pk(A)Ax = pk(A)b. With m steps of a
Krylov solver, this leads to a Krylov subspace

Km(pk(A)A; r0) = span(r0; pk(A)Ar0; : : : ; (pk(A)A)
m�1r0);

and this is a subspace of the Krylov subspace K(k+1)(m�1)+1(A; r0). The point is,
that we have arrived in a high dimensional subspace (with \holes"), for the overhead
costs of only m iteration steps. The hope is that for clever choices of pk, this high
dimensional subspace, with holes, will contain almost the same good approximation
to the solution as the full Krylov subspace. If so, then we have saved ourselves all

25

the overhead associated with the (k + 1)(m� 1) iteration steps, that are needed to
create the full subspace.

A big problem with polynomial preconditioning is that the aforementioned
\holes" can cause one to miss important directions and so often many more iterations
are required. Thus this form of preconditioning is usually only bene�cial on a
platform where inner products are expensive and for methods rich in inner products,
like GMRES.

One approach for obtaining a polynomial preconditioner, reported in [76], is to
use the low order terms of a Neumann expansion of (I �B)�1, if A can be written
as A = I � B and the spectral radius of B is less than 1. It was suggested in [76]
to use a matrix splitting A = K �N and a truncated power series for K�1N when
the condition on B is not satis�ed. More general polynomial preconditioners have
also been proposed (see, for example, [14, 127, 174]). These polynomials are usually
shifted Chebyshev polynomials over intervals that are estimated from the iteration
parameters of a few steps of the unpreconditioned solver, or from other spectral
information.

Sparse Approximate Inverse (SPAI)
The main reason why explicit inverses are not used is that, for irreducible matrices,
the inverse will always be structurally dense. That is to say, sparse factorization
techniques will produce a dense matrix even if some of its entries are actually
zero [79]. However, this need not be a problem if we follow the
avour of ILU
factorizations and compute and use a sparse approximation to the inverse. Perhaps
the most obvious technique for this is to solve the problem1

min
K
jjI � AKjjF ; (5.1)

where K has some fully or partially prescribed sparsity structure. This problem can
be expressed as n independent least-squares problems for each of the n columns of
K. Each of these least-squares problems only involves a few variables and, because
they are independent, they can be solved in parallel. With these techniques it
is possible to successively increase the density of the approximation to reduce the
value of (5.1) and so, in principle, ensure convergence of the preconditioned iterative
method [53]. The small least-squares subproblems can be solved by standard (dense)
QR factorizations [53, 106, 109]. In a further attempt to increase sparsity and reduce
the computational cost of the solution of the subproblems, it has been suggested to
use a few steps of GMRES to solve the subsystems [44]. A recent study indicates
that the computed approximate inverse may be a good alternative to ILU [106],
but it is much more expensive to compute both in terms of time and storage, at
least if computed sequentially. This means that it is normally only attractive to
use this technique if the computational costs for the construction can be amortized

1We recall that k kF denotes the Frobenius norm of a matrix, viz. kAkF �
qP

i;j a
2

i;j .

26

by using the preconditioner for several right-hand sides. One other problem with
these approaches is that, although the residual for the approximation of a column
of K can be controlled (albeit perhaps at the cost of a rather dense column in
K), the nonsingularity of the matrix K is not guaranteed. Partly to avoid this, an
approach that approximates the triangular factors of the inverse has been proposed
[132]. The nonsingularity of the factors can be easily controlled and, if necessary,
the sparsity pattern of the factors may also be controlled. Following this approach,
sparse approximations to an A-biconjugate set of vectors using drop tolerances can
be generated [25, 28]. In a scalar or vector environment, it is also much cheaper
to generate the factors in this way than to solve the least-squares problems for the
columns of the approximate inverse [27]. Van Duin [202, Chapter 5] shows how
to compute (sparsi�ed) inverses for incomplete Cholesky factors and Zhang [209]
has developed a parallel preconditioning using incomplete triangular factors of the
inverse.

Although almost every paper on approximate inverse preconditioners states that
the authors are working on a parallel implementation, it is only quite recently
that papers on this have appeared [21, 22, 26]. For highly structured matrices,
some experiences have been reported in [108]. Gustafsson and Lindskog [113] have
implemented a fully parallel preconditioner based on truncated Neumann expansions
[196] to approximate the inverse SSOR factors of the matrix. Their experiments (on
a CM-200) show a worthwhile improvement over a simple diagonal scaling.

Note that, because the inverse of the inverse of a sparse matrix is sparse, there
are classes of dense matrices for which a sparse approximate inverse might be a
very appropriate preconditioner. This may be the case for matrices that arise from
problems in electromagnetism [2]. For some classes of problems, it may be attractive
to construct the explicit inverses of the LU factors, even if these are considerably less
sparse than the factors L and U , because such a factorization can be more e�cient
in parallel [5]. An incomplete form of this factorization for use as a preconditioner
was proposed in [3].

Preconditioning by Blocks or Domains
Other preconditioners that use direct methods, are those where the direct method,
or an incomplete version of it, is used to solve a subproblem of the original problem.
This can be done in domain decomposition, where problems on subdomains can be
solved by a direct method but the interaction between the subproblems is handled
by an iterative technique.

Domain decomposition methods were motivated by parallel computing, but it
now appears that the approach can also be used with success for the construction
of global preconditioners. This is usually done for linear systems that arise from the
discretization of a PDE. The idea is to split the given domain into subdomains, and
to compute an approximation for the solution on each subdomain. If all connections
between subdomains are ignored, this then leads to a Block Jacobi preconditioner.

27

Chan and Goovaerts [40] showed that the domain decomposition approach can
actually lead to improved convergence rates, at least when the number of subdomains
is not too large. This is because of the well-known divide and conquer e�ect when
applied to methods with superlinear complexity such as ILU: it is more e�cient to
apply such methods to smaller problems and piece the global solution together.

In many cases the preconditioner can be made more successful by coupling the
domains, that by �nding proper boundary conditions along the interior boundaries
of the subdomains. From a linear algebra point of view, this amounts to adapting
the diagonal blocks in order to compensate for the neglected o�-diagonal blocks.
This is only successful if the matrix comes from a PDE problem and if certain
smoothness conditions on the solution are assumed. If, for instance, the solution
were constant, then one could remove the o�-diagonal block entries adding them
to the diagonal block entries without changing the solution (similar to the case
we discussed in the Section 3). Likewise, if the solution is assumed to be fairly
smooth along a domain interface, one might expect this technique of diagonal block
correction to be e�ective. Domain decomposition is used in an iterative fashion and
usually the interior boundary conditions (in matrix language: the corrections to
diagonal blocks) are based upon information from the approximate solutions on the
neighbouring subdomains that are available from a previous iteration step.

Tan [193] studied the interface conditions along boundaries of subdomains and
forced continuity for the solution and some low order derivatives at the interface.
He also proposed including mixed derivatives in these relations, in addition to
the conventional tangential and normal derivatives. The parameters involved are
determined locally by means of normal mode analysis, and they are adapted to the
discretized problem. It is shown that the resulting domain decomposition method
de�nes a standard iterative method for some splitting A = K � N , and the local
coupling aims to minimize the largest eigenvalues of I � AK�1. Of course this
method can be accelerated and impressive results for GMRES acceleration are shown
in [193]. Some attention is paid to the case where the solutions for the subdomains
are obtained with only modest accuracy per iteration step.

