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Abstract

The 4f electrons attached to a lanthanide ion substituting for Y in YBa2Cu3O7-δ are described

with a crystal-field potential (symmetry D2h) and a magneto-elastic interaction, linear in the normal

modes of vibration of the paramagnetic ion and anions.  The most significant matrix elements of the

interaction are determined using selection rules and wavefunctions for the crystal-field states.

Applied to Tb3+, Ho3+ and Tm3+, calculations for the ground state and first excited state indicate that

the dynamic properties of the lanthanide ions are adequately described by the simple addition of one

crystal-field state, leading to a three-state model similar to the one introduced by Orbach for the

interpretation of electron paramagnetic resonance signals from a lanthanide ion in dilute

concentration in a salt.

The cross-section for inelastic scattering of neutrons by an ion is derived by constructing a

pseudo-spin model (spin = 1) and treating the magneto-elastic interaction as a perturbation on the

three crystal-field states.  In the case of Tb3+, the energy of the first excited state relative to the

ground state is found to be very much smaller than the energy of any other state, the scattering of

neutrons is thus a quasi-elastic process and the width in energy or, alternatively, the relaxation rate

is proportional to {exp (∆/kBT) – 1}−1, where T is the temperature and  ∆ is the energy of the third,

intermediate crystal-field state at which the density of phonon states is very significant.  The value

of ∆ suggested by the calculation and the law predicted for the temperature dependence of the

relaxation rate are in accord with measurements, on metallic and non metallic samples.  An equally

impressive account is given of data published on the relaxation rate of Ho3+ in metallic

YBa2Cu3O7−δ , and the relaxation rate is predicted to be different from zero at zero temperature. The

relaxation rate and cross-section for Tm3+ are predicted to be significantly different from those for

Tb3+ and Ho3+.



1. Introduction

Several groups of researchers claim that charge carriers in ceramic superconductors are probed

in an investigation of the valence electrons of substitutional paramagnetic ions, offering information

on the carriers obtainable by no other means.  For the claim to be valid, an essential requirement is

that the potent source of relaxation for the impurity states is the interaction of valence electrons with

host carriers, and thermal vibrations of the host ions at most cause a minor perturbation.  Following

this line of thought, the observed variation with temperature of the relaxation rate of 4f impurity

states is described as anomalous for not following the temperature dependence predicted by a

realistic model of the exchange scattering of impurity and host electrons.  The anomaly is attributed

to an energy gap associated with the onset of a state of superconductivity, and statements made

about the opening as well as the symmetry of the energy gap.

Features of a ceramic superconductor, and we have in mind YBa2Cu3O7-δ, diminish the

density of host charge-carriers relative to an ordinary metallic host and, consequently, their efficacy

in producing the foregoing scenario is impaired.  There is a finer balance between Coulomb and

electron-lattice interactions than might immediately be recognized and their relative roles in the

mechanisms of relaxation bear scrutiny, using experimental and theoretical techniques.  For δ = 1.0

the material is a good semiconductor.  The addition of oxygen injects a few charge carriers to the

CuO2 planes, and paramagnetic ions that substitute for Y sandwich between two planes.  The onset

of a superconducting state further diminishes the density of these few charge carriers available to

expedite relaxation of the 4f state.  Couched in terms of a mechanism for relaxation, the ability of

charge carriers to absorb energy is reduced by the opening of a gap in their energy spectrum.

The balance between the Coulomb and electron-lattice interactions as the source of relaxation

of 4f electrons has shifted to favour the electron-lattice interaction in light of experiments by Staub

et al. [1] on metallic and non-metallic materials. These investigators have shown that, the relaxation

rate of the lowest energy state of Tb3+ substituted for Y in YBa2Cu3O7-δ follows temperature

according to a law familiar in the interpretation of electron paramagnetic resonance (EPR) signals

from magnetic salts.  Here, the potent  source of relaxation is modulation of the orbital motion of

the valence electrons by thermally activated relative displacements between the paramagnetic ion

and anions.  The mechanism of relaxation is particularly effective with lanthanide ions for the spin-

orbit interaction is large, and the valence states are adequately labelled by the total angular

momentum.  Staub et al. [1] find that the temperature dependence of the relaxation rate is the same



in metallic (δ = 0.03) and non-metallic (δ = 0.9) samples, and at low temperatures the law is

exp(− ∆ / kBT ) where T is the temperature and the energy ∆ is the energy of a known electronic

state of Tb3+.  In the literature on EPR the law is associated with the name of Orbach, following his

investigation of a two-phonon process enlisting an intermediate state of the valence electrons, with

an energy ∆, to provide a substantial density of lattice vibrations and a fast relaxation process [2].

