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Abstract

The solution of chemical process engineering problems often requires the
repeated solution of large sparse linear systems of equations that have a highly
asymmetric structure. The frontal method can be very e�cient for solving

such systems on modern computer architectures because, in the innermost loop
of the computation, the method exploits dense linear algebra kernels, which
are straightforward to vectorize and parallelize. However, unless the rows of
the matrix can be ordered so that the frontsize is never very large, frontal

methods can be uncompetitive with other sparse solution methods. We review
a number of row ordering techniques that use a graph theoretical framework
and, in particular, we show that a new class of methods that exploit the row

graph of the matrix can be used to signi�cantly reduce the frontsizes and greatly
enhance frontal solver performance. Comparative results on large-scale chemical
process engineering matrices are presented.
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1 Introduction

In large-scale chemical process simulation the most computationally expensive
step is generally the solution of large sparse systems of linear equations. The

basic idea is to model the chemical process by a single very large nonlinear
system of equations, with many thousands of variables. These equations are
then solved using some variant of Newton's method. In the case of dynamic
simulation, Newton's method (or variant) is applied at each time step. The use

of Newton's method involves solving many systems of linear equations having
the same sparsity structure. Solving the linear systems can represent over 80
per cent of the total computational cost on industrial problems (for example,
Zitney, Brull, Lang and Zellet, 1995) and so it needs to be done as e�ciently

as possible. Any reduction in the linear system solution time will result in a
signi�cant saving in the total simulation time, allowing the solution of problems
which would otherwise be intractable, as well as potentially enabling larger

problems to be solved in a given time frame.
Unfortunately, process simulation matrices do not possess any desirable

structural or numerical properties such as symmetry, positive de�niteness,
diagonal dominance, or bandedness, that are often associated with sparse

matrices and are exploited in the development of e�cient algorithms for the
solution of sparse linear systems. The frontal method can be used to solve
general sparse linear systems and work by Vegeais and Stadtherr (1990) and
Zitney and Stadtherr (1993) has demonstrated the potential of the method for

process simulation problems. A key feature of the frontal method is that, in
the innermost loop of the computation, dense linear algebra kernels can be
exploited. These are straightforward to vectorize and parallelize and are able

to exploit high level BLAS kernels (Dongarra, DuCroz, Du� and Hammarling,
1990). This makes the method attractive for a wide range of modern computer
architectures, including RISC based processors and shared memory parallel
processors. However, the performance of the frontal method is highly dependent

on the ordering of the rows of the matrix. The natural unit-block structure
of process engineering problems can sometimes provide a reasonable ordering,
and this has allowed the frontal method to be used with some success on these
problems (Zitney and Stadtherr, 1993). But for many problems the natural

ordering can be improved on. Furthermore, in most commercial software, unit-
block structure information is not available to the linear system solver. Thus a
general approach to reordering is needed. In this paper we review row ordering

strategies and, in particular, show that the new class of methods introduced
in a recent paper by Scott (1998) can yield substantial improvements in the
performance of the frontal method for chemical process engineering problems.

This paper is organised as follows. In Section 2, we provide some background

information on the frontal method and recall elementary concepts from graph
theory that are useful in developing matrix ordering schemes. In Section 3, we
review row ordering strategies that have been used in recent years for chemical
processing problems. The new MSRO algorithms of Scott (1998) that exploit

row graphs are described in Section 4. In Section 5, numerical results comparing
the performance of the di�erent approaches and their use with frontal solvers
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are presented. The design of a new library code MC62 that implements the
MSRO algorithm is discussed brie
y in Section 6 and, �nally, some concluding
remarks are made in Section 7.

2 Background

2.1 The frontal method

The frontal method is a technique for the direct solution of linear systems

Ax = b; (2.1)

where the n � n matrix A is large and sparse. Although the method was
originally developed in the 1970s for the solution of �nite-element problems in
which A is a sum of elemental matrices (see Irons, 1970, Hood, 1976), it can

be used to solve any general linear system of equations (Du�, 1981, 1984). The
frontal method is a variant of Gaussian elimination that involves computing the
decomposition of a permutation of A

PAQ = LU;

where L is unit lower triangular and U is upper triangular. The system (2.1)

can be solved by a simple forward substitution

Ly = Pb;

followed by a backsubstitution
Uz = y:

The required solution

x = Qz

follows. At each stage of the matrix factorization, only a subset of the rows
and columns of A needs to be held in main memory, in a matrix termed the
frontal matrix. The rows of A are assembled into the frontal matrix in turn.
Column l is de�ned as being fully summed once the last row with an entry in

column l has been assembled. A column is partially summed if it has an entry
in at least one of the rows assembled so far but is not yet fully summed. Once

a column is fully summed, partial pivoting is performed to choose a pivot from
that column.

In general, the frontal matrix F is a rectangular matrix. The number of
rows and columns in the frontal matrix (the row and column frontsizes) depends
upon the number of rows of A that have been assembled and the number of

eliminations that have been performed. Assuming there are k fully summed
columns (with k � 1) and assuming the rows of F have been permuted so that

the pivots lie in positions (1; 1), (2; 2), ..., (k; k), the frontal matrix can be
written in the form

F =
�
F1 F2

�
; F1 =

 
F11
F21

!
; F2 =

 
F12
F22

!
; (2.2)
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where F11 is of order k�k. The columns of F1 are fully summed while those of
F2 are partially summed. If F12 is of order k�m and F21 is of order l� k, the
row and column frontsizes are k + l and k +m, respectively. F11 is factorized
as L11U11. Then F21 and F12 are updated as

L21 = F21U
�1
11 and U12 = L�111 F12 (2.3)

and then the Schur complement

F22 � L21U12 (2.4)

is formed. Finally, the factors L11 and U11, as well as L12 and U21, are stored
as parts of L and U , before further rows from the original matrix are assembled

with the Schur complement to form another frontal matrix.
The power of frontal schemes comes from the fact that they are able to solve

quite large problems with modest amounts of main memory and the fact that
they are able to perform the numerical factorization using dense linear algebra

kernels; in particular, the Level 3 Basic Linear Algebra Subprograms (BLAS)
(Dongarra et al., 1990) may be used. For example, the BLAS routine GEMM with
interior dimension k can be used to form the Schur complement (2.4).

Since a variable can only be eliminated after its column is fully summed,
the order in which the rows are assembled will determine both how long each
variable remains in the front and the order in which the variables are eliminated.
For e�ciency, in terms of both storage and arithmetic operations, the rows need

to be assembled in an order that keeps both the row and column frontsizes as
small as possible. If frowi and fcoli denote the row and column frontsizes

before the ith elimination, we are interested in

� the maximum row and column frontsizes

max
1�i�n

frowi and max
1�i�n

fcoli (2.5)

since these determine the amount of main memory needed,

� the mean row and column frontsizes

1

n

nX
i=1

frowi and
1

n

nX
i=1

fcoli (2.6)

since these provide a measure of the factor storage

� the mean frontal matrix size

favg =
1

n

nX
i=1

(frowi � fcoli): (2.7)

A prediction of the number of 
oating-point operations that must be

performed can be obtained from (2.7) (assuming zeros within the frontal
matrix are not exploited).
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Because reordering aims to reduce the length of time each variable is in the
front, we also de�ne the lifetime of a variable. For a given ordering, the lifetime
Lifei of variable i is de�ned to be lasti� firsti, where firsti and lasti are the
assembly step when variable i enters and leaves the front, respectively. That is,

Lifei = f max
1�k;l�n

jl � kj : aki 6= 0 and ali 6= 0g: (2.8)

Camarda (1997) uses the sum of the lifetimes to compare the quality of di�erent

row ordering strategies: a small value for the sum of the lifetimes is used to
indicate a good ordering.