Recently, Washio and Hayami [206] employed a domain decomposition approach
for a rectangular grid in which one step of SSOR is performed for the interior part
of each subdomain. In order to make this domain-decoupled SSOR more like global
SSOR, the SSOR iteration matrix for each subdomain is modi�ed. In order to further
improve the parallel performance, the inverses in these expressions are approximated
by low-order truncated Neumann series. A similar approach is suggested in [206] for
a block modi�ed ILU preconditioner. Experimental results have been reported for
a 32-processor NEC Cenju distributed memory computer.

Radicati and Robert [165] used an algebraic version of this approach by
computing ILU factors within overlapping block diagonals of a given matrix A.
When applying the preconditioner to a vector v, the values on the overlapped
region are taken as the average of the two values computed by the overlapping

28

ILU factors. The approach of Radicati and Robert has been further re�ned by de
Sturler [62], who studies the e�ects of overlap from the point of view of geometric
domain decomposition. He introduces arti�cial mixed boundary conditions on the
internal boundaries of the subdomains. In [62] (Table 5.8), experimental results
are shown for a decomposition into 20�20 slightly overlapping subdomains of
a 200�400 mesh for a discretized convection-di�usion equation (5-point stencil).
Using a twisted ILU preconditioning on each subdomain, it is shown that the
complete linear system can be solved by GMRES on a 400-processor distributed
memory Parsytec system with an e�ciency of about 80% (this means that, with
this domain adapted preconditioner, the process is about 320 times faster than ILU
preconditioned GMRES for the unpartitioned linear system on a single processor).
Since twisting leads to more parallelism, one can use bigger blocks (which usually
means a better approximation). This helps to explain the good results.

Haase [116] suggests constructing an incomplete Cholesky decomposition on each
subdomain and modifying the decomposition using information from neighbouring
subdomains. His results, for the discretized Poisson equation in 3D, show that
an increase in the number of domains scarcely a�ects the e�ectiveness of the
preconditioner. Experimental results for a realistic �nite-element model, on a 16-
processor Parsytec Xplorer, show very good scalability of the Conjugate Gradient
method with this preconditioner.

Heisse and Jung [119] attempt to improve the e�ectiveness of a domain
decomposition preconditioner by using a multigrid V-cycle with only one pre-
and one post-smoothing step of a parallel variant of Gauss-Seidel type to solve
a coarse grid approximation to the problem. With the usual domain decomposition
technique, e�ects of local changes in a domain that lead to global changes in the
solution travel only to neighbouring domains at each iteration. The coarse grid
corrections are used to get this globally relevant information more quickly to all
domains. The combination with Conjugate Gradients, which is the underlying
method used for the local subproblems, leads to good results on a variety of
platforms, including a 64-processor GC Power Plus machine.

For general systems, one could apply a block Jacobi preconditioning to the
normal equations which would result in the block Cimmino algorithm [13]. A similar
relationship exists between a block SOR preconditioning and the block Kaczmarz
algorithm [35]. Block preconditioning for symmetric systems is discussed in [50]; in
[51] incomplete factorizations are used within the diagonal blocks. Attempts have
been made to preorder matrices to put large entries into the diagonal blocks so that
the inverse of the matrix is well approximated by the block diagonal matrix whose
block entries are the inverses of the diagonal blocks [43]. In fact, it is possible to
have a signi�cant e�ect on the convergence of these methods just by permuting
the matrix to put large entries on the diagonal and then scaling it to reduce the
magnitude of o�-diagonal entries [81].

29

Discussion
The history of parallel preconditioners is one with ups and downs. It is very di�cult
to construct e�cient preconditioners for a given class of problems and even more so if
they also have to be parallel. Initially, the attempts for parallelism were focussed on
minimal changes to existing e�ective preconditioners (like ILU), or to exploiting the
matrix A itself (polynomial preconditioners). These attempts have sometimes led
to preconditioners that could be vectorized (hyperplane, etc), but for parallelism
they are too �ne grained. Polynomial preconditioning reduces the proportion of
inner product and vector operations but at the penalty of increasing the number of
iterations. It is thus usually only useful for overhead rich methods like GMRES
on platforms where operations like inner products are relatively expensive with
respect to the matrix-vector product. More recently there has been a shift of focus
towards methods that o�er more coarse-grained parallelism: domain decomposition
methods and sparse approximate inverses. Despite some partial success, the sparse
approximate inverses are still in their infancy. The domain decomposition techniques
have proven to be successful for large classes of PDE related problems.

6 Current and future trends

In the previous sections of this paper, we have included a �nal subsection with
some general comments and discussion on overall trends and pointers for what we
believe are likely to be future directions. In this short �nal section, we attempt to
summarize these and give our view on the main past trends and future directions
for the parallel solution of sparse linear equations.

A clear trend that we have observed is from �ne-grained to coarse-grained
parallelism. On top of the line parallel vector supercomputers, for example on
machines from CRAY, NEC, and Fujitsu, one strives for a combination, because of
the vector-processing capabilities of the processors. The rule of thumb is that the
amount of computation per parallel task should be large relative to the amount of
data transport necessary for that task, so that data distribution costs are amortized.
One main tool for this is the use of Level 3 BLAS. This use is well established for
the solution of dense systems although the best way to incorporate these in sparse
solution is still a matter for discussion.

The routing between processors has become less of problem for the numerical
analyst (in the sense that less attention has to be paid to this aspect in the design of
algorithms). The use of caches and hierarchical memory coupled with improved
compiler software has meant that communication costs can be reduced so that
operations like the inner product are no longer necessarily a severe bottleneck on
modern architectures. Distribution of data is still a problem, especially since now
there is a trend towards larger units of computation, and it is a problem to achieve a
proper load balance for sparse matrix computations. Recently, there has been a lot
of e�ort in the dynamic identi�cation of parallel tasks that can be executed without

30

too much data redistribution. This is in particular the case for direct techniques and
for methods mixing iterative and direct techniques. This mixing of these techniques
is a trend that has become more important in recent years. Of course, incomplete
decompositions may be viewed as a bridge between direct and iterative methods,
but the connection is now getting much deeper. For instance, direct methods are
used unless the Schur complements require too much computation, or have too little
parallelism, whence iterative schemes are considered for completing the solution.
Another trend is to nest iterative methods, as can be seen in methods like Bi-
CGSTAB(`), or even more in methods such as FGMRES and GMRESR that allow
GMRES to be combined with virtually any other method. This can be exploited to
get more parallelism.

A major concern is that the parallel performance of iterative codes lags behind
that for direct-sparse and direct-dense codes, more or less in the ratio 1:5:10. This
leads to more interest in situations where block techniques are obviously applicable,
for instance when one has multiple right-hand sides. The changes to be made to
the algorithms are not always obvious although the goal is usually to identify large
enough Level 3 BLAS kernels.

Improvement to the preconditioners seems to be potentially the most rewarding
and active research area, far more than trying to improve the performance of the
iterative method. If blocking for multiple right-hand sides is not possible, then
performance improvements for iterative methods seem to be limited to modest
percentages, whereas a good preconditioner can reduce the CPU-time by a signi�cant
factor.