In the studies of ceramic superconductors we have described the investigative tool is the

inelastic scattering of neutrons.  Peaks in the spectrum, viewed as a function of the energy of the

scattered neutrons, provide the energies of the valence states of the impurity ion, and the widths of

the peaks are controlled by the relaxation of the states.  The technique of neutron-electron

spectroscopy has a long history [3,4].  With modern sources of neutrons and spectrometers it is

possible to investigate processes on a scale of energy from µeV to a few eV.

In this paper we report our findings for the spectrum of inelastically scattered neutrons using a

model of the paramagnetic ion built from a local (crystal field) potential and a magneto-elastic

interaction.  A review of previous work on this model and models in which the Coulomb interaction

and virtual mixing of electrons are dominant mechanisms is found in reference [5].  Hitherto, the

expression reported in [5] for the relaxation rate produced by the Coulomb interaction has been

adopted as the basis for the interpretation of the spectrum of inelastically scattered neutrons [4, 6].

The crystal-field potential  in our model takes account of the electron-electron Coulomb

potential, spin-orbit coupling, and the interaction of the valence electrons with (static) anions.  The

modulation of the orbital motion of the valence electrons by thermally activated vibrations in the

local potential is described by a magneto-elastic interaction linear in the normal modes of vibration

of the anions.  For the spatial coordinates of the valence electrons in the interaction we use an

operator equivalent quadratic in the operators of total angular momentum.

The model applied to Tb3+ bolsters the interpretation of quasi-elastic neutron data in terms of

a lattice-driven relaxation process given by Staub et al. [1].  First, we establish that the magneto-

elastic interaction strongly couples the two states of Tb3+ lowest in energy to states at about 40 meV,

which coincide with substantial weight in the phonon density of states.  Secondly, the calculated

relaxation rate behaves as  a function of temperature like {exp (∆/kBT ) − 1}−1.  In addition, we



report similar investigations of Ho3+ and Tm3+, and predict that these ions display features due to the

magneto-elastic interaction  not found with Tb3+. Our findings are gathered in section 7.

2.  Point group symmetry and selection rules

The lanthanide ion substitutes Y in YBa2Cu3O7-δ and its environment in the highly oxygenated

materials has the symmetry D2h.  All four representations of this group are one dimensional.  The

unit representation is denoted by A.  The remaining representations are denoted by B1, B2 and B3,

and the corresponding base functions transform as z, y and x, respectively [7].  Direct products of

the representations obey A x Bj = Bj , Bj x  Bj = A, B1 x B2 = B3 plus the two products obtained by

cyclic permutations of the numbers.   These results are used in establishing selection rules for matrix

elements.  Let Γβ be the representation that corresponds to the symmetry of the operator in the

matrix element, and let the 4f wavefunctions transform  as Γα and Γγ .  The matrix element in

question can be different from zero if the representation  Γα x Γβ x Γγ contains A.

For an ion with an integer value of the total angular momentum, J, a rhombic field removes

the (2J + 1) - fold degeneracy.  The rotation group with J = 6 (appropriate for Tb3+ and Tm3+)

contains A four times, and B1, B2 and B3 are each contained three times.  For J = 8 (Ho3+) the

rotation group contains A five times and each Bj four times.

3.  Magneto-elastic interaction

Our discussion of the influence of lattice vibrations on the magnetic properties of the

substitutional impurity is based on a magneto-elastic interaction proportional to the normal modes

of vibration of the anions that surround it.  A normal mode that transforms according to the

representation Γν is denoted by u(Γν).  In the interaction operator the spatial coordinates of the

4f-electrons are represented by quadrupole operators Q(Γν).  The rotation group with angular

momentum l = 2 contains the represention A twice and each Bj once, and the five quadrupole

operators are taken to be,

Q J J  Q J J J Q J J + J J ,Q J J + J J( ) ( ) ( ) ( ) ,A A B Bx y zα β= − = − = =2 2 2
1 23, ( +1), x y y x x z z x

and, (3.1)