We observe that, ifA has a full row, the maximum row and column frontsizes

will be n, irrespective of the order in which the rows of A are assembled.
Similarly, if A has one or more rows that are almost full, the maximum column
frontsize will be large. Clearly, the frontal method is not a good choice for such
systems.

Throughout this paper, we shall be concerned only with running the frontal
method on a single processor. Di�erent ordering strategies should be considered
when implementing a frontal algorithm in parallel. This is discussed, for
example, by Camarda (1997), Mallya, Zitney, Choudhary and Stadtherr (1997),

(1999), and Camarda and Stadtherr (1999), and, for element problems, by Scott
(1996), and remains a subject for further investigation.

2.2 Graphs and matrices

Before looking at row ordering algorithms for frontal solvers, it is convenient to
recall some basic concepts from graph theory.

A graph G is de�ned to be a pair (V (G); E(G)), where V (G) is a �nite
set of nodes (or vertices) v1; v2; :::; vn, and E(G) is a �nite set of edges, where
an edge is a pair (vi; vj) of distinct nodes of V (G). If no distinction is made
between (vi; vj) and (vj; vi) the graph is undirected, otherwise it is a directed

graph or digraph. A labelling (or ordering) of a graph G = (V (G); E(G)) with
n nodes is a bijection of f1; 2; :::; ng onto V (G). The integer i (1 � i � n)
assigned to a node in V (G) by a labelling is called the label (or number) of that
node. Two nodes vi and vj in V (G) are said to be adjacent (or neighbours) if

(vi; vj) 2 E(G). The degree of a node vi 2 V (G) is de�ned to be the number of
nodes in V (G) which are adjacent to vi, and the adjacency list for vi is the list
of these adjacent nodes. A path of length k in G is an ordered set of distinct

nodes (vi1 ; vi2 ; :::; vik+1) where (vij ; vij+1) 2 E(G) for 1 � j � k. Two nodes are
connected if there is a path joining them. An undirected graph G is connected
if each pair of distinct nodes is connected. Otherwise, G is disconnected and
consists of two or more components. In the following, we assume that the graphs

we use are connected. If not, it is straightforward to apply the algorithms to
each component of the graph.

We can now establish the relationship between graphs and matrices. A
labelled graph GA with n nodes can be associated with any square matrix

A = faijg of order n. Two nodes i and j (i 6= j) are adjacent in the graph
if and only if aij is nonzero. If A has a symmetric sparsity pattern, GA is
undirected, otherwise GA is a digraph.
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3 Row ordering strategies

In recent years, a number of algorithms for automatically ordering matrices for
frontal solvers have been proposed. In this section and the next, we brie
y

review these di�erent strategies. Numerical results for the most promising
approaches are included in Section 5.

3.1 Pro�le reduction algorithms

The graph of a symmetric matrix is unchanged if a symmetric permutation is

performed on the matrix; only the labelling of its nodes changes. Many pro�le
and bandwidth reduction algorithms for sparse symmetric matrices exploit the
close relationship between the matrix and its undirected graph (for example,

the algorithms of Cuthill and McKee, 1969, and Sloan, 1986). If the matrix A is
numerically unsymmetric but has a symmetric sparsity pattern, an appropriate
ordering of the rows for a frontal solver can be obtained using one of these pro�le
reduction algorithms. The use of these algorithms can be extended to obtain

orderings for unsymmetric matrices by applying them to the sparsity pattern

of A+AT . For matrices with an almost symmetric pattern, good orderings can
generally be obtained using this approach (see, for example, Scott, 1998). But
for highly asymmetric matrices, such as those that occur in process simulation,

using the structure of A + AT does not yield useful results. This is because
the number of entries in A + AT is almost twice that in A, indicating a large
number of dependencies are introduced that do not exist in the actual problem.

3.2 P4 approach

For frontal methods, an upper triangular form may appear attractive because
as each row enters the front, a variable is immediately available for elimination.

One possible approach to reordering, therefore, is to use an algorithm such as the
partitioned preassigned pivot procedure (P4) of Hellerman and Rarick (1972)
for reordering a highly asymmetric matrix to almost lower triangular form and
then to reverse the order. This was proposed by Stadtherr and Vegeais (1985).

In his thesis, Camarda (1997) reports that reverse P4 gives inconsistent results
in so much as, for some examples, it can produce good orderings but for other
problems, it can yield orderings that are signi�cantly worse than the original
ordering. Further results con�rming this are given by Camarda and Stadtherr

(1998). This inconsistency is possibly because the method places the rows with
the largest number of entries early in the ordering which, in some cases, leads to
a large column frontsize for many elimination steps. The P4 method was not,

of course, developed with frontal solvers in mind. It is clear that, for frontal
methods, specially developed algorithms are needed and, rather than a block
triangular form, a variable band form is desirable.

3.3 RMCD ordering

The restricted minimum column degree (RMCD) ordering algorithm for
reducing the size of the frontal matrix was recently discussed by Camarda (1997)
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and Camarda and Stadtherr (1998). This algorithm uses the concept of a net.
A net nl is de�ned to be a column l and all the rows i such that ail is nonzero.
This concept is useful because, when nl has been assembled, column l is fully
summed and an elimination can be performed. At each stage of reordering,

the degree of a column l is the number of nonzero entries ail in the rows of A
that have not yet been reordered. The RMCD algorithm stores the degree of
each column and, at each stage, chooses the column of minimum degree and

assembles all the rows in the net corresponding to the chosen column into the
frontal matrix. The column degrees are then updated before the next column is
selected. Rapid determination of the column with minimum degree is achieved
through the use of linked lists. When the degree of a column is updated, the

column is placed at the head of the linked list of columns of that degree. Thus
partially summed columns are given priority. A simple example illustrating the
RMCD algorithm is given in Camarda and Stadtherr (1998).

In his numerical experiments, Camarda (1997) found that the reordering

time required by the RMCD algorithm was generally small compared with the
time required by the subsequent numerical factorization of the matrix and the
method gave modest improvements to the row ordering for a number of test

examples from a variety of application areas (see also Scott, 1998 and Camarda
and Stadtherr, 1998). Results for process engineering problems are included in
Section 5.