An example of a current project which combines many aspects of these trends
is the PARASOL Project where new techniques in direct and iterative techniques
are being combined with novel combinations and preconditionings within the
framework of a single Library. PARASOL is an ESPRIT IV Long Term Research
Project (No 20160) for \An Integrated Environment for Parallel Sparse Matrix
Solvers". The main goal of this Project, which started on January 1 1996, is to
build and test a portable library for solving large sparse systems of equations on
distributed memory systems. There are twelve partners in �ve countries, �ve of
whom are code developers, �ve end users, and two software houses. The software
is written in Fortran 90 and uses MPI for message passing. The solvers being
developed in this consortium are: two domain decomposition codes by Bergen
and ONERA, a multigrid code by GMD, and a parallel multifrontal method
(called MUMPS) by CERFACS and RAL. The �nal library will be in the public
domain. For more information on the PARASOL project, see the web site at
http://www.genias.de/parasol.

31

http://www.genias.de/parasol

Acknowledgments
We are grateful to Rob Bisseling, Wim Bomhof, Val�erie Frayss�e, Luc Giraud, Karl
Meerbergen, and Denis Trystram for comments on an earlier version of the text.

References

[1] G. Alaghband. Parallel sparse matrix solution and performance. Parallel
Computing, 21(9):1407{1430, 1995.

[2] G. All�eon, M. Benzi, and L. Giraud. Sparse approximate inverse
preconditioning for dense linear systems arising in computational
electromagnetics. Numerical Algorithms, 16(1):1{15, 1997.

[3] F. L. Alvarado and H. Da~g. Incomplete partitioned inverse preconditioners.
Technical report, Department of Electrical and Computer Engineering,
University of Wisconsin, Madison, 1994.

[4] F. L. Alvarado, A. Pothen, and R. Schreiber. Highly parallel sparse triangular
solution. In Alan George, J. R. Gilbert, and J. W. H. Liu, editors, Graph
Theory and Sparse Matrix Computation. Springer-Verlag, 1993.

[5] F. L. Alvarado and R. Schreiber. Optimal parallel solution of sparse triangular
systems. SIAM J. Scienti�c Computing, 14:446{460, 1993.

[6] F. L. Alvarado, D. C. Yu, and R. Betancourt. Partitioned sparse A�1 methods.
IEEE Trans. Power Systems, 3:452{459, 1990.

[7] P. R. Amestoy. Factorization of large sparse matrices based on a multifrontal
approach in a multiprocessor environment. INPT PhD Thesis TH/PA/91/2,
CERFACS, Toulouse, France, 1991.

[8] P. R. Amestoy and I. S. Du�. Vectorization of a multiprocessor multifrontal
code. Int. J. of Supercomputer Applics., 3:41{59, 1989.

[9] P. R. Amestoy, I. S. Du�, and J.-Y. L'Excellent. Multifrontal solvers within
the PARASOL environment. In B. K�agstr�om, J. Dongarra, E. Elmroth, and
J. Wa�sniewski, editors, Applied Parallel Computing, PARA'98, Lecture Notes
in Computer Science, No. 1541, pages 7{11, Berlin, 1998. Springer-Verlag.

[10] P. R. Amestoy, I. S. Du�, and C. Puglisi. Multifrontal QR factorization in
a multiprocessor environment. Numerical Linear Algebra with Applications,
3(4):275{300, 1996.

[11] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users' Guide, second edition. SIAM Press, 1995.

32

[12] E. C. Anderson and Y. Saad. Solving sparse triangular systems on parallel
computers. Int J. High Speed Computing, 1:73{95, 1989.

[13] M. Arioli, I. S. Du�, J. Noailles, and D. Ruiz. A block projection method
for sparse matrices. SIAM J. Scienti�c and Statistical Computing, 13:47{70,
1992.

[14] S. F. Ashby. Minimax polynomial preconditioning for Hermitian linear
systems. SIAM J. Matrix Analysis and Applications, 12:766{789, 1991.

[15] C. Ashcraft, S. C. Eisenstat, and J. W. H. Liu. A fan-in algorithm for
distributed sparse numerical factorization. SIAM J. Scienti�c and Statistical
Computing, 11:593{599, 1990.

[16] C. Ashcraft, S. C. Eisenstat, J. W. H. Liu, and A. H. Sherman. A comparison
on three column-based distributed sparse factorization schemes. Technical
Report CS-90-09, Department of Computer Science, York University, York,
Ontario, Canada, 1990.

[17] C. Ashcraft and J. W. H. Liu. Robust ordering of sparse matrices using
multisection. Technical Report ISSTECH-96-002, Boeing Information and
Support Services, Seattle, 1996. Also Report CS-96-01, Department of
Computer Science, York University, Ontario, Canada.

[18] O. Axelsson. Iterative Solution Methods. Cambridge University Press,
Cambridge, 1994.

[19] I. Babuska. Numerical stability in problems of linear algebra. SIAM J.
Numerical Analysis, 9:53{77, 1972.

[20] Z. Bai, D. Hu, and L. Reichel. A Newton basis GMRES implementation. IMA
J. Numer. Anal., 14:563{581, 1991.

[21] S. T. Barnard, L. M. Bernardo, and H. D. Simon. An MPI implementation of
the SPAI preconditioner on the T3E. Technical Report LBNL-40794 UC405,
Lawrence Berkeley National Laboratory, 1997.

[22] S. T. Barnard and R. L. Clay. A portable MPI implementation of the SPAI
preconditioner in ISIS++. In Michael Heath, Virginia Torczon, Greg Astfalk,
Petter E. Bj�orstad, Alan H. Karp, Charles H. Koebel, V. Kumar, R. F. Lucas,
Layne T. Watson, and David E. Womble, editors, Proceedings of the Eighth
SIAM Conference on Parallel Processing for Scienti�c Computing, pages xxx{
yyy. SIAM Press, 1997.

[23] S. T. Barnard, A. Pothen, and H. Simon. A spectral algorithm for envelope
reduction of sparse matrices. Numerical Linear Algebra with Applications,
2(4):317{334, 1995.

33

[24] P. Bastian and G. Horton. Parallelization of robust multigrid methods: ILU
factorization and frequency decomposition method. SIAM J. Scienti�c and
Statistical Computing, 6:1457{1470, 1991.

[25] M. Benzi, C. D. Meyer, and M. T�uma. A sparse approximate inverse
preconditioner for the conjugate gradient method. SIAM J. Scienti�c
Computing, 17:1135{1149, 1996.

[26] M. Benzi, C. D. Meyer, and M. T�uma. A two-level parallel preconditioner
based on sparse approximate inverses. In D. R. Kincaid et al, editor, Iterative
Methods in Scienti�c Computing, pages 1{11. IMACS, 1999.

[27] M. Benzi and M. T�uma. Numerical experiments with two sparse approximate
inverse preconditioners. BIT, 38:234{241, 1998.

[28] M. Benzi and M. T�uma. A sparse approximate inverse preconditioner for
nonsymmetric linear systems. SIAM J. Scienti�c Computing, 19(3):968{994,
1998.