Q J J  +  J J( ) .B3 = y z z y

The magneto-elastic interaction operator is taken to be,

′ = −∑
Γ

Γ Γ Γ
ν

ζ ν ν ν( ) ( ) ( ).u Q (3.2)

Here, the coupling parameter ζ(Γν) has the dimension of energy/length.  The order of magnitude of

ζ is obtained from, δζ α δ~ ( ) ./e2 2 3r J  In this expression, r is the radial coordinate of a 4f

electron and the mean value of r2 is about 0.2Å2, δ is the distance between the magnetic ion and an

anion, and α(J) is a Stevens factor which has the values − 1/99, 1/450 and 1/99 for Tb3+, Ho3+ and

Tm3+, respectively.  Using the expression, the order of magnitude of  δζ is found to be a few meV.

4.  Crystal-field model

A parametric description of the states of 4f-electrons in a crystal must account for the

electron-electron repulsion, spin-orbit coupling, and crystal-field interaction.  The method used to

establish our model of a lanthanide ion in YBa2Cu3O7-δ has recently been reviewed by Staub and

Soderholm [8].  In view of this, we shall here present with little discussion results for the energy

levels and wavefunctions of the ions of immediate interest.

Tb3+(7F6)  The energy levels are listed in Table 1.  Important features of the energy levels are that

the two states lowest in energy are very well separated from the remaining 11 states, and the

separation in energy of the two states is only a few µeV.  The wavefunctions are quite simple and

thus admit an interpretation based on the geometric properties of spherical harmonics.  Additions to

the principal components of the wavefunctions, listed in Table 1, are small.

A measure of the purity of the wavefunctions is obtained by comparing matrix elements of the

quadrupole operator calculated using the principal components and the complete wavefunctions.

Some matrix elements of Q(Γν) made with the complete wavefunctions are given in Table 2, and

using the principal components, listed in Table 1, we find,



a B g b B g a B h b B hQ Q Q Q( ) ( ) ( ) ( ) .3 2 2 3 11 3= − = = = −

In this instance, the error introduced by using the principal components in place of the complete

wavefunctions is 4%, and we accept this as tolerable.

The wavefunction of a non-degenerate state can be chosen to be purely real, and we have

made this choice for the principal components listed in Table 1.  In consequence, matrix elements of

the angular momentum operator Jα, where α denotes a Cartesian component, are zero or purely

imaginary and matrix elements of Q(Γν) are zero or purely real.  Diagonal matrix elements of  Jα are

zero.

Turning to the relative magnitudes of the matrix elements of γΓγΓ νν )(band)(a QQ  we

note that large contributions to the magneto-elastic interaction are made by the states γ = g and h.  In

addition, the density of phonon states at which these states occur is large.  The finding of Brüesch

and Bührer [9] is that, for YBa2Cu3O7,  the density of phonon states weighted by the eigenvectors of

the oxygen ions is substantial in an energy interval in the range 20 - 40 meV and, again, from

55 meV out to near the maximum phonon frequency.  The density of states weighted by the

eigenvectors of the copper ions is substantial in a narrow range of energies, estimated to be

15 - 25 meV.

Ho3+(5I8)  The wavefunction of the ground state belongs to the representation B1.  The next level is

at an energy 0.51 meV above the ground state and it belongs to the representation B2.  We find

a B bQ( ) . ,3 18 39= −  whereas the corresponding matrix element for Tb3+, and allowed by the

selection rule, is zero, to a good approximation.

Nearly half the states lie in the interval 0 - 11.20 meV, and the rest are in the interval

55 - 75 meV.  It is notable that some matrix elements a and bQ Q( ) ( )Γ Γν νγ γ  have very

different magnitudes, as illustrated by the following examples:



a B c b B c a B h b A h

a B j b B j and a B l b B l

Q Q Q Q

Q Q Q Q

( ) . , ( ) . , ( ) . , ( ) . ,

( ) . , ( ) . ( ) . , ( ) .

2 1 3

1 2 2 1

27 79 2 75 2562 28 22

27 38 2 64 6 26 17 78

= − = = − = −

= − = = − =

α

The energies of the states c , h , |j〉 and l  are 1.90, 11.20, 58.79 and 62.27 meV, respectively.