3.4 RMNA ordering

The RMCD algorithm does not directly address the growth of the column
frontsize. Experimental data reported by Scott (1998) shows that the reordered
matrix can have a column frontsize that is many times that of the original

matrix. To try and limit the column frontsize, Camarda (1997) proposes the
restricted minimum net area (RMNA) algorithm. This algorithm is related to
the RCMD algorithm but, rather than looking just at minimising the column
degree when selecting the next net to be assembled, the RMNA algorithm is

designed to restrict the additional area that will be added to the frontal matrix
upon the assembly of a net. Speci�cally, at each stage, the RMNA algorithm
chooses the column for which the product of the column degree and the net

degree is a minimum, where the degree of the net nl is de�ned to be the number
of independent columns with nonzeros in the rows of nl. Priority is given to
the net whose degree was most recently updated.

The reported results of Camarda (1997) are disappointing. They show

that the orderings obtained using the computationally more expensive RMNA
algorithm generally o�ers little or no improvement on those obtained by the
RCMD algorithm. It appears that the degree of nl often provides a poor
measure of the actual growth in the column frontsize that results from selecting

nl because of signi�cant overlap between the columns with nonzeros in the rows
of nl and columns already in the front.
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3.5 NMNC ordering

The RMCD and RMNA algorithms are local heuristic orderings: at each stage
they choose the column that minimises a function based on the column and net

degrees, without reference to e�ects on later stages. An alternative is to use an
approach based on global heuristics, such as the recursive graph partitioning
algorithm introduced by Coon (1990) and Coon and Stadtherr (1995) as the
Minimum Net Cut (MNC) algorithm. The MNC algorithm is designed to order

the matrix to bordered block diagonal form. It starts with a full transversal
(zero-free diagonal) and employs row and column interchanges that maintain a
full transversal. The bordered block diagonal form can be used to implement

the frontal method in parallel (see Mallya et al., 1997). Recently, Camarda
(1997) simpli�ed the MNC algorithm. The so-called New Minimum Net Cut
(NMNC) algorithm removes the full transversal restriction and, for the single
processor frontal method, uses only row interchanges.

To describe the NMNC algorithm we need to recall the de�nition of the
bipartite graph of a general square matrix of order n. The bipartite graph of
A consists of two distinct sets of n nodes R and C, each set being labelled
1; 2; :::; n, together with E edges joining nodes in R to those in C. There is an

edge between i 2 R and j 2 C if and only if aij is nonzero. Here, jEj is the
total number of entries in A.

The goal of the NMNC algorithm is to �nd a partitioning of the bipartite

graph of A such that the number of nets cut by the partition is minimised,
where the net nl is said to be cut with respect to a partitioning of the rows
of the matrix if column l has nonzero entries on both sides of the partition.
The NMNC algorithm recursively partitions the rows of the matrix, so that the

matrix is partitioned into 2, then into 4, and so on. For each partitioning, the

rows are sorted according to their gain. The gain associated with moving a row
j from one partition to another is de�ned to be the reduction in the net cut
that results from the move. A negative gain indicates a move that increases the

net cut. Rows that have been moved during the current partitioning are locked
for the remainder of that partitioning. Two types of move are allowed: the �rst
exchanges free (unlocked) rows between partitions, the second moves a single

row into the other partition. Only moves with a positive gain are permitted.
For each level of the partitioning, moves continue until no more rows can be
moved.

The NMNC algorithm is more expensive to implement than the simple

RMCD algorithm but the results presented in the thesis of Camarda (1997)
show that it performs more consistently and can yield better orderings. This
suggests that this method may be particularly useful when several factorizations
follow the initial reordering.

4 Row graph ordering techniques

In the previous section, we considered both local and global reordering schemes.
In this section, we look at a class of methods that use local ordering to re�ne a
global ordering.
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4.1 Row graphs

For developing row permutations of unsymmetric matrices, an alternative to
using the digraph or the bipartite graph, is to use a row graph. Row graphs

were �rst introduced by Mayoh (1965) and have recently been used by Scott
(1998) for developing row orderings for frontal solvers.

The row graph GR of A is de�ned to be the undirected graph of the
symmetric matrix B = A � AT , where � denotes matrix multiplication without

taking cancellations into account (so that, if an entry in B is zero as a result of
numerical cancellation, it is considered as a nonzero entry and the corresponding
edge is included in the row graph). The nodes of GR are the rows of A and two

rows i and j (i 6= j) are adjacent if and only if there is at least one column k of
A for which aik and ajk are both nonzero. Row permutations of A correspond
to relabelling the nodes of the row graph.

4.2 The MSRO algorithm

The MSRO row ordering algorithms introduced by Scott (1998) have their
origins in the pro�le reduction algorithm of Sloan (1986) for symmetricmatrices.
The MSRO algorithms use the row graph and comprise two distinct phases:

� selection of a global ordering

� row reordering.

Selecting an appropriate global ordering is discussed below. The global ordering
de�nes the global priority of each row. The row with the lowest global priority
is chosen as the start row (that is, the row that is �rst in the global ordering

is ordered �rst in the new ordering). In the second phase of the algorithm, the

global ordering is used to guide the reordering. Rows with a high global priority
will be chosen towards the end of the ordering.

A row is de�ned to be active if it has not yet been reordered but is adjacent in

the row graph to a row that has already been reordered. The MSRO algorithm
aims to reduce the row and column frontsizes by reducing the number of rows
that are active at each stage and this is done by local reordering of the global
ordering. For each row i 2 GR, the MSRO algorithm computes the priority

function

Pi =W1 � rcgaini +W2 � gi: (4.1)

Here W1 and W2 are positive integer weights, gi is the (positive) global priority
for row i, and rcgaini = rgaini + cgaini, where rgaini and cgaini are the

increases to the row and column frontsizes resulting from assembling (ordering)

row i next. Assembling a row into the frontal matrix causes the row frontsize
to either increase by one, to remain the same, or to decrease. The row frontsize
increases by one if no columns become fully summed, it remains the same if a

single column becomes fully summed, and it decreases if more than one column
becomes fully summed. The increase in the column frontsize is the di�erence
between the number of column indices that appear in the front for the �rst time
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and the number that become fully summed. If this di�erence is negative, the
column frontsize decreases. Hence, if si is the number of columns that become
fully summed when row i is assembled,

rgaini = 1� si (4.2)

and

cgaini = newci � si; (4.3)

where newci is the number of new column indices in the front. It follows that

rcgaini = 1 + newci � 2si (4.4)

and this is minimised if row i brings a small number of new columns into the
front and results in a large number of columns becoming fully summed.

The start row is ordered �rst then, at each stage, the next row in the
ordering is chosen from a list of eligible rows to minimise Pi. The eligible rows

are de�ned to be those that are active together with their neighbours. A list

of eligible rows is maintained using the connectivity lists for the row graph.
Thus, the MSRO algorithm attempts to keep a balance between having only a
small number of rows and columns in the front and including rows that have
a low global priority. The balance is determined by the choice of weights (see

Section 4.4).
We note that the MSRO scheme has more freedom when choosing the next

row to be assembled than the RCMD and RMNA algorithms. Once a column
has been selected, the RCMD and RMNA algorithms assemble all the rows with

nonzeros in that column, so that a block of rows rather than a single row is

chosen at once. The MSRO approach selects one row and then, when choosing
the next row, takes into account the e�ect of the previous choices.