[29] A. Berger, J. Mulvey, E. Rothberg, and R. Vanderbei. Solving multistage
stochastic programs using tree dissection. Technical Report SOR-97-
07, Programs in Statistics and Operations Research, Princeton University,
Princeton, New Jersey, 1995.

[30] H. Berryman, J. Saltz, W. Gropp, and R. Mirchandaney. Krylov methods
preconditioned with incompletely factored matrices on the CM-2. J. Par.
Dist. Comp., 8:186{190, 1990.

[31] R. H. Bisseling, T. M. Loup, and L. D. J. C. Loyens. A parallel Interior
Point algorithm for linear programming on a network of transputers. Annals
of Operations Research, 43:51{86, 1993.

[32] R. H. Bisseling and W. F. McColl. Scienti�c computing on Bulk Synchronous
Parallel architectures. In B. Pehrson and I. Simon, editors, Technology and
Foundations: Information Processing '94, Vol. I, IFIP Transactions A, Volume
51, pages 509{514, Amsterdam, 1994. Elsevier Science Publishers.

[33] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK Users' Guide. SIAM Press, 1997.

[34] S. Bondeli. Divide and Conquer: parallele Algorithmen zur L�osing
tridiagonaler Gleichungssysteme. PhD thesis, ETH Z�urich, Z�urich, 1991.

[35] R. Bramley and A. Sameh. Row projection methods for large nonsymmetric
linear systems. SIAM J. Scienti�c and Statistical Computing, 13:168{193,
1992.

34

[36] H. M. B�ucker and M. Sauren. A parallel version of the unsymmetric Lanczos
algorithm and its application to QMR. Technical Report KFA-ZAM-IB-9605,
Forschungszentrum J�ulich Gmbh, J�ulich, Germany, 1996.

[37] B. L. Buzbee, G. H. Golub, and C W. Nielson. On direct methods for solving
Poisson's equations. SIAM J. Numerical Analysis, 7:627{656, 1970.

[38] D. A. Calahan. Parallel solution of sparse simultaneous linear equations. In
Proceedings 11th Annual Allerton Conference on Circuits and System Theory,
University of Illinois, pages 729{735, 1973.

[39] T. F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, and C. H. Tong. A
quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric
systems. SIAM J. Scienti�c Computing, 15:338{347, 1994.

[40] T. F. Chan and D. Goovaerts. A note on the e�ciency of domain decomposed
incomplete factorizations. SIAM J. Scienti�c and Statistical Computing,
11:794{803, 1990.

[41] T. F. Chan and H. A. van der Vorst. Approximate and incomplete
factorizations. In D. E. Keyes, A. Sameh, and V. Venkatakrishnan, editors,
Parallel Numerical Algorithms, ICASE/LaRC Interdisciplinary Series in
Science and Engineering, pages 167{202. Kluwer, Dordrecht, 1997.

[42] S. C. Chen, D. J. Kuck, and A. H. Sameh. Practical parallel band triangular
system solvers. ACM Trans. Math. Softw., 4:270{277, 1978.

[43] H. Choi and D. B. Szyld. Threshold ordering for preconditioning nonsymmetric
problems with highly varying coe�cients. Technical Report 96-51, Department
of Mathematics, Temple University, Philadelphia, 1996.

[44] E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse
iterations. SIAM J. Scienti�c Computing, 19:995{1023, 1998.

[45] A. T. Chronopoulos. Towards e�cient parallel implementation of the
CG method applied to a class of block tridiagonal linear systems. In
Supercomputing '91, pages 578{587, Los Alamitos, CA, 1991. IEEE Computer
Society Press.

[46] A. T. Chronopoulos and C. W. Gear. s-Step iterative methods for symmetric
linear systems. J. Comp. and Appl. Math., 25:153{168, 1989.

[47] A. T. Chronopoulos and S. K. Kim. s-Step Orthomin and GMRES
implemented on parallel computers. Technical Report 90/43R, UMSI,
Minneapolis, 1990.

35

[48] A. T. Chronopoulos and S. K. Kim. Towards e�cient parallel implementation
of Krylov subspace iterative methods. Supercomputer, 47:4{17, 1992.

[49] A. T. Chronopoulos and C. D. Swanson. Parallel iterative S-step methods for
unsymmetric linear systems. Parallel Computing, 22:623{641, 1996.

[50] P. Concus, G. H. Golub, and G. Meurant. Block preconditioning for the
conjugate gradient method. SIAM J. Scienti�c and Statistical Computing,
6:220{252, 1985.

[51] P. Concus and G. Meurant. On computing INV block preconditionings for the
conjugate gradient method. BIT, pages 493{504, 1986.

[52] J. M. Conroy, S. G. Kratzer, and R. F. Lucas. Data-parallel sparse matrix
factorization. In J. G. Lewis, editor, Proceedings 5th SIAM Conference on
Linear Algebra, pages 377{381, Philadelphia, 1994. SIAM Press.

[53] J. D. F. Cosgrove, J. C. Diaz, and A. Griewank. Approximate inverse
preconditionings for sparse linear systems. Int. J. Computer Math., 44:91{
110, 1992.

[54] L. Crone and H. van der Vorst. Communication aspects of the conjugate
gradient method on distributed-memory machines. Supercomputer, X(6):4{9,
1993.

[55] T. A. Davis and I. S. Du�. An unsymmetric-pattern multifrontal method
for sparse LU factorization. SIAM J. Matrix Analysis and Applications,
18(1):140{158, 1997.

[56] T. A. Davis and P. C. Yew. A nondeterministic parallel algorithm for
general unsymmetric sparse LU factorization. SIAM J. Matrix Analysis and
Applications, 11:383{402, 1990.

[57] E. F. D'Azevedo, V. Eijkhout, and C. Romine. LAPACK working note
56: Reducing communication costs in the conjugate gradient algorithm on
distributed memory multiprocessor. Technical report, Computer Science
Department, University of Knoxville, Knoxville, TN, 1993.

[58] E. F. D'Azevedo and C. Romine. Reducing communication costs in
the conjugate gradient algorithm on distributed memory multiprocessors.
Technical Report ORNL/TM-12192, Oak Ridge National Lab, Oak Ridge,
TN, 1992.

[59] P. P. N. de Groen. Base p-cyclic reduction for tridiagonal systems of equations.
Applied Numerical Mathematics, 8:117{126, 1991.

36

[60] J. De Keyser and D. Roose. Distributed mapping of SPMD programs with a
generalized Kernighan-Lin heuristic. In W. Gentzsch and U. Harms, editors,
High-Performance Computing and Networking, Lecture Notes in Computer
Science 797, pages 227{232, Berlin, 1994. Springer-Verlag.

[61] E. de Sturler. A parallel restructured version of GMRES(m). Technical Report
91-85, Delft University of Technology, Delft, 1991.

[62] E. de Sturler. Iterative methods on distributed memory computers. PhD thesis,
Delft University of Technology, Delft, the Netherlands, 1994.

[63] E. de Sturler. A performance model for Krylov subspace methods on mesh-
based parallel computers. Parallel Computing, 22:57{74, 1996.