A common feature of the wavefunctions of Ho3+ and Tm3+ is that the wavefunctions contain

several components each with substantial weight.  In this respect, the properties of Ho3+ and Tm3+,

and Tb3+ are very different.

Tm3+(3H6)  The wavefunction of the ground state belongs to the representation B1.  The next two

states highest in energy belong to the representation B3 (14.05 meV) and B2 (14.93 meV).  The

matrix elements of the quadrupole operator between these states and the next two states are found to

be:

4.01.d)(Bcand5.17,e)(Bb0.0,e)(Ba

3.86d)(Bb26.81,d)(Ba31.96,c)(Bb0.95,c)(Ba

0.04b)(Ba

231

3113

2

===

−====

−=

QQQ

QQQQ

Q

The large size of the matrix elements a B d and b B dQ Q( ) ( )1 3  and the fact that the energy of the

state d , at 25.31 meV, lies in an energy interval where the phonon density of states is substantial

is evidence in favour of this state being active in the lattice modulation of the states a  and b .

Note that if the transition probed in the neutron scattering experiment is a → c , instead of the

transition a → b  which is slightly lower in energy, the similar magnitudes of the matrix elements

b B d and c B dQ Q( ) ( )3 2  indicate no significant change in the influence on the transition of the

magneto-elastic interaction.

5.  A three-state model

To calculate the cross-section for the inelastic scattering of neutrons by one of the ions

described in the previous section we construct a model designed to capture their essential features.

The model contains the ground state and the first excited state, at an energy ε relative the ground

state.  A third state, at an energy ∆ relative to the ground state, is coupled to each of these states by



the magneto-elastic interaction (3.2) which, as we have seen, can couple the two lowest-energy

states.  In the next section we provide expressions for the cross-section for the transition from the

ground state to the state at an energy ε.  Here we formulate the three-state model we have described.

A natural algebra for the model is provided by the spin operators and associated quadrupole

tensors of a spin with magnitude S = 1.  We map the three crystal-field states, labelled a, b and γ,

and the interaction between the states to the square matrices of these operators taken in their

Cartesian basis representation.  Diagonal components of the interaction (3.2) are not included in the

model,  since they only shift the energies of the states and our work is focused on their relaxation.

The spin operators satisfy familiar relations like S⋅S = 2, and commutation relations

[Sx, Sy] = iSz and two more obtained by a cyclic permutation of the Cartesian labels.  Less familiar,

perhaps, are the quadrupole tensors, Tαβ.  The identity matrix, spin and quadrupole matrices form a

complete basis for the representation of an arbitrary square matrix of dimension three.

The three states of the crystal field are represented by,

0 = + −∆ ∆T Txx yy( ) .ε (5.1)

An alternative form for 0 is obtained by using S T Iα αα
2 2 3= + ( / ) .   The off-diagonal matrix

elements of ′ , equation (3.2), in the space of the three states are represented by,

1 2 2 2= − − −′ ′ ′a b a bxy xz yzT T Tγ γ , (5.2)

where (α≠β),

T S S S S Tαβ α β β α βα= + =1
2 ( ) .

The lattice displacements that appear in (5.2) are described by the Hamiltonian 2, which is taken to

be harmonic.



The technique used to investigate the statistical mechanics of the quantum system described

by the Hamiltonian 0 + 1 + 2 is the same as the perturbative technique used in [10] to investigate

anharmonic lattice vibrations. Results for the cross-section and relaxation rate presented in the next

section are correct at the first level of approximation in the perturbation expansion.

6.  Neutron scattering cross-section

The interaction of a neutron with the electrons in the valence state of a lanthanide ion can be

described by the operator for the total angular momentum of the ion, Jα.  Should the beam of

neutrons be deflected through a large angle the operator becomes more complicated but this

situation does not concern us.

For the three ions investigated in section 4 we find for a bJα  the results

−6iδα,z (Tb3+), 3.93i δα,x (Ho3+) and 3.96i δα,y (Tm3+).   The selection rule on the Cartesian label

follows immediately on noting that, for D2h symmetry, Jx, Jy and Jz transform like the

representations B3, B2  and B1, respectively.