4.3 The global ordering

The success of the MSRO algorithm is dependent upon �rst computing
an appropriate global ordering. We consider three possible choices: the

pseudodiameter, the spectral ordering, and the NMNC ordering.

4.3.1 The pseudodiameter

The distance between nodes i and j in an undirected graph G is denoted by
d(i; j), and is de�ned to be the number of edges on the shortest path connecting

them. The diameter D(G) of G is the maximum distance between any pair of

nodes. That is,

D(G) = maxfd(i; j) : i; j 2 V (G)g: (4.5)

A pseudodiameter �(G) is de�ned by any pair of nodes i and j in V (G) for
which d(i; j) is close to D(G). Experience has shown that the ends of a

pseudodiameter provide good candidates for the starting nodes for pro�le and
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wavefront reduction algorithms and for bandwidth reduction algorithms (see,
for example, Gibbs, 1976, Gibbs, Poole and Stockmeyer, 1976, and Sloan, 1986).

A pseudodiameter may be found using level set structures. A level

structure rooted at a node r is de�ned as the partitioning of V (G) into levels

l1(r); l2(r); :::; lh(r) such that

1. l1(r) = frg and

2. for i > 1, li(r) is the set of all nodes that are adjacent to nodes in li�1(r)
but are not in l1(r); l2(r); :::; li�1(r).

The procedure that we use to locate a pseudodiameter is a modi�cation of that

described by Gibbs et al. (1976). Full details are given in Reid and Scott

(1998).
Cuthill and McKee (1969) proposed that the ordering associated with the

level-set structure be used as a basis for ordering for the variable-band method.

In an earlier paper (Scott, 1998), we looked at applying the Reverse Cuthill-
McKee algorithm to the row graph GR of A. However, we found that improved
orderings could be obtained by using the pseudodiameter of GR as the global
ordering within the MSRO algorithm. One end s of the pseudodiameter is

chosen as the start row and is ordered �rst. The remaining rows are numbered
according to their distance d(i; s) from s, with those nearest to s being numbered
�rst and row e numbered last. That is, gi is chosen to be the distance d(i; s).

4.3.2 Example

To illustrate the MSRO method with the pseudodiameter global ordering we
use the matrix with the sparsity pattern given in Figure 4.1. We will use weights

(W1;W2) = (2; 1). For this matrix, the lifetimes are 3, 3, 3, 5, 4, 4 and the sum

of the lifetimes is 22. We observe that the minimum possible value for the sum
of the lifetimes is nz, the number of entries in A, which is 15 for this example.

Figure 4.1: The original matrix.

1 2 3 4 5 6
1 x x x

2 x x x
3 x x x x
4 x

5 x x x
6 x

The start and target end rows (s; e) are chosen to be (4; 6) since, by

inspection, d(4; 6) = 3 and d(i; j) � 3, i; j = 1; 2; :::; 6). The initial priorities
are given in Table 4.1. Note that initially rcgaini is just one more than the

number of entries in row i.
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Table 4.1: Initial priorities for MSRO method.

Row rcgaini d(i; 4) Pi

1 4 2 10
2 4 1 9
3 5 2 12
4 2 0 4

5 4 2 10
6 2 3 7

Row 4 is ordered �rst. Only row 2 is a neighbour of row 4 so only its
priority changes. Its priority decreases byW1 to 7. We now have two rows with
a priority value of 7 but only row 2 is active so it is ordered next. Row 2 brings

Figure 4.2: Partially ordered matrix.

1 2 3 4 5 6 Priority
4 x �
2 x x x �
1 x x x 8

3 x x x x 10
5 x x x 6
6 x 7

columns 4 and 5 into the front and rows 1, 3, and 5 become active. Since row
1 has an entry in column 4, its priority decreases by W1. The priority of row 3

is also decreased by W1 and, because row 5 has entries in both columns 4 and
5, its priority decreases by 2 �W1, resulting in the matrix of Figure 4.2 (rows
with the priority given as � have been reordered).

Figure 4.3: Partially ordered matrix.

1 2 3 4 5 6 Priority
4 x �
2 x x x �

5 x x x �
1 x x x 8
3 x x x x 8

6 x 5

Row 5 now has the lowest priority value and so is ordered next, bringing
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column 6 into the front and making row 6 active. The priorities of rows 3 and
6, which have entries in column 6, are decreased by W1, giving the matrix in
Figure 4.3.

Figure 4.4: Final reordered matrix.

1 2 3 4 5 6
4 x

2 x x x
5 x x x

6 x
3 x x x x
1 x x x

We next order row 6 because it has the lowest priority value. The priority
of row 3 then decreases so that it is ordered ahead of row 1. The �nal reordered

matrix is given in Figure 4.4. The sum of the lifetimes for the reordered matrix
is 16.

4.3.3 Spectral ordering

Spectral algorithms have been used in recent years for pro�le and wavefront

reduction of symmetrically structured matrices. Barnard, Pothen and Simon
(1995) describe a spectral algorithm that associates a Laplacian matrix L with
a given matrix S = fsijg with a symmetric sparsity pattern,

L = flijg =

8><
>:

�1 if i 6= j and sij 6= 0
0 if i 6= j and sij = 0P

i6=j jlijj if i = j:
(4.6)

An eigenvector corresponding to the smallest positive eigenvalue of the

Laplacian matrix is termed a Fiedler vector. The spectral permutation of the
nodes of the undirected graph GS is computed by sorting the components of a
Fiedler vector into monotonically nonincreasing or nondecreasing order.

For matrices A with an unsymmetric sparsity pattern, we can apply the

spectral method to the symmetric matrix B = A �AT , whose undirected graph
is the row graph GR of A. The spectral permutation of the nodes of this graph
yields a row ordering.

Experience has shown that spectral orderings often do well in a global sense

but can perform poor locally (see Kumfert and Pothen, 1997). We therefore
use the spectral ordering to provide a global ordering for the priority function
(4.1). Speci�cally, we choose the start row to be the �rst row in the spectral

ordering and, for a matrix with n rows, we take the second term in the priority
function (4.1) to be

gi = (h=n)pi: (4.7)
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Here pi is the position of row i in the spectral ordering and h is the
number of level-sets in the level set structure rooted at the start row. The
normalization of pi results in gi varying up to h, which is at most the
length of the pseudodiameter. Without normalization, the second term in the

priority function would have a much larger in
uence than it does when the
pseudodiameter is used as the global ordering.

4.3.4 NMNC ordering

The NMNC ordering, which was discussed in Section 3.5, can also be used as
the global ordering for the second phase of the MSRO algorithm. As for the
spectral ordering, we take the second term in the priority function to be (4.7),
where pi is now the position of row i in the NMNC ordering and h is again the

depth of the level set structure rooted at the start row.