[64] E. de Sturler and H. A. van der Vorst. Reducing the e�ect of global
communication in GMRES(m) and CG on parallel distributed memory
computers. Applied Numerical Mathematics, 18:441{459, 1995.

[65] J. W. Demmel, M. T. Heath, and H. A. van der Vorst. Parallel numerical linear
algebra. In Acta Numerica 1993. Cambridge University Press, Cambridge,
1993.

[66] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A
supernodal approach to sparse partial pivoting. Technical Report UCB//CSD-
95-883, Computer Science Division, U. C. Berkeley, Berkeley, California, July
1995.

[67] J. W. Demmel, J. R. Gilbert, and X. S. Li. SuperLU users' guide. Technical
report, Computer Science Division, U. C. Berkeley, Berkeley, California,
February 1995. (available from netlib).

[68] S. Doi. On parallelism and convergence of incomplete LU factorizations.
Applied Numerical Mathematics, 7:417{436, 1991.

[69] S. Doi and A. Hoshi. Large numbered multicolor MILU preconditioning on
SX-3/14. Int. J. Computer Math., 44:143{152, 1992.

[70] J. J. Dongarra. Performance of various computers using standard
linear algebra software. Technical Report CS-89-85, University of
Tennessee, Knoxville, Tennessee, 1999. Updated version at Web address
http://www.netlib.org/benchmark/performance.ps.

[71] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK
User's Guide. SIAM Press, Philadelphia, 1979.

37

http://www.netlib.org/benchmark/performance.ps

[72] J. J. Dongarra, J. J. Du Croz, S. Hammarling, and R. J. Hanson. An extented
set of Fortran Basic Linear Algebra Subprograms. ACM Trans. Math. Softw.,
14:1{17, 1988.

[73] J. J. Dongarra, J. J. Du Croz, I. S. Du�, and S. Hammarling. A set of Level 3
Basic Linear Algebra Subprograms. ACM Trans. Math. Softw., 16:1{17, 1990.

[74] J. J. Dongarra, I. S. Du�, D. C. Sorensen, and H. A. van der Vorst. Numerical
Linear Algebra for High-Performance Computers. SIAM Press, Philadelphia,
1998.

[75] P. Dubois and G. Rodrigue. An analysis of the recursive doubling algorithm.
In D. J. Kuck and A. H. Sameh, editors, High speed computer and algorithm
organization. Academic Press, New York, 1977.

[76] P. F. Dubois, A. Greenbaum, and G. H. Rodrigue. Approximating the inverse
of a matrix for use in iterative algorithms on vector processors. Computing,
22:257{268, 1979.

[77] I. S. Du�. The use of vector and parallel computers in the solution of large
sparse linear equations. In P. Deu
hard and B. Engquist, editors, Large scale
scienti�c computing. Progress in Scienti�c Computing Volume 7, pages 331{
348, Boston, 1986. Birkh�auser.

[78] I. S. Du�. The in
uence of vector and parallel computers in the solution of
large sparse linear equations. In M J D Powell and A Iserles, editors, The
State of the Art in Numerical Analysis, pages 359{407, Oxford, 1987. Oxford
University Press.

[79] I. S. Du�, A. M. Erisman, C. W. Gear, and J. K. Reid. Sparsity structure and
Gaussian elimination. SIGNUM Newsletter, 23(2):2{8, April 1988.

[80] I. S. Du�, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, Oxford, England, 1986.

[81] I. S. Du� and J. Koster. The design and use of algorithms for permuting large
entries to the diagonal of sparse matrices. Technical Report RAL-TR-97-059,
Rutherford Appleton Laboratory, 1997. To appear in SIAM J. Matrix Analysis
and Applications.

[82] I. S. Du�, M. Marrone, G. Radicati, and C. Vittoli. Level 3 Basic Linear
Algebra Subprograms for sparse matrices: a user level interface. ACM Trans.
Math. Softw., 23(3):379{401, 1997.

[83] I. S. Du� and G. A. Meurant. The e�ect of ordering on preconditioned
conjugate gradient. BIT, 29:635{657, 1989.

38

[84] I. S. Du� and J. K. Reid. The multifrontal solution of inde�nite sparse
symmetric linear systems. ACM Trans. Math. Softw., 9:302{325, 1983.

[85] B. Dumitrescu, M. Doreille, J.-L. Roch, and D. Trystram. Two-dimensional
block partitioning for the parallel sparse Cholesky factorization. Numerical
Algorithms, 16:17{38, 1997.

[86] V. Eijkhout. Beware of unperturbed modi�ed incomplete point factorizations.
In R. Beauwens and P. de Groen, editors, Iterative Methods in Linear Algebra,
pages 583{591, Amsterdam, 1992. IMACS Int. Symp., Brussels, Belgium, 2-4
April, 1991, North-Holland.

[87] V. Faber and T. A. Manteu�el. Necessary and su�cient conditions for the
existence of a conjugate gradient method. SIAM J. Numerical Analysis,
21(2):352{362, 1984.

[88] R. Fletcher. Conjugate gradient methods for inde�nite systems, volume 506 of
Lecture Notes Math., pages 73{89. Springer-Verlag, Berlin{Heidelberg{New
York, 1976.

[89] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method
for non-Hermitian linear systems. Numer. Math., 60:315{339, 1991.

[90] R. Freund. A transpose-free quasi-minimal residual algorithm for non-
Hermitian linear systems. SIAM J. Scienti�c Computing, 14:470{482, 1993.

[91] K. A. Gallivan, B. A. Marsolf, and H. A. G. Wijsho�. Solving large
nonsymmetric sparse linear systems using MCSPARSE. Parallel Computing,
22:1291{1333, 1996.

[92] A. Geist and E. Ng. Task scheduling for parallel sparse Cholesky factorization.
Int J. Parallel Programming, 18:291{314, 1989.

[93] A. George. Nested dissection of a regular �nite element mesh. SIAM J.
Numerical Analysis, 10:345{363, 1973.

[94] A. George, M. T. Heath, J. W. H. Liu, and E. Ng. Solution of sparse
positive-de�nite systems on a shared memory multiprocessor. Int J. Parallel
Programming, 15:309{325, 1986.

[95] A. George, M. T. Heath, J. W. H. Liu, and E. Ng. Sparse Cholesky
factorization on a local-memory multiprocessor. SIAM J. Scienti�c and
Statistical Computing, 9:327{340, 1988.

[96] A. George, M. T. Heath, J. W. H. Liu, and E. Ng. Solution of sparse positive
de�nite systems on a hypercube. J. Comput. Appl. Math., 27:129{156, 1989.

39

[97] A. George and J. W. H. Liu. The design of a user interface for a sparse matrix
package. ACM Trans. Math. Softw., 5(2):139{162, 1979.

[98] A. George, J. W. H. Liu, and E. G. Ng. User's guide for SPARSPAK:Waterloo
sparse linear equations package. Technical Report CS-78-30 (Revised),
University of Waterloo, Canada, 1980.

[99] A. George and E. Ng. Shared versus local memory in parallel sparse matrix
computations. SIGNUM Newsletter, 23(2):9{13, 1988.

[100] A. George, J. W. Poole, and R. Voigt. Incomplete nested dissection for solving
n by n grid problems. SIAM J. Numerical Analysis, 15:663{673, 1978.