In the space of the three states included in our model the matrix element a bJα  is

represented by the operator Sz, e.g. for Ho3+ we need to obtain the evolution with time, t, of the

operator  − 3.93 Sz(t).    The cross-section is proportional to the power spectrum of the correlation

function S S tz z( ) ( ) ,0  where the angular brackets denote a thermal average with respect to all the

quantum variables that occur in the total Hamiltonian.

From now until Section 7 we use reduced units in which h = kB = 1.

The two lowest-energy states of Tb3+ are separated in energy by a few µeV, and relevant states

to which they are coupled by the magneto-elastic interaction occur at a much higher energy.  Thus,

the energy scales in our model satisfy ε << ∆, and we report a result for ε = 0.  Taking this limit for

ε greatly simplifies the expression for the cross-section, as we will soon see when we investigate our

model for ε ≠ 0 which is appropriate for Ho3+ and Tm3+.

For ε = 0 we find,
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1 1 2 2π πω ω ω
χ

ω−∞

∞

∫ − = +
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T T

T
exp( ) ( ) ( )

( ) ( )

( )
.

Γ
Γ

(6.1)

In this expression, ω is the energy transferred from the beam of neutrons to the sample, and the

distribution function,

{ }n T( ) exp ( / )ω ω= −
−

1
1
. (6.2)

The quantity χ(T) is the isothermal susceptibility of the ion. It is related to a sum rule on the power

spectrum;  the latter divided by ω and integrated over ω from − ∞ to + ∞ has the value

χ(T )/2.

Neglecting the influence on the susceptibility of the magneto-elastic interaction one finds,

.]))/(exp1[()( 1

2
1 −∆−+=χ TTT  In the limit (∆/T ) << 1 one gets χ(T ) → (2/3T ), which is

consistent with the Curie susceptibility of a free ion with spin = 1.

Our result for the relaxation rate is correct to the leading-order in the magneto-elastic

interaction and it is,

{ }Γ
∆
∆

∆ ∆( )
( )

( ) ( ) ( ) ( ) ( ) ( ) .T
r n

M
Q Z Q Z= +

3

2
2

2 2

2 2
3 3

2

2 3

π
ζ γ ζ γB a B B b BB B (6.3)

Here, r is the number of ions in a unit cell and M the mass of an anion.  The symmetry

representation labels are appropriate for γ = h , and they appear in the opposite order for

γ = g .  Lastly, ZΓ (ω) is the phonon density of states weighted by the symmeterized eigenvectors

of the anions, namely,

Z rNΓ Γ( ) ( ) ( ),ω ε δ ω ω= −∑1
3

2

j
j j

q
q q (6.4)



where N is the number of unit cells in the crystal, jq are labels for the eigenstates (j takes 3r values),

ωjq is the phonon dispersion, and εjq(Γ) is the symmeterized eigenvector for the anion.  A feature of

(6.3) is the absence of a cross-term involving the product of matrix elements belonging to different

symmetry representations; the cross-term is zero, at the level of approximation employed in deriving

(6.3).

The dependence of Γ(T ) on the temperature comes solely from the distribution function n(∆)

defined by (6.2). For (∆/T ) << 1 we have n(∆) = (T/∆) and in the opposite limit n(∆) = exp (−∆/T ).

Note that the prefactor n(∆)/(∆) in (6.3) decreases rapidly with increasing ∆.

For the case when ε > 0 the isothermal susceptibility is,

χ
ε

( )
[ ( ) ( )]

[ ( ) ( ) ( ) ( )]
,T

n E n

n n E n n E
=

−
+ +
2

3

∆
∆ ∆

(6.5)

where E = ∆ − ε.  The Curie susceptibility is obtained from this expression in the limit of a very

high temperature, and the previous expression for χ(T ) is recovered on taking the limit ε = 0.

The power spectrum defined in (6.1) is for ε > 0,

{ }
2

1
2

2
2
o

2
1

2
o

]),([)],([

),(
)()(11

ωω+ωω+ω−ω
ωω

χω+ωπ TMTM

TM
Tn . (6.6)

Several comments about this expression are in order.  First, the resonance frequency, ωo, depends on

the magneto-elastic interaction. The functions M1 (T, ω) and M2 (T, ω) result from the interaction,

and if the interaction is reduced to zero the functions go to zero and ωo = ε.  It is apparent that

M1 (T, ω) contributes a width in energy to the resonance near ω = ε, and M2 (T, ω) contributes a shift

in energy from the bare resonance energy.    We shall not investigate the question of the magneto-

elastic interaction giving rise to an excitation created from crystal-field and phonon states, which

has the nature of a bound state. Our result for M1 (T, ω) is given in an appendix, together with an

expression for M2 (T, ω)  in terms of M1 (T, ω). The correction to the resonance frequency created at



leading order by the interaction is also in the appendix. The expression (6.6) satisfies the sum rule

referred to following (6.1).