4.4 Choice of weights

The performance of the MSRO algorithms is dependent on the choice of

the integer weights (W1;W2). The detailed numerical experiments performed
by Scott (1998) show that no single choice of weights is best for all problems.
Based on numerical results for a wide range of practical problems, when the
pseudodiameter is used as the global ordering for the MSRO algorithm, Scott

recommends trying the weights (2; 1) and (32; 1) and selecting the better result.
Using the spectral ordering, Scott proposes the weights (1; 2) and (32; 1), unless
the matrix has a short pseudodiameter. In this case, the best results are

achieved with a larger value of W2, so that the ordering more closely follows
the spectral ordering. When the NMNC ordering is used as the global ordering
we also use the weights (1; 2) and (32; 1) and take the better result.

4.5 Reversing the row order

If we assume that for a given row ordering the rows have been relabelled
1; 2; :::; n, then the reverse ordering assembles the rows in the order n; :::; 2; 1.
It can be shown that the sum of the lifetimes is independent of whether the

rows are assembled in the given order or in the reverse order. Moreover, Reid
and Scott (1999) prove that the maximum and mean column frontsizes are
invariant if the row order is reversed. However, the maximum and mean row
frontsizes and the mean frontal matrix size favg are, in general, di�erent for the

reverse order. Numerical experimentation has shown that, for some examples,
favg can be signi�cantly reduced by reversing a given row order while for other
examples, the converse is true. We therefore compute the mean frontal matrix

size for the MSRO orderings and also for the reverse MSRO orderings and select
the ordering for which favg is the smaller.
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5 Numerical results

In this section, we �rst describe the chemical engineering problems that we use
for testing the row ordering algorithms discussed in this paper and then present

numerical results.

5.1 Test problems

The test problems are listed in Table 5.1. Each problem comes
from chemical process engineering. Problems marked with a y are

from the University of Florida Sparse Matrix Collection (Davis, 1997,
see http://www.cise.u
.edu/�davis/sparse/) and those marked by z are
from the Harwell-Boeing Collection (Du�, Grimes and Lewis, 1992, see

http://www.dci.clrc.ac.uk/Activity/SparseMatrices). The remaining problems
were supplied by Mark Stadtherr of the University of Notre Dame; further
details of these problems may be found in Mallya et al. (1997). In addition to
the order of the matrix and the number of entries in the matrix, we give the

symmetry index and information on the row graph of the matrix (the length of

Table 5.1: The test problems. y indicates problem taken from University
of Florida Sparse Matrix Collection and z indicates from Harwell-Boeing
Collection.

Identi�er Order Number of Symmetry Pseudo Edges Average
entries index diameter in row number

graph neighbours
(�103)

4cols 11770 43668 0.0159 64 210 17.8
10cols 29496 109588 0.0167 156 527 17.9

bayer01y 57735 277774 0.0002 154 1532 26.5

bayer03
y 6747 56196 0.0031 42 400 59.3

bayer04y 20545 159082 0.0016 44 1099 53.5

bayer09y 3083 21216 0.0212 30 142 46.0
ethylene-1 10673 80904 0.2973 21 2036 190.7
ethylene-2 10353 78004 0.3020 21 1832 176.9

extr1y 2837 11407 0.0042 57 37 13.1

hydr1y 5308 23752 0.0041 54 96 24.2
icomp 69174 301465 0.0010 301 1833 18.1

lhr07c
y 7337 156508 0.0174 49 704 96.0

lhr14cy 14270 307858 0.0066 41 1394 97.7

lhr17c
y 17576 381975 0.0015 41 1731 98.5

lhr34cy 35152 764014 0.0015 49 3464 98.5

lhr71c
y 70304 1528092 0.0016 72 6930 98.6

meg1y 2904 58142 0.0024 7 372 128.1

radfr1
y 1048 13299 0.0537 29 395 37.7

rdist1y 4134 94408 0.0588 54 322 78.0

rdist2
y 3198 56934 0.0456 54 188 58.7

rdist3ay 2398 61896 0.1404 29 216 90.0

west2021z 2021 7353 0.0033 15 38 18.7

http://www.cise.u .edu/�davis/sparse/
http://www.dci.clrc.ac.uk/Activity/SparseMatrices
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the pseudodiameter of the row graph, the number of edges in the graph, and
the average number of neighbours each row has). The symmetry index of a
matrix A is de�ned as

s(A) = 1�
nz(A+ AT �D)� nz(A�D)

nz(A�D)
;

where nz(A � D) and nz(A + AT � D) denote the number of o�-diagonal

entries in A and A + AT , respectively. Thus s(A) is measure of how far from
symmetry the sparsity pattern of A is. Small values indicate a high degree of
asymmetry. We see that all the chosen test problems are highly asymmetric.
The pseudodiameter was computed using the MC62 code (see Section 6).

The reported results of Camarda (1997) and Camarda and Stadtherr (1998)
suggest that, of the row ordering algorithms discussed in Section 3, the most
promising approaches for unsymmetric problems are the RMCD and NMNC

algorithms. We therefore restrict our numerical experiments to the RMCD,
NMNC, and MSRO algorithms. In the following, MSRO+pseudodiameter
denotes the MSRO algorithm with the pseudodiameter used as the global
ordering. MSRO+spectral and MSRO+NMNC are de�ned similarly. For the

NMNC algorithm, we use the code of Camarda (1997), for which a complete
listing is given in his thesis. For the other algorithms, we use a new code
that will be included in the next release of the Harwell Subroutine Library
(http://www.dci.clrc.ac.uk/Activity/HSL).The new code is written in standard

Fortran 77 and is called MC62. We brie
y discuss the design of MC62 in Section 6.
In our experiments involving the spectral method, the Fiedler vector of the row
graph was obtained using Version 2.0 of the Chaco package (Hendrickson and

Leland, 1995).
Unless indicated otherwise, the numerical results were obtained using

the EPC (Edinburgh Portable Compilers, Ltd) Fortran 90 compiler with
optimization -O running on a 143 MHz Sun Ultra 1.

5.2 A comparison of the methods

In this section, we compare the performance of the di�erent row ordering

algorithms. In Table 5.2, the mean frontal matrix size is given. For comparison,
we include the mean frontal matrix size for the original ordering. In Table 5.3,
we present the sum of the lifetimes as a percentage of the sum of the lifetimes of

the original ordering. We highlight in bold the smallest values for each problem.
For 4 of the largest problems, 10cols, bayer01, icomp, and lhr71c, we were
unable to obtain a spectral ordering with the Chaco package and for these
problems no results for MSRO+spectral are available.

The main conclusion that we can draw from our results is that, when a
spectral ordering is available, the best results are generally achieved using the
MSRO+spectral algorithm. We now examine our �ndings in a little more detail.
We �rst note that the performance of the RMCD algorithm can vary greatly

between problems. In general, all the other algorithms perform better than
RMCD: there is only one problem, meg1, for which RMCD gives the smallest
value of favg. Moreover, for a large proportion of the test problems, the RMCD
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Table 5.2: The mean frontal matrix size (favg � 10
2) for the di�erent reordering

algorithms. The smallest values are highlighted. y denotes spectral ordering

not available.