[101] J. P. Geschiere and H. A. G. Wijsho�. Exploiting large grain parallelism in a
sparse direct linear system solver. Parallel Computing, 21(8):1339{1364, 1995.

[102] J. R. Gilbert and J. W. H. Liu. Elimination structures for unsymmetric sparse
LU factors. SIAM J. Matrix Analysis and Applications, 14:334{354, 1993.

[103] J. R. Gilbert and R. Schreiber. Highly parallel sparse Cholesky factorization.
SIAM J. Scienti�c and Statistical Computing, 13:1151{1172, 1992.

[104] J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for
a message-passing multiprocessor. Int J. Parallel Programming, 16:427{449,
1987.

[105] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, 1996.

[106] N. I. M. Gould and J. A. Scott. Sparse approximate-inverse preconditioners
using norm-minimization techniques. SIAM J. Scienti�c Computing,
19(2):605{625, 1998.

[107] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM,
Philadelphia, 1997.

[108] M. Grote and H. Simon. Parallel preconditioning and approximate inverses on
the connection machine. In R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R.
Petzold, and D. A. Reed, editors, Proceedings of the Sixth SIAM Conference
on Parallel Processing for Scienti�c Computing, pages 519{523, Philadelphia,
1993. SIAM.

[109] M. J. Grote and T. Huckle. Parallel preconditionings with sparse approximate
inverses. SIAM J. Scienti�c Computing, 18:838{853, 1997.

40

[110] A. Gupta, M. Joshi, and V. Kumar. WSSMP: Watson Symmetric Sparse
Matrix Package. Users Manual: Version 2.0�. Technical Report RC 20923
(92669), IBM T. J. Watson Research Centre, P. O. Box 218, Yorktown Heights,
NY 10598, July 1997.

[111] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms
for sparse matrix factorization. Technical Report TR-94-63, Department of
Computer Science, University of Minnesota, 1994.

[112] I. Gustafsson and G. Lindskog. A preconditioning technique based on element
matrix factorizations. Comput. Methods Appl. Mech. Eng., 55:201{220, 1986.

[113] I. Gustafsson and G. Lindskog. Completely parallelizable preconditioning
methods. Num. Lin. Alg. Appl., 2:447{465, 1995.

[114] M. H. Gutknecht. Variants of BICGSTAB for matrices with complex spectrum.
SIAM J. Scienti�c Computing, 14:1020{1033, 1993.

[115] M. H. Gutknecht. Lanczos-type solvers for nonsymmetric linear systems of
equations. In Acta Numerica 1997, pages 271{397. Cambridge University
Press, Cambridge, 1997.

[116] G. Haase. Parallel incomplete Cholesky preconditioners based on the
nonoverlapping data distribution. Parallel Computing, 24:1685{1703, 1998.

[117] M. T. Heath, E. G. Y. Ng, and B. W. Peyton. Parallel algorithms for sparse
linear systems. SIAM Review, 33:420{460, 1991.

[118] M. T. Heath and P. Raghavan. Performance of a fully parallel sparse
solver. In IEEE, editor, Proceedings of SHPCC '94, Scalable High-Performance
Computing Conference. May 23-25, 1994, Knoxville, Tennessee, pages 334{
341, Los Alamitos, California, 1994. IEEE Computer Society Press.

[119] B. Heisse and M. Jung. Parallel solvers for nonlinear elliptic problems based
on domain decomposition ideas. Parallel Computing, 22:1527{1544, 1997.

[120] D. Heller. Some aspects of the cyclic reduction algorithm for block tridiagonal
linear systems. SIAM J. Numerical Analysis, 13:484{496, 1978.

[121] B. Hendrickson and R. Leland. The CHACO User's Guide. Version 2.0.
Technical Report SAND94-2692, Sandia National Laboratories, Albuquerque,
October 1994.

[122] B. Hendrickson and E. Rothberg. Improving the runtime and quality of
nested dissection ordering. Technical Report SAND96-0868J, Sandia National
Laboratories, Albuquerque, 1996. To appear in SIAM J. Scienti�c Computing.

41

[123] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving
linear systems. J. Res. Natl. Bur. Stand., 49:409{436, 1954.

[124] T. J. R. Hughes, I. Levit, and J. Winget. An element-by-element solution
algorithm for problems of structural and solid mechanics. J. Comp. Methods
in Appl. Mech. Eng., 36:241{254, 1983.

[125] Z. Johan. Data parallel �nite element techniques for large-scale computational

uid dynamics. PhD thesis, Stanford University, Stanford, CA, 1992.

[126] Z. Johan, K. K. Mathur, S. L. Johnsson, and T. J. R. Hughes. Mesh
decomposition and communication procedures for �nite element applications
on the connection machine CM-5 system. In W. Gentzsch and U. Harms,
editors, High-Performance Computing and Networking, Lecture Notes in
Computer Science 797, pages 233{240, Berlin, 1994. Springer-Verlag.

[127] O. G. Johnson, C. A. Micheli, and G. Paul. Polynomial preconditioning for
conjugate gradient calculations. SIAM J. Numerical Analysis, 20:363{376,
1983.

[128] M. T. Jones and P. E. Plassmann. The e�cient parallel iterative solution of
large sparse linear systems. In A. George, J. R. Gilbert, and J. W. H. Liu,
editors, Graph Theory and Sparse Matrix Computations, IMA Vol 56. Springer
Verlag, Berlin, 1994.

[129] G. Karypis and V. Kumar. METIS: unstructured graph partitioning and
sparse matrix ordering system. Technical report, Department of Computer
Science, University of Minnesota, 1995.

[130] G. Karypis and V. Kumar. Parallel multilevel graph partitioning. Technical
Report TR-95-036, Department of Computer Science, University of Minnesota,
May 1995.

[131] D. R. Kincaid and T. C. Oppe. Recent vectorization and parallelization of
ITPACKV. In O. Axelsson and L. Yu. Kolotilina, editors, Preconditioned
Conjugate Gradient Methods, pages 58{74, Berlin, 1990. Nijmegen 1989,
Springer Verlag. Lecture Notes in Mathematics 1457.

[132] L. Yu. Kolotilina and A. Yu. Yeremin. Factorized sparse approximate inverse
preconditionings. SIAM J. Matrix Analysis and Applications, 14:45{58, 1993.

[133] J. Koster and R. H. Bisseling. Parallel sparse LU decomposition on a
distributed-memory multiprocessor, 1994. Submitted to SIAM J. Scienti�c
Computing.

42

[134] J. C. C. Kuo and T. F. Chan. Two-color Fourier analysis of iterative algorithms
for elliptic problems with red/black ordering. SIAM J. Scienti�c and Statistical
Computing, 11:767{793, 1990.

[135] J. J. Lambiotte and R. G. Voigt. The solution of tridiagonal linear systems
on the CDC-STAR-100 computer. Technical report, ICASE-NASA Langley
Research Center, Hampton, VA, 1974.

[136] C. Lanczos. Solution of systems of linear equations by minimized iterations.
J. Res. Natl. Bur. Stand, 49:33{53, 1952.

[137] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for Fortran usage. ACM Trans. Math. Softw., 5:308{323,
1979.