Given the use of perturbation theory to describe the influence of the magneto-elastic

interaction is perfectly legitimate, the relaxation rate observed by inelastic neutron scattering is

M1 (T, ε) = Γ( T ).  From the expression for M1 (T, ω) given in the appendix,

( )[ ( ) ( ) ]

( ) [ ] ( ) .)(
)(

a)()(
)(

)(
b

ba2/coth
3
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22

21
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QZZ
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ZQT
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r
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(6.7)

Here, we have indicated that ζ, Q and Z(ω) depend on a symmetry representation, which is possibly

different in each of the three terms.  We have allowed for (∆ − ε)  0, the two possible signs

coming from the two possible orderings with respect to energy of the states b  and γ .  On taking

the limit 0ba =Q  and ε = 0 the expression (6.7) reduces to twice (6.3) and the power spectrum

(6.6) reduces to the result in (6.1), as required for this limit.

In (6.7) the phonon density of states contributes at three energies, namely, ∆ε−∆ε and, .

The energies ε−∆  and ∆ are the energies of the normal modes of the three-state, pseudo-spin

model defined in the previous section, and ε is the energy at which the model is probed.  In the limit

when the temperature is large compared to these energies Γ( T ) is proportional to the temperature.

Evidently, one can have Γ(0) ≠ 0.  A relaxation rate different from zero at absolute zero is an

outcome of 0ba ≠Q .  Also, if ε > ∆ there is a contribution to Γ(0) proportional to 
2

b γQ .  In

the event ε satisfies ε << T and ε << ∆, the relaxation rate is the sum of a term proportional to T and

a term proportional to the distribution function n (∆).

A feature of our expression for Γ( T ) is that it does not vanish if  γQa  or, alternatively,

γQb  is set to zero, so Γ( T ) is not the relaxation rate identified by Orbach.  There is a case for

not referring to the width in energy of the neutron spectrum as a relaxation rate, and to reserve this

name for intrinsic or, alternatively, natural line widths.  Intrinsic relaxation arises when two or more



states are mixed and quasi-discrete, with 1/Γ a measure of the time over which the state of interest

can be detected.  By nature, intrinsic relaxation exists in the absence of an external probe.  In the

case of Orbach relaxation, the states  a  and b  are mixed through the agency of a third state to

which they individually have a direct interaction.

We draw attention to the similarity between the expression (6.7) and the relaxation rate

discussed in reference [5], due to the Coulomb interaction between crystal-field states and

conduction electrons.  The similarity is to be expected, of course.  On comparing the two

expressions for Γ(T ) one can identify the dissipative part of the susceptibility of the electrons with

Z(ω)/ω, and the operator for the total angular momentum, Jα, with the quadrupole operator in the

magneto-elastic interaction.  Most importantly for the present discussion, in the two cases the

dependence of Γ(T ) on temperature arises from the same functions.  In applications of the

expressions, the essential difference between the two cases of electron and phonon mediated

relaxation is caused by the actual magnitudes of the matrix elements of Jα and Q.  As we have seen,

these matrix elements are quite different, e.g. for Tb3+ 6ba z =J  and ,0b)B(a 1 =Q  and the

values of  Γ(T ) in the two cases turn out to be quite different.

7.  Discussion

In this section we gather our findings and discuss the ramifications for the three lanthanide

ions Tb3+, Ho3+ and Tm3+.