Identi�er Original RMCD NMNC MSRO+ MSRO+ MSRO+
pseudo spectral NMNC
diameter

4cols 2218 361 982 30 45 61
10cols 7091 448 2422 39 y 87
bayer01 1183 27136 992 182 y 812
bayer03 200 438 195 27 12 234
bayer04 1911 4162 1683 334 59 972
bayer09 249 152 230 20 12 178
ethylene-1 1452 11249 573 3910 2449 213

ethylene-2 451 10496 292 2818 569 67

extr1 49 486 34 4 3 18
hydr1 310 231 197 10 3 58
icomp 1217 1274 847 73 y 198
lhr07c 521 2180 150 62 48 130
lhr14c 1076 7645 266 153 134 224
lhr17c 1329 11506 275 200 170 255
lhr34c 1499 48940 1499 283 172 472
lhr71c 1548 204070 1548 835 y 486
meg1 11823 461 3068 1837 1015 1781
radfr1 36 4 5 4 4 5
rdist1 146 1251 20 17 20 17

rdist2 65 13347 11 13 10 10

rdist3a 91 8262 22 36 22 30
west2021 179 28 151 4 4 40

algorithm produces orderings for which the sum of the lifetimes is actually

greater than for the original ordering.
Although more consistent, for many problems the NMNC algorithm is

only able to achieve relatively modest reductions in the size of the frontal

matrix. However, the NMNC orderings are improved signi�cantly when used
in conjunction with the MSRO algorithm. Comparing the columns headed
`NMNC' and `MSRO+NMNC' in Tables 5.2 and 5.3, we see that for most
problems the MSRO+NMNC algorithm outperforms the NMNC algorithm

and, for some problems, including 4cols and 10cols, the improvements are
dramatic.

Comparing the use of the di�erent global orderings with the MSRO

algorithm we see that for most, but not all, of the problems the pseudodiameter
gives better results than using the NMNC ordering, while in turn the
spectral ordering is better than the pseudodiameter. There are only two
problems, ethylene-1 and ethylene-2, for which the MSRO algorithm with

the pseudodiameter and the spectral ordering perform poorly. To try and gain
some insight into why this is, we need to look at the row graphs for these
matrices. We see from Table 5.1 that for these problems the average number of
neighbours each row has is large and, compared with the order of the matrices,

the pseudodiameter is short. It would appear that the MSRO algorithm used
with the pseudodiameter or spectral ordering does well provided the rows have
only a small number of neighbours; where there is a high degree of connectivity
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Table 5.3: The sum of the lifetimes for the di�erent reordering algorithms as
a percentage of the sum of the lifetimes of the original ordering. The smallest
values are highlighted. � indicates the sum of the lifetimes is more than one
thousand times greater than for the original ordering. y denotes spectral

ordering not available.

Identi�er RMCD NMNC MSRO+ MSRO+ MSRO+
pseudo spectral NMNC
diameter

4cols 71 70 13 15 18
10cols 45 61 8 y 12
bayer01 � 92 35 y 80
bayer03 609 98 36 24 104
bayer04 517 94 45 18 67
bayer09 221 94 30 24 82
ethylene-1 631 60 187 131 34

ethylene-2 � 71 297 119 44

extr1 498 82 28 27 67
hydr1 200 81 17 11 35
icomp � 79 25 y 42
lhr07c 941 65 47 44 65
lhr14c � 57 55 49 60
lhr17c � 54 57 47 57
lhr34c � 100 61 44 69
lhr71c � 100 89 y 69
meg1 62 63 43 31 42
radfr1 33 35 30 30 30
rdist1 170 33 29 30 29

rdist2 947 31 31 27 28
rdist3a 806 51 61 45 51
west2021 96 96 14 14 49

between the rows one of the other algorithms may perform better and we do

not recommend using the pseudodiameter or spectral ordering.
A comparison of the results in Tables 5.2 and 5.3 shows that if the best

ordering is selected on the basis of the sum of the lifetimes then for a number

of problems a di�erent ordering is chosen than would be chosen if the mean
frontal matrix size was used. For example, for problem meg1 the mean frontal
matrix size for the RCMD ordering is signi�cantly smaller than for all the other
algorithms but if the sum of the lifetimes was to be used, the MSRO+spectral

ordering would be chosen. Similarly, for bayer09 the sum of the lifetimes is
smaller for NMNC than for RCMD but favg for RCMD is smaller than for
NMNC. Again, for west2021, for RCMD and NMNC the sum of the lifetimes
is 96 per cent of the original but the RCMD has a much smaller mean frontal

matrix size. Although the sum of the lifetimes has been used in the past as
the measure for selecting a good ordering (Camarda, 1997), on the basis of
our �ndings and the results of Reid and Scott (1999), we recommend using the

mean frontal matrix size.
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5.3 Use with frontal solvers

As discussed in the introduction, the main motivation behind this work is the
need for row orderings to improve the e�ciency of frontal solvers. We now

present results that illustrate the e�ect on frontal solver factorization times of
preordering the rows.

5.3.1 MA42

In the Harwell Subroutine Library (1996), the MA42 package (Du� and Scott,

1996) is a general purpose frontal solver. The code was primarily designed for
unassembled �nite-element matrices, but also includes an option for entering the
assembled matrix row-by-row, and this is the option we use here. In Table 5.4
we present the CPU time (in seconds) taken by MA42 to factorize the reordered

matrices. The timings include the i/o overhead for using direct access �les
to hold the matrix factors, but do not include the time required to reorder the
rows. Partial pivoting and Level 3 BLAS are used by MA42. In our experiments,

we use a minimum pivot block size of 16 together with a version of MA42 that
attempts to exploit blocks of zeros within the front (see Scott, 1997 for details).
Once the factors have been computed, a separate subroutine is used to perform
the forward and back substitutions needed to complete the solution. Thus any

number of systems with the same factors but di�erent right-hand sides can be
solved for, either simultaneously or one at a time. Timings are not included
where the results of the previous section have shown an ordering is not as good
as the original ordering.

As expected, the results demonstrate that improved orderings generally lead
to savings in the factorization time. For most problems, we have been able to
achieve savings of more than 50 per cent compared with the original ordering

and for some problems the factorization time has been reduced by as much as
80 per cent. We note however that the savings are not always as large as the
reductions in the frontsize and in the lifetimes might lead us to expect. This
is partly because MA42 is able to o�set some of the e�ects of a poor ordering

by exploiting zeros within the frontal matrix (see also Du� and Scott, 1997
and Cli�e, Du� and Scott, 1998). Furthermore, the e�ect of using Level 3 BLAS
means that the poorer orderings can achieve a higher Mega
op rate.

We have also compared the performance of MA42 with that of the Harwell
Subroutine Library sparse solver MA48 (Du� and Reid, 1993, 1996). MA48 is
a general purpose Fortran 77 sparse code that uses Gaussian elimination for
solving unsymmetric systems whose coe�cient matrix need not be square. The

analyse phase �rst permutes the matrix to block triangular form and then, on
each submatrix of the block diagonal, uses a Markowitz criterion for maintaining
sparsity and threshold partial pivoting for numerical stability. A subsequent
factorize phase must then be used to generate the factors. There is a second

factorize option (`fast' factorize) to rapidly factorize a matrix with the same
sparsity structure as one previously factorized by the routine. The solve phase
uses the computed factors to solve for a single right-hand side at a time. The

factors are held in-core.
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Table 5.4: The factorization times (in seconds) for MA42 used with the di�erent
reordering algorithms (Sun Ultra). The fastest times are highlighted. �

indicates MA42 not run because original ordering is better than reordering.
y denotes spectral ordering not available.