[138] G. Li. A block variant of the GMRES method on massively parallel processors.
Parallel Computing, 23:1005{1019, 1997.

[139] X. S. Li and J. W. Demmel. Making sparse Gaussian elimination scalable by
static pivoting. In Proceedings of Supercomputing, Orlando, Florida, November
1998.

[140] J. W. H. Liu. On the storage requirement in the out-of-core multifrontal
method for sparse factorization. ACM Trans. Math. Softw., 12:249{264, 1987.

[141] J. W. H. Liu. Reordering sparse matrices for parallel elimination. Parallel
Computing, 11:73{91, 1989.

[142] N. K. Madsen, G. H. Rodrigue, and J. I. Karush. Matrix multiplication by
diagonals on a vector/parallel processor. Inform. Process. Lett., 5:41{45, 1976.

[143] Fredrik Manne and Hj�almt�yr Hafsteinsson. E�cient sparse Cholesky
factorization on a massively parallel SIMD computer. SIAM J. Scienti�c
Computing, 16(4):934{950, July 1995.

[144] H. M. Markowitz. The elimination form of the inverse and its application to
linear programming. Management Science, 3:255{269, Apr. 1957.

[145] O. A. McBryan and E. F. van de Velde. Hypercube algorithms and
implementations. SIAM J. Scienti�c and Statistical Computing, 8:227{287,
1987.

[146] V. Mehrmann. Divide and conquer methods for block tridiagonal systems.
Technical Report Bericht Nr. 68, Inst. f�ur Geometrie und Prakt. Math.,
RWTH, Aachen, 1991.

43

[147] U. Meier. A parallel partition method for solving banded systems of linear
equations. Parallel Computing, 2:33{43, 1985.

[148] U. Meier and A. Sameh. The behavior of conjugate gradient algorithms on
a multivector processor with a hierarchical memory. Technical Report CSRD
758, University of Illinois, Urbana, IL, 1988.

[149] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for
linear systems of which the coe�cient matrix is a symmetric M-matrix. Math.
Comp., 31:148{162, 1977.

[150] G. Meurant. The block preconditioned conjugate gradient method on vector
computers. BIT, 24:623{633, 1984.

[151] G. Meurant. Numerical experiments for the preconditioned conjugate gradient
method on the CRAY X-MP/2. Technical Report LBL-18023, University of
California, Berkeley, CA, 1984.

[152] G. Meurant. The conjugate gradient method on vector and parallel
supercomputers. Technical Report CTAC-89, University of Brisbane, July
1989.

[153] P. H. Michielse. Parallelism in Adaptive Multigrid Solvers. PhD thesis, Delft
University of Technology, Delft, 1990.

[154] P. H. Michielse and H. A. van der Vorst. Data transport in Wang's partition
method. Parallel Computing, 7:87{95, 1988.

[155] E. G. Ng and B. W. Peyton. Block sparse Cholesky algorithms on advanced
uniprocessor computers. SIAM J. Scienti�c Computing, 14:1034{1056, 1993.

[156] E. G. Ng and B. W. Peyton. A supernodal Cholesky factorization algorithm for
shared-memory multiprocessors. SIAM J. Scienti�c Computing, 14:761{769,
1993.

[157] D. P. O'Leary. The block conjugate gradient algorithm and related methods.
Linear Alg. Appl., 29:293{322, 1980.

[158] D. P. O'Leary. Parallel implementation of the Block Conjugate Gradient
algorithm. Parallel Computing, 5:127{140, 1987.

[159] J. M. Ortega. Introduction to Parallel and Vector Solution of Linear Systems.
Plenum Press, New York and London, 1988.

[160] C. C. Paige and M. A. Saunders. Solution of sparse inde�nite systems of linear
equations. SIAM J. Numerical Analysis, 12:617{629, 1975.

44

[161] B. W. Peyton, A. Pothen, and X. Yuan. Partitioning a chordal graph into
transitive subgraphs for parallel sparse triangular solution. Technical Report
ORNL/TM-12270, Engineering Physics and Mathematics Division, Oak Ridge
National Laboratory, Tennessee, December 1992.

[162] C. Pommerell. Solution of large unsymmetric systems of linear equations. PhD
thesis, Swiss Federal Institute of Technology, Z�urich, 1992.

[163] C. Pommerell, M. Annaratone, and W. Fichtner. A set of new mapping
and coloring heuristics for distributed-memory parallel computers. SIAM J.
Scienti�c and Statistical Computing, 13:194{226, 1992.

[164] A. Pothen and C. Sun. A mapping algorithm for parallel sparse Cholesky
factorization. SIAM J. Scienti�c Computing, 14(5):1253{1257, 1993. Timely
Communication.

[165] G. Radicati di Brozolo and Y. Robert. Parallel conjugate gradient-
like algorithms for solving sparse non-symmetric systems on a vector
multiprocessor. Parallel Computing, 11:223{239, 1989.

[166] G. Radicati di Brozolo and M. Vitaletti. Sparse matrix-vector product and
storage representations on the IBM 3090with Vector Facility. Technical Report
513-4098, IBM-ECSEC, Rome, July 1986.

[167] P. Raghavan. E�cient parallel sparse triangular solution with selective
inversion. Technical Report CS-95-314, Department of Computer Science,
University of Tennessee, Knoxville, Tennessee, 1995.

[168] P. Raghavan. Parallel ordering using edge contraction. Technical Report CS-
95-293, Department of Computer Science, University of Tennessee, Knoxville,
Tennessee, 1995. Submitted to Parallel Computing.

[169] E. Rothberg. Exploring the tradeo� between imbalance and separator size in
nested dissection ordering. Technical Report Unnumbered, Silicon Graphics
Inc, 1996.

[170] E. Rothberg. Performance of panel and block approaches to sparse Cholesky
factorization on the iPSC/860 and Paragon multicomputers. SIAM J.
Scienti�c Computing, 17(3):699{713, 1996.

[171] E. Rothberg and A. Gupta. An evaluation of left-looking, right-looking
and multifrontal approaches to sparse Cholesky factorization on hierarchical-
memory machines. Technical Report STAN-CS-91-1377, Department of
Computer Science, Stanford University, 1991.

45

[172] E. Rothberg and A. Gupta. An e�cient block-oriented approach to parallel
sparse Cholesky factorization. SIAM J. Scienti�c Computing, 15(6):1413{
1439, December 1994.

[173] E. Rothberg and R. Schreiber. Improved load distribution in parallel
sparse Cholesky factorization. Technical Report 94-13, Research Institute for
Advanced Computer Science, 1994.

[174] Y. Saad. Practical use of polynomial preconditionings for the conjugate
gradient method. SIAM J. Scienti�c and Statistical Computing, 6:865{881,
1985.

[175] Y. Saad. Krylov subspace methods on supercomputers. Technical report,
RIACS, Mo�ett Field, CA, September 1988.

[176] Y. Saad. Iterative methods for sparse linear systems. PWS Publishing
Company, Boston, 1996.

[177] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM J. Scienti�c and Statistical
Computing, 7:856{869, 1986.