Tb3+   The separation between the ground state and first excited state satisfies ε << ∆ and the

scattering of neutrons is a quasi-elastic process.  The power spectrum and relaxation rate, Γ (T), are

found in (6.1) and (6.3).  In Γ (T) the matrix elements of the quadrupole operator in the magneto-

elastic interaction have equal magnitudes.  Assuming the coupling parameter in the interaction, ζ,

and the phonon density of states, Z, are common to the two terms one finds for the relaxation rate,

),()(
)(

2178)(
2

∆∆
∆

ζπ=Γ nZ
M

rT
h

(7.1)



where the distribution function is n(∆) = {exp (∆/kB T) – 1}−1.  In arriving at the numerical factor the

states |g〉 and |h〉 are included equally in the relaxation process.

The experimental data for Γ (T) collected by Staub et al. [1] follow the temperature law (7.1)

with ∆ = 39.5 meV, which is totally consistent with the energy of the crystal-field states we use to

derive (7.1), cf. Table 1. A fit to the experimental data gives  a value 8.7 meV for the coefficient of

n(∆).  While not in a position to give a totally independent argument to arrive at this value,

knowledge gathered on the crystal-field potential and lattice dynamics of YBa2Cu3O7−δ show that

the experimentally derived figure is achievable [8, 9, 11].  The coupling parameter and parameters

in the crystal-field potential should be viewed in the same way, and a value for ζ derived from

fitting to experimental data.  (By way of orientation to the magnitude of the quantities in the

coefficient of n (∆) in (7.1) one finds, for  δ = 2.4Å, ζ ~ (2 meV)/δ and the order of magnitude of

Z(∆) is 3∆2/E 3
D  with a Debye energy ED ~ 2∆.  Collecting these figures, the coefficient of n(∆) in

(7.1) is ~ 4 meV.)

Ho3+  The  crystal-field state favoured for the third state in the pseudo-spin model has an energy

∆ = 11.20 meV.  Matrix elements of the magneto-elastic interaction between this state and the two

states lowest in energy, separated by ε = 0.51 meV ≡ 5.9K, are large and very similar in size.  Also,

the matrix element of the interaction taken between these two states is large.  However, looking at

expression (6.7) for the relaxation rate, its contribution to Γ (T) is brought down by Z(ε) which is

likely to be as much as three orders of magnitude smaller than Z(∆).  Hence, except at a very low

temperature, kBT << ∆, Γ (T) is well represented by the second and third terms in (6.7), and these

reduce to provide the estimate,
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The available data on Γ (T) for Ho3+ in metallic YBa2Cu3O7−δ is described very well by (7.2) with

∆ = 11.2 meV.

The coefficient of n(∆) determined from experimental data is 0.16 meV.  It is satisfying to

find that a similar value is obtained by scaling the value of the coefficient for Tb3+, namely,



8.7 meV.  The scaling is done by taking account of the Stevens factor in ζ, the numerical

coefficient, ∆, and Z(∆) which is assumed to be proportional to ∆2; taking all these factors into

account we arrive at 0.2 meV for the coefficient of n(∆) in the relaxation rate of Ho3+.

As the temperature approaches zero the relaxation rate approaches the value,
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where ε < ∆.  In this expression, the order of magnitude of Z (ε) is 3ε2/E 3
D  and the Debye energy

ED ~ 80 meV.  Assuming the density of states is quadratic, the coefficient of n(∆) determined

experimentally, 0.16 meV, leads to the estimate Γ(0) ~ 1.7 µeV.

Tm3+  For this ion we find ε = 14.05 meV.  With regard to the matrix elements of the magneto-

elastic interaction there is essentially no coupling of the two states lowest in energy, in contrast to

Ho3+.  If the crystal-field state at ∆ = 25.31 meV is taken to be the third state in the pseudo-spin

model there are contributions to Γ (T) weighted by 
1BZ  (25.31) and 

3BZ  (11.26), and these are

accompanied in the relaxation rate by quite large matrix elements of the interaction.  Should we take

the state at 14.93 meV as the third state in the model the phonon density of states contributes at this

energy and 0.88 meV; the density of states at 0.88 meV is comparatively small, and the density of

states at 14.93 meV is accompanied by a comparatively small matrix element.  These observations

lead us to predict that Γ (T) is essentially determined by the crystal-field state with energy ∆ = 25.31

meV.  In this instance, the dependence on temperature is a weighted sum of the distribution

functions n (25.31) and n (11.26), and Γ (0) = 0.
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Appendix

The functions M1 (T, ω) and M2 (T, ω) in (6.6) are, respectively, the real and imaginary parts

of a dynamic self-energy, and they are related through the dispersion formula,
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where P denotes the principal part of the integral. M1 (T, ω) is an even function of the frequency,

and M2 (T, ω) is an odd function.  We provide results for M1 (T, ω) that are correct at the first level

of approximation in the magneto-elastic interaction.  The relaxation rate discussed in the main text

Γ(T) = M1 (T, ε) where ε is the energy of the excitation in the three-state, pseudo-spin model,

defined in section 5, which is probed by neutron scattering, i.e. ε is the difference in the energies of

the states we have labelled a and b.