Identi�er Original RMCD NMNC MSRO+ MSRO+ MSRO+
pseudo spectral NMNC
diameter

4cols 17.8 17.0 14.3 2.8 3.3 3.2
10cols 84.4 48.8 64.0 7.6 y 10.0
bayer01 43.2 � 40.5 20.2 y 119
bayer03 2.5 � 2.3 1.4 1.1 �

bayer04 21.8 � 20.0 10.6 5.0 12.6
bayer09 0.9 1.3 0.9 0.5 0.4 0.9
ethylene-1 7.5 � 7.9 � � 5.1

ethylene-2 7.0 � 7.7 � � 3.0

extr1 0.5 � 0.4 0.3 0.4 0.5
hydr1 1.7 2.0 1.4 0.8 0.7 1.7
icomp 41.4 � 33.2 11.2 y 15.7
lhr07c 11.8 � 7.4 3.8 3.5 7.1
lhr14c 23.9 � 13.1 9.2 8.1 12.6
lhr17c 23.4 � 23.3 13.2 13.2 16.6
lhr34c 214 � � 218 158 237
lhr71c 345 � � 487 y 399
meg1 27.2 2.4 34.6 20.8 14.7 21.2
radfr1 0.4 0.2 0.2 0.2 0.2 0.2

rdist1 4.7 � 1.4 1.3 1.3 1.3

rdist2 2.4 � 0.8 0.8 0.8 0.9
rdist3a 2.2 � 0.9 1.1 0.9 1.1
west2021 0.5 0.4 0.5 0.2 0.2 0.3

In Table 5.5, we present the time to reorder the matrix, the MA42 factor and
solve times, and for MA48, the analyse, factor, and fast factor times. There is
no need to reorder the matrix prior to the MA48 analyse phase thus the reorder
time is only important when using MA42. The solve times are for a single right-

hand side. Here (and in Table 5.6), for the test problems for which a spectral
ordering is available and gives the smallest frontsizes, the reorder times are
for MSRO+spectral (but the time taken to obtain the spectral ordering is not

included as we do not currently have available a Fortran code to do this). For

ethylene-1 and ethylene-2 the times are for MSRO+NMNC, and for meg1
the time is for RCMD. For lhr71c the original ordering is retained.

We see that for MA48, the analyse phase (which must be performed once

for each test problem) is more expensive than the factor phase. For a number
of problems (including 4cols, 10cols, and the lhr problems), this leads to
the MA48 analyse+factor time being slower than reordering the matrix and
factorising using MA42. As mentioned in the Introduction, for many chemical

process engineering problems, a large number of factorizations of matrices
having the same sparsity pattern is required. In this case, the signi�cant times
are the MA42 factor time and the MA48 factor and fast factor times. The MA48 fast
factorization uses the pivot sequence from a previous factorization and this may

become unstable if the matrix entries are markedly di�erent from the earlier
call. Thus even if the matrix pattern remains unchanged, it may be necessary to
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Table 5.5: Times (in seconds) for MA42 and MA48.

Identi�er MA42 MA48

Reorder Factor Solve Analyse Factor Fast Solve
time factor

4cols 0.6 2.8 0.35 5.5 2.1 1.6 0.08
10cols 2.1 7.6 0.91 15.0 4.7 3.2 0.20
bayer01 4.9 20.2 2.62 13.4 4.3 2.5 0.31
bayer03 1.3 1.1 0.18 1.2 0.5 0.3 0.04
bayer04 3.7 5.0 0.62 5.8 2.0 1.3 0.13
bayer09 0.5 0.4 0.07 0.3 0.2 0.1 0.02
ethylene-1 6.4 5.1 0.36 1.6 0.7 0.4 0.07
ethylene-2 5.8 3.0 0.24 1.6 0.7 0.4 0.07
extr1 0.1 0.3 0.05 0.2 0.07 0.03 0.01
hydr1 0.3 0.7 0.09 0.6 0.2 0.1 0.02
icomp 6.0 11.2 1.51 1.8 0.5 0.3 0.23
lhr07c 4.4 3.5 0.28 7.1 4.7 4.0 0.11
lhr14c 8.6 8.1 0.58 15.9 8.4 7.0 0.22
lhr17c 10.9 13.2 0.83 20.3 12.0 10.1 0.29
lhr34c 21.6 158 2.09 148 231 225 0.77
lhr71c 0.0 345 6.10 219 354 347 1.42
meg1 0.1 2.4 0.25 1.3 0.5 0.4 0.01
radfr1 0.1 0.2 0.02 0.4 0.2 0.1 0.01
rdist1 1.2 1.3 0.11 5.7 2.2 1.7 0.08
rdist2 0.6 0.8 0.06 2.3 0.9 0.6 0.04
rdist3a 0.9 0.9 0.08 1.9 0.8 0.6 0.04
west2021 0.1 0.2 0.03 0.1 0.03 0.01 0.01

generate a new pivot sequence and it is then the factor time that is important.
For a few of problems, including lhr07 and lhr34c, the MA42 factor time is

less than both the MA48 factor and fast factor times. For a number of other
problems, including radfr1 and the rdist problems, the MA42 factor times are
competitive with the MA48 factor times. But for most of our test problems, the
MA48 fast factor times are smaller than the MA42 factor times. In addition, the

solve times for MA48 are signi�cantly less than for MA42. However, when solving
for a number of right-hand sides at once, MA42 uses Level 3 BLAS so that the
time for solving simultaneously for k right-hand sides can be much less than

for k separate solves. For example, for problem 4cols the time for solving for
a single right-hand side is 0.35 seconds and for 10 right-hand sides it is 1.22
seconds. For lhr34c the corresponding times are 2.1 and 9.0 seconds. For MA48
the time for k right-hand sides is k times the single solve time.

5.3.2 FAMP

We have also performed tests with the frontal solver FAMP. This solver was
developed at the University of Illinois and at Cray Research, Inc. and described
by Zitney and Stadtherr (1993) and Zitney et al. (1995). Unlike MA42, FAMP

was speci�cally designed for assembled matrices (non-element form). Moreover,
while MA42 is written in standard Fortran 77 and is fully portable, FAMP has
been �nely tuned for Cray systems, including the use of assembly language

kernels. As a result, on Cray machines, FAMP is faster than MA42. We compare
the performance of FAMP on a single processor of a Cray J932 with that of
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MA48. All timings are CPU times in seconds.

Table 5.6: Times (in seconds) for FAMP and MA48 (Cray J932).