[178] J. J. F. M. Schlichting and H. A. van der Vorst. Solving bidiagonal systems
of linear equations on the CDC CYBER 205. Technical Report NM-R8725,
CWI, Amsterdam, the Netherlands, 1987.

[179] J. J. F. M. Schlichting and H. A. van der Vorst. Solving 3D block bidiagonal
linear systems on vector computers. J. Comp. and Appl. Math., 27:323{330,
1989.

[180] R. Schreiber. Scalability of sparse direct solvers. In A. George, J. R. Gilbert,
and J. W. H. Liu, editors, Graph Theory and Sparse Matrix Computation,
The IMA Volumes in Mathematics and its Applications, Volume 56, pages
191{209, New York, 1993. Springer-Verlag.

[181] H. D. Simon. Partitioning of unstructured problems for parallel processing.
Technical Report RNR-91-008, NASA Ames Research Center, Mo�ett Field,
CA, 1991.

[182] V. Simoncini and E. Gallopoulos. An iterative method for nonsymmetric
systems with multiple right-hand sides. SIAM J. Scienti�c Computing, 16:917{
933, 1995.

[183] G. L. G. Sleijpen and D. R. Fokkema. BICGSTAB(`) for linear equations
involving unsymmetric matrices with complex spectrum. ETNA, 1:11{32,
1993.

46

[184] G. L. G. Sleijpen and H. A. van der Vorst. Reliable updated residuals in hybrid
Bi-CG methods. Computing, 56:141{163, 1996.

[185] G. L. G. Sleijpen, H. A. van der Vorst, and D. R. Fokkema. Bi-CGSTAB(`)
and other hybrid Bi-CG methods. Numerical Algorithms, 7:75{109, 1994.

[186] P. Sonneveld. CGS: a fast Lanczos-type solver for nonsymmetric linear
systems. SIAM J. Scienti�c and Statistical Computing, 10:36{52, 1989.

[187] H. S. Stone. An e�cient parallel algorithm for the solution of a tridiagonal
linear system of equations. J. Assoc. Comput. Mach., 20:27{38, 1973.

[188] K. Sumiyoshin and T. Ebisuzaki. Performance of parallel solution of a block-
tridiagonal linear system on a Fujitsu VPP500. Parallel Computing, 24:287{
304, 1998.

[189] C. Sun. E�cient parallel solutions of large sparse SPD systems on distributed-
memory multiprocessors. Technical Report CTC92TR102, Advanced
Computing Research Institute, Cornell University, Ithaca, NY, 1992.

[190] C. Sun. A package for solving sparse symmetric positive de�nite systems
on distributed-memory multiprocessors. Technical Report CTC92TR114,
Advanced Computing Research Institute, Cornell University, Ithaca, NY,
November 1992.

[191] R. Sweet. A parallel and vector variant of the cyclic reduction algorithm.
Supercomputer, 22:18{25, 1987.

[192] X.-H. Sun, H.-Z. Sun, and L. Ni. Parallel algorithms for solution of tridiagonal
systems on multicomputers. Technical report, Dept. of Computer Science,
Michigan State University, 1989.

[193] K. H. Tan. Local coupling in domain decomposition. PhD thesis, Utrecht
University, Utrecht, the Netherlands, 1995.

[194] W. F. Tinney and J. W. Walker. Direct solutions of sparse network equations
by optimally ordered triangular factorization. Proc. of the IEEE, 55:1801{
1809, 1967.

[195] A. F. van der Stappen, R. H. Bisseling, and J. G. G. van de Vorst. Parallel
sparse LU decomposition on a mesh network of transputers. SIAM J. Matrix
Analysis and Applications, 14:853{879, 1993.

[196] H. A. van der Vorst. A vectorizable variant of some ICCG methods. SIAM J.
Scienti�c and Statistical Computing, 3:86{92, 1982.

47

[197] H. A. van der Vorst. The performance of Fortran implementations for
preconditioned conjugate gradients on vector computers. Parallel Computing,
3:49{58, 1986.

[198] H. A. van der Vorst. Large tridiagonal and block tridiagonal linear systems
on vector and parallel computers. Parallel Computing, 5:45{54, 1987.

[199] H. A. van der Vorst. High performance preconditioning. SIAM J. Scienti�c
and Statistical Computing, 10:1174{1185, 1989.

[200] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of
Bi-CG for the solution of non-symmetric linear systems. SIAM J. Scienti�c
and Statistical Computing, 13:631{644, 1992.

[201] H. A. van der Vorst and J. M. van Kats. The performance of some linear
algebra algorithms in FORTRAN on CRAY-1 and Cyber-205 supercomputers.
Technical report, Academisch Computer Centrum, Utrecht, 1984.

[202] A. C. N. van Duin. Parallel Sparse Matrix Computations. PhD thesis, Leiden
University, Leiden, The Netherlands, 1998.

[203] M. B. van Gijzen. Iterative solution methods for linear equations in �nite
element computations. PhD thesis, Delft University of Technology, Delft, the
Netherlands, 1994.

[204] C. Vuik, R. R. P. van Nooyen, and P. Wesseling. Parallelism in ILU-
preconditioned GMRES. Parallel Computing, 24:1927{1946, 1998.

[205] H. H. Wang. A parallel method for tridiagonal equations. ACM Trans. Math.
Softw., 7:170{183, 1989.

[206] T. Washio and K. Hayami. Parallel block preconditioning based on SSOR and
MILU. Num. Lin. Alg. Appl., 1:533{553, 1994.

[207] R. C. Whaley. Lapack working note 73 : Basic Linear Algebra
Communication Subprograms: analysis and implementation across multiple
parallel architectures. Technical Report CS-94-234, Computer Science
Department, University of Tennessee, Knoxville, Tennessee, May 1994.

[208] J. H. Wilkinson and C. Reinsch. Handbook for Automatic Computation.
Volume II Linear Algebra. Springer-Verlag, Berlin, 1971.

[209] J. Zhang. A sparse approximate inverse technique for parallel preconditioning
of general sparse matrices. Tech. Rep. 281-98, Department of Computer
Science, University of Kentucky, KY, 1998.

48

[210] Z. Zlatev, J. Wa�sniewski, P. C. Hansen, and Tz. Ostromsky. PARASPAR:
a package for the solution of large linear algebraic equations on parallel
computers with shared memory. Technical Report 95-10, Tech Univ Denmark,
Lyngby, 1995.

[211] Z. Zlatev, J. Wa�sniewski, and K. Schaumburg. Introduction to PARASPAR.
solution of large and sparse systems of linear algebraic equations, specialised
for parallel computers with shared memory. Technical Report 93-02, Tech
Univ Denmark, Lyngby, 1993.

[212] E. Zmijewski. Sparse Cholesky Factorization on a Multiprocessor. PhD thesis,
Cornell University, 1987.

[213] E. Zmijewski and J. R. Gilbert. A parallel algorithm for sparse symbolic
Cholesky factorization on a multiprocessor. Parallel Computing, 7:199{210,
1988.

49

	Title page: RAL-TR-1999-027
	ABSTRACT
	Contents
	1 Introduction
	2 Parallel techniques for direct solvers
	3 Solution of tridiagonal systems
	4 Iterative methods
	5 Parallel Preconditioning
	6 Current and future trends
	Acknowledgments
	References