We find M1(T,ω) is a sum of three terms proportional to
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Here, ζ, Q and Z depend on the symmetry representation, Γ, which is attached as a subscript to the

brackets in which they appear.  The function Z(ω) is the phonon density of states weighted by the

symmeterized eigenvectors of the anions.

The next term in M1 (T, ω)  is,
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Inside the curly brackets the second contribution is obtained from the first by changing the sign of

ω, i.e. it is proportional to (ω − ε)2 and does not  appear in Γ(T ).  Lastly, the term proportional to

2
a γQ  is obtained from (A3) by (i)  replacing ∆ by (∆ − ε) and (ii) replacing (ω ± ε)2 by (ω m ε)2.

In addition to creating a width to the resonance peak in the cross-section for scattering by a

paramagnetic ion, the magneto-elastic interaction changes ε and makes it a function of temperature.

The position of the peak in the cross-section depends on ε(T ) and Γ(T ), and it is given by the

formula  .}2/)()({ 2/122 TT Γ−ε

The magneto-elastic interaction acts to repel two crystal-field levels, and increases their

separation in energy.  Hence, there is an increase in energy between a and γ and between b and γ,

and ε(T ) is the difference between the two energies.

In giving our expression for ε(T ) it is convenient to introduce two integrals,
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In the limit of a high temperature the two integrals approach the same value, namely,

.
)(

)(.d
P2

222 uu

uZu
T

−ω
ω Γ∫

For a Debye density of states, 3u2/E 3
D , we find the integral has a value,
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The singularity at ED in this expression is an artifact of the Debye density of states.

Our expression for ε(T ) is,
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In this expression, ε is the energy of the state b relative to the state a obtained from the crystal-field

potential.  The integrals in the correction to ε caused by the magneto-elastic interaction do not

vanish at zero temperature.  In the limit of a high temperature the integrals approach a common

value which is proportional to the temperature, and the sign of the correction is determined by the

relative sizes of the matrix elements of the quadrupole operator and the coupling parameters.
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Table 1

States of Tb3+(7F6) in a crystal-field potential of D2h symmetry.  The principal component of the

wave function is shown which is chosen purely real. M J M≡ = 6, .  The normalization factor

1 2/  is included with a principal component in carrying out a reported calculation.

Energy (meV) Symmetry Label Principal component

0.0 B1   a ( )i − + −6 6
0.007 A   b ( )− + −6 6
18.48 A   c − 0
18.64 B3   d ( )− + −i 1 1
19.35 B2   e (− + −1 1
19.87 B1   f ( )i − + −2 2
38.35 B2   g ( )− + −5 5
39.45 B3   h i ( )5 5+ −
50.99 A   i ( )2 2+ −
51.79 B1   j ( )i − + −4 4
52.62 B3   k ( )i 3 3+ −
58.54 B2   l ( )− + −3 3
61.21 A   m ( )4 4+ −



Table 2

Some matrix elements of the quadrupole operator Q(Γν) for states of Tb3+ in a crystal-field potential

of D2h symmetry, e.g. a d for BQ( )Γ Γν ν= ≠0 2  and a B dQ( ) . .2 4 15= −   For a bQ( )Γν  one

obtains a B bQ( ) .1 0 03= , and all other matrix elements are zero.  All the off-diagonal matrix

elements of Q(Aβ) not zero by a selection rule are similarly very small in magnitude.

a b

c Q(B1), 3.20 Q(Aα), −3.19

d Q(B2), − 4.15 Q(B3), − 4.15

e Q(B3),  3.23 Q(B2), − 3.23

f Q(Aα),  0.39 Q(B1),  0.39

g Q(B3),  − 18.32 Q(B2),  18.32

h Q(B2),  − 18.38 Q(B3),  − 18.38
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