Identi�er FAMP MA48

Reorder Original New Solve Analyse Factor Fast Solve
time order order factor

4cols 4.96 1.97 0.16 0.09 7.84 2.96 1.37 0.06
10cols 11.3 7.68 2.41 0.42 22.2 9.03 3.47 0.16
bayer01 27.9 10.2 6.58 0.82 36.4 10.2 3.66 0.32
bayer03 7.21 0.89 0.64 0.09 3.54 1.25 0.44 0.04
bayer04 20.2 4.37 2.18 0.27 15.9 4.33 1.59 0.11
bayer09 2.59 0.35 0.27 0.04 1.25 0.30 0.14 0.01
ethylene-1 22.4 1.76 1.71 0.16 5.24 1.80 0.57 0.06
ethylene-2 20.2 1.76 1.11 0.15 5.07 1.87 0.59 0.06
extr1 0.76 0.22 0.21 0.04 0.68 0.27 0.08 0.01
hydr1 2.00 0.56 0.41 0.07 1.87 0.76 0.26 0.03
lhr07c 22.8 2.20 1.48 0.12 15.8 5.65 2.41 0.06
lhr14c 44.9 4.71 3.21 0.22 34.1 12.1 4.85 0.11
lhr17c 56.4 5.85 4.53 0.30 41.8 14.2 5.74 0.14
lhr34c 113.0 12.2 8.80 0.59 97.6 34.8 16.1 0.29
meg1 0.61 3.41 0.75 0.04 2.69 1.19 0.50 0.06
radfr1 1.10 0.19 0.11 0.01 0.95 0.41 0.15 0.01
rdist1 12.5 1.23 0.80 0.07 11.1 4.17 1.74 0.03
rdist2 6.22 0.72 0.47 0.05 5.94 2.42 0.99 0.02
rdist3a 9.11 0.66 0.51 0.04 4.07 1.72 0.62 0.01
west2021 0.43 0.17 0.12 0.03 0.34 0.12 0.03 0.01

In Table 5.6, we present the time to reorder the matrix, the FAMP factor

times for the original and new orderings, and solve time for the new ordering.
For MA48, we present the analyse, factor, fast factor, and solve times (single
right-hand side). Again, the reorder time is only signi�cant for the frontal
solver. For FAMP, the fast factor time is only slightly less than the factor time

(see Zitney, Mallya, Davis and Stadtherr, 1996), so we do not quote this. We

again see that reordering can substantially reduce the factor times for the frontal
solver and this emphasizes the importance of obtaining good row orderings.

However, we also observe that reordering the rows is more expensive on the Cray
than factorizing the matrix and, if only a single matrix factorization is needed, it

is faster to use FAMP with the original matrix ordering. Alternatively, since the
reordering is quite separate from the frontal code, we can generate the ordering

on another machine such as the SUN that has faster integer arithmetic and then
pass the ordering to FAMP on the Cray. The analyse phase of MA48 is again
more expensive than the factor phase. For some problems, including 4cols, 10
cols, and the lhr problems, the FAMP factor time for the new order is less than

both the MA48 factor and fast factor times. For the remaining problems, FAMP
is faster than the MA48 factorization but slower than MA48 fast factorization. It
should however be noted that, beyond using the vendor-supplied BLAS, MA48

is not speci�cally tuned to run on the Cray. Again, solve times using MA48 are
faster than those for the frontal code, generally by a factor of 2 or 3.

We conclude that, with a good row ordering, frontal schemes can provide
a powerful and competitive alternative to general-purpose sparse solvers for

chemical process applications.
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6 Design of MC62

In this section, we brie
y discuss our new code MC62 that implements the
MSRO algorithm. The code will be included in the next release of the Harwell

Subroutine Library (HSL 2000) and is available for use now under licence.
Anyone interested in using the code may contact the author for details of terms
and conditions.

The subroutines in the MC62 package are named according to the naming

convention of the Harwell Subroutine Library. Subroutine MC62I must �rst be
called to provide default values for the parameters that control the execution
of the package. If the user wishes to use values other than the defaults, the
corresponding parameters should be reset after the call to MC62I. The main

subroutine MC62A accepts the sparsity pattern of the matrix A, either in sparse
row format or in sparse column format. MC62A performs full checks on the data
and calls MC62B to compute statistics (the maximum and mean row and column

frontsizes, the mean frontal matrix size, and the sum of the lifetimes) for the
original row order. MC62A then either

� implements the MSRO algorithm, or

� implements the RMCD algorithm, or

� implements both the MSRO and RMCD algorithm and selects the better
ordering.

The code o�ers both the MSRO and RCMD algorithms since, as we saw in our

numerical experiments in Section 5 and in Scott (1998), RCMD can outperform
if the row graph has a short pseudodiameter.

For the MSRO algorithm, subroutine MC62C is called to generate the row
graph. This subroutine is also available as a separate entry. The user then has

the option of either using the pseudodiameter of the row graph or specifying
the global priority for each row. If used, the pseudodiameter is computed using
routines from the Harwell Subroutine Library package MC60. The weights for

the priority function (4.1) may be chosen by the user, otherwise default values
based on the recommendations of Scott (1998) are used. If more than one set
of weights is used or if both the MSRO and RMCD orderings are computed,
the best row ordering is selected on the basis of the mean frontal matrix size.

Subroutine MC62B is also used to compute statistics for the rows taken in
reverse order. If the mean frontal matrix size is smaller for the reverse order,
the reverse order is returned to the user as the new row order. Note that MC62B

is also available as a separate entry and by returning several statistics, the
user can select the ordering on the basis of what he or she considers is most
important for their application. For example, if minimising the amount of main

memory needed by the frontal solver is the primary consideration, the user can

compare orderings on the basis of the maximum frontsizes. If minimising factor
storage is the main concern, the mean frontsizes should be used.
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7 Conclusions

In this paper, we have looked at the problem of reordering the rows of a general
unsymmetric matrix A for use with frontal solvers. We have reviewed recent

algorithms and, in particular, have discussed variants of the MSRO algorithm.
This approach is based on the row graph of A and uses a combination of a local
and a global ordering scheme. We have found that the MSRO algorithm using
the pseudodiameter or spectral ordering works well on a wide range of problems

from chemical processing applications and, in general, produces orderings that
are a substantial improvement on the original ordering and on the orderings
obtained by the RMCD and NMNC algorithms. The only problems we have
found that it does not work well on are those for which the row graph has a

high degree of connectivity which leads, in turn, to a short pseudodiameter.
The results presented for the frontal solvers MA42 and FAMP demonstrate

that a good row ordering can lead to substantial reductions in the time taken

to factorize a matrix. Of course, reordering the rows takes time and can
dominate the overall solution time if a single factorization of the reordered
matrix is performed (see also Scott, 1998). However, large-scale simulation or
optimization models will typically be used many times. This is particularly

true in an on-line operations environment. Even if the need for a matrix
refactorization is relatively infrequent, over the lifetime of a process model the
total number of factorizations of matrices with the same structure but di�erent
numerical values will still be large. In this case, the cost of a single matrix

reordering represents an insigni�cant part of the total cost and investing in
obtaining improved orderings is well worthwhile.
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